1
|
Tumbo A, Lorenz FR, Yang ASP, Sefried S, Schindler T, Mpina M, Dangy JP, Milando FA, Rashid MA, Nyaulingo G, Ramadhani K, Jongo S, Felgner PL, Abebe Y, Sim BKL, Church LWP, Richie TL, Billingsley PF, Murshedkar T, Hoffman SL, Abdulla S, Kremsner PG, Mordmüller B, Daubenberger C, Fendel R. PfSPZ Vaccine induces focused humoral immune response in HIV positive and negative Tanzanian adults. EBioMedicine 2024; 108:105364. [PMID: 39353279 PMCID: PMC11464252 DOI: 10.1016/j.ebiom.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Collapse
Affiliation(s)
- Anneth Tumbo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Sefried
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Maximilian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Jean-Pierre Dangy
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Mohammed A Rashid
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Gloria Nyaulingo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Said Jongo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | | | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States
| | | | | | | | | | | | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
2
|
Mouwenda YD, Jochems SP, Van Unen V, Betouke Ongwe ME, de Steenhuijsen Piters WA, Stam KA, Massinga Loembe M, Sim BKL, Esen M, Hoffman SL, Kremsner PG, Fendel R, Mordmüller B, Yazdanbakhsh M. Immune responses associated with protection induced by chemoattenuated PfSPZ vaccine in malaria-naive Europeans. JCI Insight 2024; 9:e170210. [PMID: 38716733 PMCID: PMC11141902 DOI: 10.1172/jci.insight.170210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/14/2024] [Indexed: 06/02/2024] Open
Abstract
Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.
Collapse
Affiliation(s)
- Yoanne D. Mouwenda
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Vincent Van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Madeleine Eunice Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centre National de la Recherche Scientifique et Technologique, Institut De Recherche En Écologie Tropical, Libreville, Gabon
| | | | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Betty Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tübingen, Germany
| | | | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Radboud University Medical Center (Radboudumc), Department of Medical Microbiology, Nijmegen, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
3
|
Asare KK, Agrah B, Ofori-Acquah FS, Kudzi W, Aryee NA, Amoah LE. Immune responses to P falciparum antibodies in symptomatic malaria patients with variant hemoglobin genotypes in Ghana. BMC Immunol 2024; 25:14. [PMID: 38336647 PMCID: PMC10858493 DOI: 10.1186/s12865-024-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Haemoglobin (Hb) variants such as sickle cell trait (SCT/HbAS) play a role in protecting against clinical malaria, but little is known about the development of immune responses against malaria parasite (Plasmodium falciparum surface protein 230 (Pfs230) and Plasmodium falciparum erythrocyte binding antigen 175 region-3 (PfEBA175-3R)) and vector (on the An. gambiae Salivary Gland Protein-6 peptide 1 (gSG6-P1)) antigens in individuals with variants Hb genotypes. This study assessed antibody (IgG) responses against malaria parasite, Pfs230 and PfEBA175-3R and vector, gSG6-P1 in febrile individuals with variant Hb genotypes. METHODS The study was conducted on symptomatic malaria patients attending various healthcare facilities throughout Ghana. Microscopy and ELISA were used to determine the natural IgG antibody levels of gSG6-P1, PfEBA175-3R & Pfs230, and Capillarys 2 Flex Piercing was used for Hb variants determination. RESULTS Of the 600 symptomatic malaria patients, 50.0% of the participants had malaria parasites by microscopy. The majority 79.0% (398/504) of the participants had Hb AA, followed by HbAS variant at 11.3% (57/504) and HbAC 6.7% (34/504). There were significantly (p < 0.0001) reduced levels of gSG6-P1 IgG in individuals with both HbAC and HbAS genotypes compared to the HbAA genotype. The levels of gSG6-P1 IgG were significantly (p < 0.0001) higher in HbAS compared to HbAC. Similarly, Pfs230 IgG and PfEBA-175-3R IgG distributions observed across the haemoglobin variants were significantly higher in HbAC relative to HbAS. CONCLUSION The study has shown that haemoglobin variants significantly influence the pattern of anti-gSG6-P1, Pfs230, and PfEBA-175 IgG levels in malaria-endemic population. The HbAS genotype is suggested to confer protection against malaria infection. Reduced exposure to infection ultimately reduces the induction of antibodies targeted against P. falciparum antigens.
Collapse
Affiliation(s)
- Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Agrah
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | | | - William Kudzi
- West Africa Genetic Medicine Centre, University of Ghana, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, College of Health Sciences, University of Ghana Medical School, University of Ghana, Korle- Bu, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
4
|
Kibwana E, Kapulu M. Controlled Human Malaria Infection Studies in Africa-Past, Present, and Future. Curr Top Microbiol Immunol 2024; 445:337-365. [PMID: 35704094 PMCID: PMC7616462 DOI: 10.1007/82_2022_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlled human infection studies have contributed significantly to the understanding of pathogeneses and treatment of infectious diseases. In malaria, deliberately infecting humans with malaria parasites was used as a treatment for neurosyphilis in the early 1920s. More recently, controlled human malaria infection (CHMI) has become a valuable, cost-effective tool to fast-track the development and evaluation of new anti-malarial drugs and/or vaccines. CHMI studies have also been used to define host/parasite interactions and immunological correlates of protection. CHMI involves infecting a small number of healthy volunteers with malaria parasites, monitoring their parasitemia and providing anti-malarial treatment when a set threshold is reached. In this review we discuss the introduction, development, and challenges of modern-day Plasmodium falciparum CHMI studies conducted in Africa, and the impact of naturally acquired immunity on infectivity and vaccine efficacy. CHMIs have shown to be an invaluable tool particularly in accelerating malaria vaccine research. Although there are limitations of CHMI studies for estimating public health impacts and for regulatory purposes, their strength lies in proof-of-concept efficacy data at an early stage of development, providing a faster way to select vaccines for further development and providing valuable insights in understanding the mechanisms of immunity to malarial infection.
Collapse
Affiliation(s)
- Elizabeth Kibwana
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| | - Melissa Kapulu
- Bioscience Department, KEMRI-Wellcome Trust Research Program, Kilifi, Kenya
| |
Collapse
|
5
|
Ngou CM, Bayibéki AN, Abate L, Makinde OS, Feufack-Donfack LB, Sarah-Matio EM, Bouopda-Tuedom AG, Taconet P, Moiroux N, Awono-Ambéné PH, Talman A, Ayong LS, Berry A, Nsango SE, Morlais I. Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers. BMC Infect Dis 2023; 23:317. [PMID: 37165325 PMCID: PMC10173526 DOI: 10.1186/s12879-023-08134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Sickle cell trait (SCT) refers to the carriage of one abnormal copy of the β-globin gene, the HbS allele. SCT offers protection against malaria, controlling parasite density and preventing progression to symptomatic malaria. However, it remains unclear whether SCT also affects transmission stages and mosquito infection parameters. Deciphering the impact of the SCT on human to mosquito malaria transmission is key to understanding mechanisms that maintain the trait in malaria endemic areas. METHODS The study was conducted from June to July 2017 among asymptomatic children living in the locality of Mfou, Cameroon. Blood samples were collected from asymptomatic children to perform malaria diagnosis by microscopy, Plasmodium species by PCR and hemoglobin typing by RFLP. Infectiousness of gametocytes to mosquitoes was assessed by membrane feeding assays using blood from gametocyte carriers of HbAA and HbAS genotypes. A zero-inflated model was fitted to predict distribution of oocysts in mosquitoes according to hemoglobin genotype of the gametocyte source. RESULTS Among the 1557 children enrolled in the study, 314 (20.16%) were of the HbAS genotype. The prevalence of children with P. falciparum gametocytes was 18.47% in HbAS individuals and 13.57% in HbAA, and the difference is significant (χ2 = 4.61, P = 0.032). Multiplicity of infection was lower in HbAS gametocyte carriers (median = 2 genotypes/carrier in HbAS versus 3.5 genotypes/carrier in HbAA, Wilcoxon sum rank test = 188, P = 0.032). Gametocyte densities in the blood donor significantly influenced mosquito infection prevalence in both HbAS and HbAA individuals. The HbAS genotype had no significant effect on mosquito infection outcomes when using immune or naïve serum in feeding assays. In AB replacement feeding experiments, the odds ratio of mosquito infection for HbAA blood as compared to HbAS was 0.56 (95% CI 0.29-1.10), indicating a twice higher risk of infection in mosquitoes fed on gametocyte-containing blood of HbAS genotype. CONCLUSION Plasmodium transmission stages were more prevalent in SCT individuals. This may reflect the parasite's enhanced investment in the sexual stage to increase their survival rate when asexual replication is impeded. The public health impact of our results points the need for intensive malaria control interventions in areas with high prevalence of HbAS. The similar infection parameters in feeding experiments where mosquitoes received the original serum from the blood donor indicated that immune responses to gametocyte surface proteins occur in both HbAS and HbAA individuals. The higher risk of infection in mosquitoes fed on HbAS blood depleted of immune factors suggests that changes in the membrane properties in HbAS erythrocytes may impact on the maturation process of gametocytes within circulating red blood cells.
Collapse
Affiliation(s)
- Christelle M Ngou
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | | | - Luc Abate
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Olesula S Makinde
- Department of Statistics, Federal University of Technology, P.M.B 704, Akure, Nigeria
| | | | - Elangwe M Sarah-Matio
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Aline G Bouopda-Tuedom
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Paul Taconet
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Nicolas Moiroux
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | | | - Arthur Talman
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France
| | - Lawrence S Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université Toulouse, CNRS UMR5051, INSERM UMR1291, UPS, Toulouse, France
- Service de Parasitologie_Mycologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sandrine E Nsango
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, MIVEGEC, Univ. Montpellier, CNRS, IRD, 91 Avenue Agropolis, BP 64501, 34394, Montpellier, France.
| |
Collapse
|
6
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
7
|
Urinary Metabolic Profiling in Volunteers Undergoing Malaria Challenge in Gabon. Metabolites 2022; 12:metabo12121224. [PMID: 36557262 PMCID: PMC9783708 DOI: 10.3390/metabo12121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.
