1
|
Comino Garcia-Munoz A, Varlet I, Grau GE, Perles-Barbacaru TA, Viola A. Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis. Pathogens 2024; 13:1042. [PMID: 39770302 PMCID: PMC11728472 DOI: 10.3390/pathogens13121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral malaria (CM), the most lethal clinical syndrome of Plasmodium falciparum infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published. The murine model of experimental cerebral malaria (ECM) shares many common features with the human disease and has been extensively used to study the pathogenic mechanisms of the neurological syndrome. In vivo MRI studies on this model, the first of which was published in 2005, have contributed to a better understanding of brain lesion formation in CM and identified disease markers that were confirmed by MRI studies published from 2013 onwards in pediatric patients from endemic areas. In this review, we recapitulate the main findings and critically discuss the contributions of MRI studies in the ECM model to the understanding of human CM.
Collapse
Affiliation(s)
- Alicia Comino Garcia-Munoz
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Isabelle Varlet
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Georges Emile Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Medical Foundation Building (K25), Camperdown, NSW 2042, Australia;
| | - Teodora-Adriana Perles-Barbacaru
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Angèle Viola
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| |
Collapse
|
2
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Maitland K, Obonyo N, Hamaluba M, Ogoda E, Mogaka C, Williams TN, Newton C, Kariuki SM, Gibb DM, Walker AS, Connon R, George EC. A Phase I trial of Non-invasive Ventilation and seizure prophylaxis with levetiracetam In Children with Cerebral Malaria Trial (NOVICE-M Trial). Wellcome Open Res 2024; 9:281. [PMID: 39184127 PMCID: PMC11342035 DOI: 10.12688/wellcomeopenres.21403.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background African children with cerebral malaria and seizures caused Plasmodium falciparum are at greater risk of poor outcomes including death and neurological sequelae. The agonal events are severe hypoventilation and respiratory arrest often triggered by seizures. We hypothesised that prophylactic anti-seizure medication (ASM) could avert 'spikes' of intracranial pressure during or following seizures and that adequate ventilation could be supported by biphasic Cuirass Ventilation (BCV) which requires no intubation. Methods A Phase I trial conducted in Kilifi, Kenya designed to provide data on safety, feasibility and preliminary data on seizure control using prophylactic ASM (levetiracetam) and BCV as non-invasive ventilatory support in children with cerebral malaria. Children aged 3 months to 12-years hospitalised with P falciparum malaria (positive rapid diagnostic test or a malaria slide), a Blantyre Coma Score ≤2 and a history of acute seizures in this illness are eligible for the trial. In a phased evaluation we will study i) BCV alone for respiratory support (n=10); ii) prophylactic LVT: 40mg/kg loading dose then 30mg/kg every 12 hours given via nasogastric tube for 72 hours (or until fully conscious) plus BCV support (n=10) and; iii) prophylactic LVT: 60mg/kg loading dose then 45mg/kg every 12 hours given via nasogastric tube for 72 hours (or until fully conscious) plus BCV support (n=10). Primary outcome measure: cumulative time with a clinically detected seizures or number of observed seizures over 36 hours. Secondary outcomes will be assessed by feasibility or ability to implement BCV, and recovery from coma within 36 hours. Safety endpoints include: aspiration during admission; death at 28 days and 180 days; and de-novo neurological impairments at 180 days. Conclusions This is a Phase I trial largely designed to test the feasibility, tolerability and safety of using non-invasive ventilatory support and LVT prophylaxis in cerebral malaria. Registration ISRCTN76942974 (5.02.2019); PACTR202112749708968 (20.12.2021).
Collapse
Affiliation(s)
- Kathryn Maitland
- Department of Infectious Disease and Institute of Global Health and Innovation, Division of Medicine, Imperial College London, London, England, W2 1PG, UK
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Nchafasto Obonyo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Mainga Hamaluba
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Emmanuel Ogoda
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Christabel Mogaka
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Thomas N. Williams
- Department of Infectious Disease and Institute of Global Health and Innovation, Division of Medicine, Imperial College London, London, England, W2 1PG, UK
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
| | - Charles Newton
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Symon M. Kariuki
- KEMRI Wellcome Trust Research Programme, Kilifi, Kilifi, PO BOX 230, Kenya
- Department of Public Health, Pwani University, Kilifi, Kilifi County, Kenya
| | - Diana M. Gibb
- Institute of Clinical Trials & Methodology, Medical Research Council Clinical Trials Unit at University College London, London, England, WC1V 6J, UK
| | - A. Sarah Walker
- Institute of Clinical Trials & Methodology, Medical Research Council Clinical Trials Unit at University College London, London, England, WC1V 6J, UK
| | - Roisin Connon
- Institute of Clinical Trials & Methodology, Medical Research Council Clinical Trials Unit at University College London, London, England, WC1V 6J, UK
| | - Elizabeth C. George
- Institute of Clinical Trials & Methodology, Medical Research Council Clinical Trials Unit at University College London, London, England, WC1V 6J, UK
| |
Collapse
|
4
|
Nyariki JN, Kimani NM, Kibet PS, Kinuthia GK, Isaac AO. Coenzyme Q10 exhibits anti-inflammatory and immune-modulatory thereby decelerating the occurrence of experimental cerebral malaria. Mol Biochem Parasitol 2023; 255:111579. [PMID: 37385350 DOI: 10.1016/j.molbiopara.2023.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Cerebral Malaria (CM) is associated with the complex neurological syndrome, whose pathology is mediated by severe inflammatory processes following infection with Plasmodium falciparum. Coenzyme-Q10 (Co-Q10) is a potent anti-inflammatory, anti-oxidant, and anti-apoptotic agent with numerous clinical applications. The aim of this study was to elucidate the role of oral administration of Co-Q10 on the initiation or regulation of inflammatory immune response during experimental cerebral malaria (ECM). For this purpose, the pre-clinical effect of Co-Q10 was evaluated in C57BL/6 J mice infected with Plasmodium berghei ANKA (PbA). Treatment with Co-Q10 resulted in the reduction of infiltrating parasite load, greatly improved the survival rate of PbA-infected mice that occurred independent of parasitaemia and prevented PbA-induced disruption of the blood-brain barrier (BBB) integrity. Exposure to Co-Q10 resulted in the reduction of infiltration of effector CD8 + T cells in the brain and secretion of cytolytic Granzyme B molecules. Notably, Co-Q10-treated mice had reduced levels of CD8 +T cell chemokines CXCR3, CCR2, and CCR5 in the brain following PbA-infection. Brain tissue analysis showed a reduction in the levels of inflammatory mediators TNF- α, CCL3, and RANTES in Co-Q10 administered mice. In addition, Co-Q10 modulated the differentiation and maturation of both splenic and brain dendritic cells and cross-presentation (CD8α+DCs) during ECM. Remarkably, Co-Q10 was very effective in decreasing levels of CD86, MHC-II, and CD40 in macrophages associated with ECM pathology. Exposure to Co-Q10 resulted in increased expression levels of Arginase-1 and Ym1/chitinase 3-like 3, which is linked to ECM protection. Furthermore, Co-Q10 supplementation prevented PbA-induced depletion of Arginase and CD206 mannose receptor levels. Co-Q10 abrogated PbA-driven elevation in pro-inflammatory cytokines IL-1β, IL-18, and IL-6 levels. In conclusion, the oral supplementation with Co-Q10 decelerates the occurrence of ECM by preventing lethal inflammatory immune responses and dampening genes associated with inflammation and immune-pathology during ECM, and offers an inimitable opening for developing an anti-inflammatory agent against cerebral malaria.
