1
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Plähn NMJ, Safarkhanlo Y, Açikgöz BC, Mackowiak ALC, Radojewski P, Bonanno G, Peper ES, Heule R, Bastiaansen JAM. ORACLE: An analytical approach for T 1, T 2, proton density, and off-resonance mapping with phase-cycled balanced steady-state free precession. Magn Reson Med 2024. [PMID: 39710877 DOI: 10.1002/mrm.30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE To develop and validate a novel analytical approach simplifyingT 1 $$ {T}_1 $$ ,T 2 $$ {T}_2 $$ , proton density (PD), and off-resonanceΔ f $$ \Delta f $$ quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles. THEORY AND METHODS Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantifyT 1 $$ {T}_1 $$ ,T 2 $$ {T}_2 $$ , proton density (PD), andΔ f $$ \Delta f $$ . An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantifyT 1 $$ {T}_1 $$ ,T 2 $$ {T}_2 $$ , PD,T 1 $$ {T}_1 $$ /T 2 $$ {T}_2 $$ , andΔ f $$ \Delta f $$ based on fully sampled (N = 20 $$ N=20 $$ ) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N = 4 $$ N=4 $$ ) bSSFP profiles in numerical simulations and human brains. RESULTS ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains,T 1 $$ {T}_1 $$ andT 2 $$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white-matter values of 642 and 51 ms using ORACLE. TheΔ f $$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD andT 1 $$ {T}_1 $$ maps had comparable histograms. TheΛ $$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing-related quantification errors in undersampled bSSFP profiles, significantly reducing scan time. CONCLUSION ORACLE enables simplified and rapid quantification ofT 1 $$ {T}_1 $$ ,T 2 $$ {T}_2 $$ , PD, andΔ f $$ \Delta f $$ from phase-cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.
Collapse
Affiliation(s)
- Nils M J Plähn
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Yasaman Safarkhanlo
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Department of Cardiology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Berk C Açikgöz
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Piotr Radojewski
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- University Institute of Diagnostic and Interventional Neuroradiology, Bern, Switzerland
| | - Gabriele Bonanno
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- University Institute of Diagnostic and Interventional Neuroradiology, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Bern, Switzerland
| | - Eva S Peper
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Rahel Heule
- Center for MR Research, University Children's Hospital, Zurich, Switzerland
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
3
|
Cicero NG, Fultz NE, Jeong H, Williams SD, Gomez D, Setzer B, Warbrick T, Jaschke M, Gupta R, Lev M, Bonmassar G, Lewis LD. High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets. J Neural Eng 2024; 21:066004. [PMID: 39419105 DOI: 10.1088/1741-2552/ad8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets.Approach. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality.Main results. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present.Significance. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.
Collapse
Affiliation(s)
- Nicholas G Cicero
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Nina E Fultz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Stephanie D Williams
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel Gomez
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Beverly Setzer
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States of America
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | | | - Ravij Gupta
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Michael Lev
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
| | - Laura D Lewis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
| |
Collapse
|
4
|
Mugnai M, Auriemma E, Contiero B, Franchini D, Zini E, Tirrito F. Effect of gadolinium contrast medium administration on susceptibility-weighted imaging of the canine brain. Vet Radiol Ultrasound 2024; 65:539-546. [PMID: 38881498 DOI: 10.1111/vru.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Susceptibility-weighted imaging (SWI) is a gradient echo (GE) MRI sequence. Intravenous administration of gadolinium (Gd) may affect GE images, but its effect on SWI has not been investigated in veterinary medicine. This cross-sectional prospective study evaluated the effects of Gd on SWI. Seventy-one dogs that underwent brain MRI were included and distributed in two groups. Susceptibility-weighted imaging was performed pre- and postcontrast, obtained immediately after Gd administration (Group A: n = 35) or delayed (Group B: n = 36; median delay 19.9 min). Pre- and post-Gd SWI were analyzed for signal intensity changes in the lentiform nuclei of gray matter (GM), in the centrum semiovale of white matter (WM), and in brain lesions. No difference in GM signal intensity was identified in either group between pre- and postcontrast images (Group A, P = .395; Group B, P = .895). In group A, WM signal intensity was lower in pre- than post-Gd sequences (P = .019). Brain lesions were identified in 30/71 (41%) cases; the signal intensity of intracranial lesions was significantly lower in pre- than post-Gd images in both groups (P < .001); the number of lesions influenced the difference in signal intensity in group B (P = .043). Susceptibility artifacts did not change in appearance between pre- and postcontrast images in either the normal brain or in parenchymal lesions. In conclusion, Gd may modify the signal intensity of WM and brain lesions but does not affect the susceptibility artifacts and does not interfere with SWI interpretation.
