1
|
Kimbrell B, Huang J, Fraser A, Jiang X. Efficacy of Three Antimicrobials Against two SARS-COV-2 Surrogates, Bovine Coronavirus and Human Coronavirus OC43, on Hard or Soft Nonporous Materials. J Food Prot 2024; 87:100316. [PMID: 38878900 DOI: 10.1016/j.jfp.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
The efficacy of three antimicrobials was evaluated against two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surrogates - bovine coronavirus (BCoV) and human coronavirus (HCoV) OC43 - on hard and soft nonporous materials. Three antimicrobials with three different active ingredients (chlorine, hydrogen peroxide, and quaternary ammonium compound + alcohol) were studied. Initially, a neutralization method was optimized for each antimicrobial. Then, we determined their efficacy against BCoV and HCoV OC43 in both suspension and on surfaces made with polyethylene terephthalate (PET) plastic and vinyl upholstery fabric. All tests were conducted under ambient environmental conditions with a soil load of 5% fetal bovine serum. After a 2-min exposure, all three antimicrobials achieved a >3.0 log10 reduction in viral titers in suspension. All three also reduced virus infectivity on both surface materials below the detection limit (0.6 log10 TCID50/carrier). Treatments in which the reduction in virus titer was <3.0 log10 were attributed to a decreased dynamic range on the carrier during drying prior to disinfection. The carrier data revealed that both surrogates were inactivated more rapidly (p <0.05) on vinyl or under conditions of high relative humidity. Three classes of antimicrobials were efficacious against both SARS-CoV-2 surrogate viruses, with BCoV demonstrating slightly less sensitivity compared to HCoV OC43. These findings also illustrate the importance of (1) optimizing the neutralization method and (2) considering relative humidity as a key factor for efficacy testing.
Collapse
Affiliation(s)
- Breanna Kimbrell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.
| |
Collapse
|
2
|
Huang J, Fraser A, Jiang X. Efficacy of three EPA-registered antimicrobials and steam against two human norovirus surrogates on nylon carpets with two backing types. Appl Environ Microbiol 2024; 90:e0038424. [PMID: 38786363 PMCID: PMC11218654 DOI: 10.1128/aem.00384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Carpet cleaning guidelines currently do not include the use of an antimicrobial, except after a bodily fluid event. To address this gap, we compared the efficacy of three antimicrobials-two hydrogen peroxide-based (H2O2) products (A and B) and one chlorine-based product (C)-and a steam treatment against two norovirus surrogates, specifically feline calicivirus (FCV) and Tulane virus (TuV). These tests were performed on nylon carpets with either water-permeable or waterproof backing types. The effect of repeated antimicrobial use on carpet properties was also evaluated. For a carpet with water-permeable backing, products A, B, and C achieved a 0.8, 3.1, and 0.9 log10 PFU/coupon reduction of FCV and 0.3, 2.5, and 0.4 log10 TCID50/coupon reduction of TuV, respectively, following a 30 min contact time. For carpet with waterproof backing, only product B achieved a 5.0 log10 PFU/coupon reduction of FCV and >3.0 log10 TCID50/coupon reduction of TuV, whereas products A and C achieved a 2.4 and 1.6 log10 PFU/coupon reduction of FCV and a 1.2 and 1.2 log10 TCID50/coupon reduction of TuV, respectively. Steam treatment achieved a ≥ 5.2 log10 PFU/coupon reduction of FCV and a > 3.2 log10 TCID50/coupon reduction of TuV in 15 seconds on the carpet with both backing types. The repeated use of products A and B decreased the tensile strength of the carpet backing, while use of product B resulted in cracks on carpet fibers. Overall, steam treatment for 15 seconds was efficacious on both carpet types, but only product B achieved efficacy after a 30-minute exposure on the carpet with waterproof backing.IMPORTANCECarpets are common in long-term care facilities, despite its potential as a vehicle for transmission of agents associated with healthcare-associated infections, including human norovirus (NoV). Presently, our understanding of carpet disinfection is limited; hence, there are no commercial antimicrobials against norovirus available for use on carpets. Our findings showed that steam treatment, which minimally affected the properties of carpet fibers and backing, was more efficacious against human norovirus surrogates on carpets compared to the three chemical antimicrobials tested. Additionally, the two surrogates were more sensitive to chemical antimicrobials on the carpet with waterproof backing compared to carpets with water-permeable backing. These findings can inform development of antimicrobials for use on carpets contaminated with human norovirus.
Collapse
Affiliation(s)
- Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Lanave G, Catella C, Catalano A, Lucente MS, Pellegrini F, Fracchiolla G, Diakoudi G, Palmisani J, Trombetta CM, Martella V, Camero M. Assessing the virucidal activity of essential oils against feline calicivirus, a non-enveloped virus used as surrogate of norovirus. Heliyon 2024; 10:e30492. [PMID: 38711631 PMCID: PMC11070907 DOI: 10.1016/j.heliyon.2024.e30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 μg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 μl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Jolanda Palmisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| |
Collapse
|
4
|
Wanguyun AP, Oishi W, Sano D. Sensitivity Evaluation of Enveloped and Non-enveloped Viruses to Ethanol Using Machine Learning: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-13. [PMID: 38049702 PMCID: PMC10963467 DOI: 10.1007/s12560-023-09571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023]
Abstract
Viral diseases are a severe public health issue worldwide. During the coronavirus pandemic, the use of alcohol-based sanitizers was recommended by WHO. Enveloped viruses are sensitive to ethanol, whereas non-enveloped viruses are considerably less sensitive. However, no quantitative analysis has been conducted to determine virus ethanol sensitivity and the important variables influencing the inactivation of viruses to ethanol. This study aimed to determine viruses' sensitivity to ethanol and the most important variables influencing the inactivation of viruses exposed to ethanol based on machine learning. We examined 37 peer-reviewed articles through a systematic search. Quantitative analysis was employed using a decision tree and random forest algorithms. Based on the decision tree, enveloped viruses required around ≥ 35% ethanol with an average contact time of at least 1 min, which reduced the average viral load by 4 log10. In non-enveloped viruses with and without organic matter, ≥ 77.50% and ≥ 65% ethanol with an extended contact time of ≥ 2 min were required for a 4 log10 viral reduction, respectively. Important variables were assessed using a random forest based on the percentage increases in mean square error (%IncMSE) and node purity (%IncNodePurity). Ethanol concentration was a more important variable with a higher %IncMSE and %IncNodePurity than contact time for the inactivation of enveloped and non-enveloped viruses with the available organic matter. Because specific guidelines for virus inactivation by ethanol are lacking, data analysis using machine learning is essential to gain insight from certain datasets. We provide new knowledge for determining guideline values related to the selection of ethanol concentration and contact time that effectively inactivate viruses.
Collapse
Affiliation(s)
- Aken Puti Wanguyun
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
Soni SK, Marya T, Sharma A, Thakur B, Soni R. A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants. Arch Microbiol 2024; 206:111. [PMID: 38372809 DOI: 10.1007/s00203-023-03818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic. Coronaviruses can mutate over time, potentially leading to the emergence of new variants. Some of these variants may have increased transmissibility or resistance to existing vaccines and treatments. The emergence of the COVID-19 pandemic in the recent past has sparked innovation in curbing virus spread, with sanitizers and disinfectants taking center stage. These essential tools hinder pathogen dissemination, especially for unvaccinated or rapidly mutating viruses. The World Health Organization supports the use of alcohol-based sanitizers and disinfectants globally against pandemics. However, there are ongoing concerns about their widespread usage and their potential impact on human health, animal well-being, and ecological equilibrium. In this ever-changing scenario, metal nanoparticles hold promise in combating a range of pathogens, including SARS-CoV-2, as well as other viruses such as norovirus, influenza, and HIV-1. This review explores their potential as non-alcoholic champions against SARS-CoV-2 and other pandemics of tomorrow. This extends beyond metal nanoparticles and advocates a balanced examination of pandemic control tools, exploring their strengths and weaknesses. The manuscript thus involves the evaluation of metal nanoparticle-based alternative approaches as hand sanitizers and disinfectants, providing a comprehensive perspective on this critical issue.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| | - Tripta Marya
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Apurav Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Bishakha Thakur
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Raman Soni
- Department of Biotechnology, DAV College, Chandigarh, 160011, India
| |
Collapse
|
6
|
Bayer G, Shayganpour A, Bayer IS. Efficacy of a New Alcohol-Free Organic Acid-Based Hand Sanitizer against Foodborne Pathogens. TOXICS 2023; 11:938. [PMID: 37999590 PMCID: PMC10674435 DOI: 10.3390/toxics11110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In light of the global health crisis triggered by the COVID-19 pandemic, numerous experts have deemed the utilization of hand sanitizers imperative as a precautionary measure against the virus. Consequently, the demand for hand sanitizers has experienced a substantial surge. Since the beginning of 2020, the utilization of alcohol-free hand sanitizers has been increasingly favored due to the potential risks associated with alcohol poisoning, flammability, as well as the adverse effects on skin lipid dissolution, dehydration, and sebum reduction, which can lead to severe cases of eczema and norovirus infections. In this study, we developed an aqueous hand sanitizer that does not contain alcohol. The sanitizer consists of naturally occurring, food-grade organic acids, including lactic, citric, and azelaic acids. Additionally, food-grade ammonium sulfate and a small amount of povidone-iodine (PVPI) were included in the formulation to create a synergistic and potent antibacterial effect. The effectiveness of the hand sanitizer was evaluated against four common foodborne pathogens, namely Clostridium botulinum, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, via in vitro testing. The organic acids exhibited a synergistic inhibitory function, resulting in a 3-log reduction in CFU/mL. Furthermore, the presence of povidone-iodine and ammonium sulfate enhanced their antibacterial effect, leading to a 4-log reduction in CFU/mL. The hand sanitizer solution remained stable even after 60 days of storage. During this period, the detection of additional triiodide (I3-) ions occurred, which have the ability to release broad-spectrum molecular iodine upon penetrating the cell walls. This alcohol-free hand sanitizer may offer extended protection and is anticipated to be gentle on the skin. This is attributed to the presence of citric and lactic acids, which possess cosmetic properties that soften and smoothen the skin, along with antioxidant properties.