Collapse
Affiliation(s)
- James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical of University of Kenya, P.O Box 52428-00200 Nairobi, Kenya.
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, P.O Box 6-60100 Embu, Kenya
| | - Peter Shikuku Kibet
- Department of Pathology, Hematology and Blood Transfusion thematic unit, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya
| | - Geoffrey K Kinuthia
- Department of Science & Public Health, Daystar University, PO Box 44400-00100, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School Health Sciences and Biomedical Sciences, Technical University of Kenya, P.O Box 52428-00200 Nairobi, Kenya
| |
Collapse
|
5
|
Marin AA, Juillard A, Katzin AM, Carvalho LJ, Grau GE. Perillyl alcohol modulates activation, permeability and integrity of human brain endothelial cells induced by Plasmodium falciparum. Mem Inst Oswaldo Cruz 2023; 118:e230033. [PMID: 37403869 DOI: 10.1590/0074-02760230033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.
Collapse
Affiliation(s)
- Adriana A Marin
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
- University of Sydney, Department of Pathology, Vascular Immunology Unit, Sydney Medical School, New South Wales, Australia
| | - Annette Juillard
- University of Sydney, Department of Pathology, Vascular Immunology Unit, Sydney Medical School, New South Wales, Australia
| | - Alejandro M Katzin
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - Leonardo Jm Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Georges Er Grau
- University of Sydney, Department of Pathology, Vascular Immunology Unit, Sydney Medical School, New South Wales, Australia
| |
Collapse
|
6
|
Conroy AL, Datta D, Opoka RO, Batte A, Bangirana P, Gopinadhan A, Mellencamp KA, Akcan-Arikan A, Idro R, John CC. Cerebrospinal fluid biomarkers provide evidence for kidney-brain axis involvement in cerebral malaria pathogenesis. Front Hum Neurosci 2023; 17:1177242. [PMID: 37200952 PMCID: PMC10185839 DOI: 10.3389/fnhum.2023.1177242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria. Methods We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum. Results The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuron-specific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p < 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brain-barrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p < 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain. Conclusion In children with cerebral malaria, there is evidence of kidney-brain injury with multiple potential pathways identified. These changes were specific to the kidney and not observed in the context of other clinical complications.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Undergraduate Medical Education, The Aga Khan University, Nairobi, Kenya
| | - Anthony Batte
- Global Health Uganda, Kampala, Uganda
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kagan A. Mellencamp
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
8
|
The IL-33/ST2 Pathway in Cerebral Malaria. Int J Mol Sci 2022; 23:ijms232113457. [PMID: 36362246 PMCID: PMC9658244 DOI: 10.3390/ijms232113457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.
Collapse
|
9
|
Adams Y, Jensen AR. Cerebral malaria - modelling interactions at the blood-brain barrier in vitro. Dis Model Mech 2022; 15:275963. [PMID: 35815443 PMCID: PMC9302004 DOI: 10.1242/dmm.049410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The blood–brain barrier (BBB) is a continuous endothelial barrier that is supported by pericytes and astrocytes and regulates the passage of solutes between the bloodstream and the brain. This structure is called the neurovascular unit and serves to protect the brain from blood-borne disease-causing agents and other risk factors. In the past decade, great strides have been made to investigate the neurovascular unit for delivery of chemotherapeutics and for understanding how pathogens can circumvent the barrier, leading to severe and, at times, fatal complications. One such complication is cerebral malaria, in which Plasmodium falciparum-infected red blood cells disrupt the barrier function of the BBB, causing severe brain swelling. Multiple in vitro models of the BBB are available to investigate the mechanisms underlying the pathogenesis of cerebral malaria and other diseases. These range from single-cell monolayer cultures to multicellular BBB organoids and highly complex cerebral organoids. Here, we review the technologies available in malaria research to investigate the interaction between P. falciparum-infected red blood cells and the BBB, and discuss the advantages and disadvantages of each model. Summary: This Review discusses the available in vitro models to investigate the impact of adhesion of Plasmodium falciparum-infected red blood cells on the blood–brain barrier, a process associated with cerebral malaria.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anja Ramstedt Jensen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Hempel C, Milner D, Seydel K, Taylor T. Specific components associated with the endothelial glycocalyx are lost from brain capillaries in cerebral malaria. J Infect Dis 2022; 226:1470-1479. [PMID: 35556124 DOI: 10.1093/infdis/jiac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a rare, but severe and frequently fatal outcome of infections with Plasmodium falciparum. Pathogenetic mechanisms include endothelial activation and sequestration of parasitized erythrocytes in the cerebral microvessels. Increased concentrations of glycosaminoglycans in urine and plasma of malaria patients have been described, suggesting involvement of endothelial glycocalyx. METHODS We used lectin histochemistry on postmortem samples to compare the distribution of multiple sugar epitopes on cerebral capillaries in children who died from CM and from non-malarial comas. RESULTS N-acetyl glucosamine residues detected by tomato lectin are generally reduced in children with CM compared to controls. We used the vascular expression of intercellular adhesion molecule-1 and mannose residues on brain capillaries of CM as evidence of local vascular inflammation, and both were expressed more highly in CM patients than controls. Sialic acid residues were found to be significantly reduced in patients with CM. By contrast, the levels of other sugar epitopes regularly detected on the cerebral vasculature were unchanged, and this suggests specific remodeling of cerebral microvessels in CM patients. CONCLUSIONS Our findings support and expand upon earlier reports of disruptions of the endothelial glycocalyx in children with severe malaria.
Collapse
Affiliation(s)
- Casper Hempel
- Department Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Dan Milner
- American Society for Clinical Pathology, Chicago, IL, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, US
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, US.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, US.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
11
|
Albrecht-Schgoer K, Lackner P, Schmutzhard E, Baier G. Cerebral Malaria: Current Clinical and Immunological Aspects. Front Immunol 2022; 13:863568. [PMID: 35514965 PMCID: PMC9067128 DOI: 10.3389/fimmu.2022.863568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
This review focuses on current clinical and immunological aspects of cerebral malaria induced by Plasmodium falciparum infection. Albeit many issues concerning the inflammatory responses remain unresolved and need further investigations, current knowledge of the underlying molecular mechanisms is highlighted. Furthermore, and in the light of significant limitations in preventative diagnosis and treatment of cerebral malaria, this review mainly discusses our understanding of immune mechanisms in the light of the most recent research findings. Remarkably, the newly proposed CD8+ T cell-driven pathophysiological aspects within the central nervous system are summarized, giving first rational insights into encouraging studies with immune-modulating adjunctive therapies that protect from symptomatic cerebral participation of Plasmodium falciparum infection.