Collapse
Affiliation(s)
- Martina Mugnai
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Edoardo Auriemma
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, Legnaro, Padova, Italy
| | - Delia Franchini
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Eric Zini
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, Legnaro, Padova, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Federica Tirrito
- AniCura Istituto Veterinario di Novara, Granozzo con Monticello, Novara, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Torino, Italy
| |
Collapse
|
5
|
Zhao Y, Pan J, Han B, Hou W, Li B, Wang J, Wang G, He Y, Ma M, Zhou J, Yu C, Sun SK. Ultrahigh-Resolution Visualization of Vascular Heterogeneity in Brain Tumors via Magnetic Nanoparticles-Enhanced Susceptibility-Weighted Imaging. ACS NANO 2024. [PMID: 39094075 DOI: 10.1021/acsnano.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The precise assessment of vascular heterogeneity in brain tumors is vital for diagnosing, grading, predicting progression, and guiding treatment decisions. However, currently, there is a significant shortage of high-resolution imaging approaches. Herein, we propose a contrast-enhanced susceptibility-weighted imaging (CE-SWI) utilizing the minimalist dextran-modified Fe3O4 nanoparticles (Dextran@Fe3O4 NPs) for ultrahigh-resolution mapping of vasculature in brain tumors. The Dextran@Fe3O4 NPs are prepared via a facile coprecipitation method under room temperature, and exhibit small hydrodynamic size (28 nm), good solubility, excellent biocompatibility, and high transverse relaxivity (r2*, 159.7 mM-1 s-1) under 9.4 T magnetic field. The Dextran@Fe3O4 NPs-enhanced SWI can increase the contrast-to-noise ratio (CNR) of cerebral vessels to 2.5 times that before injection and achieves ultrahigh-spatial-resolution visualization of microvessels as small as 0.1 mm in diameter. This advanced imaging capability not only allows for the detailed mapping of both enlarged peritumoral drainage vessels and the intratumoral microvessels, but also facilitates the sensitive imaging detection of vascular permeability deterioration in a C6 cells-bearing rat glioblastoma model. Our proposed Dextran@Fe3O4 NPs-enhanced SWI provides a powerful imaging technique with great clinical translation potential for the precise theranostics of brain tumors.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| | - Yujing He
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| |
Collapse
|
6
|
Phuyal S, Paudel S, Chhetri ST, Phuyal P, Shrestha S, Maharjan AMS. Susceptibility weighted imaging for detection of thrombus in acute ischemic stroke: A cross-sectional study. Health Sci Rep 2024; 7:e2285. [PMID: 39100712 PMCID: PMC11294189 DOI: 10.1002/hsr2.2285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/02/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Background and Aims Susceptibility-weighted imaging (SWI) can help in the diagnosis of thrombus within the vessel in acute ischemic stroke, known as susceptibility vessel sign (SVS), and detection of SVS within the vessel can predict treatment modality and outcome. In this study, the purpose is to correlate the SVS on SWI with different parameters of stroke. Methods This prospective cross-sectional study enrolled consecutive stroke patients with vessel occlusion on magnetic resonance angiography (MRA) over 1 year. The relationship between SVS on SWI with risk factors, territory involved, and length of thrombus was correlated with the National Institutes of Health Stroke Scale (NIHSS). Results A total of 105 patients were enrolled in this study. Sixty-two percent (66 out of 105) of patients showed SVS on SWI with MRA-positive occlusion. A positive correlation was observed between SVS on SWI and the risk factor (p = 0.003, chi-square test), with 86% of patients with heart disease and 47% with hypertension exhibiting SVS. Additionally, a positive correlation was observed between SVS on SWI and territorial occlusion (p = 0.000, chi-square test). A moderate positive correlation was observed between the NIHSS and thrombus length (p = 0.002, Pearson's correlation coefficient), with a Pearson's coefficient of 0.367. Conclusions SWI can be useful in identifying the location of the thrombus, and NIHSS can determine the thrombus length in acute stroke. A higher incidence of SVS can be associated with risk factors, and it also depends upon the site of occlusion of the vessel.
Collapse
Affiliation(s)
- Subash Phuyal
- Department of NeuroradiologyUpendra Devkota Memorial National Institute of Neurology and Allied SciencesKathmanduNepal
| | | | | | - Prakash Phuyal
- Department of NeuroradiologyUpendra Devkota Memorial National Institute of Neurology and Allied SciencesKathmanduNepal
| | - Sadina Shrestha
- Department of NeuroradiologyUpendra Devkota Memorial National Institute of Neurology and Allied SciencesKathmanduNepal
| | - Anzil Man Singh Maharjan
- Department of NeuroradiologyUpendra Devkota Memorial National Institute of Neurology and Allied SciencesKathmanduNepal
| |
Collapse
|
7
|
Plähn NMJ, Poli S, Peper ES, Açikgöz BC, Kreis R, Ganter C, Bastiaansen JAM. Getting the phase consistent: The importance of phase description in balanced steady-state free precession MRI of multi-compartment systems. Magn Reson Med 2024; 92:215-225. [PMID: 38321594 DOI: 10.1002/mrm.30033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. THEORY AND METHODS Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. RESULTS Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. CONCLUSION The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
Collapse
Affiliation(s)
- Nils M J Plähn
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simone Poli
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Eva S Peper
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Berk C Açikgöz
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Carl Ganter
- Department of Diagnostic and Interventional Radiology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
8
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
9
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
10
|
Perillo T, Capasso R, Pinto A. Neuroimaging of the Most Common Meningitis and Encephalitis of Adults: A Narrative Review. Diagnostics (Basel) 2024; 14:1064. [PMID: 38893591 PMCID: PMC11171665 DOI: 10.3390/diagnostics14111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Meningitis is the infection of the meninges, which are connective tissue membranes covering the brain, and it most commonly affects the leptomeninges. Clinically, meningitis may present with fever, neck stiffness, altered mental status, headache, vomiting, and neurological deficits. Encephalitis is an infection of the brain, which usually presents with fever, altered mental status, neurological deficits, and seizure. Meningitis and encephalitis are serious conditions which could also coexist, with high morbidity and mortality, thus requiring prompt diagnosis and treatment. Imaging plays an important role in the clinical management of these conditions, especially Magnetic Resonance Imaging. It is indicated to exclude mimics and evaluate the presence of complications. The aim of this review is to depict imaging findings of the most common meningitis and encephalitis.