Collapse
Affiliation(s)
- Gözde Bayer
- DS Bio ve Nanoteknoloji A. Ş, Lavida City Plaza 45/7, 06530 Ankara, Türkiye;
| | - Amirreza Shayganpour
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
7
|
Hara S, Koike I. Survival of Bacteriophage T4 in Quasi-Pure Ionic Solutions. Viruses 2023; 15:1737. [PMID: 37632079 PMCID: PMC10459568 DOI: 10.3390/v15081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The preservative qualities of individual ionic compounds impacting the infectivity of T4 virions were elucidated. T4 virions were immersed in quasi-pure ionic solutions prior to the adsorption process, and the plaque forming unit (pfu) values of these were measured following the conventional method. In neutral ionic solutions, the minimum and the optimum concentrations of preservative qualities corresponded with the results obtained from the multi-ionic media/buffers. In acid and alkali solutions, phages show tolerances at a pH range of 5-11 in multi-ionic media/buffers. T4 virions show no tolerance in quasi-pure acid, neutral, and weak alkaline conditions. The preservative quality of T4 virions increased in over 10-1 mM OH- solution, equivalent to a pH value over 10, which corresponds to the pKa of the deprotonation of the DNA bases G and T. Infectivity was lost below 10-1 mM OH- and higher than 10 mM OH-. These results imply that maintaining infectivity of a virion may need the flexibility of the intra-capsid DNA by deprotonation.
Collapse
Affiliation(s)
- Seiko Hara
- Miyazaki International College, 1405 Kano, Miyazaki 889-1605, Japan
| | - Isao Koike
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan;
| |
Collapse
|
8
|
Pfuderer L, Stark WJ, Grass RN. Synthetic Microbial Surrogates Consisting of Lipid Nanoparticles Encapsulating DNA for the Validation of Surface Disinfection Procedures. ACS APPLIED BIO MATERIALS 2023; 6:1252-1259. [PMID: 36854082 PMCID: PMC10031560 DOI: 10.1021/acsabm.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Effective cleaning and disinfection procedures are an integral part of good manufacturing practice and in maintaining hygiene standards in health-care facilities. In this study, a method to validate such cleaning and disinfection procedures of surfaces was established employing lipid nanoparticles (LNPs) encapsulating DNA. It was possible to determine and distinguish between the physical cleaning effect (dilution) and the chemical cleaning effect (disintegration) on the LNPs during the cleaning and disinfection procedure (wiping). After treatment with 70 v % ethanol as a disinfectant and SDS solution as a cleaning agent, LNPs showed log10 reductions of 4.5 and 4.0, respectively. These values are similar to the log10 reductions exhibited by common bacteria, such as Escherichia coli and Serratia marcescens. Therefore, LNPs pose as useful tools for cleaning validation with advantages over the already existing tools and enable a separate detection of dilution and chemical disinfectant action.
Collapse
Affiliation(s)
- Lara Pfuderer
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Robert N Grass
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Nishitani K, Morita T, Seto Y. Screening of natural extracts with anti-norovirus effects and analysis of this mechanism in grape seed extract. JOURNAL OF MICROORGANISM CONTROL 2023; 28:83-92. [PMID: 37866900 DOI: 10.4265/jmc.28.3_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Norovirus (NoV)is a major causative virus of viral gastroenteritis and requires a general disinfection method because it is resistant to common disinfectants such as ethanol and chlorhexidine. This study aimed to find natural extracts as candidates for versatile disinfectant ingredients. The antiviral effect of natural extracts against NoV can be evaluated using the feline calicivirus (FCV)-inactivation test and NoV virus-like particle (NoV-VLP)-binding inhibition test. In this study, screening of natural extracts with anti- NoV effects was performed using these two methods. Of the 63 natural extracts examined, 14 were found to have high FCV-inactivation and NoV-VLP-binding inhibitory effects. In addition, we evaluated the NoV-VLPbinding inhibitory effect of grape seed extract(GSE)containing proanthocyanidins under multiple concentration conditions and treatment times and determined that the binding inhibitory effect of GSE was concentration- and time-dependent. Electron microscopy showed that GSE-treated NoV-VLPs aggregated, distorted, and swelled, suggesting that GSE directly interacts with NoV particles. The results suggest that some natural extracts containing GSE can be used as components of disinfectants against NoV.
Collapse
Affiliation(s)
- Kota Nishitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- Settsu Corporation
| | - Takayuki Morita
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
- Settsu Corporation
| | - Yoshiyuki Seto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
10
|
Min A, Hossain MI, Jung S, Yeo D, Wang Z, Song M, Zhao Z, Park S, Choi C. Evaluation of the efficacy of ethanol, peracetic acid, and quaternary ammonium compounds against murine norovirus using carrier and suspension tests. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Dickinson D, Marsh B, Shao X, Liu E, Sampath L, Yao B, Jiang X, Hsu S. Virucidal activities of novel hand hygiene and surface disinfectant formulations containing EGCG-palmitates (EC16). Am J Infect Control 2022; 50:1212-1219. [PMID: 35671844 PMCID: PMC9912545 DOI: 10.1016/j.ajic.2022.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Non-toxic hand hygiene and surface disinfectant products with virucidal activity against alcohol-resistant nonenveloped norovirus are in urgent need. METHOD Alcohol-based formulations were made with epigallocatechin-3-gallate-palmitate (EC16), an FDA accepted food additive. Based on in-house testing of formulations, 3 prototypes, PTV80 hand gel, PST70 surface disinfectant spray and PST70 surface disinfectant wipe, were selected from in-house tests for independent testing at GLP (good laboratory practice) laboratories according to EN 14476:2019 (hand gel), ASTM test method E1053-20 (spray), and ASTM E2362-15, E1053, and ASTM E2896-12 (wipe). RESULTS The PTV80 hand gel prototype demonstrated a >99.999% reduction of murine norovirus S99 infectivity in 60 seconds. Carrier testing of the PST70 surface spray and surface wipe demonstrated reduction of feline calicivirus infectivity by >99.99% in 60 seconds. In addition, testing with human coronavirus and human herpes simplex virus demonstrated >99.99% efficacy in 60 seconds, consistent with broad spectrum virucidal activity. CONCLUSIONS The novel non-toxic prototypes containing EC16 were found to be suitable for use in future hand sanitizer gel, surface disinfectant spray and wipe products against norovirus. Products based on these formulations could be used safely to help prevent and control norovirus and other emerging virus outbreaks, pending future studies.
Collapse
Affiliation(s)
| | - Bianca Marsh
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Emma Liu
- Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Bo Yao
- Changxing Sanju Biotech Co., Ltd. Hang Zhou, China
| | | | - Stephen Hsu
- Camellix Research Laboratory, Augusta, GA, USA; Department of Oral Biology & Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Kramer A, Arvand M, Christiansen B, Dancer S, Eggers M, Exner M, Müller D, Mutters NT, Schwebke I, Pittet D. Ethanol is indispensable for virucidal hand antisepsis: memorandum from the alcohol-based hand rub (ABHR) Task Force, WHO Collaborating Centre on Patient Safety, and the Commission for Hospital Hygiene and Infection Prevention (KRINKO), Robert Koch Institute, Berlin, Germany. Antimicrob Resist Infect Control 2022; 11:93. [PMID: 35794648 PMCID: PMC9257567 DOI: 10.1186/s13756-022-01134-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The approval of ethanol by the Biocidal Products Regulation has been under evaluation since 2007. This follows concern over alcohol uptake from ethanol-based hand rubs (EBHR). If ethanol is classified as carcinogenic, mutagenic, or reprotoxic by the European Chemicals Agency (ECHA), then this would affect infection prevention and control practices. AIM A review was performed to prove that ethanol is toxicological uncritical and indispensable for hand antisepsis because of its unique activity against non-enveloped viruses and thus the resulting lack of alternatives. Therefore, the following main points are analyzed: The effectiveness of ethanol in hand hygiene, the evidence of ethanol at blood/tissue levels through hand hygiene in healthcare, and the evidence of toxicity of different blood/tissue ethanol levels and the non-comparability with alcoholic consumption and industrial exposure. RESULTS EBHR are essential for preventing infections caused by non-enveloped viruses, especially in healthcare, nursing homes, food industry and other areas. Propanols are effective against enveloped viruses as opposed to non-enveloped viruses but there are no other alternatives for virucidal hand antisepsis. Long-term ingestion of ethanol in the form of alcoholic beverages can cause tumours. However, lifetime exposure to ethanol from occupational exposure < 500 ppm does not significantly contribute to the cancer risk. Mutagenic effects were observed only at doses within the toxic range in animal studies. While reprotoxicity is linked with abuse of alcoholic beverages, there is no epidemiological evidence for this from EBHR use in healthcare facilities or from products containing ethanol in non-healthcare settings. CONCLUSION The body of evidence shows EBHRs have strong efficacy in killing non-enveloped viruses, whereas 1-propanol and 2-propanol do not kill non-enveloped viruses, that pose significant risk of infection. Ethanol absorbed through the skin during hand hygiene is similar to consumption of beverages with hidden ethanol content (< 0.5% v/v), such as apple juice or kefir. There is no risk of carcinogenicity, mutagenicity or reprotoxicity from repeated use of EBHR. Hence, the WHO Task Force strongly recommend retaining ethanol as an essential constituent in hand rubs for healthcare.
Collapse
Affiliation(s)
- Axel Kramer
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany. .,WHO Task Force Alcohol-Based Hand Rub, Zürich, Switzerland. .,Institute of Hygiene and Environmental Medicine University Medicine Greifswald, Walther-Rathenau-Straße 38, 17475, Greifswald, Germany.
| | - Mardjan Arvand
- Division Hospital Hygiene, Infection Prevention and Control, Robert-Koch Institute, Berlin, Germany
| | - Bärbel Christiansen
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Department of Hospital Hygiene, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephanie Dancer
- Department of Microbiology, University Hospital Hairmyres, Glasgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, Stuttgart, Germany
| | - Martin Exner
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Dieter Müller
- Department of Occupational Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Nico T Mutters
- German Commission for Hospital Hygiene and Infection Prevention at the Robert-Koch Institute, Berlin, Germany.,Institute of Hygiene and Public Health, University Hospital, Bonn, Germany
| | - Ingeborg Schwebke
- German Association for the Control of Virus Diseases (DVV e. V.), Berlin, Germany
| | - Didier Pittet
- Infection Control Program and WHO Collaborating Centre on Patient Safety, University of Geneva, Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
13
|
Huang J, Park GW, Jones RM, Fraser AM, Vinjé J, Jiang X. Efficacy of EPA-registered disinfectants against two human norovirus surrogates and Clostridioides difficile endospores. J Appl Microbiol 2022; 132:4289-4299. [PMID: 35279925 PMCID: PMC9119914 DOI: 10.1111/jam.15524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
AIMS To determine the efficacy of a panel of nine EPA-registered disinfectants against two human norovirus (HuNoV) surrogates (feline calicivirus [FCV] and Tulane virus [TuV]) and Clostridioides difficile endospores. METHODS AND RESULTS Nine EPA-registered products, five of which contained H2 O2 as active ingredient, were tested against infectious FCV, TuV and C. difficile endospores using two ASTM methods, a suspension and carrier test. Efficacy claims against FCV were confirmed for 8 of 9 products. The most efficacious product containing H2 O2 as ingredient achieved a >5.1 log reduction of FCV and >3.1 log reduction of TuV after 5 min, and >6.0 log reduction of C. difficile endospores after 10 min. Of the five products containing H2 O2 , no strong correlation (R2 = 0.25, p = 0.03) was observed between disinfection efficacy and H2 O2 concentration. Addition of 0.025% ferrous sulphate to 1% H2 O2 solution improved efficacy against FCV, TuV and C. difficile. CONCLUSION Disinfectants containing H2 O2 are the most efficacious disinfection products against FCV, TuV and C. difficile endospores. Product formulation, rather than the concentration of H2 O2 in a product, impacts the efficacy of a disinfection product. SIGNIFICANCE AND IMPACT OF STUDY H2 O2 -based disinfectants are efficacious against surrogate viruses for HuNoV and C. difficile endospores.