Collapse
Affiliation(s)
- Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, Klinik Floridsdorf, Wien, Austria
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
13
|
Rodríguez AM, Rodríguez J, Giambartolomei GH. Microglia at the Crossroads of Pathogen-Induced Neuroinflammation. ASN Neuro 2022; 14:17590914221104566. [PMID: 35635133 PMCID: PMC9158411 DOI: 10.1177/17590914221104566] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microglia are the resident tissue macrophages of the central nervous system (CNS). Recent findings point out that in the steady state the major role of microglia, is to instruct and regulate the correct function of the neuronal networks and different components of the neurovascular unit in the adult CNS, while providing immune surveillance. Paradoxically, during CNS infection immune activation of microglia generates an inflammatory milieu that contributes to the clearance of the pathogen but can, in the process, harm nearby cells of CNS. Most of the knowledge about the harmful effects of activated microglia on CNS has arisen from studies on neurodegenerative diseases. In this review we will focus on the beneficial role and detrimental functions of microglial cells on the neighboring cells of the CNS upon infection.
Collapse
Affiliation(s)
- Ana María Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. Facultad de Farmacia y Bioquímica, 28196Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Andoh NE, Gyan BA. The Potential Roles of Glial Cells in the Neuropathogenesis of Cerebral Malaria. Front Cell Infect Microbiol 2021; 11:741370. [PMID: 34692564 PMCID: PMC8529055 DOI: 10.3389/fcimb.2021.741370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Cerebral malaria (CM) is a severe neurological complication of malaria caused by the Plasmodium falciparum parasite. It is one of the leading causes of death in children under 5 years of age in Sub-Saharan Africa. CM is associated with blood-brain barrier disruption and long-term neurological sequelae in survivors of CM. Despite the vast amount of research on cerebral malaria, the cause of neurological sequelae observed in CM patients is poorly understood. In this article, the potential roles of glial cells, astrocytes, and microglia, in cerebral malaria pathogenesis are reviewed. The possible mechanisms by which glial cells contribute to neurological damage in CM patients are also examined.
Collapse
Affiliation(s)
- Nana Efua Andoh
- Noguchi Memorial Institute for Medical Research, Department of Parasitology, University of Ghana, Accra, Ghana
| | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Segawa K, Blumenthal Y, Yamawaki Y, Ohtsuki G. A Destruction Model of the Vascular and Lymphatic Systems in the Emergence of Psychiatric Symptoms. BIOLOGY 2021; 10:34. [PMID: 33419067 PMCID: PMC7825436 DOI: 10.3390/biology10010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023]
Abstract
The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.
Collapse
Affiliation(s)
- Kohei Segawa
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Yukari Blumenthal
- Urology Department at Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge CB2 0QQ, UK;
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| |
Collapse
|
16
|
Lima MN, Freitas RJRX, Passos BABR, Darze AMG, Castro-Faria-Neto HC, Maron-Gutierrez T. Neurovascular Interactions in Malaria. Neuroimmunomodulation 2021; 28:108-117. [PMID: 33951667 DOI: 10.1159/000515557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by Plasmodium infection and remains a serious public health problem worldwide, despite control efforts. Malaria can progress to severe forms, affecting multiple organs, including the brain causing cerebral malaria (CM). CM is the most severe neurological complication of malaria, and cognitive and behavior deficits are commonly reported in surviving patients. The number of deaths from malaria has been reducing in recent years, and as a consequence, neurological sequelae have been more evident. Neurological damage in malaria might be related to the neuroinflammation, characterized by glia cell activation, neuronal apoptosis and changes in the blood-brain barrier (BBB) integrity. The neurovascular unit (NVU) is responsible for maintaining the homeostasis of the BBB. Endothelial and pericytes cells in the cerebral microvasculature and neural cells, as astrocytes, neurons, and microglia, compose the NVU. The NVU can be disturbed by parasite metabolic products, such as heme and hemozoin, or cytokines that can promote activation of endothelial and glial cells and lead to increased BBB permeability and subsequently neurodegeneration. In this review, we will approach the main changes that happen in the cells of the NVU due to neuroinflammation caused by malaria infection, and elucidate how the systemic pathophysiology is involved in the onset and progression of CM.
Collapse
Affiliation(s)
- Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo J R X Freitas
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz A B R Passos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria G Darze
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 2020; 19:266. [PMID: 32703204 PMCID: PMC7376930 DOI: 10.1186/s12936-020-03336-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including exposure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not sufficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments to address CM neurologic sequelae.
Collapse
Affiliation(s)
- Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Andres Villabona-Rueda
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Karissa E Cottier
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.,BioIVT, 1450 South Rolling Road, Baltimore, MD, USA
| | | | - James Chipeta
- Department of Paediatrics, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Monique F Stins
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Darling TK, Mimche PN, Bray C, Umaru B, Brady LM, Stone C, Eboumbou Moukoko CE, Lane TE, Ayong LS, Lamb TJ. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog 2020; 16:e1008261. [PMID: 31999807 PMCID: PMC6991964 DOI: 10.1371/journal.ppat.1008261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023] Open
Abstract
Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.
Collapse
Affiliation(s)
- Thayer K. Darling
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrice N. Mimche
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christian Bray
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Banlanjo Umaru
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Lauren M. Brady
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Colleen Stone
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, University of Douala, Douala, Cameroon
| | - Thomas E. Lane
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence S. Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
21
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
22
|
Liu F, Liu Q, Yuan F, Guo S, Liu J, Sun Z, Gao P, Wang Y, Yan S, Liu J. Erg mediates downregulation of claudin-5 in the brain endothelium of a murine experimental model of cerebral malaria. FEBS Lett 2019; 593:2585-2595. [PMID: 31271645 DOI: 10.1002/1873-3468.13526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
Cerebral malaria (CM) is a severe complication with brain vascular hyperpermeability. Claudin-5 is the major component of tight junctions. To investigate the expression of claudin-5 in CM, we established a murine experimental cerebral malaria (ECM) model and an in vitro model by treating murine brain endothelial cells (bEnd3) with plasma from ECM mice. Expression of claudin-5 and the ETS transcription factor Erg was reduced in the brain endothelium of ECM mice. In bEnd3 cells exposed to ECM plasma, decreased expression of claudin-5 and Erg, and increased permeability were observed. Silencing of Erg significantly reduced Cldn5 expression. ChIP assays indicated that Erg binds to the -813 ETS motif of the murine Cldn5 gene promoter, and the binding is decreased by treatment with ECM plasma.