Collapse
Affiliation(s)
- Teresa Perillo
- Department of Radiology, CTO Hospital, AORN dei Colli, 80141 Naples, Italy; (R.C.); (A.P.)
| | | | | |
Collapse
|
11
|
Punpichet M, Limcharoenchai C, Suthiwartnaruput K, Panyaping T. Internal Cerebral Vein in Susceptibility-Weighted Imaging: A Reliable Tool to Differentiate Among Calcification, Microbleed, and Gross Hemorrhage in Brain Tumors. Cureus 2024; 16:e61166. [PMID: 38933615 PMCID: PMC11202077 DOI: 10.7759/cureus.61166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Background and objective Susceptibility-weighted imaging (SWI) sequence is crucial for brain MRI examinations, as it is equipped with a high sensitivity to detect calcification, microbleed, and gross hemorrhage. Intracranial venous structures such as the superior sagittal sinus (SSS) and cortical veins are used as reference structures in phase image SWI to differentiate diamagnetic and paramagnetic substances. Our study focuses on the internal cerebral vein (ICV) as another reliable reference structure. We aimed to analyze the diagnostic accuracy and detectability of calcification and hemorrhagic components in brain tumors using ICV, cortical veins, and SSS as references on phase image SWI, with CT scans for comparison. Material and methods A retrospective review of calcification and hemorrhagic components in brain tumors was conducted using MRI and CT from January 2017 to June 2023. Results The study included a total of 192 patients with brain tumors. For calcification components (63 cases), ICV and cortical veins as reference structures showed excellent sensitivity (96.8%), specificity (100%), and accuracy (98.9%). SSS demonstrated slightly lower detectability but maintained high sensitivity (96.5%), specificity (100%), and accuracy (98.8%) levels. No statistical differences were noted among these reference structures (p>0.05) and excellent interobserver agreement (Cohen's Kappa of 1) was observed. Conclusions The ICV is located in the central image, is large, without any nearby arteries, and is easy to identify using SWI phase images. Using the ICV as a reference to characterize intratumoral calcification, microbleed, and hemorrhage demonstrates high accuracy and detectability. With its findings of excellent interobserver agreement, our study will be of immense benefit to radiologists.
Collapse
Affiliation(s)
- Minth Punpichet
- Department of Radiology, Phramongkutklao Hospital and College of Medicine, Bangkok, THA
| | | | | | - Theeraphol Panyaping
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, THA
| |
Collapse
|
12
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
De A, Grenier J, Wilman AH. Simultaneous time-of-flight MR angiography and quantitative susceptibility mapping with key time-of-flight features. NMR IN BIOMEDICINE 2024; 37:e5079. [PMID: 38054247 DOI: 10.1002/nbm.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
A technique for combined time-of-flight (TOF) MR angiography (MRA) and quantitative susceptibility mapping (QSM) was developed with key features of standard three-dimensional (3D) TOF acquisitions, including multiple overlapping thin slab acquisition (MOTSA), ramped RF excitation, and venous saturation. The developed triple-echo 3D TOF-QSM sequence enabled TOF-MRA, susceptibility-weighted imaging (SWI), QSM, and R2* mapping. The effects of ramped RF, resolution, flip angle, venous saturation, and MOTSA were studied on QSM. Six volunteers were scanned at 3 T with the developed sequence, conventional TOF-MRA, and conventional SWI. Quantitative comparison of susceptibility values on QSM and normalized arterial and venous vessel-to-background contrasts on TOF and SWI were performed. The ramped RF excitation created an inherent phase variation in the raw phase. A generic correction factor was computed to remove the phase variation to obtain QSM without artifacts from the TOF-QSM sequence. No statistically significant difference was observed between the developed and standard QSM sequence for susceptibility values. However, maintaining standard TOF features led to compromises in signal-to-noise ratio for QSM and SWI, arising from the use of MOTSA rather than one large 3D slab, higher TOF spatial resolution, increased TOF background suppression due to larger flip angles, and reduced venous signal from venous saturation. In terms of vessel contrast, veins showed higher normalized contrast on SWI derived from TOF-QSM than the standard SWI sequence. While fast flowing arteries had reduced contrast compared with standard TOF-MRA, no statistical difference was observed for slow flowing arteries. Arterial contrast differences largely arise from the longer TR used in TOF-QSM over standard TOF-MRA to accommodate additional later echoes for SWI. In conclusion, although the sequence has a longer TR and slightly lower arterial contrast, provided an adequate correction is made for ramped RF excitation effects on phase, QSM may be performed from a multiecho sequence that includes all key TOF features, thus enabling simultaneous TOF-MRA, SWI, QSM, and R2* map computation.