Collapse
Affiliation(s)
- Jinge Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Geun Woo Park
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rachael M. Jones
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Angela M. Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
14
|
Mariita RM, Davis JH, Randive RV. Illuminating Human Norovirus: A Perspective on Disinfection of Water and Surfaces Using UVC, Norovirus Model Organisms, and Radiation Safety Considerations. Pathogens 2022; 11:226. [PMID: 35215169 PMCID: PMC8879714 DOI: 10.3390/pathogens11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS Inc., an Asahi Kasei Company, 70 Cohoes Avenue, Green Island, NY 12183, USA; (J.H.D.); (R.V.R.)
| | | | | |
Collapse
|
15
|
Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. NANO TODAY 2021; 40:101267. [PMID: 34404999 PMCID: PMC8361009 DOI: 10.1016/j.nantod.2021.101267] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles provide new opportunities in merging therapeutics and new materials, with current research efforts just beginning to scratch the surface of their diverse benefits and potential applications. One such application, the use of inorganic nanoparticles in antiseptic coatings to prevent pathogen transmission and infection, has seen promising developments. Notably, the high reactive surface area to volume ratio and unique chemical properties of metal-based nanoparticles enables their potent inactivation of viruses. Nanoparticles exert their virucidal action through mechanisms including inhibition of virus-cell receptor binding, reactive oxygen species oxidation and destructive displacement bonding with key viral structures. The prevention of viral outbreaks is one of the foremost challenges to medical science today, emphasizing the importance of research efforts to develop nanoparticles for preventative antiviral applications. In this review, the use of nanoparticles to inactivate other viruses, such as influenza, HIV-1, or norovirus, among others, will be discussed to extrapolate broad-spectrum antiviral mechanisms that could also inhibit SARS-CoV-2 pathogenesis. This review analyzes the published literature to highlight the current state of knowledge regarding the efficacy of metal-based nanoparticles and other antiviral materials for biomedical, sterile polymer, and surface coating applications.
Collapse
Affiliation(s)
- Neil Lin
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Daksh Verma
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Nikhil Saini
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Canada
| | - Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Muhammad Munir
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | | | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| |
Collapse
|
16
|
Schilling-Loeffler K, Rodriguez R, Williams-Woods J. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers. Int J Mol Sci 2021; 22:ijms22168868. [PMID: 34445583 PMCID: PMC8396345 DOI: 10.3390/ijms22168868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Aptamers, single-stranded oligonucleotides that specifically bind a molecule with high affinity, are used as ligands in analytical and therapeutic applications. For the foodborne pathogen norovirus, multiple aptamers exist but have not been thoroughly characterized. Consequently, there is little research on aptamer-mediated assay development. This study characterized seven previously described norovirus aptamers for target affinity, structure, and potential use in extraction and detection assays. Norovirus-aptamer affinities were determined by filter retention assays using norovirus genotype (G) I.1, GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney virus-like particles. Of the seven aptamers characterized, equilibrium dissociation constants for GI.7, GII.3, GII.4 New Orleans and GII.4 Sydney ranged from 71 ± 38 to 1777 ± 1021 nM. Four aptamers exhibited affinity to norovirus GII.4 strains; three aptamers additionally exhibited affinity toward GII.3 and GI.7. Aptamer affinity towards GI.1 was not observed. Aptamer structure analysis by circular dichroism (CD) spectroscopy showed that six aptamers exhibit B-DNA structure, and one aptamer displays parallel/antiparallel G-quadruplex hybrid structure. CD studies also showed that biotinylated aptamer structures were unchanged from non-biotinylated aptamers. Finally, norovirus aptamer assay feasibility was demonstrated in dot-blot and pull-down assays. This characterization of existing aptamers provides a knowledge base for future aptamer-based norovirus detection and extraction assay development and aptamer modification.
Collapse
|
17
|
Boyce JM, Schaffner DW. Scientific Evidence Supports the Use of Alcohol-Based Hand Sanitizers as an Effective Alternative to Hand Washing in Retail Food and Food Service Settings When Heavy Soiling Is Not Present on Hands. J Food Prot 2021; 84:781-801. [PMID: 33290525 DOI: 10.4315/jfp-20-326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Suboptimal food worker health and hygiene has been a common contributing factor in foodborne disease outbreaks for many years. Despite clear U.S. Food and Drug Administration (FDA) Model Food Code recommendations for hand washing and glove use, food worker compliance with hand washing recommendations has remained poor for >20 years. Food workers' compliance with recommended hand washing guidelines is adversely impacted by a number of barriers, including complaints of time pressure, inadequate number and/or location of hand washing sinks and hand washing supplies, lack of food knowledge and training regarding hand washing, the belief that wearing gloves obviates the need for hand washing, insufficient management commitment, and adverse skin effects caused by frequent hand washing. Although many of the issues related to poor hand washing practices in food service facilities are the same as those in health care settings, a new approach to health care hand hygiene was deemed necessary >15 years ago due to persistently low compliance rates among health care personnel. Evidence-based hand hygiene guidelines for health care settings were published by both the Centers for Disease Control and Prevention in 2002 and by the World Health Organization in 2009. Despite similar low hand washing compliance rates among retail food establishment workers, no changes in the Food Code guidelines for hand washing have been made since 2001. In direct contrast to health care settings, where frequent use of alcohol-based hand sanitizers (ABHSs) in lieu of hand washing has improved hand hygiene compliance rates and reduced infections, the Food Code continues to permit the use of ABHSs only after hands have been washed with soap and water. This article provides clear evidence to support modifying the FDA Model Food Code to allow the use of ABHSs as an acceptable alternative to hand washing in situations where heavy soiling is not present. Emphasis on the importance of hand washing when hands are heavily soiled and appropriate use of gloves is still indicated. HIGHLIGHTS
Collapse
Affiliation(s)
- John M Boyce
- J. M. Boyce Consulting, 62 Sonoma Lane, Middletown, Connecticut 06457 (ORCID: https://orcid.org/0000-0002-4626-1471)
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA (ORCID: https://orcid.org/0000-0001-9200-0400)
| |
Collapse
|
18
|
Ram PK, Begum F, Crabtree-Ide C, Uddin MR, Weaver AM, Dostogir Harun MG, Allen JV, Kumar S, Nasreen S, Luby SP, El Arifeen S. Waterless Hand Cleansing with Chlorhexidine during the Neonatal Period by Mothers and Other Household Members: Findings from a Randomized Controlled Trial. Am J Trop Med Hyg 2020; 103:2116-2126. [PMID: 32959761 PMCID: PMC7646780 DOI: 10.4269/ajtmh.19-0773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/29/2020] [Indexed: 11/07/2022] Open
Abstract
Observational data suggest maternal handwashing with soap prevents neonatal mortality. We tested the impact of a chlorhexidine-based waterless hand cleansing promotion on the behavior of mothers and other household members. In rural Bangladesh in 2014, we randomized consenting pregnant women to chlorhexidine provision and hand cleansing promotion or standard practices. We compared hand cleansing with chlorhexidine or handwashing with soap before baby care, among mothers and household members in the two groups, and measured chlorhexidine use in the intervention arm. Chlorhexidine was observed in the baby's sleep space in 97% of 130 intervention homes, versus soap in 59% of 128 control homes. Hand cleansing before baby care was observed 5.6 times more frequently among mothers in the intervention arm than in the controls (95% CI = 4.0-7.7). Hand cleansing was significantly more frequently observed in the intervention arm among women other than the mother (RR = 10.9) and girls (RR = 37.0). Men and boys in the intervention arm cleansed hands before 29% and 44% of baby care events, respectively, compared with 0% in the control arm. The median number of grams consumed during the neonatal period was 176 (IQR = 95-305 g), about 7.8 g/day (IQR = 4.2-13.8 g). Promotion of waterless chlorhexidine increased hand cleansing behavior among mothers and other household members. Discrepancy between observed use and measured chlorhexidine consumption suggested courtesy bias in structured observations. A waterless hand cleanser may represent one component of the multimodal strategies to prevent neonatal infections in low-resource settings.