Collapse
Affiliation(s)
- Fuhong Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fangshu Yuan
- Department of Human Parasitology, School of Medicine, Shandong University, Jinan, China
| | - Shuling Guo
- Department of Human Parasitology, School of Medicine, Shandong University, Jinan, China
| | - Jinzhi Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Zongguo Sun
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Peng Gao
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Yu Wang
- School of Medicine, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| |
Collapse
|
23
|
Tunon-Ortiz A, Lamb TJ. Blood brain barrier disruption in cerebral malaria: Beyond endothelial cell activation. PLoS Pathog 2019; 15:e1007786. [PMID: 31247027 PMCID: PMC6597102 DOI: 10.1371/journal.ppat.1007786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Arnulfo Tunon-Ortiz
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Neurosciences Graduate Program, University of Utah, Salt Lake City, Utah, United States of America
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
25
|
Abstract
Haemozoin is a by-product of haemoglobin digestion by intraerythrocytic malaria parasites, which induces immunologic responses on different tissues, including endothelial cells. In the present paper, the incubation of human microvascular endothelial cells with haemozoin significantly inhibited MTT reduction, a measure of cytotoxicity, without increasing the release of cytoplasmic lactate dehydrogenase. Moreover, haemozoin did not induce apoptosis or cell cycle arrest nor decreased the number of live cells, suggesting that cells viability itself was not affected and that the inhibition of MTT reduction was only apparent and probably due to accelerated MTT-formazan exocytosis. After 30 min of MTT addition, a significant increase in the % of cells exocytosing MTT formazan crystals was observed in haemozoin-treated cells compared with control cells. Such an effect was partially reversed by the addition of genistein, an inhibitor of MTT-formazan exocytosis. The rapid release of CXCL-8, a preformed chemokine contained in Weibel-Palade bodies, confirmed that haemozoin induces a perturbation of the intracellular endothelial trafficking, including the exocytosis of MTT-formazan containing vesicles. The haem moiety of haemozoin is responsible for the observed effect. Moreover, this work underlines that MTT assay should not be used to measure cytotoxicity induced by haemozoin and other methods should be preferred.
Collapse
|
26
|
Adeodu OO, Olorunmoteni OE, Oseni SBA, Obuotor EM. Plasma and Cerebrospinal Fluid Beta-Endorphin Levels Show a Strong Association in Children with Cerebral Malaria. J Pediatr Neurosci 2018; 13:416-422. [PMID: 30937082 PMCID: PMC6413603 DOI: 10.4103/jpn.jpn_15_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Beta (β)-endorphins are endogenous neuropeptides found in the plasma and cerebrospinal fluid (CSF) of humans but there have been reports of the relationship between the plasma and CSF β-endorphin levels in different clinical conditions. However, the relationship between β-endorphin levels in the plasma and CSF of children with cerebral malaria (CM) has not been reported. AIM To determine the relationship between β-endorphin levels in the CSF and plasma of children with CM. SETTINGS AND DESIGN This cross-sectional study involved 40 children, aged between 6 months and 14 years, admitted with a diagnosis of CM at the Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria. MATERIALS AND METHODS One milliliter (mL) of venous blood and 1mL of CSF obtained from each subject at admission were used to determine the β-endorphin levels using enzyme-linked immunosorbent assay (ELISA) method. STATISTICAL ANALYSIS Bivariate linear regression was used to determine the association between plasma and CSF β-endorphin levels using the correlation coefficient (r), coefficient of determination (R 2), and P values. RESULTS The plasma β-endorphin levels significantly positively correlated with CSF β-endorphin (r = 0.568, P = 0.001) such that for every unit rise in plasma β-endorphin, CSF β-endorphin rose by 0.252 pmol/L (confidence interval: 0.132-0.371 pmol/L). CONCLUSION The finding of positive correlation between plasma and CSF β-endorphin levels in this study suggests a possible direct link between plasma and CSF in CM, probably from the disruption of the blood-brain barrier that has been reported in CM.
Collapse
Affiliation(s)
- Oluwagbemiga O. Adeodu
- Department of Paediatrics and Child Health, Obafemi Awolowo University/Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria
| | - Oluwatosin E. Olorunmoteni
- Department of Paediatrics and Child Health, Obafemi Awolowo University/Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria
| | - Saheed B. A. Oseni
- Department of Paediatrics and Child Health, Obafemi Awolowo University/Obafemi Awolowo University Teaching Hospitals Complex (OAUTHC), Ile-Ife, Nigeria
| | - Efere M. Obuotor
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
27
|
Ghazanfari N, Mueller SN, Heath WR. Cerebral Malaria in Mouse and Man. Front Immunol 2018; 9:2016. [PMID: 30250468 PMCID: PMC6139318 DOI: 10.3389/fimmu.2018.02016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria (CM) is an acute encephalopathy caused by the malaria parasite Plasmodium falciparum, which develops in a small minority of infected patients and is responsible for the majority of deaths in African children. Despite decades of research on CM, the pathogenic mechanisms are still relatively poorly defined. Nevertheless, many studies in recent years, using a combination of animal models, in vitro cell culture work, and human patients, provide significant insight into the pathologic mechanisms leading to CM. In this review, we summarize recent findings from mouse models and human studies on the pathogenesis of CM, understanding of which may enable development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Moussa E, Huang H, Ahras M, Lall A, Thezenas ML, Fischer R, Kessler BM, Pain A, Billker O, Casals-Pascual C. Proteomic profiling of the brain of mice with experimental cerebral malaria. J Proteomics 2018; 180:61-69. [DOI: 10.1016/j.jprot.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 11/24/2022]
|
29
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Kain KC, Bassat Q. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J 2018; 17:47. [PMID: 29361945 PMCID: PMC5781278 DOI: 10.1186/s12936-018-2195-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent efforts and successes in reducing the malaria burden globally, this infection still accounts for an estimated 212 million clinical cases, 2 million severe malaria cases, and approximately 429,000 deaths annually. Even with the routine use of effective anti-malarial drugs, the case fatality rate for severe malaria remains unacceptably high, with cerebral malaria being one of the most life-threatening complications. Up to one-third of cerebral malaria survivors are left with long-term cognitive and neurological deficits. From a population point of view, the decrease of malaria transmission may jeopardize the development of naturally acquired immunity against the infection, leading to fewer total cases, but potentially an increase in severe cases. The pathophysiology of severe and cerebral malaria is not completely understood, but both parasite and host determinants contribute to its onset and outcomes. Adjunctive therapy, based on modulating the host response to infection, could help to improve the outcomes achieved with specific anti-malarial therapy. RESULTS AND CONCLUSIONS In the last decades, several interventions targeting different pathways have been tested. However, none of these strategies have demonstrated clear beneficial effects, and some have shown deleterious outcomes. This review aims to summarize evidence from clinical trials testing different adjunctive therapy for severe and cerebral malaria in humans. It also highlights some preclinical studies which have evaluated novel strategies and other candidate therapeutics that may be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Rosauro Varo