Collapse
|
8
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
9
|
Chakravarty S, Shears MJ, James ER, Rai U, Kc N, Conteh S, Lambert LE, Duffy PE, Murphy SC, Hoffman SL. Efficient infection of non-human primates with purified, cryopreserved Plasmodium knowlesi sporozoites. Malar J 2022; 21:247. [PMID: 36030292 PMCID: PMC9418655 DOI: 10.1186/s12936-022-04261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. Methods Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. Results In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. Conclusion This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04261-z.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Eric R James
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Urvashi Rai
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Natasha Kc
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Stephen L Hoffman
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
10
|
A PfSPZ vaccine immunization regimen equally protective against homologous and heterologous controlled human malaria infection. NPJ Vaccines 2022; 7:100. [PMID: 35999221 PMCID: PMC9396563 DOI: 10.1038/s41541-022-00510-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ) in PfSPZ Vaccine, has provided better vaccine efficacy (VE) against controlled human malaria infection (CHMI) with the same parasites as in the vaccine (homologous) than with genetically distant parasites (heterologous). We sought to identify an immunization regimen that provided similar VE against CHMI with homologous and heterologous Pf for at least 9 weeks in malaria-naïve adults. Such a regimen was identified in part 1 (optimization), an open label study, and confirmed in part 2 (verification), a randomized, double-blind, placebo-controlled study in which VE was assessed by cross-over repeat CHMI with homologous (PfNF54) and heterologous (Pf7G8) PfSPZ at 3 and 9–10 weeks. VE was calculated using Bayesian generalized linear regression. In part 1, vaccination with 9 × 105 PfSPZ on days 1, 8, and 29 protected 5/5 (100%) subjects against homologous CHMI at 3 weeks after the last immunization. In part 2, the same 3-dose regimen protected 5/6 subjects (83%) against heterologous CHMI at both 3 and 9–10 weeks after the last immunization. Overall VE was 78% (95% predictive interval: 57–92%), and against heterologous and homologous was 79% (95% PI: 54–95%) and 77% (95% PI: 50–95%) respectively. PfSPZ Vaccine was safe and well tolerated. A 4-week, 3-dose regimen of PfSPZ Vaccine provided similar VE for 9–10 weeks against homologous and heterologous CHMI. The trial is registered with ClinicalTrials.gov, NCT02704533.
Collapse
|
11
|
Manurung MD, de Jong SE, Kruize Y, Mouwenda YD, Ongwe MEB, Honkpehedji YJ, Zinsou JF, Dejon-Agobe JC, Hoffman SL, Kremsner PG, Adegnika AA, Fendel R, Mordmüller B, Roestenberg M, Lell B, Yazdanbakhsh M. Immunological profiles associated with distinct parasitemic states in volunteers undergoing malaria challenge in Gabon. Sci Rep 2022; 12:13303. [PMID: 35922467 PMCID: PMC9349185 DOI: 10.1038/s41598-022-17725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Controlled human malaria infection (CHMI) using cryopreserved non-attenuated Plasmodium falciparum sporozoites (PfSPZ) offers a unique opportunity to investigate naturally acquired immunity (NAI). By analyzing blood samples from 5 malaria-naïve European and 20 African adults with lifelong exposure to malaria, before, 5, and 11 days after direct venous inoculation (DVI) with SanariaR PfSPZ Challenge, we assessed the immunological patterns associated with control of microscopic and submicroscopic parasitemia. All (5/5) European individuals developed parasitemia as defined by thick blood smear (TBS), but 40% (8/20) of the African individuals controlled their parasitemia, and therefore remained thick blood smear-negative (TBS− Africans). In the TBS− Africans, we observed higher baseline frequencies of CD4+ T cells producing interferon-gamma (IFNγ) that significantly decreased 5 days after PfSPZ DVI. The TBS− Africans, which represent individuals with either very strong and rapid blood-stage immunity or with immunity to liver stages, were stratified into subjects with sub-microscopic parasitemia (TBS-PCR+) or those with possibly sterilizing immunity (TBS−PCR−). Higher frequencies of IFNγ+TNF+CD8+ γδ T cells at baseline, which later decreased within five days after PfSPZ DVI, were associated with those who remained TBS−PCR−. These findings suggest that naturally acquired immunity is characterized by different cell types that show varying strengths of malaria parasite control. While the high frequencies of antigen responsive IFNγ+CD4+ T cells in peripheral blood keep the blood-stage parasites to a sub-microscopic level, it is the IFNγ+TNF+CD8+ γδ T cells that are associated with either immunity to the liver-stage, or rapid elimination of blood-stage parasites.
Collapse
Affiliation(s)
- Mikhael D Manurung
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Sanne E de Jong
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yvonne Kruize
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yoanne D Mouwenda
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Madeleine Eunice Betouke Ongwe
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut de Recherches en Ecologie Tropicale, CENAREST, Libreville, Gabon
| | - Yabo Josiane Honkpehedji
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jeannot Frézus Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin
| | - Jean Claude Dejon-Agobe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
12
|
Nouatin O, Ibáñez J, Fendel R, Ngoa UA, Lorenz FR, Dejon-Agobé JC, Edoa JR, Flügge J, Brückner S, Esen M, Theisen M, Hoffman SL, Moutairou K, Luty AJF, Lell B, Kremsner PG, Adegnika AA, Mordmüller B. Cellular and antibody response in GMZ2-vaccinated Gabonese volunteers in a controlled human malaria infection trial. Malar J 2022; 21:191. [PMID: 35715803 PMCID: PMC9204906 DOI: 10.1186/s12936-022-04169-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibody and cellular memory responses following vaccination are important measures of immunogenicity. These immune markers were quantified in the framework of a vaccine trial investigating the malaria vaccine candidate GMZ2. METHODS Fifty Gabonese adults were vaccinated with two formulations (aluminum Alhydrogel and CAF01) of GMZ2 or a control vaccine (Verorab). Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of 3200 live Plasmodium falciparum sporozoites (PfSPZ Challenge). GMZ2-stimulated T and specific B-cell responses were estimated by flow cytometry before and after vaccination. Additionally, the antibody response against 212 P. falciparum antigens was estimated before CHMI by protein microarray. RESULTS Frequencies of pro- and anti-inflammatory CD4+ T cells stimulated with the vaccine antigen GMZ2 as well as B cell profiles did not change after vaccination. IL-10-producing CD4+ T cells and CD20+ IgG+ B cells were increased post-vaccination regardless of the intervention, thus could not be specifically attributed to any malaria vaccine regimen. In contrast, GMZ2-specific antibody response increased after the vaccination, but was not correlated to protection. Antibody responses to several P. falciparum blood and liver stage antigens (MSP1, MSP4, MSP8, PfEMP1, STARP) as well as the breadth of the malaria-specific antibody response were significantly higher in protected study participants. CONCLUSIONS In lifelong malaria exposed adults, the main marker of protection against CHMI is a broad antibody pattern recognizing multiple stages of the plasmodial life cycle. Despite vaccination with GMZ2 using a novel formulation, expansion of the GMZ2-stimulated T cells or the GMZ2-specific B cell response was limited, and the vaccine response could not be identified as a marker of protection against malaria. Trial registration PACTR; PACTR201503001038304; Registered 17 February 2015; https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1038.
Collapse
Affiliation(s)
- Odilon Nouatin
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon. .,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany. .,Département de Biochimie Et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.
| | - Javier Ibáñez
- Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon. .,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany.
| | - Ulysse A Ngoa
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Jean-Claude Dejon-Agobé
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jean Ronald Edoa
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Judith Flügge
- Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Sina Brückner
- Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany.,Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Kabirou Moutairou
- Département de Biochimie Et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Adrian J F Luty
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et a l'Enfance, Calavi, Bénin.,MERIT, Université de Paris, Paris, IRD, France
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Ayola A Adegnika
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany.,Department of Parasitology, Leiden University Medical Centre (LUMC), 2333 ZA, Leiden, The Netherlands.,Fondation pour la Recherche Scientifique, 72 BP45, Cotonou, Bénin
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, BP : 242, Lambaréné, Gabon.,Institute of Tropical Medicine, University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Mpina M, Stabler TC, Schindler T, Raso J, Deal A, Acuche Pupu L, Nyakarungu E, Del Carmen Ovono Davis M, Urbano V, Mtoro A, Hamad A, Lopez MSA, Pasialo B, Eyang MAO, Rivas MR, Falla CC, García GA, Momo JC, Chuquiyauri R, Saverino E, Preston Church LW, Kim Lee Sim B, Manguire B, Tanner M, Maas C, Abdulla S, Billingsley PF, Hoffman SL, Jongo S, Richie TL, Daubenberger CA. Diagnostic performance and comparison of ultrasensitive and conventional rapid diagnostic test, thick blood smear and quantitative PCR for detection of low-density Plasmodium falciparum infections during a controlled human malaria infection study in Equatorial Guinea. Malar J 2022; 21:99. [PMID: 35331251 PMCID: PMC8943516 DOI: 10.1186/s12936-022-04103-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Progress towards malaria elimination has stagnated, partly because infections persisting at low parasite densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. This study compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria exposed adults (NCT03590340). Methods Blood samples were collected from healthy Equatoguineans aged 18–35 years beginning on day 8 after CHMI with 3.2 × 103 cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ Challenge, strain NF54) administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (Alere™ Malaria Ag P.f.), cRDT [Carestart Malaria Pf/PAN (PfHRP2/pLDH)], and TBS were performed daily until the volunteer became TBS positive and treatment was administered. qPCR was the reference for the presence of Plasmodium falciparum parasites. Results 279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% sensitivity [95% CI 13.1–27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1–25.1%]), cRDT 10/123 (8.1% sensitivity [95% CI 4.2–14.8%]); all were 100% specific and did not detect any positive samples not detected by qPCR. TBS and uRDT were more sensitive than cRDT (TBS vs. cRDT p = 0.015; uRDT vs. cRDT p = 0.053), detecting parasitaemias as low as 3.7 parasites/µL (p/µL) (TBS and uRDT) compared to 5.6 p/µL (cRDT) based on TBS density measurements. TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/µL, the qPCR density corresponding to 3.7 p/µL by TBS. The median prepatent periods in days (ranges) were 14.5 (10–20), 18.0 (15–28), 18.0 (15–20) and 18.0 (16–24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitaemia significantly earlier (3.5 days) than the other tests. Conclusions TBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR for detecting low density parasitaemia. uRDT could be considered an alternative to TBS in selected applications, such as CHMI or field diagnosis, where qualitative, dichotomous results for malaria infection might be sufficient. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04103-y.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Ifakara Health Institute, Ifakara, Tanzania.