Collapse
Affiliation(s)
- Ashmita De
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Justin Grenier
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Chatterjee S, Ghosh R, Biswas P, Das S, Sengupta S, Dubey S, Ray BK, Pandit A, Benito-León J, Bhattacharjee R. Diabetic striatopathy and other acute onset de novo movement disorders in hyperglycemia. Diabetes Metab Syndr 2024; 18:102997. [PMID: 38582065 DOI: 10.1016/j.dsx.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND AND AIMS Acute onset de novo movement disorder is an increasingly recognized, yet undereported complication of diabetes. Hyperglycemia can give rise to a range of different movement disorders, hemichorea-hemiballism being the commonest. This article delves into the current knowledge about this condition, its diverse presentations, ongoing debates regarding its underlying mechanisms, disparities between clinical and radiological findings, and challenges related to its management. METHODS PubMed and Google Scholar were searched with the following key terms- "diabetes", "striatopathy", "hyperglycemia", "striatum", "basal ganglia", "movement disorder", "involuntary movement". Case reports, systematic reviews, meta-analysis, and narrative reviews published in English literature related to the topic of interest from January 1, 1950, to October 20, 2023, were retrieved. The references cited in the chosen articles were also examined, and those considered relevant were included in the review. RESULTS Diabetic striatopathy is the prototype of movement disorders associated with hyperglycemia with its characteristic neuroimaging feature (contralateral striatal hyperdensitity on computed tomography or hyperintensity on T1-weighted magnetic resonance imaging). Risk factors for diabetic striatopathy includes Asian ethnicity, female gender, prolonged poor glycemic control, and concurrent retinopathy. Several hypotheses have been proposed to explain the pathophysiology of movement disorders induced by hyperglycemia. These hypotheses are not mutually exclusive; instead, they represent interconnected pathways contributing to the development of this unique condition. While the most prominent clinical feature of diabetic striatopathy is a movement disorder, its phenotypic expression has been found to extend to other manifestations, including stroke, seizures, and cognitive and behavioral symptoms. Fortunately, the prognosis for diabetic striatopathy is generally excellent, with complete resolution achievable through the use of anti-hyperglycemic therapy alone or in combination with neuroleptic medications. CONCLUSION Hyperglycemia is the commonest cause of acute onset de novo movement disorders presenting to a range of medical specialists. So, it is of utmost importance that the physicians irrespective of their speciality remain aware of this clinical entity and check blood glucose at presentation before ordering any other investigations. Prompt clinical diagnosis of this condition and implementation of intensive glycemic control can yield significant benefits for patients.
Collapse
Affiliation(s)
- Subhankar Chatterjee
- Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, India.
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College & Hospital, Burdwan, India.
| | - Payel Biswas
- Department of Radiodiagnosis, GNRC Hospitals, Barasat, Kolkata, India.
| | - Shambaditya Das
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Samya Sengupta
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Biman Kanti Ray
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Alak Pandit
- Department of Neuromedicine, Bangur Institute of Neurosciences, IPGMER & SSKM Hospital, Kolkata, India.
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
| | - Rana Bhattacharjee
- Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, India.
| |
Collapse
|
15
|
Kalchev E. Generalized Venous Prominence on Susceptibility-Weighted Imaging Correlates With Global Cerebral Blood Flow Decline. Cureus 2024; 16:e56272. [PMID: 38623126 PMCID: PMC11016990 DOI: 10.7759/cureus.56272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/17/2024] Open
Abstract
Objective This study investigated the global correlation between cerebral blood flow (CBF) decline and increased venous prominence, utilizing arterial spin labeling (ASL) and susceptibility-weighted imaging (SWI) MRI techniques. Methods The study was conducted at the Department of Diagnostic Imaging, St. Marina University Hospital, Varna, Bulgaria. Through a retrospective analysis, we examined data from 115 patients undergoing neurological assessment. CBF decline was assessed through ASL MRI, while global venous visibility was evaluated using SWI MRI. Results The analysis revealed a significant positive correlation between CBF decline and venous prominence (Spearman's rho = 0.261, p = 0.005), indicating a systemic interaction between cerebral perfusion and the venous system. Logistic regression further underscored CBF decline as a significant predictive factor for increased venous visibility (odds ratio (OR) = 1.690, p = 0.004). The assessments' high inter-rater reliability (Cohen's kappa = 0.82) supports the consistency and validity of our findings. Conclusion The integration of ASL and SWI MRI provides critical insights into cerebral hemodynamics, emphasizing the significance of these imaging modalities in both neurovascular research and clinical practice. Our findings suggest a systemic relationship between CBF decline and venous system alterations, underscoring the potential for these techniques to enhance our understanding of neurovascular disorders. Future studies should pursue longitudinal and quantitative analyses to deepen our comprehension of these relationships and their clinical implications.
Collapse
Affiliation(s)
- Emilian Kalchev
- Diagnostic Imaging, University Hospital St. Marina, Varna, BGR
| |
Collapse
|
16
|
Perillo T, Vitiello A, Carotenuto B, Perrotta M, Serino A, Manto A. Spontaneous epidural and subdural hematomas of the spine: Review of anatomy and imaging findings. Neuroradiol J 2024; 37:23-30. [PMID: 36908230 PMCID: PMC10863578 DOI: 10.1177/19714009231163553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Spontaneous epidural (SEH) and subdural hematomas (SSH) of the spine are a rare cause of spinal injury and morbidity. They often present in the emergency setting, though magnetic resonance imaging is the gold-standard for diagnosis. Knowledge of anatomy, and in particular of the dural layers of the spine, is crucial to understand the location of SEH and SSH and their relationship with spinal structure. In this pictorial review, we aim to explain imaging features of the SEH and SSH, and to rule out their main differential diagnosis.