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
| | - Lola Madrid
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
31
|
Potchen MJ, Kampondeni SD, Seydel KB, Haacke EM, Sinyangwe SS, Mwenechanya M, Glover SJ, Milner DA, Zeli E, Hammond CA, Utriainen D, Lishimpi K, Taylor TE, Birbeck GL. 1.5 Tesla Magnetic Resonance Imaging to Investigate Potential Etiologies of Brain Swelling in Pediatric Cerebral Malaria. Am J Trop Med Hyg 2018; 98:497-504. [PMID: 29313473 DOI: 10.4269/ajtmh.17-0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hallmark of pediatric cerebral malaria (CM) is sequestration of parasitized red blood cells in the cerebral microvasculature. Malawi-based research using 0.35 Tesla (T) magnetic resonance imaging (MRI) established that severe brain swelling is associated with fatal CM, but swelling etiology remains unclear. Autopsy and clinical studies suggest several potential etiologies, but limitations of 0.35 T MRI precluded optimal investigations into swelling pathophysiology. A 1.5 T MRI in Zambia allowed for further investigations including susceptibility-weighted imaging (SWI). SWI is an ideal sequence for identifying regions of sequestration and microhemorrhages given the ferromagnetic properties of hemozoin and blood. Using 1.5 T MRI, Zambian children with retinopathy-confirmed CM underwent imaging with SWI, T2, T1 pre- and post-gadolinium, diffusion-weighted imaging (DWI) with apparent diffusion coefficients and T2/fluid attenuated inversion recovery sequences. Sixteen children including two with moderate/severe edema were imaged; all survived. Gadolinium extravasation was not seen. DWI abnormalities spared the gray matter suggesting vasogenic edema with viable tissue rather than cytotoxic edema. SWI findings consistent with microhemorrhages and parasite sequestration co-occurred in white matter regions where DWI changes consistent with vascular congestion were seen. Imaging findings consistent with posterior reversible encephalopathy syndrome were seen in children who subsequently had a rapid clinical recovery. High field MRI indicates that vascular congestion associated with parasite sequestration, local inflammation from microhemorrhages and autoregulatory dysfunction likely contribute to brain swelling in CM. No gross radiological blood brain barrier breakdown or focal cortical DWI abnormalities were evident in these children with nonfatal CM.
Collapse
Affiliation(s)
- Michael J Potchen
- Faculty of Medical Radiation Sciences, Lusaka Apex Medical University, Lusaka, Zambia.,Department of Imaging Sciences, Neuroradiology Division, University of Rochester, Rochester, New York
| | - Samuel D Kampondeni
- Malawi MRI Center, Queen Elizabeth Central Hospital, Blantyre, Malawi.,Department of Imaging Sciences, Neuroradiology Division, University of Rochester, Rochester, New York
| | - Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, Michigan
| | - Sylvester S Sinyangwe
- Department of Paediatric and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Musaku Mwenechanya
- Department of Paediatric and Child Health, University Teaching Hospital, Lusaka, Zambia
| | - Simon J Glover
- Medical and Biological Sciences, School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Danny A Milner
- American Society for Clinical Pathologists, Washington, DC
| | - Eric Zeli
- Radiology Division, Cancer Diseases Hospital, Lusaka, Zambia
| | - Colleen A Hammond
- Radiology Department, Michigan State University, East Lansing, Michigan
| | | | - Kennedy Lishimpi
- Radiology Division, Cancer Diseases Hospital, Lusaka, Zambia.,Faculty of Medical Radiation Sciences, Lusaka Apex Medical University, Lusaka, Zambia
| | - Terrie E Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Gretchen L Birbeck
- Epilepsy Care Team, Chikankata Hospital, Mazabuka, Zambia.,Department of Neurology, Strong Epilepsy Center, University of Rochester, Rochester, New York
| |
Collapse
|
32
|
Crowley VM, Ayi K, Lu Z, Liby KT, Sporn M, Kain KC. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J 2017; 16:463. [PMID: 29137631 PMCID: PMC5686938 DOI: 10.1186/s12936-017-2109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with high mortality and neurocognitive impairment in survivors. New anti-malarials and host-based adjunctive therapy may improve clinical outcome in CM. Synthetic oleanane triterpenoid (SO) compounds have shown efficacy in the treatment of diseases where inflammation and oxidative stress contribute to pathogenesis. Methods A derivative of the SO 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), CDDO-ethyl amide (CDDO-EA) was investigated for the treatment of severe malaria in a pre-clinical model. CDDO-EA was evaluated in vivo as a monotherapy as well as adjunctive therapy with parenteral artesunate in the Plasmodium berghei strain ANKA experimental cerebral malaria (ECM) model. Results CDDO-EA alone improved outcome in ECM and, given as adjunctive therapy in combination with artesunate, it significantly improved outcome over artesunate alone (p = 0.009). Improved survival was associated with reduced inflammation, enhanced endothelial stability and blood–brain barrier integrity. Survival was improved even when administered late in the disease course after the onset of neurological symptoms. Conclusions These results indicate that SO are a new class of immunomodulatory drugs and support further studies investigating this class of agents as potential adjunctive therapy for severe malaria.
Collapse
Affiliation(s)
- Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Kodjo Ayi
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Ziyue Lu
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Michael Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|
33
|
Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger SA, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick IJC, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K. Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 2017; 22:601-614.e5. [PMID: 29107642 DOI: 10.1016/j.chom.2017.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.
Collapse
Affiliation(s)
- Anne Kessler
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Selasi Dankwa
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi
| | | | - Fergal Duffy
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | - Brian G Oliver
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Sarah E Hochman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wenzhu B Mowrey
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ian J C MacCormick
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Department of Eye and Vision Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi; Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo BT3, Malawi
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
34
|
Dunst J, Kamena F, Matuschewski K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front Cell Infect Microbiol 2017; 7:324. [PMID: 28775960 PMCID: PMC5517394 DOI: 10.3389/fcimb.2017.00324] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria is among the major causes of malaria-associated mortality and effective adjunctive therapeutic strategies are currently lacking. Central pathophysiological processes involved in the development of cerebral malaria include an imbalance of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell activation, and loss of blood-brain barrier integrity. However, the sequence of events, which initiates these pathophysiological processes as well as the contribution of their complex interplay to the development of cerebral malaria remain incompletely understood. Several cytokines and chemokines have repeatedly been associated with cerebral malaria severity. Increased levels of these inflammatory mediators could account for the sequestration of leukocytes in the cerebral microvasculature present during cerebral malaria, thereby contributing to an amplification of local inflammation and promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model. A better molecular understanding of these processes could provide the basis for evidence-based development of adjunct therapies and the definition of diagnostic markers of disease progression.