| | - Thomas C Stabler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jose Raso
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Anna Deal
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Elizabeth Nyakarungu
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | | | - Vicente Urbano
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Ali Mtoro
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Ali Hamad
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Maria Silvia A Lopez
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Beltran Pasialo
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Marta Alene Owono Eyang
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Matilde Riloha Rivas
- Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | | | | | - Juan Carlos Momo
- Medical Care Development International, Malabo, Equatorial Guinea.,Equatorial Guinea Ministry of Health and Social Welfare, Malabo, Equatorial Guinea
| | - Raul Chuquiyauri
- Medical Care Development International, Malabo, Equatorial Guinea.,Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | | | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Carl Maas
- Marathon EG production Ltd., Houston, USA
| | | | | | | | - Said Jongo
- Ifakara Health Institute, Ifakara, Tanzania.,Medical Care Development International, Malabo, Equatorial Guinea
| | - Thomas L Richie
- Sanaria Inc., 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Sissoko MS, Healy SA, Katile A, Zaidi I, Hu Z, Kamate B, Samake Y, Sissoko K, Mwakingwe-Omari A, Lane J, Imeru A, Mohan R, Thera I, Guindo CO, Dolo A, Niare K, Koïta F, Niangaly A, Rausch KM, Zeguime A, Guindo MA, Bah A, Abebe Y, James ER, Manoj A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Doumbo O, Duffy PE. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:377-389. [PMID: 34801112 PMCID: PMC8981424 DOI: 10.1016/s1473-3099(21)00332-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND WHO recently approved a partially effective vaccine that reduces clinical malaria in children, but increased vaccine activity is required to pursue malaria elimination. A phase 1 clinical trial was done in Mali, west Africa, to assess the safety, immunogenicity, and protective efficacy of a three-dose regimen of Plasmodium falciparum sporozoite (PfSPZ) Vaccine (a metabolically active, non-replicating, whole malaria sporozoite vaccine) against homologous controlled human malaria infection (CHMI) and natural P falciparum infection. METHODS We recruited healthy non-pregnant adults aged 18-50 years in Donéguébougou, Mali, and surrounding villages (Banambani, Toubana, Torodo, Sirababougou, Zorokoro) for an open-label, dose-escalation pilot study and, thereafter, a randomised, double-blind, placebo-controlled main trial. Pilot study participants were enrolled on an as-available basis to one group of CHMI infectivity controls and three staggered vaccine groups receiving: one dose of 4·5 × 105, one dose of 9 × 105, or three doses of 1·8 × 106 PfSPZ via direct venous inoculation at approximately 8 week intervals, followed by homologous CHMI 5 weeks later with infectious PfSPZ by direct venous inoculation (PfSPZ Challenge). Main cohort participants were stratified by village and randomly assigned (1:1) to receive three doses of 1·8 × 106 PfSPZ or normal saline at 1, 13, and 19 week intervals using permuted block design by the study statistician. The primary outcome was safety and tolerability of at least one vaccine dose; the secondary outcome was vaccine efficacy against homologous PfSPZ CHMI (pilot study) or against naturally transmitted P falciparum infection (main study) measured by thick blood smear. Combined artesunate and amodiaquine was administered to eliminate pre-existing parasitaemia. Outcomes were analysed by modified intention to treat (mITT; including all participants who received at least one dose of investigational product; safety and vaccine efficacy) and per protocol (vaccine efficacy). This trial is registered with ClinicalTrials.gov, number NCT02627456. FINDINGS Between Dec 20, 2015, and April 30, 2016, we enrolled 56 participants into the pilot study (five received the 4·5 × 105 dose, five received 9 × 105, 30 received 1·8 × 106, 15 were CHMI controls, and one withdrew before vaccination) and 120 participants into the main study cohort with 60 participants assigned PfSPZ Vaccine and 60 placebo in the main study. Adverse events and laboratory abnormalities post-vaccination in all dosing groups were few, mainly mild, and did not differ significantly between vaccine groups (all p>0·05). Unexpected severe transaminitis occured in four participants: one participant in pilot phase that received 1·8 × 106 PfSPZ Vaccine, one participant in main phase that received 1·8 × 106 PfSPZ Vaccine, and two participants in the main phase placebo group. During PfSPZ CHMI, approximately 5 weeks after the third dose of 1·8 × 106 PfSPZ, none of 29 vaccinees and one of 15 controls became positive on thick blood smear; subsequent post-hoc PCR analysis for submicroscopic blood stage infections detected P falciparum parasites in none of the 29 vaccine recipients and eight of 15 controls during CHMI. In the main trial, 32 (58%) of 55 vaccine recipients and 42 (78%) of 54 controls became positive on thick blood smear during 24-week surveillance after vaccination. Vaccine efficacy (1-hazard ratio) was 0·51 per protocol (95% CI 0·20-0·70; log-rank p=0·0042) and 0·39 by mITT (0·04-0·62; p=0·033); vaccine efficacy (1-risk ratio) was 0·24 per-protocol (0·02-0·41; p=0·031) and 0·22 mITT (0·01-0·39; p=0·041). INTERPRETATION A three-dose regimen of PfSPZ Vaccine was safe, well tolerated, and conferred 51% vaccine efficacy against intense natural P falciparum transmission, similar to 52% vaccine efficacy reported for a five-dose regimen in a previous trial. FUNDING US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Sanaria. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mahamadou S Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abdoulaye Katile
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistical Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bourama Kamate
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Yacouba Samake
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kourane Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Center for Vaccine Research, GlaxoSmithKline, Rockville, MD, USA
| | - Jacquelyn Lane
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ismaila Thera
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Cheick Oumar Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Karamoko Niare
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Fanta Koïta
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kelly M Rausch
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Aissatou Bah
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Natasha Kc
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | | | | | | | - Ogobara Doumbo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Msusa KP, Rogalski-Salter T, Mandi H, Clemens R. Critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. Vaccine 2022; 40:1261-1270. [PMID: 35101267 DOI: 10.1016/j.vaccine.2022.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Owing to the globalization of vaccine clinical trials, as well as advances in technologies, improved research accountability, and robust regulatory and ethical scrutiny, the choice to perform human challenge trials has become evident, and one of the most significant applications of human challenge trials is the assessment of vaccine efficacy. While human challenge trials have largely been conducted in high-income countries, the concept is relatively new in many low- and middle-income countries. Thus, the aim of this study was to identify the critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. METHODOLOGY Using a two-step methodology, we first carried out a systematic literature review that was centered on identifying low- and middle-income countries that are either establishing a framework for, have conducted, or are conducting human challenge trials for vaccine development; secondly, we conducted a descriptive cross-sectional survey using a standardized semi-structured online questionnaire administered to eligible stakeholders, to identify the critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries. Seventeen low- and middle-income countries were identified and included in the survey. RESULTS The most cited critical success factors for conducting human challenge trials for vaccine development in low- and middle-income countries were Informed Consent, Risk Compensation and/or Reimbursement, Participant Safety and/or Public Protection, Community Engagement, Infrastructural Capacity, and Ethical and Regulatory Frameworks. CONCLUSION From an empirical perspective, this study provides a list of critical success factors that form the basic structure to guide the design and implementation of further human challenge trials in low- and middle-income countries. Further studies are needed to establish a standardized conceptual framework to aid in the review, approval and overall conduct of human challenge trials in low- and middle-income countries.
Collapse
Affiliation(s)
- Keiko Pempho Msusa
- University of Siena, Institute for Global Health, Santa Chiara Lab, Via Val di Montone, 1, 53100 Siena, SI, Italy.
| | - Taryn Rogalski-Salter
- Bill and Melinda Gates Medical Research Institute (Gates MRI), Cambridge, MA, United States
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Marcus Thranes Gate 2, 0473 Oslo, Norway
| | - Ralf Clemens
- University of Siena, Institute for Global Health, Santa Chiara Lab, Via Val di Montone, 1, 53100 Siena, SI, Italy
| |
Collapse
|
16
|
Kapulu MC, Kimani D, Njuguna P, Hamaluba M, Otieno E, Kimathi R, Tuju J, Sim BKL, Abdi AI, Abebe Y, Bejon P, Billingsley PF, Bull PC, de Laurent Z, Hoffman SL, James ER, Kariuki S, Kinyanjui S, Kivisi C, Makale J, Marsh K, Mohammed KS, Mosobo M, Musembi J, Musyoki J, Muthui M, Mwacharo J, Mwai K, Ngoi JM, Ngoto O, Nkumama I, Ndungu F, Odera D, Ogutu B, Olewe F, Omuoyo D, Ong’echa J, Osier F, Richie TL, Shangala J, Wambua J, Williams TN. Controlled human malaria infection (CHMI) outcomes in Kenyan adults is associated with prior history of malaria exposure and anti-schizont antibody response. BMC Infect Dis 2022; 22:86. [PMID: 35073864 PMCID: PMC8785382 DOI: 10.1186/s12879-022-07044-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Individuals living in endemic areas acquire immunity to malaria following repeated parasite exposure. We sought to assess the controlled human malaria infection (CHMI) model as a means of studying naturally acquired immunity in Kenyan adults with varying malaria exposure.
Methods
We analysed data from 142 Kenyan adults from three locations representing distinct areas of malaria endemicity (Ahero, Kilifi North and Kilifi South) enrolled in a CHMI study with Plasmodium falciparum sporozoites NF54 strain (Sanaria® PfSPZ Challenge). To identify the in vivo outcomes that most closely reflected naturally acquired immunity, parameters based on qPCR measurements were compared with anti-schizont antibody levels and residence as proxy markers of naturally acquired immunity.
Results
Time to endpoint correlated more closely with anti-schizont antibodies and location of residence than other parasite parameters such as growth rate or mean parasite density. Compared to observational field-based studies in children where 0.8% of the variability in malaria outcome was observed to be explained by anti-schizont antibodies, in the CHMI model the dichotomized anti-schizont antibodies explained 17% of the variability.
Conclusions
The CHMI model is highly effective in studying markers of naturally acquired immunity to malaria.
Trial registration Clinicaltrials.gov number NCT02739763. Registered 15 April 2016
Collapse
|
17
|
Shibeshi W, Bagchus W, Yalkinoglu Ö, Tappert A, Engidawork E, Oeuvray C. Reproducibility of malaria sporozoite challenge model in humans for evaluating efficacy of vaccines and drugs: a systematic review. BMC Infect Dis 2021; 21:1274. [PMID: 34930178 PMCID: PMC8686662 DOI: 10.1186/s12879-021-06953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of novel malaria vaccines and antimalarial drugs is limited partly by emerging challenges to conduct field trials in malaria endemic areas, including unknown effects of existing immunity and a reported fall in malaria incidence. As a result, Controlled Human Malaria Infection (CHMI) has become an important approach for accelerated development of malarial vaccines and drugs. We conducted a systematic review of the literature to establish aggregate evidence on the reproducibility of a malaria sporozoite challenge model. METHODS A systematic review of research articles published between 1990 and 2018 on efficacy testing of malaria vaccines and drugs using sporozoite challenge and sporozoite infectivity studies was conducted using Pubmed, Scopus, Embase and Cochrane Library, ClinicalTrials.gov and Trialtrove. The inclusion criteria were randomized and non-randomized, controlled or open-label trials using P. falciparum or P. vivax sporozoite challenges. The data were extracted from articles using standardized data extraction forms and descriptive analysis was performed for evidence synthesis. The endpoints considered were infectivity, prepatent period, parasitemia and safety of sporozoite challenge. RESULTS Seventy CHMI trials conducted with a total of 2329 adult healthy volunteers were used for analysis. CHMI was induced by bites of mosquitoes infected with P. falciparum or P. vivax in 52 trials and by direct venous inoculation of P. falciparum sporozoites (PfSPZ challenge) in 18 trials. Inoculation with P. falciparum-infected mosquitoes produced 100% infectivity in 40 studies and the mean/median prepatent period assessed by thick blood smear (TBS) microscopy was ≤ 12 days in 24 studies. On the other hand, out of 12 infectivity studies conducted using PfSPZ challenge, 100% infection rate was reproduced in 9 studies with a mean or median prepatent period of 11 to 15.3 days as assessed by TBS and 6.8 to 12.6 days by PCR. The safety profile of P. falciparum and P.vivax CHMI was characterized by consistent features of malaria infection. CONCLUSION There is ample evidence on consistency of P. falciparum CHMI models in terms of infectivity and safety endpoints, which supports applicability of CHMI in vaccine and drug development. PfSPZ challenge appears more feasible for African trials based on current evidence of safety and efficacy.