Collapse
Affiliation(s)
- Pavani K. Ram
- State University of New York at Buffalo, Buffalo, New York
| | | | | | | | - Anne M. Weaver
- State University of New York at Buffalo, Buffalo, New York
| | | | | | | | | | - Stephen P. Luby
- icddr,b, Dhaka, Bangladesh
- Stanford University, Palo Alto, California
| | | |
Collapse
|
19
|
Buckley D, Dharmasena M, Wang H, Huang J, Adams J, Pettigrew C, Fraser A, Jiang X. Efficacy of novel aqueous photo-chlorine dioxide against a human norovirus surrogate, bacteriophage MS2 and Clostridium difficile endospores, in suspension, on stainless steel and under greenhouse conditions. J Appl Microbiol 2020; 130:1531-1545. [PMID: 33025608 DOI: 10.1111/jam.14887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022]
Abstract
AIMS The efficacy of a novel photochemical method for generating chlorine dioxide (photoClO2 ) was evaluated against human noroviruses (HuNoV) surrogate, bacteriophage MS2, and Clostridium difficile endospores. METHODS AND RESULTS Chlorine dioxide was generated by mixing 1% sodium chlorite with 10 parts-per-million (ppm) Eosin Y and irradiating with a photo-activator-excitable light. PhotoClO2 efficacy was assessed against bacteriophage MS2 and C. difficile endospores in suspension, on hard surfaces and greenhouse conditions under soiled and unsoiled conditions. The estimated effective photoClO2 produced and consumed was 20·39 ± 0·16 ppm at a rate of 8·16 ppm per min in a 1% sodium chlorite solution. In suspension, MS2 phage was reduced by 3·35 and >5·10 log10 PFU per ml in 120 and 90 min, with and without soil, respectively. At the same time, when dried on stainless steel surface, MS2 phage was reduced by >4·53 log10 PFU per carrier in 30 min under both conditions. On the other hand, C. difficile endospores in suspension were reduced by 2·26 and 3·65 log10 CFU per ml in 120 min with and without soiling, respectively. However, on stainless steel surface, maximal reductions of the C. difficile endospores were 0·8 and 1·5 log10 CFU per carrier with and without soiling, respectively, and a maximal reduction of 2·97 log10 CFU per carrier under greenhouse conditions at 24 h. CONCLUSIONS Overall, photoClO2 showed promise as a technology to control HuNoV contamination on environmental surfaces but requires further optimization and testing against C. difficile endospores. SIGNIFICANCE AND IMPACT OF THE STUDY Results from this investigation will serve as a model for how to generate and quantify photoClO2 and how to appropriately evaluate this new class of disinfectants against environmentally resilient pathogens: viruses and bacterial endospores.
Collapse
Affiliation(s)
- D Buckley
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - M Dharmasena
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - H Wang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - J Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - J Adams
- The Procter and Gamble Co, Cincinnati, OH, USA
| | - C Pettigrew
- The Procter and Gamble Co, Cincinnati, OH, USA
| | - A Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - X Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
20
|
Escudero-Abarca BI, Goulter RM, Arbogast JW, Leslie RA, Green K, Jaykus LA. Efficacy of alcohol-based hand sanitizers against human norovirus using RNase-RT-qPCR with validation by human intestinal enteroid replication. Lett Appl Microbiol 2020; 71:605-610. [PMID: 32964478 PMCID: PMC7756425 DOI: 10.1111/lam.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Successful human norovirus (HuNoV) cultivation in stem cell‐derived human intestinal enteroids (HIE) was recently reported. The purpose of this study was to evaluate the anti‐HuNoV efficacy of two alcohol‐based commercial hand sanitizers and 60% ethanol by suspension assay using RNase‐RT‐qPCR, with subsequent validation of efficacy by HuNoV cultivation using the HIE model. In suspension, when evaluated by RNase‐RT‐qPCR, 60% ethanol resulted in less than one log10 reduction in HuNoV genome equivalent copies (GEC) regardless of contact time (30 or 60s) or soil load. The two commercial products outperformed 60% ethanol regardless of contact time or soil load, providing 2·2–3·2 log10 HuNoV GEC reductions by suspension assay. Product B could not be validated in the HIE model due to cytotoxicity. Following a 60s exposure, viral replication in the HIE model increased 1·9 ± 0·2 log10 HuNoV GEC for the neutralization (positive) control and increased 0·9 ± 0·2 log10 HuNoV GEC in challenged HIE after treatment with 60% ethanol. No HuNoV replication in HIE was observed after a 60 s exposure to Product A.
Collapse
Affiliation(s)
- B I Escudero-Abarca
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - R M Goulter
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | - K Green
- GOJO Industries Inc, Akron, OH, USA
| | - L-A Jaykus
- Department of Food Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Bhatta MR, Marsh Z, Newman KL, Rebolledo PA, Huey M, Hall AJ, Leon JS. Norovirus outbreaks on college and university campuses. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2020; 68:688-697. [PMID: 31084526 PMCID: PMC11268439 DOI: 10.1080/07448481.2019.1594826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Objective: To describe norovirus outbreaks at colleges and universities. Participants: None. Conducted September 2016 to March 2018. Methods: College and university norovirus outbreaks reported to the US National Outbreak Reporting System (NORS, 2009-2016) or published and indexed by EMBASE, PubMed, and Web of Science (1985-2017) were analyzed. Results: Seventy-seven norovirus outbreaks were reported to NORS and 23 were identified in the systematic literature review. Outbreaks occurred more frequently during the beginning of the school year (September-February). NORS outbreaks were more often spread by person-to-person transmission (61%) and, in published outbreaks, by food (57%). The reported exposures of published outbreaks were campus dining (n = 8) and ill food service workers (n = 7). Higher attack rates were associated with smaller on-campus population size, social networks or residences, and specific food exposures. Common control measures were communal area disinfection and health/hygiene education. Conclusions: Recommendations summarized to prevent and control norovirus outbreaks at colleges or universities.
Collapse
Affiliation(s)
- Manasa R Bhatta
- College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Zach Marsh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kira L Newman
- Internal Medicine Residency Program, University of Washington, Seattle, Washington, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Huey
- Student Health Services, Emory University and Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Juan S Leon
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Alcohol abrogates human norovirus infectivity in a pH-dependent manner. Sci Rep 2020; 10:15878. [PMID: 32985508 PMCID: PMC7522253 DOI: 10.1038/s41598-020-72609-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Alcohol-based disinfectants are widely used for the sanitization of microorganisms, especially those that cause infectious diseases, including viruses. However, since the germicidal mechanism of alcohol is lipolysis, alcohol-based disinfectants appear to have a minimal effect on non-enveloped viruses, such as noroviruses. Because there is no cultivation method for human norovirus (HuNoV) in vitro, murine norovirus and feline calicivirus have been used as surrogates for HuNoV to analyze the efficacy of disinfectant regents. Therefore, whether these disinfectants and their conditions are effective against HuNoVs remain unknown. In this study, we report that ethanol or isopropanol alone can sufficiently suppress GII.4 genotype HuNoV replication in human iPSC-derived intestinal epithelial cells. Additionally, pH adjustments and salting-out may contribute toward the virucidal effect of alcohol against other HuNoV genotypes and cancel the impediment of organic substance contamination, respectively. Therefore, similar to sodium hypochlorite, alcohol-based disinfectants containing electrolytes can be used for HuNoV inactivation.
Collapse
|
23
|
Golin AP, Choi D, Ghahary A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am J Infect Control 2020; 48:1062-1067. [PMID: 32565272 PMCID: PMC7301780 DOI: 10.1016/j.ajic.2020.06.182] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Background The emergence of the novel virus, SARS-CoV-2, has posed unprecedented challenges to public health around the world. Currently, strategies to deal with COVID-19 are purely supportive and preventative, aimed at reducing transmission. An effective and simple method for reducing transmission of infections in public or healthcare settings is hand hygiene. Unfortunately, little is known regarding the efficacy of hand sanitizers against SARS-CoV-2. Methods In this review, an extensive literature search was performed to succinctly summarize the primary active ingredients and mechanisms of action of hand sanitizers, compare the effectiveness and compliance of gel and foam sanitizers, and predict whether alcohol and non-alcohol hand sanitizers would be effective against SARS-CoV-2. Results Most alcohol-based hand sanitizers are effective at inactivating enveloped viruses, including coronaviruses. With what is currently known in the literature, one may not confidently suggest one mode of hand sanitizing delivery over the other. When hand washing with soap and water is unavailable, a sufficient volume of sanitizer is necessary to ensure complete hand coverage, and compliance is critical for appropriate hand hygiene. Conclusions By extrapolating effectiveness of hand sanitizers on viruses of similar structure to SARS-CoV-2, this virus should be effectively inactivated with current hand hygiene products, though future research should attempt to determine this directly.
Collapse
|
24
|
Randazzo W, Costantini V, Morantz EK, Vinjé J. Human Intestinal Enteroids to Evaluate Human Norovirus GII.4 Inactivation by Aged-Green Tea. Front Microbiol 2020; 11:1917. [PMID: 32973702 PMCID: PMC7461803 DOI: 10.3389/fmicb.2020.01917] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are the leading cause of epidemic and sporadic acute gastroenteritis worldwide and the most common cause of foodborne illness in the United States. Several natural compounds, such as aged-green tea extract (aged-GTE), have been suggested as ingestible antiviral agents against human norovirus based on data using murine norovirus and feline calicivirus as surrogates. However, in vitro data showing their effectiveness against infectious human norovirus are lacking. We tested the activity of aged-GTE to inhibit human norovirus in a human intestinal enteroids (HIEs) model and Tulane virus in LLC-monkey kidney (LLC-MK2) cell culture. HIE monolayers pretreated with aged-GTE at different temperatures showed complete inhibition of human norovirus GII.4 replication at concentrations as low as 1.0 mg/ml for 37°C, 1.75 mg/ml for 21°C, and 2.5 mg/ml for 7°C. In contrast, a moderate decrease in Tulane virus infectivity of 0.85, 0.75, and 0.65 log TCID50/ml was observed for 2.5 mg/ml aged-GTE at 37, 21, and 7°C, respectively. Our findings demonstrate that GTE could be an effective natural compound against human norovirus GII.4, while only minimally effective against Tulane virus.
Collapse
Affiliation(s)
- Walter Randazzo
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Veronica Costantini
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Esther K Morantz
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Cherokee Nation Assurance, Arlington, VA, United States
| | - Jan Vinjé
- Division of Viral Diseases, National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The majority of norovirus outbreaks in the United States occur in healthcare facilities. With the growing population of immunocompromised hosts who are in frequent contact with healthcare facilities, norovirus is not only a threat to hospitals and nursing homes but also to these individuals. This review summarizes the impact of norovirus infection on healthcare facilities and immunocompromised hosts. RECENT FINDINGS The natural history of norovirus infection in immunocompromised individuals remains poorly understood. Although host immune responses play a critical role in reducing duration of viral shedding and viral load in norovirus-infected individuals, why some immunocompromised patients spontaneously recover while others develop a chronic and protracted course of illness remains unclear. Norovirus outbreaks occur in healthcare facilities because the virus is highly contagious, resistant to disinfection and efficiently transmitted. The use of real-time metagenomic next-generation sequencing and phylogenetic analyses has provided valuable information on transmission patterns in complex hospital-associated norovirus outbreaks. The development of human intestinal enteroid cultures enables the determination of effectiveness of disinfectants against human noroviruses, circumventing the validity questions with surrogate virus models due to differences in susceptibility to inactivation and disinfectants. SUMMARY Metagenomics next-generation sequencing can enhance our understanding of norovirus transmission and lead to more timely mitigation strategies to curb norovirus outbreaks in healthcare facilities. With new in-vitro cultivation methods for human noroviruses, candidate vaccines and effective antivirals could be available in the near future.