Collapse
Affiliation(s)
- Josefine Dunst
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany.,Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Faustin Kamena
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany.,Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection BiologyBerlin, Germany.,Institute of Chemistry and Biochemistry, Free UniversityBerlin, Germany
| |
Collapse
|
35
|
Strangward P, Haley MJ, Shaw TN, Schwartz JM, Greig R, Mironov A, de Souza JB, Cruickshank SM, Craig AG, Milner DA, Allan SM, Couper KN. A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathog 2017; 13:e1006267. [PMID: 28273147 PMCID: PMC5358898 DOI: 10.1371/journal.ppat.1006267] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/20/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.
Collapse
Affiliation(s)
- Patrick Strangward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael J. Haley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tovah N. Shaw
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Greig
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Aleksandr Mironov
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - J. Brian de Souza
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sheena M. Cruickshank
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alister G. Craig
- Department of Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Danny A. Milner
- Department of Pathology, The Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Stuart M. Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, Hawkes M, Cheng HS, Njock MS, Fish JE, Harlan JM, López JA, Liles WC, Kain KC. miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria. Mol Med 2017; 23:24-33. [PMID: 28182191 DOI: 10.2119/molmed.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
miR-155 has been shown to participate in host response to infection and neuro-inflammation via negative regulation of blood-brain-barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine an anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice vs. wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of pro-inflammatory cytokines. Pre-treatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.
Collapse
Affiliation(s)
- Kevin Richard Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ziyue Lu
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Hani Kim
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center of Cardiovascular Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Michael Hawkes
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Henry S Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - John M Harlan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jose A López
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
37
|
Marquet S, Conte I, Poudiougou B, Argiro L, Dessein H, Couturier C, Burté F, Oumar AA, Brown BJ, Traore A, Afolabi NK, Barry A, Omokhodion S, Shokunbi WA, Sodeinde O, Doumbo O, Fernandez-Reyes D, Dessein AJ. A Functional IL22 Polymorphism (rs2227473) Is Associated with Predisposition to Childhood Cerebral Malaria. Sci Rep 2017; 7:41636. [PMID: 28139719 PMCID: PMC5282577 DOI: 10.1038/srep41636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection. This encephalopathy is characterized by coma and is thought to result from mechanical microvessel obstruction and an excessive activation of immune cells leading to pathological inflammation and blood-brain barrier alterations. IL-22 contributes to both chronic inflammatory and infectious diseases, and may have protective or pathogenic effects, depending on the tissue and disease state. We evaluated whether polymorphisms (n = 46) of IL22 and IL22RA2 were associated with CM in children from Nigeria and Mali. Two SNPs of IL22, rs1012356 (P = 0.016, OR = 2.12) and rs2227476 (P = 0.007, OR = 2.08) were independently associated with CM in a sample of 115 Nigerian children with CM and 160 controls. The association with rs2227476 (P = 0.01) was replicated in 240 nuclear families with one affected child from Mali. SNP rs2227473, in linkage disequilibrium with rs2227476, was also associated with CM in the combined cohort for these two populations, (P = 0.004, OR = 1.55). SNP rs2227473 is located within a putative binding site for the aryl hydrocarbon receptor, a master regulator of IL-22 production. Individuals carrying the aggravating T allele of rs2227473 produced significantly more IL-22 than those without this allele. Overall, these findings suggest that IL-22 is involved in the pathogenesis of CM.
Collapse
Affiliation(s)
- Sandrine Marquet
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Ianina Conte
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
| | - Belco Poudiougou
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Laurent Argiro
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Hélia Dessein
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Charlène Couturier
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| | - Florence Burté
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
| | - Aboubacar A. Oumar
- Centre des Oeuvres Universitaires, University of Bamako, BP 1805, Bamako, Mali
| | - Biobele J. Brown
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Abdoualye Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Nathaniel K. Afolabi
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | | | - Samuel Omokhodion
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A. Shokunbi
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olugbemiro Sodeinde
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Ogobara Doumbo
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Disease, Faculty of Medicine, USTTB, BP 1805, Bamako, Mali
| | - Delmiro Fernandez-Reyes
- Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WCE2 6BT, United Kingdom
- Department of Pediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Hematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Alain J. Dessein
- Aix-Marseille University, INSERM, GIMP, Labex ParaFrap, Marseille, France
| |
Collapse
|
38
|
Gillrie MR, Ho M. Dynamic interactions of Plasmodium spp. with vascular endothelium. Tissue Barriers 2017; 5:e1268667. [PMID: 28452684 PMCID: PMC5362994 DOI: 10.1080/21688370.2016.1268667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Plasmodial species are protozoan parasites that infect erythrocytes. As such, they are in close contact with microvascular endothelium for most of the life cycle in the mammalian host. The host-parasite interactions of this stage of the infection are responsible for the clinical manifestations of the disease that range from a mild febrile illness to severe and frequently fatal syndromes such as cerebral malaria and multi-organ failure. Plasmodium falciparum, the causative agent of the most severe form of malaria, is particularly predisposed to modulating endothelial function through either direct adhesion to endothelial receptor molecules, or by releasing potent host and parasite products that can stimulate endothelial activation and/or disrupt barrier function. In this review, we provide a critical analysis of the current clinical and laboratory evidence for endothelial dysfunction during severe P. falciparum malaria. Future investigations using state-of-the-art technologies such as mass cytometry and organs-on-chips to further delineate parasite-endothelial cell interactions are also discussed.
Collapse
Affiliation(s)
- Mark R. Gillrie
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Ho
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Absence of apolipoprotein E protects mice from cerebral malaria. Sci Rep 2016; 6:33615. [PMID: 27647324 PMCID: PMC5028887 DOI: 10.1038/srep33615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/30/2016] [Indexed: 02/01/2023] Open
Abstract
Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE−/− mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria.
Collapse
|
40
|
Gallego-Delgado J, Basu-Roy U, Ty M, Alique M, Fernandez-Arias C, Movila A, Gomes P, Weinstock A, Xu W, Edagha I, Wassmer SC, Walther T, Ruiz-Ortega M, Rodriguez A. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria. J Clin Invest 2016; 126:4016-4029. [PMID: 27643439 DOI: 10.1172/jci87306] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum-infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter-endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin-induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC-induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antimalarials/pharmacology
- Biphenyl Compounds/pharmacology
- Brain/blood supply
- Brain/parasitology
- Capillary Permeability
- Cell Adhesion
- Cells, Cultured
- Endothelial Cells/parasitology
- Endothelial Cells/physiology
- Endothelium, Vascular/parasitology
- Endothelium, Vascular/pathology
- Humans
- Intercellular Junctions/metabolism
- Irbesartan
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Microvessels/pathology
- Plasmodium falciparum
- Receptor, Angiotensin, Type 2/metabolism
- Tetrazoles/pharmacology
- beta Catenin/physiology
Collapse
|
41
|
Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc Natl Acad Sci U S A 2016; 113:E3270-9. [PMID: 27185931 DOI: 10.1073/pnas.1524294113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence.