Collapse
Affiliation(s)
- Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany.
| | - Wilhelmina Bagchus
- Translational Medicine, Merck Serono S.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Özkan Yalkinoglu
- Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Aliona Tappert
- Global Patient Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
18
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
19
|
Kapulu MC, Njuguna P, Hamaluba M, Kimani D, Ngoi JM, Musembi J, Ngoto O, Otieno E, Billingsley PF. Safety and PCR monitoring in 161 semi-immune Kenyan adults following controlled human malaria infection. JCI Insight 2021; 6:e146443. [PMID: 34264864 PMCID: PMC8492329 DOI: 10.1172/jci.insight.146443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUNDNaturally acquired immunity to malaria is incompletely understood. We used controlled human malaria infection (CHMI) to study the impact of past exposure on malaria in Kenyan adults in relation to infection with a non-Kenyan parasite strain.METHODSWe administered 3.2 × 103 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Challenge, NF54 West African strain) by direct venous inoculation and undertook clinical monitoring and serial quantitative PCR (qPCR) of the 18S ribosomal RNA gene. The study endpoint was met when parasitemia reached 500 or more parasites per μL blood, clinically important symptoms were seen, or at 21 days after inoculation. All volunteers received antimalarial drug treatment upon meeting the endpoint.RESULTSOne hundred and sixty-one volunteers underwent CHMI between August 4, 2016, and February 14, 2018. CHMI was well tolerated, with no severe or serious adverse events. Nineteen volunteers (11.8%) were excluded from the analysis based on detection of antimalarial drugs above the minimal inhibitory concentration or parasites genotyped as non-NF54. Of the 142 volunteers who were eligible for analysis, 26 (18.3%) had febrile symptoms and were treated; 30 (21.1%) reached 500 or more parasites per μL and were treated; 53 (37.3%) had parasitemia without meeting thresholds for treatment; and 33 (23.2%) remained qPCR negative.CONCLUSIONWe found that past exposure to malaria, as evidenced by location of residence, in some Kenyan adults can completely suppress in vivo growth of a parasite strain originating from outside Kenya.TRIAL REGISTRATIONClinicalTrials.gov NCT02739763.FUNDINGWellcome Trust.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Njuguna
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Domtila Kimani
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Joyce M. Ngoi
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Janet Musembi
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Omar Ngoto
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | |
Collapse
|
20
|
Billingsley PF, George KI, Eappen AG, Harrell RA, Alford R, Li T, Chakravarty S, Sim BKL, Hoffman SL, O'Brochta DA. Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections. Malar J 2021; 20:284. [PMID: 34174879 PMCID: PMC8235909 DOI: 10.1186/s12936-021-03818-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) sporozoites (PfSPZ) can be administered as a highly protective vaccine conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anopheles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development. METHODS Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections determined in mosquitoes showing the greatest reduction in LRIM1 expression. RESULTS LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type controls, with increases in PfSPZ ranging from 2.5- to tenfold. CONCLUSIONS Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of immune-compromised A. stephensi into manufacturing of Sanaria's PfSPZ products.
Collapse
Affiliation(s)
- Peter F Billingsley
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Kasim I George
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Qiagen Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Abraham G Eappen
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Robert A Harrell
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Protein Potential, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc, Suite A209, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research and Department of Entomology, University of Maryland, Gudelsky Drive, Rockville, MD, 20850, USA
- Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| |
Collapse
|
21
|
Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nat Immunol 2021; 22:654-665. [PMID: 33888898 DOI: 10.1038/s41590-021-00911-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023]
Abstract
Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.
Collapse
|
22
|
Barry A, Bradley J, Stone W, Guelbeogo MW, Lanke K, Ouedraogo A, Soulama I, Nébié I, Serme SS, Grignard L, Patterson C, Wu L, Briggs JJ, Janson O, Awandu SS, Ouedraogo M, Tarama CW, Kargougou D, Zongo S, Sirima SB, Marti M, Drakeley C, Tiono AB, Bousema T. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 2021; 12:2443. [PMID: 33903595 PMCID: PMC8076179 DOI: 10.1038/s41467-021-22573-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Samuel S Serme
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Catriona Patterson
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsey Wu
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jessica J Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Owen Janson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shehu S Awandu
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mireille Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Casimire W Tarama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Lamsfus Calle C, Fendel R, Singh A, Richie TL, Hoffman SL, Kremsner PG, Mordmüller B. Expansion of Functional Myeloid-Derived Suppressor Cells in Controlled Human Malaria Infection. Front Immunol 2021; 12:625712. [PMID: 33815377 PMCID: PMC8017236 DOI: 10.3389/fimmu.2021.625712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria can cause life-threatening complications which are often associated with inflammatory reactions. More subtle, but also contributing to the burden of disease are chronic, often subclinical infections, which result in conditions like anemia and immunologic hyporesponsiveness. Although very frequent, such infections are difficult to study in endemic regions because of interaction with concurrent infections and immune responses. In particular, knowledge about mechanisms of malaria-induced immunosuppression is scarce. We measured circulating immune cells by cytometry in healthy, malaria-naïve, adult volunteers undergoing controlled human malaria infection (CHMI) with a focus on potentially immunosuppressive cells. Infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) were inoculated during two independent studies to assess malaria vaccine efficacy. Volunteers were followed daily until parasites were detected in the circulation by RT-qPCR. This allowed us to analyze immune responses during pre-patency and at very low parasite densities in malaria-naïve healthy adults. We observed a consistent increase in circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in volunteers who developed P. falciparum blood stage parasitemia. The increase was independent of preceding vaccination with a pre-erythrocytic malaria vaccine. PMN-MDSC were functional, they suppressed CD4+ and CD8+ T cell proliferation as shown by ex-vivo co-cultivation with stimulated T cells. PMN-MDSC reduced T cell proliferation upon stimulation by about 50%. Interestingly, high circulating PMN-MDSC numbers were associated with lymphocytopenia. The number of circulating regulatory T cells (Treg) and monocytic MDSC (M-MDSC) showed no significant parasitemia-dependent variation. These results highlight PMN-MDSC in the peripheral circulation as an early indicator of infection during malaria. They suppress CD4+ and CD8+ T cell proliferation in vitro. Their contribution to immunosuppression in vivo in subclinical and uncomplicated malaria will be the subject of further research. Pre-emptive antimalarial pre-treatment of vaccinees to reverse malaria-associated PMN-MDSC immunosuppression could improve vaccine response in exposed individuals.
Collapse
Affiliation(s)
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Anurag Singh
- Department of Pediatrics 1, University Children's Hospital Tübingen, Tübingen, Germany.,Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
24
|
Loiseau C, Traore B, Ongoiba A, Kayentao K, Doumbo S, Doumtabe D, de Sousa KP, Brady JL, Proietti C, Crompton PD, Doolan DL. Memory CD8 + T cell compartment associated with delayed onset of Plasmodium falciparum infection and better parasite control in sickle-cell trait children. Clin Transl Immunology 2021; 10:e1265. [PMID: 33763229 PMCID: PMC7979311 DOI: 10.1002/cti2.1265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives Study of individuals with protection from Plasmodium falciparum (Pf) infection and clinical malaria, including individuals affected by the sickle‐cell trait (HbAS), offers the potential to identify cellular targets that could be translated for therapeutic development. We previously reported the first involvement of cellular immunity in HbAS‐associated relative protection and identified a novel subset of memory‐activated NK cells that was enriched in HbAS children and associated with parasite control. We hypothesised that other memory cell subsets might distinguish the baseline profile of HbAS children and children with normal haemoglobin (HbAA). Methods Subsets of memory T cells and NK cells were analysed by flow cytometry in paired samples collected from HbAS and HbAA children, at baseline and during the first malaria episode of the ensuing transmission season. Correlations between cell frequencies and features of HbAS‐mediated protection from malaria were determined. Results HbAS children displayed significantly higher frequency of memory CD8+ T cells at baseline than HbAA children. Baseline frequency of memory CD8+ T cells correlated with features of HbAS‐mediated protection from malaria. Exploration of memory CD8+ T cell subsets revealed that central memory CD8+ T cell frequency was higher in HbAS children than in HbAA children. Conclusion This study shows that HbAS children develop a larger memory CD8+ T cell compartment than HbAA children, and associates this compartment with better control of subsequent onset of infection and parasite density. Our data suggest that central memory CD8+ T cells may play an important role in the relative protection against malaria experienced by HbAS individuals, and further work to investigate this is warranted.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Boubacar Traore
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Karina P de Sousa
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia.,Present address: School of Life and Medical Sciences Biosciences Research Group University of Hertfordshire Hatfield AL UK
| | - Jamie L Brady
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville MD USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
25
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
26
|
Jongo SA, Urbano V, Church LWP, Olotu A, Manock SR, Schindler T, Mtoro A, Kc N, Hamad A, Nyakarungu E, Mpina M, Deal A, Bijeri JR, Ondo Mangue ME, Ntutumu Pasialo BE, Nguema GN, Owono SN, Rivas MR, Chemba M, Kassim KR, James ER, Stabler TC, Abebe Y, Saverino E, Sax J, Hosch S, Tumbo AM, Gondwe L, Segura JL, Falla CC, Phiri WP, Hergott DEB, García GA, Schwabe C, Maas CD, Murshedkar T, Billingsley PF, Tanner M, Ayekaba MO, Sim BKL, Daubenberger C, Richie TL, Abdulla S, Hoffman SL. Immunogenicity and Protective Efficacy of Radiation-Attenuated and Chemo-Attenuated PfSPZ Vaccines in Equatoguinean Adults. Am J Trop Med Hyg 2021; 104:283-293. [PMID: 33205741 PMCID: PMC7790068 DOI: 10.4269/ajtmh.20-0435] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum sporozoite (PfSPZ) Vaccine (radiation-attenuated, aseptic, purified, cryopreserved PfSPZ) and PfSPZ-CVac (infectious, aseptic, purified, cryopreserved PfSPZ administered to subjects taking weekly chloroquine chemoprophylaxis) have shown vaccine efficacies (VEs) of 100% against homologous controlled human malaria infection (CHMI) in nonimmune adults. Plasmodium falciparum sporozoite-CVac has never been assessed against CHMI in African vaccinees. We assessed the safety, immunogenicity, and VE against homologous CHMI of three doses of 2.7 × 106 PfSPZ of PfSPZ Vaccine at 8-week intervals and three doses of 1.0 × 105 PfSPZ of PfSPZ-CVac at 4-week intervals with each arm randomized, double-blind, placebo-controlled, and conducted in parallel. There were no differences in solicited adverse events between vaccinees and normal saline controls, or between PfSPZ Vaccine and PfSPZ-CVac recipients during the 6 days after administration of investigational product. However, from days 7–13, PfSPZ-CVac recipients had significantly more AEs, probably because of Pf parasitemia. Antibody responses were 2.9 times higher in PfSPZ Vaccine recipients than PfSPZ-CVac recipients at time of CHMI. Vaccine efficacy at a median of 14 weeks after last PfSPZ-CVac dose was 55% (8 of 13, P = 0.051) and at a median of 15 weeks after last PfSPZ Vaccine dose was 27% (5 of 15, P = 0.32). The higher VE in PfSPZ-CVac recipients of 55% with a 27-fold lower dose was likely a result of later stage parasite maturation in the liver, leading to induction of cellular immunity against a greater quantity and broader array of antigens.