Collapse
Affiliation(s)
- Teresa Perillo
- Department of Neuroradiology, “Umberto I” Hospital, ASL Salerno, Italy
| | - Alessio Vitiello
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | | | - Marianna Perrotta
- Department of Neuroradiology, “Umberto I” Hospital, ASL Salerno, Italy
| | - Antonietta Serino
- Department of Neuroradiology, “Umberto I” Hospital, ASL Salerno, Italy
| | - Andrea Manto
- Department of Neuroradiology, “Umberto I” Hospital, ASL Salerno, Italy
| |
Collapse
|
17
|
Dhabalia R, Kashikar SV, Parihar PS, Mishra GV. Unveiling the Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) Assessment of T2-Weighted Hyperintensities in the Neuroimaging Landscape. Cureus 2024; 16:e54808. [PMID: 38529430 PMCID: PMC10961652 DOI: 10.7759/cureus.54808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
T2-weighted hyperintensities in neuroimaging represent areas of heightened signal intensity on magnetic resonance imaging (MRI) scans, holding crucial importance in neuroimaging. This comprehensive review explores the T2-weighted hyperintensities, providing insights into their definition, characteristics, clinical relevance, and underlying causes. It highlights the significance of these hyperintensities as sensitive markers for neurological disorders, including multiple sclerosis, vascular dementia, and brain tumors. The review also delves into advanced neuroimaging techniques, such as susceptibility-weighted and diffusion tensor imaging, and the application of artificial intelligence and machine learning in hyperintensities analysis. Furthermore, it outlines the challenges and pitfalls associated with their assessment and emphasizes the importance of standardized protocols and a multidisciplinary approach. The review discusses future directions for research and clinical practice, including the development of biomarkers, personalized medicine, and enhanced imaging techniques. Ultimately, the review underscores the profound impact of T2-weighted hyperintensities in shaping the landscape of neurological diagnosis, prognosis, and treatment, contributing to a deeper understanding of complex neurological conditions and guiding more informed and effective patient care.
Collapse
Affiliation(s)
- Rishabh Dhabalia
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shivali V Kashikar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratap S Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Gaurav V Mishra
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
18
|
Clarke MA, Witt AA, Robison RK, Fleishman S, Combes AJE, Houston D, Prock LE, Sweeney G, O'Grady KP, McKnight CD, Smith SA. Cervical spinal cord susceptibility-weighted MRI at 7T: Application to multiple sclerosis. Neuroimage 2023; 284:120460. [PMID: 37979894 DOI: 10.1016/j.neuroimage.2023.120460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.
Collapse
Affiliation(s)
- Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Atlee A Witt
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; School of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Ryan K Robison
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Philips Healthcare, Nashville TN 37232 USA
| | - Sawyer Fleishman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Delaney Houston
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Logan E Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37232 USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA; Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37232 USA.
| |
Collapse
|
19
|
Ishihara BK, Hart MG, Barrick TR, Howe FA, Morgante F, Pereira EA. Radiofrequency thalamotomy for tremor produces focused and predictable lesions shown on magnetic resonance images. Brain Commun 2023; 5:fcad329. [PMID: 38075945 PMCID: PMC10710300 DOI: 10.1093/braincomms/fcad329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 02/23/2024] Open
Abstract
Radiofrequency thalamotomy is a neurosurgical management option for medically-refractory tremor. In this observational study, we evaluate the MRI features of the resultant lesion, their temporal dynamics, and how they vary depending on surgical factors. We report on lesion characteristics including size and location, as well as how these vary over time and across different MRI sequences. Data from 12 patients (2 essential tremor, 10 Parkinson's disease) who underwent unilateral radiofrequency thalamotomy for tremor were analysed. Lesion characteristics were compared across five structural sequences. Volumetric analysis of lesion features was performed at early (<5 weeks) and late (>5 months) timepoints by manual segmentation. Lesion location was determined after registration of lesions to standard space. All patients showed tremor improvement (clinical global impressions scale) postoperatively. Chronic side-effects included balance disturbances (n = 4) and worsening mobility due to parkinsonism progression (n = 1). Early lesion features including a necrotic core, cytotoxic oedema and perilesional oedema were best demarcated on T2-weighted sequences. Multiple lesions were associated with greater cytotoxic oedema compared with single lesions (T2-weighted mean volume: 537 ± 112 mm³ versus 302 ± 146 mm³, P = 0.028). Total lesion volume reduced on average by 90% between the early and late scans (T2-weighted mean volume: 918 ± 517 versus 75 ± 50 mm³, t = 3.592, P = 0.023, n = 5), with comparable volumes demonstrated at ∼6 months after surgery. Lesion volumes on susceptibility-weighted images were larger than those of T2-weighted images at later timepoints. Radiofrequency thalamotomy produces focused and predictable lesion imaging characteristics over time. T2-weighted scans distinguish between the early lesion core and oedema characteristics, while lesions may remain more visible on susceptibility-weighted images in the months following surgery. Scanning patients in the immediate postoperative period and then at 6 months is clinically meaningful for understanding the anatomical basis of the transient and permanent effects of thalamotomy.
Collapse
Affiliation(s)
- Bryony K Ishihara
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Michael G Hart
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Thomas R Barrick
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Franklyn A Howe
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
- Department of Experimental and Clinical Medicine, University of Messina, 98122 Messina, Italy
| | - Erlick A Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
20
|
Boparai MS, Musheyev B, Hou W, Mehler MF, Duong TQ. Brain MRI findings in severe COVID-19 patients: a meta-analysis. Front Neurol 2023; 14:1258352. [PMID: 37900601 PMCID: PMC10602808 DOI: 10.3389/fneur.2023.1258352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Neurocognitive symptoms and dysfunction of various severities have become increasingly recognized as potential consequences of SARS-CoV-2 infection. Although there are numerous observational and subjective survey-reporting studies of neurological symptoms, by contrast, those studies describing imaging abnormalities are fewer in number. Methods This study conducted a metanalysis of 32 studies to determine the incidence of the common neurological abnormalities using magnetic resonance imaging (MRI) in patients with COVID-19. Results We also present the common clinical findings associated with MRI abnormalities. We report the incidence of any MRI abnormality to be 55% in COVID-19 patients with perfusion abnormalities (53%) and SWI abnormalities (44%) being the most commonly reported injuries. Cognitive impairment, ICU admission and/or mechanical ventilation status, older age, and hospitalization or longer length of hospital stay were the most common clinical findings associated with brain injury in COVID-19 patients. Discussion Overall, the presentation of brain injury in this study was diverse with no substantial pattern of injury emerging, yet most injuries appear to be of vascular origin. Moreover, analysis of the association between MRI abnormalities and clinical findings suggests that there are likely many mechanisms, both direct and indirect, by which brain injury occurs in COVID-19 patients.