Collapse
|
42
|
Hora R, Kapoor P, Thind KK, Mishra PC. Cerebral malaria--clinical manifestations and pathogenesis. Metab Brain Dis 2016; 31:225-37. [PMID: 26746434 DOI: 10.1007/s11011-015-9787-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023]
Abstract
One of the most common central nervous system diseases in tropical countries is cerebral malaria (CM). Malaria is a common protozoan infection that is responsible for enormous worldwide mortality and economic burden on the society. Episodes of Plasmodium falciparum (Pf) caused CM may be lethal, while survivors are likely to suffer from persistent debilitating neurological deficits, especially common in children. In this review article, we have summarized the various symptoms and manifestations of CM in children and adults, and entailed the molecular basis of the disease. We have also emphasized how pathogenesis of the disease is effected by the parasite and host responses including blood brain barrier (BBB) disruption, endothelial cell activation and apoptosis, nitric oxide bioavailability, platelet activation and apoptosis, and neuroinflammation. Based on a few recent studies carried out in experimental mouse malaria models, we propose a basis for the neurological deficits and sequelae observed in human cerebral malaria, and summarize how existing drugs may improve prognosis in affected individuals.
Collapse
Affiliation(s)
- Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| | - Payal Kapoor
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Kirandeep Kaur Thind
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | | |
Collapse
|
43
|
Emerging roles for hemostatic dysfunction in malaria pathogenesis. Blood 2016; 127:2281-8. [PMID: 26851291 DOI: 10.1182/blood-2015-11-636464] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
Severe Plasmodium falciparum malaria remains a leading cause of mortality, particularly in sub-Saharan Africa where it accounts for up to 1 million deaths per annum. In spite of the significant mortality and morbidity associated with cerebral malaria (CM), the molecular mechanisms involved in the pathophysiology of severe malaria remain surprisingly poorly understood. Previous studies have demonstrated that sequestration of P falciparum-infected erythrocytes within the microvasculature of the brain plays a key role in the development of CM. In addition, there is convincing evidence that both endothelial cell activation and platelets play critical roles in the modulating the pathogenesis of severe P falciparum malaria. In this review, we provide an overview of recent studies that have identified novel roles through which hemostatic dysfunction may directly influence malaria pathogenesis. In particular, we focus on emerging data suggesting that von Willebrand factor, coagulation cascade activation, and dysfunction of the protein C pathway may be of specific importance in this context. These collective insights underscore a growing appreciation of the important, but poorly understood, role of hemostatic dysfunction in malaria progression and, importantly, illuminate potential approaches for novel therapeutic strategies. Given that the mortality rate associated with CM remains on the order of 20% despite the availability of effective antimalarial therapy, development of adjunctive therapies that can attenuate CM progression clearly represents a major unmet need. These emerging data are thus not only of basic scientific interest, but also of direct clinical significance.
Collapse
|
44
|
Pappa V, Seydel K, Gupta S, Feintuch CM, Potchen MJ, Kampondeni S, Goldman-Yassen A, Veenstra M, Lopez L, Kim RS, Berman JW, Taylor T, Daily JP. Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malar J 2015; 14:513. [PMID: 26691993 PMCID: PMC4687364 DOI: 10.1186/s12936-015-1036-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies. Methods To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume. Results The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability. Conclusions Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1036-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasiliki Pappa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Sanchit Gupta
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Catherine M Feintuch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Michael J Potchen
- Department of Radiology, University of Rochester, Rochester, NY, 14642, USA. .,Lusaka Apex Medical University, Medical Radiation Sciences, Lusaka, Zambia.
| | - Samuel Kampondeni
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Adam Goldman-Yassen
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Joan W Berman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
45
|
A novel role for von Willebrand factor in the pathogenesis of experimental cerebral malaria. Blood 2015; 127:1192-201. [PMID: 26511133 DOI: 10.1182/blood-2015-07-654921] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023] Open
Abstract
Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.
Collapse
|
46
|
Vorasan N, Pan-Ngum W, Jittamala P, Maneeboonyang W, Rukmanee P, Lawpoolsri S. Long-term impact of childhood malaria infection on school performance among school children in a malaria endemic area along the Thai-Myanmar border. Malar J 2015; 14:401. [PMID: 26453016 PMCID: PMC4600307 DOI: 10.1186/s12936-015-0917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Children represent a high-risk group for malaria worldwide. Among people in Thailand who have malaria during childhood, some may have multiple malaria attacks during their lifetime. Malaria may affect neurological cognition in children, resulting in short-term impairment of memory and language functions. However, little is known regarding the long-term effects of malaria infection on cognitive function. This study examines the long-term impact of malaria infection on school performance among school children living in a malaria-endemic area along the Thai-Myanmar border. METHODS A retrospective cohort study was conducted among school children aged 6-17 years in a primary-secondary school of a sub-district of Ratchaburi Province, Thailand. History of childhood malaria infection was obtained from the medical records of the sole malaria clinic in the area. School performance was assessed by using scores for the subjects Thai Language and Mathematics in 2014. Other variables, such as demographic characteristics, perinatal history, nutritional status, and emotional intelligence, were also documented. RESULTS A total of 457 students were included, 135 (30 %) of whom had a history of uncomplicated malaria infection. About half of the malaria-infected children had suffered infection before the age of four years. The mean scores for both Mathematics and Thai Language decreased in relation to the increasing number of malaria attacks. Most students had their last malaria episode more than two years previously. The mean scores were not associated with duration since the last malaria attack. The association between malaria infection and school performance was not significant after adjusting for potential confounders, including gender, school absenteeism over a semester term, and emotional intelligence. CONCLUSIONS This study characterizes the long-term consequences of uncomplicated malaria disease during childhood. School performance was not associated with a history of malaria infection, considering that most students had their last malaria infection more than two years previously. These findings indicate that the impact of uncomplicated malaria infection on school performance may not be prolonged.
Collapse
Affiliation(s)
- Nutchavadee Vorasan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Wanchai Maneeboonyang
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Prasert Rukmanee
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
47
|
Greiner J, Dorovini-Zis K, Taylor TE, Molyneux ME, Beare NAV, Kamiza S, White VA. Correlation of hemorrhage, axonal damage, and blood-tissue barrier disruption in brain and retina of Malawian children with fatal cerebral malaria. Front Cell Infect Microbiol 2015; 5:18. [PMID: 25853095 PMCID: PMC4360761 DOI: 10.3389/fcimb.2015.00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background: The retinal and brain histopathological findings in children who died from cerebral malaria (CM) have been recently described. Similar changes occur in both structures, but the findings have not been directly compared in the same patients. In this study, we compared clinical retinal findings and retinal and cerebral histopathological changes in a series of patients in Blantyre, Malawi, who died of CM. Methods: The features systematically compared in the same patient were: (1) clinical, gross and microscopic retinal hemorrhages with microscopic cerebral hemorrhages, (2) retinal and cerebral hemorrhage-associated and -unassociated axonal damage, and fibrinogen leakage, and (3) differences in the above features between the pathological categories of CM without microvascular pathology (CM1) and CM with microvascular pathology (CM2) in retina and brain. Results: Forty-seven patients were included: seven CM1, 28 CM2, and 12 controls. In the 35 malaria cases retinal and cerebral pathology correlated in all features except for non-hemorrhage associated fibrinogen leakage. Regarding CM1 and CM2 cases, the only differences were in the proportion of patients with hemorrhage-associated cerebral pathology, and this was expected, based on the definitions of CM1 and CM2. The retina did not show this difference. Non-hemorrhage associated pathology was similar for the two groups. Comment: As postulated, histopathological features of hemorrhages, axonal damage and non-hemorrhage associated fibrinogen leakage correlated in the retina and brain of individual patients, although the difference in hemorrhages between the CM1 and CM2 groups was not consistently observed in the retina. These results help to underpin the utility of ophthalmoscopic examination and fundus findings to help in diagnosis and assessment of cerebral malaria patients, but may not help in distinguishing between CM1 and CM2 patients during life.