Collapse
|
26
|
Imai K, Hagi A, Inoue Y, Amarasiri M, Sano D. Virucidal Efficacy of Olanexidine Gluconate as a Hand Antiseptic Against Human Norovirus. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:180-190. [PMID: 32124244 PMCID: PMC7225205 DOI: 10.1007/s12560-020-09422-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
Human noroviruses are the major cause of non-bacterial acute gastroenteritis worldwide. Since no therapeutic agent has been proven to prevent human norovirus infection yet, preventive healthcare interventions to block the infection routes play an important role in infection control. One of the possible infection routes of human noroviruses are through contaminated hands, but no hand antiseptics have been proven effective. Olanexidine gluconate is a new biguanide compound that has already been approved for sale as an antiseptic for the surgical field in Japan. A new hand antiseptic was developed using olanexidine gluconate in this study, and its virucidal efficacy against human noroviruses was evaluated using modified RT-qPCR that can account for genome derived from intact viruses using RNase A and photo-reactive intercalators. We tested the virucidal efficacy of five materials; two olanexidine gluconate antiseptics (hand rub formulation and surgical field formulation), two kinds of ethanol solutions at different pH (approx. 3 or 7), and a base component of olanexidine gluconate hand rub formulation against 11 human norovirus genotypes by culture-independent methods. The infectivity of murine norovirus (MNV), a surrogate for human norovirus, was significantly reduced after use of the antiseptics. The olanexidine gluconate hand rub demonstrated the strongest virucidal efficacy against human norovirus among the five tested materials. This study showed that olanexidine gluconate has the potential to become a strong tool for the prevention of human norovirus infection.
Collapse
Affiliation(s)
- Kaoru Imai
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Akifumi Hagi
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Yasuhide Inoue
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
27
|
Lin Q, Lim JYC, Xue K, Yew PYM, Owh C, Chee PL, Loh XJ. Sanitizing agents for virus inactivation and disinfection. VIEW 2020; 1:e16. [PMID: 34766164 PMCID: PMC7267133 DOI: 10.1002/viw2.16] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 01/19/2023] Open
Abstract
Viral epidemics develop from the emergence of new variants of infectious viruses. The lack of effective antiviral treatments for the new viral infections coupled with rapid community spread of the infection often result in major human and financial loss. Viral transmissions can occur via close human-to-human contact or via contacting a contaminated surface. Thus, careful disinfection or sanitization is essential to curtail viral spread. A myriad of disinfectants/sanitizing agents/biocidal agents are available that can inactivate viruses, but their effectiveness is dependent upon many factors such as concentration of agent, reaction time, temperature, and organic load. In this work, we review common commercially available disinfectants agents available on the market and evaluate their effectiveness under various application conditions. In addition, this work also seeks to debunk common myths about viral inactivation and highlight new exciting advances in the development of potential sanitizing agents.
Collapse
Affiliation(s)
- Qianyu Lin
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore
| | - Jason Y. C. Lim
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| | - Kun Xue
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| | - Pek Yin Michelle Yew
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| | - Cally Owh
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| | - Pei Lin Chee
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| | - Xian Jun Loh
- Soft Materials DepartmentInstitution of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)InnovisSingapore
| |
Collapse
|
28
|
Aboubakr HA, Sampedro Parra F, Collins J, Bruggeman P, Goyal SM. Ìn situ inactivation of human norovirus GII.4 by cold plasma: Ethidium monoazide (EMA)-coupled RT-qPCR underestimates virus reduction and fecal material suppresses inactivation. Food Microbiol 2020; 85:103307. [PMID: 31500711 DOI: 10.1016/j.fm.2019.103307] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Cold atmospheric-gaseous plasma (CAP) is an emerging non-thermal technology for decontamination of foodborne bacterial and viral pathogens. We obtained a >5 log10 reduction in the titer (TCID50) of feline calicivirus (FCV) on stainless steel discs and Romaine lettuce leaves after 3 min wet exposure to air plasma generated by a two-dimensional array of integrated coaxial-microhollow dielectric barrier discharge (2D-AICM-DBD). However, when human norovirus (HuNoV GII.4) was treated for 5 min under the same conditions, ~2.6 log10 (>99.5%) reduction in genome copy number was observed as measured by ethidium monoazide-coupled RT-qPCR (EMA-RT-qPCR). To assess this discrepancy, we studied CAP's effect on FCV by the cell culture method and by the EMA-coupled RT-qPCR method. It was found that the molecular titration method (EMA-RT-qPCR) underestimates the level of virus reduction by CAP. Additionally, the fecal matter present in HuNoV samples partially suppressed virucidal activity of CAP. Assuming that the lower virus reduction measured by EMA-RT-qPCR method compared to cell culture method for FCV is the same as for HuNoV, we can conclude that FCV may be used as a surrogate for HuNoV to assess the virucidal effect of CAP. CAP is able to inactivate 3.5 Log10 units of HuNoV at low titers after 2 min of exposure.
Collapse
Affiliation(s)
- Hamada A Aboubakr
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave,St. Paul, MN, 55108, USA.
| | - Fernando Sampedro Parra
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, 55018, USA.
| | - James Collins
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave,St. Paul, MN, 55108, USA.
| | - Peter Bruggeman
- Department of Mechanical Engineering, College of Science and Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, MN, 55455, USA.
| | - Sagar M Goyal
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave,St. Paul, MN, 55108, USA.
| |
Collapse
|
29
|
Montanari P, Calvi C, Daprà V, Alliaudi C, Cojocaru D, Graziano E, Zaniol E, Galliano I, Bergallo M. Norovirus infections in children less than five years of age hospitalized with acute gastroenteritis in Italy. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Cardemil CV, O’Leary ST, Beaty BL, Ivey K, Lindley MC, Kempe A, Crane LA, Hurley LP, Brtnikova M, Hall AJ. Primary care physician knowledge, attitudes, and diagnostic testing practices for norovirus and acute gastroenteritis. PLoS One 2020; 15:e0227890. [PMID: 31935271 PMCID: PMC6959576 DOI: 10.1371/journal.pone.0227890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Norovirus is a leading cause of acute gastroenteritis (AGE) across the age spectrum; candidate vaccines are in clinical trials. While norovirus diagnostic testing is increasingly available, stool testing may not be performed routinely, which can hamper surveillance and burden of disease estimates. Additionally, lack of knowledge of the burden of disease may inhibit provider vaccine recommendations, which could affect coverage rates and ultimately the impact of the vaccine. Our objectives were to understand physicians' stool testing practices in outpatients with AGE, and physician knowledge of norovirus, in order to improve surveillance and prepare for vaccine introduction. METHODS Internet and mail survey on AGE, norovirus, and future norovirus vaccines conducted January to March 2018 among national networks of primary care pediatricians, family practice and general internal medicine physicians. RESULTS The response rate was 59% (820/1383). During peak AGE season, physicians estimated they ordered stool tests for a median of 15% (interquartile range: 5-33%) of their outpatients with AGE. Stool tests were reported as more often available for ova and parasites, Clostridioides difficile, and bacterial culture (>95% for all specialties) than for norovirus (6-33% across specialties); even when available, norovirus-specific tests were infrequently ordered. Most providers were unaware that norovirus is a leading cause of AGE across all age groups (Pediatricians 80%, Family Practice 86%, General Internal Medicine 89%) or that alcohol-based hand sanitizers are ineffective against norovirus (Pediatricians 51%, Family Practice 66%, General Internal Medicine 62%). Concerns cited as major barriers to implementing a future norovirus vaccine included if the vaccine is not covered by insurance (General Internal Medicine 64%, Pediatricians 67%, Family Practice 74%) and lack of adequate reimbursement for vaccination (Pediatricians 43%, General Internal Medicine 46%, Family Practice 50%). Factors that providers believed were 'not at all a barrier' or 'minor barrier' to new vaccine introduction included the belief that "my patients won't need this vaccine" (General Internal Medicine 78%, Family Practice 86%, Pediatricians 90%) and "my patients already get too many vaccines" (Family Practice 89%, General Internal Medicine 92%, Pediatricians 95%). CONCLUSIONS Primary care physicians had few concerns regarding future norovirus vaccine introduction, but have knowledge gaps on norovirus prevalence and hand hygiene for prevention. Also, physicians infrequently order stool tests for outpatients with AGE, which limits surveillance estimates that rely on physician-ordered stool diagnostics. Closing physician knowledge gaps on norovirus burden and transmission can help support norovirus vaccine introduction.
Collapse
Affiliation(s)
- Cristina V. Cardemil
- National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sean T. O’Leary
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brenda L. Beaty
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
| | - Katy Ivey
- National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Megan C. Lindley
- National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Allison Kempe
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A. Crane
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
- Department of Community and Behavioral Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura P. Hurley
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
- Division of General Internal Medicine, Denver Health, Denver, CO, United States
| | - Michaela Brtnikova
- Adult and Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Aron J. Hall
- National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
31
|
Shrestha P, Zhang Y, Chen WJ, Wong TY. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:245-268. [PMID: 32955413 DOI: 10.1080/26896583.2020.1809286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale applications of Triclosan in industrial and household products have created many health and environmental concerns. Despite the fears of its drug-resistance and other issues, Triclosan is still an effective drug against many infectious organisms. Knowing the cross-interactions of Triclosan with different antibiotics, bacteria, and humans can provide much-needed information for the risk assessment of this drug. We review the current understanding of the antimicrobial mechanisms of Triclosan, how microbes become resistant to Triclosan, and the synergistic and antagonistic effects of Triclosan with different antibiotics. Current literature on the clinical applications of Triclosan and its effect on fetus/child development are also summarized.