Collapse
Affiliation(s)
- Said A Jongo
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Vicente Urbano
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | | | - Ally Olotu
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | - Ali Mtoro
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Natasha Kc
- 3Sanaria Inc., Rockville, Maryland.,5Protein Potential LLC, Rockville, Maryland
| | - Ali Hamad
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Elizabeth Nyakarungu
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | - Anna Deal
- 4Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - José Raso Bijeri
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | - Martin Eka Ondo Mangue
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | | | - Genaro Nsue Nguema
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | - Salomon Nguema Owono
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | - Matilde Riloha Rivas
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | - Mwajuma Chemba
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Kamaka R Kassim
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | | | | | - Julian Sax
- 4Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Salome Hosch
- 4Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Linda Gondwe
- 4Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - J Luis Segura
- 6Medical Care Development International, Silver Spring, Maryland
| | | | | | | | | | | | - Carl D Maas
- 7Marathon EG Production, Ltd., Bioko Norte, Equatorial Guinea
| | | | | | - Marcel Tanner
- 4Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Mitoha Ondo'o Ayekaba
- 2Ministry of Health and Social Welfare, Government of Equatorial Guinea, Bioko Norte, Equatorial Guinea
| | - B Kim Lee Sim
- 3Sanaria Inc., Rockville, Maryland.,5Protein Potential LLC, Rockville, Maryland
| | | | | | - Salim Abdulla
- 1Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | |
Collapse
|
27
|
Development of sustainable research excellence with a global perspective on infectious diseases: Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon. Wien Klin Wochenschr 2021; 133:500-508. [PMID: 33398458 PMCID: PMC7781170 DOI: 10.1007/s00508-020-01794-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Medical research in sub-Saharan Africa is of high priority for societies to respond adequately to local health needs. Often enough it remains a challenge to build up capacity in infrastructure and human resources to highest international standards and to sustain this over mid-term to long-term periods due to difficulties in obtaining long-term institutional core funding, attracting highly qualified scientists for medical research and coping with ever changing structural and political environments. The Centre de Recherches Médicales de Lambaréné (CERMEL) serves as model for how to overcome such challenges and to continuously increase its impact on medical care in Central Africa and beyond. Starting off as a research annex to the Albert Schweitzer Hospital in Lambaréné, Gabon, it has since then expanded its activities to academic and regulatory clinical trials for drugs, vaccines and diagnostics in the field of malaria, tuberculosis, and a wide range of poverty related and neglected tropical infectious diseases. Advancing bioethics in medical research in Africa and steadily improving its global networks and infrastructures, CERMEL serves as a reference centre for several international consortia. In close collaboration with national authorities, CERMEL has become one of the main training hubs for medical research in Central Africa. It is hoped that CERMEL and its leitmotiv “to improve medical care for local populations” will serve as an inspiration to other institutions in sub-Saharan Africa to further increase African capacity to advance medicine.
Collapse
|
28
|
Ferluga J, Singh I, Rout S, Al-Qahtani A, Yasmin H, Kishore U. Immune Responses in Malaria and Vaccine Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:273-291. [PMID: 34661899 DOI: 10.1007/978-3-030-67452-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria is a pandemic with nearly half of global population at risk, caused by parasite Plasmodium species, particularly P. falciparum with a high morbidity and mortality, especially among children. There is an urgent need for development of population protective vaccines, such as in sub-Saharan low-income countries, where P. falciparum malaria is endemic. After years of endeavour with children and adults for safety and efficacy clinical trials, the P. falciparum circumsporozoite protein antigen, is targeted by specific antibodies induced by recombinant vaccine, called TRS,S. TRS,S has been authorized by WHO and Malawi Government to be the first malaria vaccine for up to 2 years of aged children for protection against malaria. Other malaria vaccines in clinical trials are also very promising candidates, including the original live, X-ray attenuated P-sporozoite vaccine, inducing antigen-specific T cell immunity at liver stage. Malaria parasite at blood symptomatic stage is targeted by specific antibodies to parasite-infected erythrocytes, which are important against pathogenic placenta-infected erythrocyte sequestration. Here, the demographic distribution of Plasmodium species and their pathogenicity in infected people are discussed. The role of innate phagocytic cells and malaria antigen specific T cell immunity, as well as that of specific antibody production by B cells are highlighted. The paramount role of cytotoxic CD8+ T cellular immunity in malaria people protection is also included.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Iesha Singh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sashmita Rout
- Department of Physiology, All-India Institute of Medical Sciences, Bhubaneswar, India
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
29
|
Billingsley PF, Maas CD, Olotu A, Schwabe C, García GA, Rivas MR, Hergott DEB, Daubenberger C, Saverino E, Chaouch A, Embon O, Chemba M, Nyakarungu E, Hamad A, Cortes C, Schindler T, Mpina M, Mtoro A, Sim BKL, Richie TL, McGhee K, Tanner M, Obiang Lima GM, Abdulla S, Hoffman SL, Ayekaba MO. The Equatoguinean Malaria Vaccine Initiative: From the Launching of a Clinical Research Platform to Malaria Elimination Planning in Central West Africa. Am J Trop Med Hyg 2020; 103:947-954. [PMID: 32458790 PMCID: PMC7470544 DOI: 10.4269/ajtmh.19-0966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fifteen years of investment in malaria control on Bioko Island, Equatorial Guinea (EG), dramatically reduced malaria-associated morbidity and mortality, but the impact has plateaued. To progress toward elimination, EG is investing in the development of a malaria vaccine. We assessed the unique public–private partnership that has had such a significant impact on malaria on Bioko Island and now added a major effort on malaria vaccine development. As part of a $79M commitment, the EG government (75%) and three American energy companies (25%) have invested since 2012 greater than $55M in the Equatoguinean Malaria Vaccine Initiative (EGMVI) to support clinical development of Sanaria® PfSPZ vaccines (Sanaria Inc., Rockville, MD). In turn, the vaccine development program is building human capital and physical capacity. The EGMVI established regulatory and ethical oversight to ensure compliance with the International Conference on Harmonization and Good Clinical Practices for the first importation of investigational product, ethical approval, and conduct of a clinical trial in Equatoguinean history. The EGMVI has completed three vaccine trials in EG, two vaccine trials in Tanzania, and a malaria incidence study, and initiated preparations for a 2,100-volunteer clinical trial. Personnel are training for advanced degrees abroad and have been trained in Good Clinical Practices and protocol-specific methods. A new facility has established the foundation for a national research institute. Biomedical research and development within this visionary, ambitious public–private partnership is fostering major improvements in EG. The EGMVI plans to use a PfSPZ Vaccine alongside standard malaria control interventions to eliminate Pf malaria from Bioko, becoming a potential model for elimination campaigns elsewhere.
