1
|
Song BX, Azhar L, Koo GKY, Marzolini S, Gallagher D, Swardfager W, Chen C, Ba J, Herrmann N, Lanctôt KL. The effect of exercise on blood concentrations of angiogenesis markers in older adults: A systematic review and meta-analysis. Neurobiol Aging 2024; 135:15-25. [PMID: 38147807 DOI: 10.1016/j.neurobiolaging.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Impaired angiogenesis is associated with cognitive decline in older adults. While exercise has been broadly associated with increased angiogenesis, the relevant mechanisms in older adults are not clear. Here, we present a systematic review and meta-analysis on the relationship between exercise and specific blood angiogenesis markers in older adults to better understand the relevant mechanisms. MEDLINE, Embase, and Cochrane CENTRAL were searched for original reports of angiogenesis markers' concentrations in blood before and after exercise in older adults (≥50 years). Heterogeneity was investigated using sub-group analyses and meta-regressions. Of the 44 articles included in the review, 38 were included in the meta-analyses for five markers: vascular endothelial growth factor (VEGF), e-selectin (CD62E), endostatin, fibroblast growth factor 2, and matrix metallopeptidase-9. VEGF levels were higher (SMD[95%CI]= 0.18[0.03, 0.34], and CD62E levels were lower (SMD[95%CI]= -0.72[-1.42, -0.03], p = 0.04) after exercise. No other markers were altered. Although more studies are needed, changes in angiogenesis markers may help explain the beneficial effects of exercise on angiogenesis in older adults.
Collapse
Affiliation(s)
- Bing Xin Song
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Laiba Azhar
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Grace Ka Yi Koo
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Susan Marzolini
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clara Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joycelyn Ba
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Toronto Dementia Research Alliance, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Toronto Dementia Research Alliance, Toronto, ON, Canada.
| |
Collapse
|
2
|
Son WH, Park HT, Jeon BH, Ha MS. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. Sci Rep 2023; 13:20172. [PMID: 37978254 PMCID: PMC10656478 DOI: 10.1038/s41598-023-47403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Postmenopause, the secretion of female hormones changes, causing excessive fat accumulation in the body and leading to chronic inflammation, which increases the incidence of cardiovascular diseases (CVD). Walking is an easily accessible daily exercise and effective non-pharmacological treatment for reducing obesity and the incidence of CVD. The aim of this study was to investigate the effect of moderate intensity walking exercises on body composition, vascular inflammatory factors, and vascular endothelial growth factor (VEGF) in postmenopausal women with obesity. Twenty-six older postmenopausal women with obesity (ages 68-72) were randomly assigned to control (n = 12, BMI 26.06 ± 1.37) or exercise (n = 14, BMI 26.04 ± 1.94) groups. Following a 12-week moderate intensity walking exercise program, we measured the participants' body composition with an InBody S10 analyzer and assessed blood sera using enzyme-linked immunosorbent assays. There was a significant clustering by weight (p < 0.01), body mass index (p < 0.01), percentage body fat (p < 0.001), high-sensitivity C-reactive protein (p < 0.05), interleukin-6, and tumor necrosis factor-α (p < 0.05) being significantly decreased in the exercise group. Although VEGF levels did not change significantly, a tendency to increase was observed in participants that exercised. Our results indicate that walking exercise may help prevent CVD in postmenopausal women with obesity by reducing obesity and vascular inflammatory factors.