Collapse
Affiliation(s)
- Prabin Shrestha
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | | | - Wen-Jen Chen
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | - Tit-Yee Wong
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
32
|
|
33
|
Probabilistic risk model of norovirus transmission during handling and preparation of fresh produce in school foodservice operations. Int J Food Microbiol 2019; 290:159-169. [DOI: 10.1016/j.ijfoodmicro.2018.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/04/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022]
|
34
|
Yamashiro R, Misawa T, Sakudo A. Key role of singlet oxygen and peroxynitrite in viral RNA damage during virucidal effect of plasma torch on feline calicivirus. Sci Rep 2018; 8:17947. [PMID: 30560882 PMCID: PMC6298994 DOI: 10.1038/s41598-018-36779-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
A dielectric barrier discharge (DBD) plasma torch has been used to evaluate the mechanism underlying inactivation of feline calicivirus (FCV) by plasma treatment. Plasma treatment of cell lysate infected with FCV F9 strain reduced the viral titer of the median tissue culture infectious dose (TCID50). The D value (treatment time required to lower the viral titer to 1/10) was 0.450 min, while the viral titer dropped below the detection limit within 2 min. FCV was not significantly inactivated by heat or UV applied at levels corresponding to those generated from the DBD plasma torch after 2 min (38.4 °C and 46.79 mJ/cm2 UV, respectively). However, TCID50 was reduced by 2.47 log after exposure to 4.62 mM ONOO−, corresponding to the concentration generated after 2 min of plasma treatment. Radical scavengers, including superoxide dismutase, dimethyl sulfoxide, and catalase, did not significantly affect viral titers; however, sodium azide, uric acid, and ascorbic acid, which are scavengers of 1O2 radicals, ONOO−, and peroxynitrous acid (ONOOH; produced from ONOO− under acidic conditions), respectively, significantly increased TCID50 and intact viral RNA. These findings suggest that ONOO− and 1O2 play an important role in FCV inactivation by attacking viral RNA during DBD plasma torch treatment.
Collapse
Affiliation(s)
- Risa Yamashiro
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan
| | - Tatsuya Misawa
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan
| | - Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
35
|
Jeong MI, Park SY, Ha SD. Effects of sodium hypochlorite and peroxyacetic acid on the inactivation of murine norovirus-1 in Chinese cabbage and green onion. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Ley C, Sundaram V, Sanchez MDLL, Desai M, Parsonnet J. Triclosan and triclocarban exposure, infectious disease symptoms and antibiotic prescription in infants-A community-based randomized intervention. PLoS One 2018; 13:e0199298. [PMID: 29953463 PMCID: PMC6023107 DOI: 10.1371/journal.pone.0199298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/02/2018] [Indexed: 01/29/2023] Open
Abstract
Background Triclosan and triclocarban (TCs) are broad-spectrum antimicrobials that, until recently, were found in a wide variety of household and personal wash products. Popular with consumers, TCs have not been shown to protect against infectious diseases. Objectives To determine whether use of TC-containing wash products reduces incidence of infection in children less than one year of age. Methods Starting in 2011, we nested a randomized intervention of wash products with and without TCs within a multiethnic birth cohort. Maternal reports of infectious disease symptoms and antibiotic use were collected weekly by automated survey; household visits occurred every four months. Antibiotic prescriptions were identified by medical chart review. Urinary triclosan levels were measured in a participant subset. Differences by intervention group in reported infectious disease (primary outcome) and antibiotic use (secondary outcome) were assessed using mixed effects logistic regression and Fisher’s Exact tests, respectively. Results Infectious illness occurred in 6% of weeks, with upper respiratory illness the predominant syndrome. Among 60 (45%) TC-exposed and 73 (55%) non-TC-exposed babies, infectious disease reports did not differ in frequency between groups (likelihood ratio test: p = 0.88). Medical visits with antibiotic prescriptions were less common in the TC group than in the non-TC group (7.8% vs. 16.6%, respectively; p = 0.02). Conclusions Although randomization to TC-containing wash products was not associated with decreased infectious disease reports by mothers, TCs were associated with decreased antibiotic prescriptions, suggesting a benefit against bacterial infection. The recent removal of TCs from consumer wash products makes further elucidation of benefits and risks impracticable.
Collapse
Affiliation(s)
- Catherine Ley
- Division of Infectious Diseases, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Vandana Sundaram
- Quantitative Sciences Unit, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Maria de la Luz Sanchez
- Division of Infectious Diseases, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Manisha Desai
- Quantitative Sciences Unit, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| | - Julie Parsonnet
- Division of Infectious Diseases, Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
- Division of Epidemiology, Department of Health Research and Policy, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
37
|
Buckley D, Dharmasena M, Fraser A, Pettigrew C, Anderson J, Jiang X. Efficacy of Silver Dihydrogen Citrate and Steam Vapor against a Human Norovirus Surrogate, Feline Calicivirus, in Suspension, on Glass, and on Carpet. Appl Environ Microbiol 2018; 84:e00233-18. [PMID: 29625987 PMCID: PMC5981082 DOI: 10.1128/aem.00233-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 11/20/2022] Open
Abstract
Carpets and other soft surfaces have been associated with prolonged and reoccurring human norovirus (HuNoV) outbreaks. Environmental hygiene programs are important to prevent and control HuNoV outbreaks. Despite our knowledge of HuNoV transmission via soft surfaces, no commercially available disinfectants have been evaluated on carpets. Our aim was to adapt a current standardized method for virucidal testing by assessing two disinfection technologies, silver dihydrogen citrate (SDC) and steam vapor, against one HuNoV surrogate, feline calicivirus (FCV), on wool and nylon carpets. First, we evaluated the effect of both technologies on the appearance of carpet. Next, we evaluated the efficacy of SDC in suspension and the efficacy of SDC and steam vapor against FCV on a glass surface, each with and without serum. Lastly, we tested both technologies on two types of carpet, wool and nylon. Both carpets exhibited no obvious color changes; however, SDC treatments left a residue while steam vapor left minor abrasions to fibers. SDC in suspension and on glass reduced FCV by 4.65 log10 and >4.66 log10 PFU, respectively, but demonstrated reduced efficacy in the presence of serum. However, SDC was only efficacious against FCV on nylon (3.62-log10 PFU reduction) and not wool (1.82-log10 PFU reduction). Steam vapor reduced FCV by >4.93 log10 PFU on glass in 10 s and >3.68 log10 PFU on wool and nylon carpet carriers in 90 s. There was a limited reduction of FCV RNA under both treatments compared to that of infectivity assays, but RNA reductions were higher in samples that contained serum.IMPORTANCE Human noroviruses (HuNoV) account for ca. 20% of all diarrheal cases worldwide. Disease symptoms may include diarrhea and vomit, with both known to contribute to transmission. The prevention and control of HuNoV are difficult because they are environmentally resilient and resistant to many disinfectants. Several field studies have linked both hard and soft surfaces to HuNoV outbreaks. However, many disinfectants efficacious against HuNoV surrogates are recommended for hard surfaces, but no commercially available products have demonstrated efficacy against these surrogates on soft surfaces. Our research objectives were to evaluate liquid and steam-based technologies in suspension and on hard surface carriers in addition to adapting and testing a protocol for assessing the virucidal effects of disinfection technologies on carpet carriers. These results will inform both the government and industry regarding a standard method for evaluating the virucidal effects of disinfectants on carpet while demonstrating their efficacy relative to suspension and hard-surface tests.
Collapse
Affiliation(s)
- David Buckley
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Muthu Dharmasena
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Angela Fraser
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | | | | | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
38
|
Buckley D, Fraser A, Pettigrew C, Anderson J, Jiang X. Comparative Recovery of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, with a Wet Vacuum System, Macrofoam-Tipped Swab, and Bottle Extraction Method from Carpets. J Food Prot 2018; 81:963-968. [PMID: 29749764 DOI: 10.4315/0362-028x.jfp-17-518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human noroviruses (HuNoV) are the leading cause of known foodborne illness in the United States, but direct detection during outbreak investigations is challenging. On the other hand, sampling both hard and soft environmental surfaces can be used to improve outbreak investigations. Currently, we lack virus recovery methods for soft surfaces, such as carpet, despite evidence suggesting that carpets contribute to HuNoV outbreaks. Our aim was to compare two recovery methods, wet vacuum and swabbing, for routine carpet sampling of HuNoV against a laboratory reference method known as bottle extraction (BE). Specifically, we compared the microbial vacuum (MVAC), macrofoam-tipped swab (MS), and BE by using HuNoV surrogates, feline calicivirus (FCV) and murine norovirus (MNV), inoculated on wool and nylon carpet carriers. The highest recovery of infectious FCV from wool was 5.51, 3.76, and 5.16 log PFU, whereas on nylon, recovery was 5.03, 3.62, and 4.75 log PFU by using BE, MS, and MVAC, respectively. On the other hand, the highest recovery of infectious MNV from wool was 6.10, 4.50, and 5.99 log PFU, while recovery on nylon was 6.07, 4.58, and 6.13 log PFU by using BE, MS, and MVAC, respectively. Significantly more PFU and genomic copies were recovered by using BE and MVAC compared with MS, while buffer type played a significant role in recovery of infectious FCV.
Collapse
Affiliation(s)
| | - Angela Fraser
- 2 Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina 29634; and
| | | | | | - Xiuping Jiang
- 2 Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina 29634; and
| |
Collapse
|
39
|
Kampf G. Efficacy of ethanol against viruses in hand disinfection. J Hosp Infect 2018; 98:331-338. [PMID: 28882643 PMCID: PMC7132458 DOI: 10.1016/j.jhin.2017.08.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
Ethanol is used worldwide in healthcare facilities for hand rubbing. It has been reported to have a stronger and broader virucidal activity compared with propanols. The aim of this review was to describe the spectrum of virucidal activity of ethanol in solution or as commercially available products. A systematic search was conducted. Studies were selected when they contained original data on reduction of viral infectivity from suspension tests (49 studies) and contaminated hands (17 studies). Ethanol at 80% was highly effective against all 21 tested, enveloped viruses within 30 s. Murine norovirus and adenovirus type 5 are usually inactivated by ethanol between 70% and 90% in 30 s whereas poliovirus type 1 was often found to be too resistant except for ethanol at 95% (all test viruses of EN 14476). Ethanol at 80% is unlikely to be sufficiently effective against poliovirus, calicivirus (FCV), polyomavirus, hepatitis A virus (HAV) and foot-and-mouth disease virus (FMDV). The spectrum of virucidal activity of ethanol at 95%, however, covers the majority of clinically relevant viruses. Additional acids can substantially improve the virucidal activity of ethanol at lower concentrations against, e.g. poliovirus, FCV, polyomavirus and FMDV although selected viruses such as HAV may still be too resistant. The selection of a suitable virucidal hand rub should be based on the viruses most prevalent in a unit and on the user acceptability of the product under frequent-use conditions.