Collapse
Affiliation(s)
| | - Carl D Maas
- Marathon Oil, Malabo Dos, Bioko Norte, Equatorial Guinea
| | - Ally Olotu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Matilde Riloha Rivas
- Ministry of Health and Social Welfare, Government of Equatorial Guinea, Malabo, Equatorial Guinea
| | | | - Claudia Daubenberger
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Adel Chaouch
- Marathon Oil, Malabo Dos, Bioko Norte, Equatorial Guinea
| | - Oscar Embon
- La Paz Hospital Medical Center, Sipopo, Equatorial Guinea
| | | | | | - Ali Hamad
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Carlos Cortes
- Medical Care Development International, Silver Spring, Maryland
| | - Tobias Schindler
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Maximillian Mpina
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ali Mtoro
- Ifakara Health Institute, Bagamoyo, Tanzania
| | | | | | - Ken McGhee
- Noble Energy, Malabo Dos, Equatorial Guinea
| | - Marcel Tanner
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | - Mitoha Ondo'o Ayekaba
- Ministry of Health and Social Welfare, Government of Equatorial Guinea, Malabo, Equatorial Guinea.,Marathon Oil, Malabo Dos, Bioko Norte, Equatorial Guinea
| |
Collapse
|
30
|
Jamrozik E, Selgelid MJ. Human infection challenge studies in endemic settings and/or low-income and middle-income countries: key points of ethical consensus and controversy. JOURNAL OF MEDICAL ETHICS 2020; 46:601-609. [PMID: 32381683 PMCID: PMC7476299 DOI: 10.1136/medethics-2019-106001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
Human infection challenge studies (HCS) involve intentionally infecting research participants with pathogens (or other micro-organisms). There have been recent calls for more HCS to be conducted in low-income and middle-income countries (LMICs), where many relevant diseases are endemic. HCS in general, and HCS in LMICs in particular, raise numerous ethical issues. This paper summarises the findings of a project that explored ethical and regulatory issues related to LMIC HCS via (i) a review of relevant literature and (ii) 45 qualitative interviews with scientists and ethicists. Among other areas of consensus, we found that there was widespread agreement that LMIC HCS can be ethically acceptable, provided that they have a sound scientific rationale, are accepted by local communities and meet usual research ethics requirements. Unresolved issues include those related to (i) acceptable approaches to trade-offs between the scientific aim to produce generalisable results and the protection of participants, (iii) the sharing of benefits with LMIC populations, (iii) the acceptable limits to risks and burdens for participants, (iv) the potential for third-party risk and whether the degree of acceptable third-party risk is different in endemic settings, (v) the conditions under which (if any) it would be appropriate to recruit children for disease-causing HCS, (v) appropriate levels of payment to participants and (vi) appropriate governance of (LMIC) HCS. This paper provides preliminary analyses of these ethical considerations in order to (i) inform scientists and policymakers involved in the planning, conduct and/or governance of LMIC HCS and (ii) highlight areas warranting future research. Insofar as this article focuses on HCS in (endemic) settings where diseases are present and/or widespread, much of the analysis provided is relevant to HCS (in HICs or LMICs) involving pandemic diseases including COVID19.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- Monash Bioethics Centre, Monash University, Melbourne, Victoria, Australia
- Department of General Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Michael J Selgelid
- Monash Bioethics Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Goswami D, Betz W, Locham NK, Parthiban C, Brager C, Schäfer C, Camargo N, Nguyen T, Kennedy SY, Murphy SC, Vaughan AM, Kappe SH. A replication-competent late liver stage-attenuated human malaria parasite. JCI Insight 2020; 5:135589. [PMID: 32484795 DOI: 10.1172/jci.insight.135589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Navin K Locham
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Carolyn Brager
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Achan J, Reuling IJ, Yap XZ, Dabira E, Ahmad A, Cox M, Nwakanma D, Tetteh K, Wu L, Bastiaens GJH, Abebe Y, Manoj A, Kaur H, Miura K, Long C, Billingsley PF, Sim BKL, Hoffman SL, Drakeley C, Bousema T, D’Alessandro U. Serologic Markers of Previous Malaria Exposure and Functional Antibodies Inhibiting Parasite Growth Are Associated With Parasite Kinetics Following a Plasmodium falciparum Controlled Human Infection. Clin Infect Dis 2020; 70:2544-2552. [PMID: 31402382 PMCID: PMC7286377 DOI: 10.1093/cid/ciz740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We assessed the impact of exposure to Plasmodium falciparum on parasite kinetics, clinical symptoms, and functional immunity after controlled human malaria infection (CHMI) in 2 cohorts with different levels of previous malarial exposure. METHODS Nine adult males with high (sero-high) and 10 with low (sero-low) previous exposure received 3200 P. falciparum sporozoites (PfSPZ) of PfSPZ Challenge by direct venous inoculation and were followed for 35 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction. Endpoints were time to parasitemia, adverse events, and immune responses. RESULTS Ten of 10 (100%) volunteers in the sero-low and 7 of 9 (77.8%) in the sero-high group developed parasitemia detected by TBS in the first 28 days (P = .125). The median time to parasitemia was significantly shorter in the sero-low group than the sero-high group (9 days [interquartile range {IQR} 7.5-11.0] vs 11.0 days [IQR 7.5-18.0], respectively; log-rank test, P = .005). Antibody recognition of sporozoites was significantly higher in the sero-high (median, 17.93 [IQR 12.95-24] arbitrary units [AU]) than the sero-low volunteers (median, 10.54 [IQR, 8.36-12.12] AU) (P = .006). Growth inhibitory activity was significantly higher in the sero-high (median, 21.8% [IQR, 8.15%-29.65%]) than in the sero-low group (median, 8.3% [IQR, 5.6%-10.23%]) (P = .025). CONCLUSIONS CHMI was safe and well tolerated in this population. Individuals with serological evidence of higher malaria exposure were able to better control infection and had higher parasite growth inhibitory activity. CLINICAL TRIALS REGISTRATION NCT03496454.
Collapse
Affiliation(s)
- Jane Achan
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xi Zen Yap
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edgard Dabira
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Abdullahi Ahmad
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Momodou Cox
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Davis Nwakanma
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Kevin Tetteh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Lindsey Wu
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Harparkash Kaur
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | | | | | - Chris Drakeley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Umberto D’Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
33
|
Nouatin O, Ateba Ngoa U, Ibáñez J, Dejon-Agobe JC, Mordmüller B, Edoa JR, Mougeni F, Brückner S, Bouyoukou Hounkpatin A, Esen M, Theisen M, Moutairou K, Hoffman SL, Issifou S, Luty AJF, Loembe MM, Agnandji ST, Lell B, Kremsner PG, Adegnika AA. Effect of immune regulatory pathways after immunization with GMZ2 malaria vaccine candidate in healthy lifelong malaria-exposed adults. Vaccine 2020; 38:4263-4272. [PMID: 32386747 PMCID: PMC7297038 DOI: 10.1016/j.vaccine.2020.04.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Despite appreciable immunogenicity in malaria-naive populations, many candidate malaria vaccines are considerably less immunogenic in malaria-exposed populations. This could reflect induction of immune regulatory mechanisms involving Human Leukocyte Antigen G (HLA-G), regulatory T (Treg), and regulatory B (Breg) cells. Here, we addressed the question whether there is correlation between these immune regulatory pathways and both plasmablast frequencies and vaccine-specific IgG concentrations. METHODS Fifty Gabonese adults with lifelong exposure to Plasmodium spp were randomized to receive three doses of either 30 µg or 100 µg GMZ2-CAF01, or 100 µg GMZ2-alum, or control vaccine (rabies vaccine) at 4-week intervals. Only plasma and peripheral blood mononuclear cells isolated from blood samples collected before (D0) and 28 days after the third vaccination (D84) of 35 participants were used to measure sHLA-G levels and anti-GMZ2 IgG concentrations, and to quantify Treg, Breg and plasmablast cells. Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites (PfSPZ Challenge). RESULTS The sHLA-G concentration increased from D0 to D84 in all GMZ2 vaccinated participants and in the control group, whereas Treg frequencies increased only in those receiving 30 µg or 100 µg GMZ2-CAF01. The sHLA-G level on D84 was associated with a decrease of the anti-GMZ2 IgG concentration, whereas Treg frequencies on D0 or on D84, and Breg frequency on D84 were associated with lower plasmablast frequencies. Importantly, having a D84:D0 ratio of sHLA-G above the median was associated with an increased risk of P. falciparum infection after sporozoites injection. CONCLUSION Regulatory immune responses are induced following immunization. Stronger sHLA-G and Treg immune responses may suppress vaccine induced immune responses, and the magnitude of the sHLA-G response increased the risk of Plasmodium falciparum infection after CHMI. These findings could have implications for the design and testing of malaria vaccine candidates in semi-immune individuals.
Collapse
Affiliation(s)
- Odilon Nouatin
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany; Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | - Ulysse Ateba Ngoa
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon.
| | - Javier Ibáñez
- Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany
| | - Jean Claude Dejon-Agobe
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Jean Ronald Edoa
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany.
| | - Fabrice Mougeni
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon
| | - Sina Brückner
- Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany.
| | - Aurore Bouyoukou Hounkpatin
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark and Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | - Kabirou Moutairou
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin.
| | | | - Saadou Issifou
- Fondation pour la Recherche Scientifique, 72 BP45 Cotonou, Benin.
| | - Adrian J F Luty
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, MERIT UMR D216, Benin; Université de Paris, MERIT, IRD, Paris, France.
| | - Marguerite M Loembe
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Selidji Todagbé Agnandji
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany.
| | - Ayôla Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, BP: 242 Lambaréné, Gabon; Institut für Tropenmedizin, Universität Tubingen, Wilhelmstraβe 27, D-72074 Tübingen, Germany; Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Germany; Leiden University Medical Centre (LUMC), 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
34
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Bekeredjian-Ding I, Van Molle W, Baay M, Neels P. Human challenge trial workshop: Focus on quality requirements for challenge agents, Langen, Germany, October 22, 2019. Biologicals 2020; 66:53-61. [PMID: 32389512 DOI: 10.1016/j.biologicals.2020.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023] Open
Abstract
Controlled human infection models can be helpful to study pathogenesis and immune responses as a basis for the development of vaccines. In controlled human infection models, human challenge agents are used to infect healthy volunteers, therefore, ethical considerations include that the exposure studies need to be safe and results should be meaningful, e.g. contribute to a better cure. Both in the US and in Europe, the level of Good Manufacturing Practice required is related to the phase of the study ('sliding scale Good Manufacturing Practice'), and, hence, is much more open to speedy drug development than anticipated. Recommendations included: the development of guidelines for human challenge agents; a focus on strain selection, in particular with regard to strain infectivity, stability and purity; the use of whole genome sequencing; a reference repository of challenge agents, the need for early exchange with regulators to ensure acceptability of strain selection and manufacturing for later drug development; sharing of models and challenge agents.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Paul-Ehrlich-Institut (PEI), Langen, Germany; Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| | | | - Marc Baay
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium.
| | - Pieter Neels
- International Alliance for Biological Standardization (IABS), Belgium.
| | | |
Collapse
|
36
|
Chughlay MF, Akakpo S, Odedra A, Csermak-Renner K, Djeriou E, Winnips C, Leboulleux D, Gaur AH, Shanks GD, McCarthy J, Chalon S. Liver Enzyme Elevations in Plasmodium falciparum Volunteer Infection Studies: Findings and Recommendations. Am J Trop Med Hyg 2020; 103:378-393. [PMID: 32314694 PMCID: PMC7356411 DOI: 10.4269/ajtmh.19-0846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Malaria volunteer infection studies (VISs) accelerate new drug and vaccine development. In the induced blood-stage malaria (IBSM) model, volunteers are inoculated with erythrocytes infected with Plasmodium falciparum. Observations of elevated liver enzymes in the IBSM model with new chemical entities (NCEs) promoted an analysis of available data. Data were reviewed from eight IBSM studies of seven different NCEs, plus two studies with the registered antimalarial piperaquine conducted between June 2013 and January 2017 at QIMR Berghofer, Brisbane, Australia. Alanine aminotransferase (ALT) was elevated (> 2.5 times the upper limit of normal [×ULN]) in 20/114 (17.5%) participants. Of these, 8.9% (10/114) had moderate increases (> 2.5–5 × ULN), noted in seven studies of six different NCEs ± piperaquine or piperaquine alone, and 8.9% (10/114) had severe elevations (> 5 × ULN), occurring in six studies of six different NCEs ± piperaquine. Aspartate aminotransferase (AST) was elevated (> 2.5 × ULN) in 11.4% (13/114) of participants, across six of the 10 studies. Bilirubin was > 2 × ULN in one participant. Published data from other VIS models, using sporozoite inoculation by systemic administration or mosquito feeding, also showed moderate/severe liver enzyme elevations. In conclusion, liver enzyme elevations in IBSM studies are most likely multifactorial and could be caused by the model conditions, that is, malaria infection/parasite density and/or effective parasite clearance, or by participant-specific risk factors, acetaminophen administration, or direct hepatotoxicity of the test drug. We make recommendations that may mitigate the risk of liver enzyme elevations in future VISs and propose measures to assist their interpretation, should they occur.