Collapse
Affiliation(s)
- Woo-Hyeon Son
- Institute of Convergence Bio-Health, Dong-A University, 26 Daesingongwon-ro, Seo-gu, Busan, 49201, Republic of Korea
| | - Hyun-Tae Park
- Graduate School of Health Care and Sciences, College of Health Science, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
| | - Byeong Hwan Jeon
- Department of Sports and Health Science, College of Arts, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, 48434, Republic of Korea
| | - Min-Seong Ha
- Laboratory of Sports Conditioning: Nutrition Biochemistry and Neuroscience, Department of Sports Science, College of Arts and Sports, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Jafarikhah R, Damirchi A, Rahmani Nia F, Razavi-Toosi SMT, Shafaghi A, Asadian M. Effect of functional resistance training on the structure and function of the heart and liver in patients with non-alcoholic fatty liver. Sci Rep 2023; 13:15475. [PMID: 37726373 PMCID: PMC10509216 DOI: 10.1038/s41598-023-42687-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
The current study is of the quasi-experimental type, with a pre-and post-test design, and subjects were randomly assigned to one of two groups: control (n = 8) and experimental (test) (n = 8). Based on the patient's self-report and using daily diet control tables, the patient's diet planning percentage of energy supply was managed and controlled for 3 days. The protocol for functional resistance training for these circular exercises, including the squat, lunge, bear crawl, rock press, jumping jack, and back fly lunge, was performed three times per week without specialized apparatus. Ejection fraction (EF) and fractional shortening (FS) were measured before and after functional resistance training, using echocardiography. Liver Stiffness and steatosis were measured using FibroScan, and the liver function was determined using biochemical assays. The average age of patients in the control group and the test group were 46.02 ± 5.4 and 48.6 ± 2.51, respectively. Pre-test and post-test of the body mass index were 32.06 ± 5.06 and 30.02 ± 3.97, and for the body fat percentage were 33.65 ± 6.09 and 25.41 ± 4.99. In non-alcoholic fatty liver patients, due to functional resistance training, EF (p-value = 0.003) and FS (p-value = 0.03) significantly increased, and C-reactive protein (Hs-CRP) (p-value = 0.001), steatosis (p-value = 0.04), and stiffness (p-value = 0.01) decreased. According to the results and without considering clinical trials, functional resistance training affects the structure and function of the heart and Liver in NAFLD patients.
Collapse
Affiliation(s)
- Ramin Jafarikhah
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
| | - Farhad Rahmani Nia
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Seyyed Mohammad Taghi Razavi-Toosi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Cardiology, Heshmat Hospital, Cardiovascular Diseases Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Afshin Shafaghi
- GI Cancer Screening and Preventing Research Center (GCSPRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Mostafa Asadian
- Cardiovascular department, Razi Medical Education Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Nishikori S, Yasuda J, Murata K, Takegaki J, Harada Y, Shirai Y, Fujita S. Resistance training rejuvenates aging skin by reducing circulating inflammatory factors and enhancing dermal extracellular matrices. Sci Rep 2023; 13:10214. [PMID: 37353523 PMCID: PMC10290068 DOI: 10.1038/s41598-023-37207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
Aerobic training (AT) is suggested to be an effective anti-aging strategy for skin aging. However, the respective effects of resistance training (RT) have not been studied. Therefore, we compared the effects of AT and RT on skin aging in a 16-week intervention in 61 healthy sedentary middle-aged Japanese women. Data from 56 women were available for analysis. Both interventions significantly improved skin elasticity and upper dermal structure, and RT also improved dermal thickness. After the training intervention, expression of dermal extracellular matrix-related genes was increased in normal human primary dermal fibroblasts. AT and RT had different effects on circulating levels of factors, such as cytokines, hormones in serum, and metabolites, and RT increased dermal biglycan (BGN). To our knowledge, this is the first report to show different effects of AT and RT on skin aging and identify the key factors involved in RT-induced skin rejuvenation.
Collapse
Affiliation(s)
- Shu Nishikori
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Kao Murata
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Junya Takegaki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan
| | - Yasuko Harada
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Yuki Shirai
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Japan.
| |
Collapse
|
5
|
Zhong X, He R, You S, Liu B, Wang X, Mao J. The Roles of Aerobic Exercise and Folate Supplementation in Hyperhomocysteinemia-Accelerated Atherosclerosis. ACTA CARDIOLOGICA SINICA 2023; 39:309-318. [PMID: 36911543 PMCID: PMC9999187 DOI: 10.6515/acs.202303_39(2).20221027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
Background Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. Effective interventions to reduce HHcy-accelerated atherosclerosis are required. Objectives This study aimed to investigate the effects of aerobic exercise (AE) and folate (FA) supplementation on plasma homocysteine (Hcy) level and atherosclerosis development in a mouse model. Methods Six-week-old female apoE-/- mice were grouped into five groups (N = 6-8): HHcy (1.8 g/L DL-homocysteine (DL-Hcy) in drinking water), HHcy + AE (1.8 g/L DL-Hcy and aerobic exercise training on a treadmill), HHcy + FA (1.8 g/L DL-Hcy and 0.006% folate in diet), HHcy + AE + FA (1.8 g/L DL-Hcy, 0.006% folate, and aerobic exercise training on a treadmill), and a control group (regular water and diet). All treatment was sustained for 8 weeks. Triglyceride, cholesterol, lipoprotein, and Hcy levels were determined enzymatically. Plaque and monocyte chemoattractant protein-1 (MCP-1) expression levels in mouse aortic roots were evaluated by immunohistochemistry. Results Compared to the HHcy group (18.88 ± 6.13 μmol/L), plasma Hcy concentration was significantly reduced in the HHcy + AE (14.79 ± 3.05 μmol/L, p = 0.04), HHcy + FA (9.4 ± 3.85 μmol/L, p < 0.001), and HHcy + AE + FA (9.33 ± 2.21 μmol/L, p < 0.001) groups. Significantly decreased aortic root plaque area and plaque burden were found in the HHcy + AE and HHcy + AE + FA groups compared to those in the HHcy group (both p < 0.05). Plasma MCP-1 level and MCP-1 expression in atherosclerotic lesions were significantly decreased in the HHcy + AE and HHcy + AE + FA groups compared to the HHcy group (all p < 0.05). Conclusions AE reduced atherosclerosis development in HHcy apoE-/- mice independently of reducing Hcy levels. FA supplementation decreased plasma Hcy levels without attenuating HHcy-accelerated atherosclerosis. AE and FA supplementation have distinct mechanisms in benefiting atherosclerosis.