Collapse
Affiliation(s)
- G Kampf
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Greifswald, Germany.
| |
Collapse
|
40
|
Ha JH, Kim SH, Lee HM, Kim SJ, Lee HW. Efficacy of Combination Treatment with Sodium Metasilicate and Sodium Hypochlorite for Inactivation of Norovirus on Fresh Vegetables. Foodborne Pathog Dis 2018; 15:73-80. [PMID: 29068710 DOI: 10.1089/fpd.2017.2331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, fresh vegetables have frequently been associated with the foodborne transmission of enteric viruses, such as human norovirus (NoV). Therefore, several studies have focused on developing methods to inactivate foodborne viruses for preventing outbreaks of foodborne illnesses. Sodium hypochlorite (NaOCl) is commonly used as a disinfectant, but results in undesirable effects on the appearance and taste of foods and can generate toxic byproducts when it exceeds the allowable concentration. Here, we evaluated the efficacy of a range of NaOCl concentrations (50-1000 ppm) for reducing the amounts of human NoV (NoV GII.4) on lettuce (Lactuca sativa), celery (Apium graveolens L.), and white cabbage (Brassica oleracea ssp. capitata). In addition, the combination treatment of NaOCl and sodium metasilicate (SMS, 0.1-0.5%) pentahydrate was evaluated for its ability to decrease the populations of NoV GII.4 in the three food samples. An immunomagnetic separation procedure combined with reverse transcription quantitative polymerase chain reaction was used for virus detection. For lettuce, celery, and cabbage, the NoV GII.4 recovery rates were 57.3% ± 6.5%, 52.5% ± 1.7%, and 60.3% ± 3.9%, respectively, using a glycine/NaCl elution buffer (0.25 M glycine/0.14 M NaCl, pH 9.5). The reductions of NoV GII.4 were 3.17, 3.06, and 3.27 log10 genomic copies/μL for lettuce, celery, and cabbage, respectively, at 1000 ppm NaOCl, while a reduction of ∼3 log10 genomic copies/μL was obtained when the samples were treated with a combination of 100 ppm NaOCl and 0.4% SMS pentahydrate. Taken together, these results demonstrated that combined treatment with NaOCl and SMS pentahydrate was an efficient strategy to reduce the concentration of NaOCl for control of NoV GII.4 contamination in fresh vegetables.
Collapse
Affiliation(s)
- Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi , Gwangju, Republic of Korea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi , Gwangju, Republic of Korea
| | - Hee-Min Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi , Gwangju, Republic of Korea
| | - Su-Ji Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi , Gwangju, Republic of Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi , Gwangju, Republic of Korea
| |
Collapse
|
41
|
OHMINE TAKAHITO, NARAI SEIKA, MATSUBARA TOSHIKI, NOMURA TOSHIHITO, ODA KOSUKE, FUKUSHI MASAYA, IRIE TAKASHI, KOMATSU TAKAYUKI, TOHYA YUKINOBU, SAKAGUCHI TAKEMASA. Eligibility of Feline Calicivirus for a Surrogate of Human Norovirus in Comparison with Murine Norovirus, Poliovirus and Coxsackievirus. Biocontrol Sci 2018; 23:145-149. [DOI: 10.4265/bio.23.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- TAKAHITO OHMINE
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - SEIKA NARAI
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - TOSHIKI MATSUBARA
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - TOSHIHITO NOMURA
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - KOSUKE ODA
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - MASAYA FUKUSHI
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - TAKASHI IRIE
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - TAKAYUKI KOMATSU
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine
| | - YUKINOBU TOHYA
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University
| | - TAKEMASA SAKAGUCHI
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
42
|
Recovery Optimization and Survival of the Human Norovirus Surrogates Feline Calicivirus and Murine Norovirus on Carpet. Appl Environ Microbiol 2017; 83:AEM.01336-17. [PMID: 28864657 DOI: 10.1128/aem.01336-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022] Open
Abstract
Carpets have been implicated in prolonged and reoccurring outbreaks of human noroviruses (HuNoV), the leading cause of acute gastroenteritis worldwide. Viral recovery from environmental surfaces, such as carpet, remains undeveloped. Our aim was to determine survival of HuNoV surrogates on an understudied environmental surface, carpet. First, we measured the zeta potential and absorption capacity of wool and nylon carpet fibers, we then developed a minispin column elution (MSC) method, and lastly we characterized the survival of HuNoV surrogates, feline calicivirus (FCV) and murine norovirus (MNV), over 60 days under 30 and 70% relative humidity (RH) on two types of carpet and one glass surface. Carpet surface charge was negative between relevant pH values (i.e., pH 7 to 9). In addition, wool could absorb approximately two times more liquid than nylon. The percent recovery efficiency obtained by the MSC method ranged from 4.34 to 20.89% and from 30.71 to 54.14% for FCV and MNV on carpet fibers, respectively, after desiccation. Overall, elution buffer type did not significantly affect recovery. Infectious FCV or MNV survived between <1 and 15 or between 3 and 15 days, respectively. However, MNV survived longer under some conditions and at significantly (P < 0.05) higher titers compared to FCV. Albeit, surrogates followed similar survival trends, i.e., both survived longest on wool then nylon and glass, while 30% RH provided a more hospitable environment compared to 70% RH. Reverse transcription-quantitative PCR signals for both surrogates were detectable for the entire study, but FCV genomic copies experienced significantly higher reductions (<3.80 log10 copies) on all surfaces compared to MNV (<1.10 log10 copies).IMPORTANCE Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis worldwide. Classical symptoms of illness include vomiting and diarrhea which could lead to severe dehydration and death. HuNoV are transmitted by the fecal-oral or vomitus-oral route via person-to-person contact, food, water, and/or environmental surfaces. Published laboratory-controlled studies have documented the environmental stability of HuNoV on hard surfaces, but there is limited laboratory-based evidence available about survival on soft surfaces, e.g., carpet and upholstered furniture. Several epidemiological reports have suggested soft surfaces may be HuNoV fomites illustrating the importance of conducting a survival study. The three objectives of our research were to demonstrate techniques to characterize soft surfaces, develop a viral elution method for carpet, and characterize the survival of HuNoV surrogates on carpet. These results can be used to improve microbial risk assessments, the development of much-needed soft surface disinfectant, and standardizing protocols for future soft surface studies.
Collapse
|
43
|
Sangsriratanakul N, Toyofuku C, Suzuki M, Komura M, Yamada M, Alam MS, Ruenphet S, Shoham D, Sakai K, Takehara K. Virucidal efficacy of food additive grade calcium hydroxide against surrogate of human norovirus. J Virol Methods 2017; 251:83-87. [PMID: 29054741 DOI: 10.1016/j.jviromet.2017.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
An alkaline agent, namely, food additive grade calcium hydroxide (FdCa(OH)2) in the solution, powder and suspension forms was evaluated as a virucidal agent, using a murine norovirus (MNV) as the surrogate for human norovirus. The main constituent of FdCa(OH)2 is Ca(OH)2, which has pH 13 in 0.17% solution. The results showed that 0.17% FdCa(OH)2 solution could inactivate MNV within 30s even in the presence of organic materials (5% fetal bovine serum (FBS)). In a contaminated surface experiment, MNV with 5% FBS was inoculated on rayon sheets, and the result showed FdCa(OH)2 solution could markedly reduce virus titer within 1min. When mouse feces were spiked with MNV and FdCa(OH)2 powder as 10% and 20% w/w was added to the feces, these concentrations could inactivate the virus within 30min and 15min, respectively. Whereas, FdCa(OH)2 suspension at 2.5% and 5% could inactivate the virus within 30min and at 1% within 45min. These and additional results obtained here indicate that FdCa(OH)2 is an effective virucidal agent against MNV, and can serve as a useful alternative disinfectant for inactivation and prevention of human norovirus in house and hospital.
Collapse
Affiliation(s)
- Natthanan Sangsriratanakul
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Chiharu Toyofuku
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mayuko Suzuki
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Miyuki Komura
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Masashi Yamada
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Shahin Alam
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Sakchai Ruenphet
- Virology and Immunology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Dany Shoham
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Kouji Sakai
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; The United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
44
|
Alidjinou EK, Sane F, Firquet S, Lobert PE, Hober D. Resistance of Enteric Viruses on Fomites. Intervirology 2017; 61:205-213. [PMID: 28614823 PMCID: PMC7179519 DOI: 10.1159/000448807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
Human enteric viruses are associated with several clinical features, especially gastroenteritis. Large amounts of these viruses can be released in the environment and spread to people. Enteric viruses are nonenveloped viruses and have displayed good survival in the environment. They can be significantly resistant in food and water but also on fomites, and this is thought to play a role in transmission, leading to sporadic cases or outbreaks. The survival of enteric viruses on fomites relies on many factors including the virus itself, fomite properties, and extrinsic environmental factors such as temperature or relative humidity. Several reports in the literature have found an association with gastroenteritis cases or outbreaks and fomites naturally contaminated by enteric viruses. However, the study of virus survival following natural contamination is challenging, and most published studies are laboratory based, using experimental contamination. In addition, recent and detailed data on the resistance of each of the main enteric viruses on fomites are scarce. Many approaches, both physical and chemical, can be used to inactivate enteric viruses, the efficacy of which depends on the virus and the disinfection conditions.
Collapse
Affiliation(s)
- Enagnon Kazali Alidjinou
- Laboratoire de Virologie EA3610, CHU de Lille, Faculté de Médecine, Université de Lille, Lille, France
| | | | | | | | | |
Collapse
|
45
|
Goda H, Yamaoka H, Nakayama-Imaohji H, Kawata H, Horiuchi I, Fujita Y, Nagao T, Tada A, Terada A, Kuwahara T. Microbicidal effects of weakly acidified chlorous acid water against feline calicivirus and Clostridium difficile spores under protein-rich conditions. PLoS One 2017; 12:e0176718. [PMID: 28472060 PMCID: PMC5417504 DOI: 10.1371/journal.pone.0176718] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/15/2017] [Indexed: 11/19/2022] Open
Abstract
Sanitation of environmental surfaces with chlorine based-disinfectants is a principal measure to control outbreaks of norovirus or Clostridium difficile. The microbicidal activity of chlorine-based disinfectants depends on the free available chlorine (FAC), but their oxidative potential is rapidly eliminated by organic matter. In this study, the microbicidal activities of weakly acidified chlorous acid water (WACAW) and sodium hypochlorite solution (NaClO) against feline calcivirus (FCV) and C. difficile spores were compared in protein-rich conditions. WACAW inactivated FCV and C. difficile spores better than NaClO under all experimental conditions used in this study. WACAW above 100 ppm FAC decreased FCV >4 log10 within 30 sec in the presence of 0.5% each of bovine serum albumin (BSA), polypeptone or meat extract. Even in the presence of 5% BSA, WACAW at 600 ppm FAC reduced FCV >4 log10 within 30 sec. Polypeptone inhibited the virucidal activity of WACAW against FCV more so than BSA or meat extract. WACAW at 200 ppm FAC decreased C. difficile spores >3 log10 within 1 min in the presence of 0.5% polypeptone. The microbicidal activity of NaClO was extensively diminished in the presence of organic matter. WACAW recovered its FAC to the initial level after partial neutralization by sodium thiosulfate, while no restoration of the FAC was observed in NaClO. These results indicate that WACAW is relatively stable under organic matter-rich conditions and therefore may be useful for treating environmental surfaces contaminated by human excretions.