Collapse
Affiliation(s)
- Jesse Greiner
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia Vancouver, BC, Canada
| | - Katerina Dorovini-Zis
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia Vancouver, BC, Canada
| | - Terrie E Taylor
- College of Medicine, University of Malawi Blantyre, Malawi ; Blantyre Malaria Project Blantyre, Malawi ; Department of Osteopathic Medical Specialities, Michigan State University East Lansing, MI, USA
| | - Malcolm E Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Blantyre, Malawi ; Department of Pathology, Malawi College of Medicine Blantyre, Malawi ; Liverpool School of Tropical Medicine Liverpool, UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, University of Liverpool Liverpool, UK ; St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool Liverpool, UK
| | - Steve Kamiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Blantyre, Malawi ; Department of Pathology, Malawi College of Medicine Blantyre, Malawi
| | - Valerie A White
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital and University of British Columbia Vancouver, BC, Canada ; Department of Ophthalmology and Visual Science, Vancouver General Hospital and University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Platelets are most identified as the cellular mediator of thrombosis. It is becoming increasingly evident that platelets also have complicated roles in vascular inflammatory and infectious diseases. Platelets have been linked to initiating or accelerating the pathogenesis of diverse pathologies, such as atherosclerosis acute and chronic transplant rejection, arthritis, influenza, and malaria infection. Platelets may also have protective roles in killing microbes, such as bacteria. Malaria kills over 500,000 people per year, so understanding the multifaceted roles for platelets in malaria infection is of critical importance. RECENT FINDINGS Recent literature has on the surface made the role of platelets in malaria infection somewhat confusing, with seemingly contradictory studies indicating a protective role for platelets in malaria infection by direct parasite killing, although others have indicated that platelets have an adverse proinflammatory role. However, what can appear to be mechanistic discrepancies are likely best explained through a better understanding and appreciation of platelet immune functions, especially in the context of the disease outcome or model systems used. SUMMARY In this review, we will first briefly highlight platelet immune cell functions. We will then discuss how platelet immune and inflammatory functions may affect responses to malaria infection in a disease outcome and animal model context.
Collapse
|
49
|
Barrera V, Hiscott PS, Craig AG, White VA, Milner DA, Beare NAV, MacCormick IJC, Kamiza S, Taylor TE, Molyneux ME, Harding SP. Severity of retinopathy parallels the degree of parasite sequestration in the eyes and brains of malawian children with fatal cerebral malaria. J Infect Dis 2014; 211:1977-86. [PMID: 25351204 PMCID: PMC4442623 DOI: 10.1093/infdis/jiu592] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Malarial retinopathy (MR) has diagnostic and prognostic value in children with Plasmodium falciparum cerebral malaria (CM). A clinicopathological correlation between observed retinal changes during life and the degree of sequestration of parasitized red blood cells was investigated in ocular and cerebral vessels at autopsy. Methods. In 18 Malawian children who died from clinically defined CM, we studied the intensity of sequestration and the maturity of sequestered parasites in the retina, in nonretinal ocular tissues, and in the brain. Results. Five children with clinically defined CM during life had other causes of death identified at autopsy, no MR, and scanty intracerebral sequestration. Thirteen children had MR and died from CM. MR severity correlated with percentage of microvessels parasitized in the retina, brain, and nonretinal tissues with some neuroectodermal components (all P < .01). In moderate/severe MR cases (n = 8), vascular congestion was more intense (ρ = 0.841; P < .001), sequestered parasites were more mature, and the quantity of extraerythrocytic hemozoin was higher, compared with mild MR cases (n = 5). Conclusions. These data provide a histopathological basis for the known correlation between degrees of retinopathy and cerebral dysfunction in CM. In addition to being a valuable tool for clinical diagnosis, retinal observations give important information about neurovascular pathophysiology in pediatric CM.
Collapse
Affiliation(s)
- Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool
| | - Paul Stephenson Hiscott
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool
| | | | - Valerie Ann White
- Department of Pathology and Laboratory Medicine Department of Ophthalmology and Visual Science, University of British Columbia and Vancouver General Hospital, Canada
| | - Danny Arnold Milner
- Anatomic and Clinical Pathology, Brigham and Women's Hospital Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Nicholas Alexander Venton Beare
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool St. Paul's Eye Unit, Royal Liverpool University Hospital, United Kingdom
| | - Ian James Callum MacCormick
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool Malawi-Liverpool-Wellcome Trust Clinical Research Programme
| | | | - Terrie Ellen Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre
| | - Malcolm Edward Molyneux
- Liverpool School of Tropical Medicine Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Simon Peter Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool
| |
Collapse
|
50
|
Hunt NH, Ball HJ, Hansen AM, Khaw LT, Guo J, Bakmiwewa S, Mitchell AJ, Combes V, Grau GER. Cerebral malaria: gamma-interferon redux. Front Cell Infect Microbiol 2014; 4:113. [PMID: 25177551 PMCID: PMC4133756 DOI: 10.3389/fcimb.2014.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 11/13/2022] Open
Abstract
There are two theories that seek to explain the pathogenesis of cerebral malaria, the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence consistent with both ideas has accumulated from studies of the human disease and experimental models. Thus, some combination of these concepts seems necessary to explain the very complex pattern of changes seen in cerebral malaria. The interactions between malaria parasites, erythrocytes, the cerebral microvascular endothelium, brain parenchymal cells, platelets and microparticles need to be considered. One factor that seems able to knit together much of this complexity is the cytokine interferon-gamma (IFN-γ). In this review we consider findings from the clinical disease, in vitro models and the murine counterpart of human cerebral malaria in order to evaluate the roles played by IFN-γ in the pathogenesis of this often fatal and debilitating condition.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Helen J Ball
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Anna M Hansen
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Loke T Khaw
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Jintao Guo
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Supun Bakmiwewa
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Andrew J Mitchell
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Valéry Combes
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, University of Sydney Sydney, NSW, Australia
| |
Collapse
|