Collapse
Affiliation(s)
| | | | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | | | | | - Aditya H Gaur
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - G Dennis Shanks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|
37
|
Loiseau C, Doumbo OK, Traore B, Brady JL, Proietti C, de Sousa KP, Crompton PD, Doolan DL. A novel population of memory-activated natural killer cells associated with low parasitaemia in Plasmodium falciparum-exposed sickle-cell trait children. Clin Transl Immunology 2020; 9:e1125. [PMID: 32257211 PMCID: PMC7114700 DOI: 10.1002/cti2.1125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Objectives The sickle‐cell trait phenotype is associated with protection from malaria. Multiple molecular mechanisms have been proposed to explain this protection, but the role of the host immune system has been poorly investigated. We hypothesised that cellular immunity to malaria may develop differently in sickle‐cell trait children (HbAS) and children with normal haemoglobin (HbAA) repeatedly exposed to Plasmodium falciparum (Pf). Methods Paired samples collected prior to the Pf transmission season and during the first malaria episode of the ensuing transmission season from HbAS and HbAA children were analysed by multiplex bead‐based assay and comprehensive multi‐dimensional flow cytometry profiling. Results Cellular immune profiles were enriched in HbAS relative to HbAA children before the start of the Pf transmission season, with a distinct NK subset. These cells were identified as a novel subset of memory‐activated NK cells characterised by reduced expression of the ecto‐enzyme CD38 as well as co‐expression of high levels of HLA‐DR and CD45RO. The frequency of this NK subset before the transmission season was negatively correlated with parasite density quantified during the first malaria episode of the ensuing transmission season. Functional assessment revealed that these CD38dim CD45RO+ HLA‐DR+ NK cells represent a important source of IFN‐γ. Conclusion Our data suggest that this novel memory‐activated NK cell subset may contribute to an accelerated and enhanced IFN‐γ‐mediated immune response and to control of parasite density in individuals with the sickle‐cell trait. This distinct cellular immune profile may contribute to predispose HbAS children to a relative protection from malaria.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Ogobara K Doumbo
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research University of Sciences, Technique and Technology of Bamako Bamako Mali
| | - Jamie L Brady
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| | - Karina P de Sousa
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia.,Present address: School of Life and Medical Sciences Biosciences Research Group University of Hertfordshire Hatfield UK
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section Laboratory of Immunogenetics National Institute of Allergy and Infectious Diseases National Institutes of Health Rockville MD USA
| | - Denise L Doolan
- Centre for Molecular Therapeutics Australian Institute of Tropical Health & Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
38
|
Langenberg MCC, Dekkers OM, Roestenberg M. Are placebo controls necessary in controlled human infection trials for vaccines? THE LANCET. INFECTIOUS DISEASES 2020; 20:e69-e74. [PMID: 32142640 DOI: 10.1016/s1473-3099(20)30020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
Controlled human infection trials, whereby a small group of healthy participants is deliberately exposed to a pathogen under controlled circumstances, can provide preliminary data for vaccine efficacy and for the selection of the most promising candidate vaccines for field trials. Because of the potential harm to participants through the deliberate exposure to a pathogen, the use of smaller groups minimises the cumulative risk. As such, a control group that receives a placebo vaccine followed by controlled exposure to a pathogen should be scientifically well justified. As these types of trials are designed to generate consistent infection rates and thus comparable outcomes across populations and trial sites, data from past studies (historical data) could be used as a valid alternative to placebo groups. In this Personal View, we review this option and highlight the considerations for choosing historical data as a suitable control. For the widespread application of this method, responsibility for the centralisation and sharing of data from controlled human infection trials lies with the scientific community.
Collapse
Affiliation(s)
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
39
|
Jongo SA, Church LWP, Mtoro AT, Chakravarty S, Ruben AJ, Swanson PA, Kassim KR, Mpina M, Tumbo AM, Milando FA, Qassim M, Juma OA, Bakari BM, Simon B, James ER, Abebe Y, Kc N, Saverino E, Gondwe L, Studer F, Fink M, Cosi G, El-Khorazaty J, Styers D, Seder RA, Schindler T, Billingsley PF, Daubenberger C, Sim BKL, Tanner M, Richie TL, Abdulla S, Hoffman SL. Safety and Differential Antibody and T-Cell Responses to the Plasmodium falciparum Sporozoite Malaria Vaccine, PfSPZ Vaccine, by Age in Tanzanian Adults, Adolescents, Children, and Infants. Am J Trop Med Hyg 2020; 100:1433-1444. [PMID: 30994090 PMCID: PMC6553883 DOI: 10.4269/ajtmh.18-0835] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 2016, there were more cases and deaths caused by malaria globally than in 2015. An effective vaccine would be an ideal additional tool for reducing malaria's impact. Sanaria® PfSPZ Vaccine, composed of radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (SPZ) has been well tolerated and safe in malaria-naïve and experienced adults in the United States and Mali and protective against controlled human malaria infection with Pf in the United States and field transmission of Pf in Mali, but had not been assessed in younger age groups. We, therefore, evaluated PfSPZ Vaccine in 93 Tanzanians aged 45 years to 6 months in a randomized, double-blind, normal saline placebo-controlled trial. There were no significant differences in adverse events between vaccinees and controls or between dosage regimens. Because all age groups received three doses of 9.0 × 105 PfSPZ of PfSPZ Vaccine, immune responses were compared at this dosage. Median antibody responses against Pf circumsporozoite protein and PfSPZ were highest in infants and lowest in adults. T-cell responses were highest in 6-10-year olds after one dose and 1-5-year olds after three doses; infants had no significant positive T-cell responses. The safety data were used to support initiation of trials in > 300 infants in Kenya and Equatorial Guinea. Because PfSPZ Vaccine-induced protection is thought to be mediated by T cells, the T-cell data suggest PfSPZ Vaccine may be more protective in children than in adults, whereas infants may not be immunologically mature enough to respond to the PfSPZ Vaccine immunization regimen assessed.
Collapse
Affiliation(s)
- Said A Jongo
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | - Ali T Mtoro
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | - Phillip A Swanson
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kamaka R Kassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Maximillian Mpina
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Anneth-Mwasi Tumbo
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Munira Qassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Omar A Juma
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Bakari M Bakari
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Beatus Simon
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | | | | | - Linda Gondwe
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Fabian Studer
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Martina Fink
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Glenda Cosi
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tobias Schindler
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Claudia Daubenberger
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - B Kim Lee Sim
- Protein Potential LLC, Rockville, Maryland.,Sanaria, Inc., Rockville, Maryland
| | - Marcel Tanner
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | |
Collapse
|
40
|
Seilie AM, Chang M, Hanron AE, Billman ZP, Stone BC, Zhou K, Olsen TM, Daza G, Ortega J, Cruz KR, Smith N, Healy SA, Neal J, Wallis CK, Shelton L, Mankowski TV, Wong-Madden S, Mikolajczak SA, Vaughan AM, Kappe SHI, Fishbaugher M, Betz W, Kennedy M, Hume JCC, Talley AK, Hoffman SL, Chakravarty S, Sim BKL, Richie TL, Wald A, Plowe CV, Lyke KE, Adams M, Fahle GA, Cowan EP, Duffy PE, Kublin JG, Murphy SC. Beyond Blood Smears: Qualification of Plasmodium 18S rRNA as a Biomarker for Controlled Human Malaria Infections. Am J Trop Med Hyg 2020; 100:1466-1476. [PMID: 31017084 PMCID: PMC6553913 DOI: 10.4269/ajtmh.19-0094] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription–polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2–3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1–8.1 days) than blood smears (11.0 days; 95% CI: 10.3–11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6–13.3 days). Discrepant analysis showed that the risk of a blood smear–positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.
Collapse
Affiliation(s)
- Annette M Seilie
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Ming Chang
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Amelia E Hanron
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Zachary P Billman
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Brad C Stone
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kevin Zhou
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Tayla M Olsen
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Glenda Daza
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Jose Ortega
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kurtis R Cruz
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Nahum Smith
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carolyn K Wallis
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Lisa Shelton
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Tracie VonGoedert Mankowski
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Matt Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Mark Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Angela K Talley
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | | | | | | | | | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary A Fahle
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James G Kublin
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sean C Murphy
- Department of Microbiology, University of Washington, Seattle, Washington.,Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington.,Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| |
Collapse
|
41
|
Hodgson SH, Muller J, Lockstone HE, Hill AVS, Marsh K, Draper SJ, Knight JC. Use of gene expression studies to investigate the human immunological response to malaria infection. Malar J 2019; 18:418. [PMID: 31835999 PMCID: PMC6911278 DOI: 10.1186/s12936-019-3035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Background Transcriptional profiling of the human immune response to malaria has been used to identify diagnostic markers, understand the pathogenicity of severe disease and dissect the mechanisms of naturally acquired immunity (NAI). However, interpreting this body of work is difficult given considerable variation in study design, definition of disease, patient selection and methodology employed. This work details a comprehensive review of gene expression profiling (GEP) of the human immune response to malaria to determine how this technology has been applied to date, instances where this has advanced understanding of NAI and the extent of variability in methodology between studies to allow informed comparison of data and interpretation of results. Methods Datasets from the gene expression omnibus (GEO) including the search terms; ‘plasmodium’ or ‘malaria’ or ‘sporozoite’ or ‘merozoite’ or ‘gametocyte’ and ‘Homo sapiens’ were identified and publications analysed. Datasets of gene expression changes in relation to malaria vaccines were excluded. Results Twenty-three GEO datasets and 25 related publications were included in the final review. All datasets related to Plasmodium falciparum infection, except two that related to Plasmodium vivax infection. The majority of datasets included samples from individuals infected with malaria ‘naturally’ in the field (n = 13, 57%), however some related to controlled human malaria infection (CHMI) studies (n = 6, 26%), or cells stimulated with Plasmodium in vitro (n = 6, 26%). The majority of studies examined gene expression changes relating to the blood stage of the parasite. Significant heterogeneity between datasets was identified in terms of study design, sample type, platform used and method of analysis. Seven datasets specifically investigated transcriptional changes associated with NAI to malaria, with evidence supporting suppression of the innate pro-inflammatory response as an important mechanism for this in the majority of these studies. However, further interpretation of this body of work was limited by heterogeneity between studies and small sample sizes. Conclusions GEP in malaria is a potentially powerful tool, but to date studies have been hypothesis generating with small sample sizes and widely varying methodology. As CHMI studies are increasingly performed in endemic settings, there will be growing opportunity to use GEP to understand detailed time-course changes in host response and understand in greater detail the mechanisms of NAI.