Collapse
Affiliation(s)
- Xingming Zhong
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Rong He
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
| | - Shaohua You
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Bo Liu
- Department of Physiology, Peking University Health Center
| | - Xiujie Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports
| | - Jieming Mao
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Pranoto A, Rejeki PS, Miftahussurur M, Setiawan HK, Yosika GF, Munir M, Maesaroh S, Purwoto SP, Waritsu C, Yamaoka Y. Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. J Basic Clin Physiol Pharmacol 2023; 34:235-242. [PMID: 36804995 DOI: 10.1515/jbcpp-2022-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Regular treadmill exercise may result in changes in pro-inflammatory cytokines and oxidative stress. However, the way acute treadmill exercise mechanisms affect the changes in pro-inflammatory cytokines and oxidative stress in obese has not been comprehensively exposed. This study aimed to analyze the pro-inflammatory cytokines and oxidative stress between 30 min before treadmill exercise and 24 h after treadmill exercise in obese adolescents. METHODS A total of 20 obese females aged 19-24 years were recruited from female students and given one session of treadmill exercise with an intensity of 60-70% HRmax. Thiobarbituric acid reactive substance (TBARS) was used to analyze serum levels of MDA, while enzyme-linked immunosorbent assay (ELISA) was used to analyze serum levels of TNF-α and IL-6. Moreover, the independent samples t-test with a significance level of 5% was employed to have the statistical analysis. RESULTS The results on 24 h after treadmill exercise and delta (Δ) between CTRL and TREG showed a significant difference (p<0.001). CONCLUSIONS This study found a decrease in pro-inflammatory cytokines and oxidative stress 24 h after treadmill exercise in obese adolescents. Therefore, treadmill exercise can be a promising strategy for preventing adolescents from obesity as well as preventing disease risks associated with oxidative stress and chronic inflammation.
Collapse
Affiliation(s)
- Adi Pranoto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine Universitas Airlangga - Dr. Soetomo Teaching Hospital - Institute of Tropical Disease, Surabaya, Indonesia
| | - Hayuris Kinandita Setiawan
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ghana Firsta Yosika
- Study Program of Sports Coaching Education, Faculty of Teacher Training and Education, Universitas Tanjungpura, Pontianak, Indonesia
| | - Misbakhul Munir
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Siti Maesaroh
- Study Program of Sports Coaching Education, Faculty of Teacher Training and Education, Universitas Riau, Pekanbaru, Indonesia
| | | | - Cakra Waritsu
- Study Program of Physiotherapy, Faculty of Health Science, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
7
|
Song BX, Azhar L, Koo GKY, Marzolini S, Gallagher D, Swardfager W, Chen C, Ba J, Herrmann N, Lanctôt K. The effect of exercise on blood concentrations of angiogenesis markers in older adults: a systematic review and meta-analysis. RESEARCH SQUARE 2023:rs.3.rs-2468576. [PMID: 36711740 PMCID: PMC9882692 DOI: 10.21203/rs.3.rs-2468576/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Physical exercise has positive impacts on health and can improve angiogenesis, which is impaired during aging, but the underlying mechanisms of benefit are unclear. This meta-analysis and systematic review investigated the effects of exercise on several peripheral angiogenesis markers in older adults to better understand the relationship between exercise and angiogenesis. Methods MEDLINE, Embase, and Cochrane CENTRAL were searched for original, peer-reviewed