Collapse
Affiliation(s)
- Hisataka Goda
- Honbu Sankei Co. Ltd., 2-2-53 Shiromi, Chuou-ku, Osaka, Japan
| | - Hitoshi Yamaoka
- Honbu Sankei Co. Ltd., 2-2-53 Shiromi, Chuou-ku, Osaka, Japan
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa, Japan
| | | | - Hiroyuki Kawata
- Honbu Sankei Co. Ltd., 2-2-53 Shiromi, Chuou-ku, Osaka, Japan
| | | | - Yatsuka Fujita
- Honbu Sankei Co. Ltd., 2-2-53 Shiromi, Chuou-ku, Osaka, Japan
| | - Tamiko Nagao
- Faculty of Nursing, Shikoku University, Furukawa, Ojin-cho, Tokushima, Japan
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa, Japan
| | - Atsushi Terada
- Department of Veterinary Medicine, Nihon University, Kameino, Fujisawa, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750–1 Miki, Kagawa, Japan
| |
Collapse
|
46
|
Norovirus Disease in Older Adults Living in Long-Term Care Facilities: Strategies for Management. CURRENT GERIATRICS REPORTS 2017; 6:26-33. [PMID: 29204334 DOI: 10.1007/s13670-017-0195-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose of Review Noroviruses are the most common cause of gastroenteritis outbreaks in long-term care facility (LTCFs). This review summarizes the most up-to-date knowledge on norovirus infection in LTCFs with the aim of identifying potential strategies for management. Recent Findings LTCF residents are at greater risk of norovirus infection. Early identification of norovirus infection and prompt initiation of appropriate supportive therapy are required to reduce morbidity and mortality. Measures to prevent outbreaks and reduce the risk of norovirus infection in LTCFs include timely diagnosis and implementation of infection control interventions to limit virus transmission. Summary Current guidelines for prevention and control are based on generic principles of infection control. Real-time reverse transcription-quantitative polymerase chain reaction assays have been the gold standard for the rapid and sensitive detection of noroviruses. With the recent breakthroughs of human norovirus in vitro culture, doors are now opened to evaluate the efficacy of environmental disinfectants and hand hygiene options. Additionally, development of licensed vaccines against noroviruses may provide another important tool for infection prevention among high-risk individuals.
Collapse
|
47
|
Zonta W, Mauroy A, Farnir F, Thiry E. Virucidal Efficacy of a Hydrogen Peroxide Nebulization Against Murine Norovirus and Feline Calicivirus, Two Surrogates of Human Norovirus. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:275-282. [PMID: 27384526 DOI: 10.1007/s12560-016-9253-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/28/2016] [Indexed: 05/04/2023]
Abstract
Human noroviruses (HuNoV) are amongst the leading causes of acute non-bacterial gastroenteritis in humans and can be transmitted via person-to-person contact, via contact with contaminated surfaces or by consumption of contaminated food. Contaminated surfaces in healthcare settings contribute to the transmission of viruses. No-touch automated room disinfection systems might prevent such a spread of contamination and thus their virucidal effect needs to be evaluated. The aim of this study was to assess the efficacy of a nebulization system spraying hydrogen peroxide on two main surrogates of HuNoV, namely murine norovirus (MNV) and feline calicivirus (FCV). The viruses were dried on cover glasses and on stainless steel discs and exposed to nebulization. The number of infectious viral particles and genomic copies before and after the nebulization was compared. The efficacy in reducing infectivity of both surrogates was demonstrated. For the infectious viral titre of MNV and FCV, a log10 reduction factor ≥4.84 and 4.85 was observed after nebulization, respectively, for tests on cover glasses and ≥3.90 and 5.30, respectively, for tests on stainless steel discs. Only low reductions in genomic copy numbers were observed for both surrogates. The nebulization of hydrogen peroxide showed a clear virucidal effect on both HuNoV surrogates, MNV and FCV, on two different carriers and the use of nebulization should be promoted in complementarity with conventional disinfection methods in healthcare settings and food processing facilities to reduce viral load and spread of contamination.
Collapse
Affiliation(s)
- William Zonta
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Axel Mauroy
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Frederic Farnir
- Biostatistics and Bioinformatics Applied to Veterinary Science, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
48
|
Nims RW, Zhou SS. Intra-family differences in efficacy of inactivation of small, non-enveloped viruses. Biologicals 2016; 44:456-62. [PMID: 27473770 DOI: 10.1016/j.biologicals.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
The use of specific model viruses for validating viral purification process steps and for assessing the efficacies of viral disinfectants is based, in part, on the assumption that viral susceptibilities to such treatments will be similar for different members, including different genera, within a given viral family. This assumption is useful in cases where cell-based infectivity assays or laboratory strains for the specific viruses of interest might not exist. There are some documented cases, however, where exceptions to this assumption exist. In this paper, we discuss some of the more striking cases of intra-family differences in susceptibilities to inactivation steps used for downstream viral purification steps in biologics manufacture (e.g. heat inactivation, low pH, and guanidinium hydrochloride inactivation) and to specific viral disinfectants (e.g. alcohols, hydrogen peroxide, and quaternary ammonium-containing disinfectants) that might be employed for facility/equipment disinfection. The results suggest that care should be taken when extrapolating viral inactivation susceptibilities from specific model viruses to different genera or even to different members of the same genus. This should be taken into consideration by regulatory agencies and biologics manufacturers designing viral clearance and facility disinfection validation studies, and developers and evaluators of viral disinfectants.
Collapse
Affiliation(s)
- Raymond W Nims
- RMC Pharmaceutical Solutions, Inc., 1851 Lefthand Circle, Suite A, Longmont, CO 80501, USA
| | - S Steve Zhou
- MicroBioTest, A Division of Microbac Laboratories, Inc., 105 Carpenter Drive, Sterling, VA 20164, USA.
| |
Collapse
|
49
|
Cook N, Knight A, Richards GP. Persistence and Elimination of Human Norovirus in Food and on Food Contact Surfaces: A Critical Review. J Food Prot 2016; 79:1273-94. [PMID: 27357051 DOI: 10.4315/0362-028x.jfp-15-570] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This critical review addresses the persistence of human norovirus (NoV) in water, shellfish, and processed meats; on berries, herbs, vegetables, fruits, and salads; and on food contact surfaces. The review focuses on studies using NoV; information from studies involving only surrogates is not included. It also addresses NoV elimination or inactivation by various chemical, physical, or processing treatments. In most studies, persistence or elimination was determined by detection and quantification of the viral genome, although improved methods for determining infectivity have been proposed. NoV persisted for 60 to 728 days in water, depending on water source. It also persisted on berries, vegetables, and fruit, often showing <1-log reduction within 1 to 2 weeks. NoV was resilient on carpets, Formica, stainless steel, polyvinyl chloride, and ceramic surfaces; during shellfish depuration; and to repeated freeze-thaw cycles. Copper alloy surfaces may inactivate NoV by damaging viral capsids. Disinfection was achieved for some foods or food contact surfaces using chlorine, calcium or sodium hypochlorite, chlorine dioxide, high hydrostatic pressure, high temperatures, pH values >8.0, freeze-drying, and UV radiation. Ineffective disinfectants included hydrogen peroxide, quaternary ammonium compounds, most ethanol-based disinfectants, and antiseptics at normally used concentrations. Thorough washing of herbs and produce was effective in reducing, but not eliminating, NoV in most products. Washing hands with soap generally reduced NoV by <2 log. Recommendations for future research needs are provided.
Collapse
Affiliation(s)
- Nigel Cook
- Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Angus Knight
- Leatherhead Food Research, Leatherhead, Surrey, KT22 7RY, UK
| | - Gary P Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware 19901, USA.
| |
Collapse
|
50
|
Park GW, Collins N, Barclay L, Hu L, Prasad BVV, Lopman BA, Vinjé J. Strain-Specific Virolysis Patterns of Human Noroviruses in Response to Alcohols. PLoS One 2016; 11:e0157787. [PMID: 27337036 PMCID: PMC4919085 DOI: 10.1371/journal.pone.0157787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Alcohol-based hand sanitizers are widely used to disinfect hands to prevent the spread of pathogens including noroviruses. Alcohols inactivate norovirus by destruction of the viral capsid, resulting in the leakage of viral RNA (virolysis). Since conflicting results have been reported on the susceptibility of human noroviruses against alcohols, we exposed a panel of 30 human norovirus strains (14 GI and 16 GII strains) to different concentrations (50%, 70%, 90%) of ethanol and isopropanol and tested the viral RNA titer by RT-qPCR. Viral RNA titers of 10 (71.4%), 14 (100%), 3 (21.4%) and 7 (50%) of the 14 GI strains were reduced by > 1 log10 RNA copies/ml after exposure to 70% and 90% ethanol, and 70% and 90% isopropanol, respectively. RNA titers of 6 of the 7 non-GII 4 strains remained unaffected after alcohol exposure. Compared to GII strains, GI strains were more susceptible to ethanol than to isopropanol. At 90%, both alcohols reduced RNA titers of 8 of the 9 GII.4 strains by ≥ 1 log10 RNA copies/ml. After exposure to 70% ethanol, RNA titers of GII.4 Den Haag and Sydney strains decreased by ≥ 1.9 log10, whereas RNA reductions for GII.4 New Orleans strains were < 0.5 log10. To explain these differences, we sequenced the complete capsid gene of the 9 GII.4 strains and identified 17 amino acid substitutions in the P2 region among the 3 GII.4 variant viruses. When comparing with an additional set of 200 GII.4 VP1 sequences, only S310 and P396 were present in all GII.4 New Orleans viruses but not in the ethanol-sensitive GII.4 Sydney and GII.4 Den Haag viruses Our data demonstrate that alcohol susceptibility patterns between different norovirus genotypes vary widely and that virolysis data for a single strain or genotype are not representative for all noroviruses.
Collapse
Affiliation(s)
- Geun Woo Park
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Nikail Collins
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Atlanta Research and Education Foundation (AREF), Atlanta, GA, United States of America
| | - Leslie Barclay
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - B. V. Venkataram Prasad
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Benjamin A. Lopman
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|