Collapse
Affiliation(s)
- Susanne H Hodgson
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK. .,Department of Infectious Diseases & Microbiology, Oxford University Hospitals Trust, Oxford, UK.
| | - Julius Muller
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Helen E Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kevin Marsh
- Department of Tropical Medicine, University of Oxford, Oxford, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Metzger WG, Ehni HJ, Kremsner PG, Mordmüller BG. Experimental infections in humans-historical and ethical reflections. Trop Med Int Health 2019; 24:1384-1390. [PMID: 31654450 DOI: 10.1111/tmi.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccine efficacy and prophylactic treatment of infections are tested best when the vaccinated or treated individual is challenged through deliberate infection with the respective pathogen. However, this trial design calls for particular ethical caution. Awareness of the history of challenge trials is indispensable, including trials that were problematic or even connected to abuse. We briefly introduce historical aspects of experimental infections in humans and the ethical debate around them and give estimates of the numbers of volunteers participating in human experimental infection models. Challenge models can offer a great chance and benefit for the development of medical interventions to fight infectious diseases, but only when they are appropriately controlled and regulated.
Collapse
Affiliation(s)
- W G Metzger
- Institute for Tropical Medicine, German Center for Infection Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - H-J Ehni
- Institute for Ethics and History of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - P G Kremsner
- Institute for Tropical Medicine, German Center for Infection Research, Eberhard Karls University Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B G Mordmüller
- Institute for Tropical Medicine, German Center for Infection Research, Eberhard Karls University Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
43
|
Kapulu MC, Njuguna P, Hamaluba MM. Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 2019; 3:155. [PMID: 31803847 PMCID: PMC6871356 DOI: 10.12688/wellcomeopenres.14909.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| | | | | | - CHMI-SIKA Study Team
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| |
Collapse
|
44
|
Laurens MB, Berry AA, Travassos MA, Strauss K, Adams M, Shrestha B, Li T, Eappen A, Manoj A, Abebe Y, Murshedkar T, Gunasekera A, Richie TL, Lyke KE, Plowe CV, Kennedy JK, Potter GE, Deye GA, Sim BKL, Hoffman SL. Dose-Dependent Infectivity of Aseptic, Purified, Cryopreserved Plasmodium falciparum 7G8 Sporozoites in Malaria-Naive Adults. J Infect Dis 2019; 220:1962-1966. [PMID: 31419294 PMCID: PMC6834064 DOI: 10.1093/infdis/jiz410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.
Collapse
Affiliation(s)
- Matthew B Laurens
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Andrea A Berry
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Mark A Travassos
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Kathy Strauss
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Matthew Adams
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Biraj Shrestha
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Tao Li
- Sanaria, Inc, Rockville, Maryland
| | | | | | | | | | | | | | - Kirsten E Lyke
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | | | | | | | - Gregory A Deye
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
45
|
Dejon-Agobe JC, Ateba-Ngoa U, Lalremruata A, Homoet A, Engelhorn J, Nouatin OP, Edoa JR, Fernandes JF, Esen M, Mouwenda YD, Betouke Ongwe EM, Massinga-Loembe M, Hoffman SL, Sim BKL, Theisen M, Kremsner PG, Adegnika AA, Lell B, Mordmüller B. Controlled Human Malaria Infection of Healthy Adults With Lifelong Malaria Exposure to Assess Safety, Immunogenicity, and Efficacy of the Asexual Blood Stage Malaria Vaccine Candidate GMZ2. Clin Infect Dis 2019; 69:1377-1384. [PMID: 30561539 PMCID: PMC6763635 DOI: 10.1093/cid/ciy1087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/18/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND GMZ2 is a recombinant malaria vaccine inducing immune responses against Plasmodium falciparum (Pf) merozoite surface protein-3 and glutamate-rich protein. We used standardized controlled human malaria infection (CHMI) to assess the efficacy of this asexual blood-stage vaccine. METHODS We vaccinated 50 healthy, adult volunteers with lifelong exposure to Pf 3 times, at 4-week intervals, with 30 or 100 µg GMZ2 formulated in CAF01, a liposome-based adjuvant; 100 µg GMZ2, formulated in Alhydrogel; or a control vaccine (Verorab). Approximately 13 weeks after the last vaccination, 35/50 volunteers underwent CHMI by direct venous inoculation of 3200 Pf sporozoites (Sanaria® PfSPZ Challenge). RESULTS Adverse events were similarly distributed between GMZ2 and control vaccinees. Baseline-corrected anti-GMZ2 antibody concentrations 4 weeks after the last vaccination were higher in all 3 GMZ2-vaccinated arms, compared to the control group. All GMZ2 formulations induced similar antibody levels. CHMI resulted in 29/34 (85%) volunteers with Pf parasitemia and 15/34 (44%) with malaria (parasitemia and symptoms). The proportion of participants with malaria (2/5 control, 6/10 GMZ2-Alhydrogel, 2/8 30 µg GMZ2-CAF01, and 5/11 100 µg GMZ2-CAF01) and the time it took them to develop malaria were similar in all groups. Baseline, vaccine-specific antibody concentrations were associated with protection against malaria. CONCLUSIONS GMZ2 is well tolerated and immunogenic in lifelong-Pf-exposed adults from Gabon, with similar antibody responses regardless of formulation. CHMI showed no protective effect of prior vaccination with GMZ2, although baseline, vaccine-specific antibody concentrations were associated with protection. CHMI with the PfSPZ Challenge is a potent new tool to validate asexual, blood-stage malaria vaccines in Africa. CLINICAL TRIALS REGISTRATION Pan-African Clinical Trials: PACTR201503001038304.
Collapse
Affiliation(s)
- Jean Claude Dejon-Agobe
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - Ulysse Ateba-Ngoa
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Albert Lalremruata
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | - Andreas Homoet
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - Julie Engelhorn
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - Odilon Paterne Nouatin
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - Jean Ronald Edoa
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | - Meral Esen
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | - Yoanne Darelle Mouwenda
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Eunice M Betouke Ongwe
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
| | - Marguerite Massinga-Loembe
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | | | | | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Denmark
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | - Ayôla A Adegnika
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné and African Partner Institution, German Center for Infection Research, Gabon
- Institut für Tropenmedizin, Universität Tübingen and German Center for Infection Research, Germany
| |
Collapse
|
46
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
47
|
O'Brochta DA, Alford R, Harrell R, Aluvihare C, Eappen AG, Li T, Chakravarty S, Sim BKL, Hoffman SL, Billingsley PF. Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum? Malar J 2019; 18:2. [PMID: 30602380 PMCID: PMC6317240 DOI: 10.1186/s12936-018-2634-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.
Collapse
Affiliation(s)
- David A O'Brochta
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.,Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Robert Alford
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Harrell
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Channa Aluvihare
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Abraham G Eappen
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Peter F Billingsley
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
48
|
Matuschewski K, Borrmann S. Controlled Human Malaria Infection (CHMI) Studies: Over 100 Years of Experience with Parasite Injections. Methods Mol Biol 2019; 2013:91-101. [PMID: 31267496 DOI: 10.1007/978-1-4939-9550-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human experimentation by deliberate infection with malarial parasites seems unethical yet has a long history in infectious disease research. After rigorous screening, volunteers are inoculated with Plasmodium sporozoites or blood stages and monitored under strict clinical supervision until they are treated with a licensed malaria drug and the infection is completely resolved. Historically, experimental Plasmodium challenge infections were applied to confirm that Anopheles mosquitoes were the malaria vector and to treat neurosyphilis in Treponema pallidum-infected patients. The lifesaving treatment with reliable parasite inoculation, monitoring, and drug cure was awarded with a Nobel Prize in 1927 and paved the way for human trials for clinical tests of candidate drugs and vaccines. Importantly, controlled human malaria infection (CHMI) studies are indispensable to bridge the major gap between phase I safety and phase II field trials. Here, we describe the biological basis, historical experiences, applications, and ethical considerations for CHMI studies. Acceleration of antimalarial drug and vaccine development remains a priority in medical research and critically depends on capacity building for CHMI studies.
Collapse
Affiliation(s)
- Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
| | - Steffen Borrmann
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
49
|
Kapulu MC, Njuguna P, Hamaluba MM. Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 2018; 3:155. [PMID: 31803847 PMCID: PMC6871356 DOI: 10.12688/wellcomeopenres.14909.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 10/20/2023] Open
Abstract
Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use controlled human malaria infection (CHMI) studies with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and extracted DNA will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| | | | | | - CHMI-SIKA Study Team
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| |
Collapse
|
50
|
Roestenberg M, Kamerling IMC, de Visser SJ. Controlled Human Infections As a Tool to Reduce Uncertainty in Clinical Vaccine Development. Front Med (Lausanne) 2018; 5:297. [PMID: 30420951 PMCID: PMC6215823 DOI: 10.3389/fmed.2018.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines can be extremely cost-effective public health measures. Unfortunately the research and development (R&D) of novel vaccines is suffering from rising costs and declining success rates. Because many vaccines target low- and middle income markets (LMIC), output needs to be maintained at a constrained budget. In addition, scientific neglect and political uncertainty around reimbursement decisions make it an unattractive arena for private investors. The vaccine development pipeline for LMIC thus is in need for a different, sustainable, and cost-effective development model. In conventional vaccine development, objectives for every clinical development phase have been predefined. However, given the scarcity of resources, the most efficient clinical development path should identify vaccine candidates with the highest potential impact as soon as possible. We argue for a custom-made question-based development path based on the scientific questions, success probabilities and investments required. One question can be addressed by several studies and one study can provide partial answers to multiple questions. An example of a question-based approach is the implementation of a controlled human malaria infection model (CHMI). Malaria vaccine R&D faces major scientific challenges and has limited resources. Therefore, early preliminary efficacy data needs to be obtained in order to reallocate resources as efficiently as possible and reduce clinical development costs. To meet this demand, novel malaria vaccines are tested for efficacy in so-called CHMI trials in which small groups of healthy volunteers are vaccinated and subsequently infected with malaria. Early evaluation studies of critical questions, such as CHMI, are highly rewarding, since they prevent expenditures on projects that are unlikely to succeed. Each set of estimated probabilities and costs (combined with market value) will have its own optimal priority sequence of questions to address. Algorithms can be designed to determine the optimal order in which questions should be addressed. Experimental infections of healthy volunteers is an example of how a question-based approach to vaccine development can be implemented and has the potential to change the arena of clinical vaccine development.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|