Collapse
Affiliation(s)
- Montek S. Boparai
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin Musheyev
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Wei Hou
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F. Mehler
- Department of Neurology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tim Q. Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Lan W, Wu X, Wu Y, Zhang H. Evaluating the role of Ginkgo biloba extract in the secondary prevention of acute ischemic stroke with cerebral microbleeds by quantitative susceptibility mapping (QSM). Int J Neurosci 2023:1-10. [PMID: 37812205 DOI: 10.1080/00207454.2023.2268264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND EGb 761, a standardized dry extract of Ginkgo biloba leaves, has certain anti-inflammatory and thrombotic effects and can be used to treat cerebrovascular diseases. METHODS A total of 49 patients were randomly assigned to the Aspirin group (24 cases in Controlled group) and the Aspirin + Ginkgo biloba group (25 cases in Treatment group). The quantitative magnetic sensitivity and venous oxygen saturation of cerebral microbleeds were analyzed at admission, discharge, and after follow-up for 3 and 6 months. RESULTS The demographic details age, gender, and admission to NIHSS were not significantly different between the two groups (p < 0.05). Quantitative susceptibility mapping (QSM) showed that the magnetic sensitivity of patients in both groups remained stable after 3 and 6 months of follow-up, while the venous oxygen saturation of the Treatment group increased. The venous oxygen saturation at 3 and 6 months of follow-up was negatively correlated with the modified mRS grade score. CONCLUSIONS QSM can be used as a quantitative follow-up tool in monitoring both oxygen saturation and Magnetic susceptibility of microbleeds noninvasively in ischemic stroke patients with cerebral microbleeds. EGB combined with Aspirin can improve blood oxygen saturation in those patients and this effect is particularly significant in the long-term efficacy of secondary prevention.
Collapse
Affiliation(s)
- Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xin Wu
- Department of Radiology, Medical School of Ningbo University, Ningbo, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hui Zhang
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Genc O, Morrison MA, Villanueva-Meyer J, Burns B, Hess CP, Banerjee S, Lupo JM. DeepSWI: Using Deep Learning to Enhance Susceptibility Contrast on T2*-Weighted MRI. J Magn Reson Imaging 2023; 58:1200-1210. [PMID: 36733222 PMCID: PMC10443940 DOI: 10.1002/jmri.28622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although susceptibility-weighted imaging (SWI) is the gold standard for visualizing cerebral microbleeds (CMBs) in the brain, the required phase data are not always available clinically. Having a postprocessing tool for generating SWI contrast from T2*-weighted magnitude images is therefore advantageous. PURPOSE To create synthetic SWI images from clinical T2*-weighted magnitude images using deep learning and evaluate the resulting images in terms of similarity to conventional SWI images and ability to detect radiation-associated CMBs. STUDY TYPE Retrospective. POPULATION A total of 145 adults (87 males/58 females; 43.9 years old) with radiation-associated CMBs were used to train (16,093 patches/121 patients), validate (484 patches/4 patients), and test (2420 patches/20 patients) our networks. FIELD STRENGTH/SEQUENCE 3D T2*-weighted, gradient-echo acquired at 3 T. ASSESSMENT Structural similarity index (SSIM), peak signal-to-noise-ratio (PSNR), normalized mean-squared-error (nMSE), CMB counts, and line profiles were compared among magnitude, original SWI, and synthetic SWI images. Three blinded raters (J.E.V.M., M.A.M., B.B. with 8-, 6-, and 4-years of experience, respectively) independently rated and classified test-set images. STATISTICAL TESTS Kruskall-Wallis and Wilcoxon signed-rank tests were used to compare SSIM, PSNR, nMSE, and CMB counts among magnitude, original SWI, and predicted synthetic SWI images. Intraclass correlation assessed interrater variability. P values <0.005 were considered statistically significant. RESULTS SSIM values of the predicted vs. original SWI (0.972, 0.995, 0.9864) were statistically significantly higher than that of the magnitude vs. original SWI (0.970, 0.994, 0.9861) for whole brain, vascular structures, and brain tissue regions, respectively; 67% (19/28) CMBs detected on original SWI images were also detected on the predicted SWI, whereas only 10 (36%) were detected on magnitude images. Overall image quality was similar between the synthetic and original SWI images, with less artifacts on the former. CONCLUSIONS This study demonstrated that deep learning can increase the susceptibility contrast present in neurovasculature and CMBs on T2*-weighted magnitude images, without residual susceptibility-induced artifacts. This may be useful for more accurately estimating CMB burden from magnitude images alone. EVIDENCE LEVEL 3. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Ozan Genc
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Boğaziçi University, Istanbul, Turkey
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | | | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
| | | | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- UCSF/UC Berkeley Graduate Group of Bioengineering, University of California, Berkeley and San Francisco, CA
| |
Collapse
|
23
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
24
|