reports of peripheral concentrations of angiogenesis markers before and after exercise interventions in older adults (> 50 years). The risk of bias was assessed with standardized criteria. Standardized mean differences (SMD) with 95% confidence intervals (CIs) were calculated from random-effects models. Publication bias was assessed with Egger's test, funnel plots, and trim-and-fill. A priori subgroup analyses and meta-regressions were performed to investigate heterogeneity where possible. Results Of the 44 articles included in the review, 38 were included in meta-analyses for five proteins. Vascular endothelial growth factor (VEGF) was found to be higher after exercise (SMD[95%CI] = 0.18[0.03, 0.34], p = 0.02), and e-selectin (CD62E) was found to be lower after exercise (SMD[95%CI]= -0.72[-1.42, -0.03], p = 0.04). Endostatin (SMD[95%CI] = 0.28[-0.56, 1.11], p = 0.5), fibroblast growth factor 2 (SMD[95%CI] = 0.03[-0.18, 0.23], p = 0.8), and matrix metallopeptidase-9 (SMD[95%CI] = -0.26[-0.97, 0.45], p = 0.5) levels did not change after exercise. Conclusions Of the five angiogenesis blood markers evaluated in this meta-analysis, only VEGF and CD62E changed with exercise. Although more studies are needed, changes in angiogenesis markers may explain the beneficial effects of exercise on angiogenesis and health in older adults.
Collapse
|
8
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Castells-Sánchez A, Roig-Coll F, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, Pera G, García-Molina A, Tormos JM, Montero-Alía P, Heras-Tébar A, Soriano-Raya JJ, Cáceres C, Domènech S, Via M, Erickson KI, Mataró M. Molecular and Brain Volume Changes Following Aerobic Exercise, Cognitive and Combined Training in Physically Inactive Healthy Late-Middle-Aged Adults: The Projecte Moviment Randomized Controlled Trial. Front Hum Neurosci 2022; 16:854175. [PMID: 35529777 PMCID: PMC9067321 DOI: 10.3389/fnhum.2022.854175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Behavioral interventions have shown promising neuroprotective effects, but the cascade of molecular, brain and behavioral changes involved in these benefits remains poorly understood. Projecte Moviment is a 12-week (5 days per week—45 min per day) multi-domain, single-blind, proof-of-concept randomized controlled trial examining the cognitive effect and underlying mechanisms of an aerobic exercise (AE), computerized cognitive training (CCT) and a combined (COMB) groups compared to a waitlist control group. Adherence was > 80% for 82/109 participants recruited (62% female; age = 58.38 ± 5.47). In this study we report intervention-related changes in plasma biomarkers (BDNF, TNF-α, HGF, ICAM-1, SDF1-α) and structural-MRI (brain volume) and how they related to changes in physical activity and individual variables (age and sex) and their potential role as mediators in the cognitive changes. Our results show that although there were no significant changes in molecular biomarker concentrations in any intervention group, changes in ICAM-1 and SDF1-α were negatively associated with changes in physical activity outcomes in AE and COMB groups. Brain volume changes were found in the CCT showing a significant increase in precuneus volume. Sex moderated the brain volume change in the AE and COMB groups, suggesting that men may benefit more than women. Changes in molecular biomarkers and brain volumes did not significantly mediate the cognitive-related benefits found previously for any group. This study shows crucial initial molecular and brain volume changes related to lifestyle interventions at early stages and highlights the value of examining activity parameters, individual difference characteristics and using a multi-level analysis approach to address these questions.