kandel K, Regmi PR, Poudel S. Susceptibility - weighted imaging: A valuable diagnostic tool for early detection of high-altitude cerebral edema: A case report. Radiol Case Rep 2023; 18:3089-3092. [PMID: 37434613 PMCID: PMC10331005 DOI: 10.1016/j.radcr.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
High altitude cerebral edema (HACE) is a clinical spectrum of high-altitude illness. The working diagnosis of HACE should be based on the history of rapid ascent with signs of encephalopathy. Magnetic resonance imaging (MRI) can be crucial in the timely diagnosis of the condition. A 38-year-old female was airlifted from Everest base camp due to sudden onset of vertigo and dizziness. She had no significant medical or surgical history, and routine laboratory tests showed normal results. MRI was performed, which showed no abnormalities except for the detection of subcortical white matter and corpus callosum hemorrhages on susceptibility-weighted imaging (SWI). The patient was hospitalized for 2 days and treated with dexamethasone and oxygen, and had a smooth recovery during follow-up. HACE is a serious and potentially life-threatening condition that can occur in individuals who rapidly ascend to high altitudes. MRI is a valuable diagnostic tool in the evaluation of early HACE, and can detect various abnormalities in the brain that may indicate the presence of HACE, including micro-hemorrhages. Micro-hemorrhages are tiny areas of bleeding in the brain that may not be visible on other MRI sequences but can be detected on SWI. Clinicians especially radiologists, should be aware of the importance of SWI in the diagnosis of HACE, and ensure that it is included in the standard MRI protocol for evaluating individuals with high altitude-related illnesses for early diagnosis and appropriate treatment to prevent further neurological damage and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal kandel
- Manipal College of Medical Sciences, Pokhara, Kaski, Nepal
| | - Pradeep Raj Regmi
- Department of Radiology, Maharajgunj Medical Campus/Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Saroj Poudel
- Chitwan Medical College, Bharatpur, Chitwan, Nepal
| |
Collapse
|
25
|
Lima Santos JP, Jia-Richards M, Kontos AP, Collins MW, Versace A. Emotional Regulation and Adolescent Concussion: Overview and Role of Neuroimaging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6274. [PMID: 37444121 PMCID: PMC10341732 DOI: 10.3390/ijerph20136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Emotional dysregulation symptoms following a concussion are associated with an increased risk for emotional dysregulation disorders (e.g., depression and anxiety), especially in adolescents. However, predicting the emergence or worsening of emotional dysregulation symptoms after concussion and the extent to which this predates the onset of subsequent psychiatric morbidity after injury remains challenging. Although advanced neuroimaging techniques, such as functional magnetic resonance imaging and diffusion magnetic resonance imaging, have been used to detect and monitor concussion-related brain abnormalities in research settings, their clinical utility remains limited. In this narrative review, we have performed a comprehensive search of the available literature regarding emotional regulation, adolescent concussion, and advanced neuroimaging techniques in electronic databases (PubMed, Scopus, and Google Scholar). We highlight clinical evidence showing the heightened susceptibility of adolescents to experiencing emotional dysregulation symptoms following a concussion. Furthermore, we describe and provide empirical support for widely used magnetic resonance imaging modalities (i.e., functional and diffusion imaging), which are utilized to detect abnormalities in circuits responsible for emotional regulation. Additionally, we assess how these abnormalities relate to the emotional dysregulation symptoms often reported by adolescents post-injury. Yet, it remains to be determined if a progression of concussion-related abnormalities exists, especially in brain regions that undergo significant developmental changes during adolescence. We conclude that neuroimaging techniques hold potential as clinically useful tools for predicting and, ultimately, monitoring the treatment response to emotional dysregulation in adolescents following a concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Meilin Jia-Richards
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| |
Collapse
|
26
|
Martínez Camblor L, Peña Suárez JM, Martínez-Cachero García M, Santamarta Liébana E, Rodríguez Castro J, Saiz Ayala A. Cerebral microbleeds. Utility of SWI sequences. RADIOLOGIA 2023; 65:362-375. [PMID: 37516489 DOI: 10.1016/j.rxeng.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 07/31/2023]
Abstract
OBJECTIVES Define the concept of cerebral microbleeds (CMBs) and describe the most useful MRI sequences for detecting this finding. Review the entities that most frequently present with CMBs and that may benefit from the use of susceptibility-weighted imaging (SWI) sequences. CONCLUSIONS SWI is a useful MRI sequence for the detection and characterization of microhemorrhages, venous structures and other sources of susceptibility in imaging. SWI is particularly sensitive to local magnetic field inhomogeneities generated by certain substances and is superior to T2* GRE sequences for this assessment. CMBs may be seen in different neurologic conditions, in certain infrequent clinical contexts and have a key role as a biomarker status in gliomas (ITTS) and as a marker of inflammatory activity in multiple sclerosis.