Collapse
Affiliation(s)
- Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- *Correspondence: Rosalía Dacosta-Aguayo,
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Alberto García-Molina
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Maria Tormos
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pilar Montero-Alía
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Antonio Heras-Tébar
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Juan José Soriano-Raya
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Cynthia Cáceres
- Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sira Domènech
- Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
11
|
Zar A, Ahmadi E, Amani D, Ramsbottom R. Acute effect of two exercise intensity programs on interleukin-6, interleukin-1 beta and tumour necrosis factor-α in female futsalists. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Duration, intensity, and type of exercise can affect serum cytokine levels and change inflammatory indices. The present study aimed to examine the acute effect of two different exercise intensity programs on levels of circulating interleukin (IL)-6, IL-1β and tumour necrosis factor-α (TNF-α) in athletes. Eleven female futsal players aged 20.6±1.2 years completed this cross-over study. Participants performed, either a MI (moderate intensity: 60-65%) or a HI (high intensity: 75-80% heart rate reserve) exercise program. The study was performed on different days separated by a 1-week washout period. Each session consisted of 30 min running, either MI or HI. Blood samples were taken before (Pre) and immediately after (Post) each exercise session from an antecubital vein by venous puncture in a seated position. A Student’s t-test (P<0.05) was used to examine any difference between Pre and Post values. The results showed that IL-6 (P=0.22), IL-1β (P=0.90) and TNF-α (P=0.63) serum concentrations were not significantly different after moderate-intensity exercise. Similarly, high-intensity exercise did not significantly change serum concentrations of TNF-α (P=0.63), and IL-1β (P=0.18). However, HI caused a significant increase in IL-6 (P=0.04). A significant correlation was observed only between IL-1β and IL-6 (r=-0.761, P=0.01) after MI exercise. Based on the findings of the present study, the intensity of exercise can affect some cytokines, such as IL-6 in female futsal players.
Collapse
Affiliation(s)
- A. Zar
- Department of Sport Science, School of Literature and Humanities, Persian Gulf University, Boushehr 7516913817, Iran
| | - E. Ahmadi
- Department of Immunology, Medical School, International Branch, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, Iran
| | - D. Amani
- Department of Immunology, Medical School, International Branch, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, Iran
| | - R. Ramsbottom
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
12
|
Treadmill Exercise Ameliorates Short-term Memory Impairment by Suppressing Hippocampal Neuroinflammation in Poloxamer-407-Induced Hyperlipidemia Rats. Int Neurourol J 2021; 25:S81-89. [PMID: 34844390 PMCID: PMC8654313 DOI: 10.5213/inj.2142342.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Poloxamer-407 (P-407) is used to induce hyperlipidemia. Exercise is effective in improving arteriosclerosis and cognitive impairment. In this research, the effect of treadmill running on short-term memory in the P-407-treated hyperlipidemia rats was studied focusing on neuroinflammation. METHODS Rats were classified in normal group, normal and treadmill exercise group, P-407-treated group, and P-407-treated and treadmill exercise group. Hyperlipidemia rats were made by single intraperitoneal injection with P-407 (500 mg/kg). Treadmill exercise was conducted for 30 minutes once a day, 5 days per week during 28 days. Step-down avoidance task was done to measure short-term memory. Glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 were assessed by immunohistochemistry. Expression of adhesion molecules and proinflammatory cytokines was determined by western blot analysis. RESULTS Treadmill exercise alleviated lipid profiles in the P-407-induced hyperlipidemia rats. Treadmill exercise improved short-term memory, inhibited reactive astrogliosis and microglia activation, and suppressed expression of adhesion molecules and proinflammatory cytokines in the hyperlipidemic rats. CONCLUSION Treadmill exercise exerts alleviating effect on memory deficits by inhibiting hippocampal neuroinflammation in the hyperlipidemia. The current results suggest that treadmill running serves as the treatment strategy for the cognitive dysfunction caused by hyperlipidemia.
Collapse
|
13
|
Vassão PG, de Souza ACF, da Silveira Campos RM, Garcia LA, Tucci HT, Renno ACM. Effects of photobiomodulation and a physical exercise program on the expression of inflammatory and cartilage degradation biomarkers and functional capacity in women with knee osteoarthritis: a randomized blinded study. Adv Rheumatol 2021; 61:62. [PMID: 34656170 DOI: 10.1186/s42358-021-00220-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The knee osteoarthritis (OA) is a joint disease characterized by degradation of articular cartilage that leads to chronic inflammation. Exercise programs and photobiomodulation (PBM) are capable of modulating the inflammatory process of minimizing functional disability related to knee OA. However, their association on the concentration of biomarkers related to OA development has not been studied yet. The aim of the present study is to investigate the effects of PBM (via cluster) with a physical exercise program in functional capacity, serum inflammatory and cartilage degradation biomarkers in patients with knee OA. METHODS Forty-two patients were randomly allocated in 3 groups: ESP: exercise + sham PBM; EAP: exercise + PBM and CG: control group. Six patients were excluded before finished the experimental period. The analyzed outcomes in baseline and 8-week were: the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) and the evaluation of serum biomarkers concentration (IL-1β, IL-6, IL-8, IL-10 e TNF-α, and CTX-II). RESULTS An increase in the functional capacity was observed in the WOMAC total score for both treated groups (p < 0.001) and ESP presents a lower value compared to CG (p < 0.05) the 8-week post-treatment. In addition, there was a significant increase in IL-10 concentration of EAP (p < 0.05) and higher value compared to CG (p < 0.001) the 8-week post-treatment. Moreover, an increase in IL-1β concentration was observed for CG (p < 0.05). No other difference was observed comparing the other groups. CONCLUSION Our data suggest that the physical exercise therapy could be a strategy for increasing functional capacity and in association with PBM for increasing IL-10 levels in OA knee individuals. TRIAL REGISTRATION ReBEC (RBR-7t6nzr).