Collapse
Affiliation(s)
- L Martínez Camblor
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - J M Peña Suárez
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - E Santamarta Liébana
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Rodríguez Castro
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - A Saiz Ayala
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
27
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
28
|
Hirunpat P, Panyaping T, Taebunpakul P, Charoensri A, Hirunpat S. Susceptibility-weighted imaging is helpful in diagnosis of cerebral gnathostomiasis. Neuroradiol J 2023; 36:315-318. [PMID: 36242093 PMCID: PMC10268087 DOI: 10.1177/19714009221132948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To describe the role of SWI compared with other MR imaging sequences and CT in diagnosis of cerebral gnathostomiasis. MATERIALS AND METHODS CTs and MRIs of patients with cerebral gnathostomiasis were retrospectively reviewed. The types of intracranial hemorrhage, including intraparenchymal hemorrhage (IPH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), and their locations were recorded. RESULTS Four patients proven as cerebral gnathostomiasis were included. Intracranial hemorrhage was detected in all patients. There was IPH in all patients, SAH in 2 patients, and SDH in 2 patients. All patients (4/4) revealed hemorrhagic tracts which were very conspicuously seen on SWI. Other imaging sequences could also reveal hemorrhagic tracts in 3 patients (3/4) but are less conspicuously seen than SWI. None of the CT brains could detect hemorrhagic tracts. CONCLUSIONS Intracranial hemorrhage associated with hemorrhagic tract, best demonstrated by SWI, is the key imaging characteristic in diagnosis of cerebral gnathostomiasis.
Collapse
Affiliation(s)
- Pornrujee Hirunpat
- Department of Radiology, Chakri Naruebodindra Medical Institute, Mahidol University, Samut Prakan, Thailand
| | - Theeraphol Panyaping
- Department of Radiology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyakarn Taebunpakul
- Department of Radiology, Chakri Naruebodindra Medical Institute, Mahidol University, Samut Prakan, Thailand
| | - Attawit Charoensri
- Department of Internal Medicine, Chakri Naruebodindra Medical Institute, Mahidol University, Samut Prakan, Thailand
| | - Siriporn Hirunpat
- Department of Radiology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
29
|
Khan AF, Haynes G, Mohammadi E, Muhammad F, Hameed S, Smith ZA. Utility of MRI in Quantifying Tissue Injury in Cervical Spondylotic Myelopathy. J Clin Med 2023; 12:jcm12093337. [PMID: 37176777 PMCID: PMC10179707 DOI: 10.3390/jcm12093337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a progressive disease that worsens over time if untreated. However, the rate of progression can vary among individuals and may be influenced by various factors, such as the age of the patients, underlying conditions, and the severity and location of the spinal cord compression. Early diagnosis and prompt treatment can help slow the progression of CSM and improve symptoms. There has been an increased use of magnetic resonance imaging (MRI) methods in diagnosing and managing CSM. MRI methods provide detailed images and quantitative structural and functional data of the cervical spinal cord and brain, allowing for an accurate evaluation of the extent and location of tissue injury. This review aims to provide an understanding of the use of MRI methods in interrogating functional and structural changes in the central nervous system in CSM. Further, we identified several challenges hindering the clinical utility of these neuroimaging methods.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
La Rosa C, Donato PD, Specchi S, Bernardini M. Susceptibility artifact morphology is more conspicuous on susceptibility-weighted imaging compared to T2* gradient echo sequences in the brains of dogs and cats with suspected intracranial disease. Vet Radiol Ultrasound 2023; 64:464-472. [PMID: 36633010 DOI: 10.1111/vru.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Susceptibility-weighted imaging (SWI) has been found to be more reliable in the detection of vessels and blood products than T2*-weighted gradient echo (GE) in several human brain diseases. In veterinary medicine, published information on the diagnostic usefulness of SWI is lacking. The aim of this retrospective observational study was to investigate the value of SWI compared to T2*-weighted GE images in a population of dogs and cats with presumed, MRI-based diagnoses grouped as neoplastic (27), cerebrovascular (14), inflammatory (14), head trauma (5), other pathologies (4), or that were normal (36). Areas of signal void (ASV) were assessed based on shape, distribution, number, and conspicuity. Presence of ASV was found in 31 T2*-weighted GE and 40 SWI sequences; the conspicuity of lesions increased in 92.5% of cases with SWI. A 44.7% increase in the number of cerebral microbleeds (CMBs) was identified within the population using SWI (110) compared to T2*-weighted GE (76). Linear ASV presumed to be abnormal vascular structures, as are reported in humans, were identified in 12 T2*-weighted GE and 19 SWI sequences. In presumed brain tumors, abnormal vascular structures were detected in 11 of 27 (40.7%) cases on T2*-weighted GE and in 16 of 27 (59.3%) cases on SWI, likely representing tumor neovascularization; amorphous ASV interpreted as presumed hemorrhages on T2*-weighted GE were diagnosed as vessels on SWI in five of 27 (18.5%) cases. Since SWI shows ASV more conspicuously than T2*-weighted GE, the authors advocate the use of SWI in veterinary patients.
Collapse
Affiliation(s)
- Claudia La Rosa
- Anicura Ospedale Veterinario I Portoni Rossi, Zola Predosa, Italy
| | - Pamela Di Donato
- Anicura Ospedale Veterinario I Portoni Rossi, Zola Predosa, Italy
- Antech Imaging Service, Fountain Valley, California, USA
| | - Swan Specchi
- Anicura Ospedale Veterinario I Portoni Rossi, Zola Predosa, Italy
- Antech Imaging Service, Fountain Valley, California, USA
| | - Marco Bernardini
- Anicura Ospedale Veterinario I Portoni Rossi, Zola Predosa, Italy
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| |
Collapse
|
31
|
Kent T, Sinha V, Ceyhan E, Sura L, Yekeler E, Weiss MD, Albayram M. Deep cerebral venous abnormalities in premature babies with GMH-IVH: a single-centre retrospective study. BMJ Paediatr Open 2023; 7:e001853. [PMID: 37160379 PMCID: PMC10174015 DOI: 10.1136/bmjpo-2023-001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] |