Collapse
Affiliation(s)
- Patricia Gabrielli Vassão
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
| | - Ana Carolina Flygare de Souza
- Department of Human Movement Science, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Raquel Munhoz da Silveira Campos
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.,Post Graduate Program of Interdisciplinary Health Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Livia Assis Garcia
- Scientific Institute and Technological Department -University Brazil, São Paulo-Itaquera, SP, Brazil
| | - Helga Tatiana Tucci
- Department of Human Movement Science, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| |
Collapse
|
14
|
Exercise Training and Cardiac Rehabilitation in COVID-19 Patients with Cardiovascular Complications: State of Art. Life (Basel) 2021; 11:life11030259. [PMID: 33801080 PMCID: PMC8004041 DOI: 10.3390/life11030259] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Recent scientific literature has investigated the cardiovascular implications of COVID-19. The mechanisms of cardiovascular damage seem to involve the protein angiotensin-converting enzyme 2 (ACE2), to which severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) binds to penetrate cells and other mechanisms, most of which are still under study. Cardiovascular sequelae of COVID-19 include heart failure, cardiomyopathy, acute coronary syndrome, arrhythmias, and venous thromboembolism. This article aims to collect scientific evidence by exploiting PubMed, Scopus, and Pedro databases to highlight the cardiovascular complications of COVID-19 and to define the physiotherapy treatment recommended for these patients. Exercise training (ET), an important part of cardiac rehabilitation, is a powerful tool in physiotherapy, capable of inducing significant changes in the cardiovascular system and functional in the recovery of endothelial dysfunction and for the containment of thromboembolic complications. In conclusion, due to the wide variety of possible exercise programs that can be obtained by combining intensity, duration, and speed in various ways, and by adjusting the program based on continuous patient monitoring, exercise training is well suited to the treatment of post-COVID patients with an impaired cardiovascular system of various degrees.
Collapse
|
15
|
Smith JK. Exercise as an Adjuvant to Cartilage Regeneration Therapy. Int J Mol Sci 2020; 21:ijms21249471. [PMID: 33322825 PMCID: PMC7763351 DOI: 10.3390/ijms21249471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70300, Johnson City, TN 37614, USA
| |
Collapse
|
16
|
Gómez-Rubio P, Trapero I. The Beneficial Effect of Physical Exercise on Inflammatory Makers in Older Individuals. Endocr Metab Immune Disord Drug Targets 2020; 21:1008-1016. [PMID: 32504508 DOI: 10.2174/1871530320666200606225357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Old age is associated with a loss of motor functions and a general progressive decline in cognitive functions. Physical exercise is one of the ways in which inflammatory levels in general can be reduced, and therefore physical exercise can be considered a biological aging decelerator. In this article, we examine the relationships between physical exercise and inflammatory markers reported for the different physical exercise protocols that have been used in studies with older individuals, as well as the effects of these regimens. The different types of exercises programmed, and methods used to implement them were very heterogeneous in the articles we analysed. Both, the aerobic exercise and resistance training protocols produced a decrease in plasma levels of IL-6, CRP and TNF-α, and an increase of IL-10 plasma levels as a chronic effect. However, the acute-response of physical exercise appeared to be an initial increase in IL-6 expression and plasma IL-6 levels. Continuing with these exercise programs usually subsequently achieved a chronic response in which there was a decrease in both the basal levels of IL-6, CRP and TNF-α, and the IL-6 produced as acute responses. Regardless of the type of exercise performed, it seems that the exercise parameters, intensity, duration, subject variables, fitness, and level of inflammation are key factors in achieving the expected balance between proinflammatory and anti-inflammatory cytokines.
Collapse
Affiliation(s)
| | - Isabel Trapero
- Department of Nursing, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
|