1
|
Lima Santos JP, Soehner AM, Ladouceur CD, Versace A. The Impact of Insufficient Sleep on White Matter Development in Late Childhood and Early Adolescence. J Adolesc Health 2025; 76:220-227. [PMID: 39580729 DOI: 10.1016/j.jadohealth.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Sleep is vital for brain development. Animal models have suggested that insufficient sleep affects axons and dendrites (known as neurites). However, the effects of insufficient sleep on neurites during brain development in humans remain understudied. Deriving neurite density index and orientation dispersion index (ODI) in a large sample (N = 1,016; 47.44% girls), we aimed to identify the effects of insufficient sleep on white matter development between late childhood (mean age [standard deviation] = 9.96 [0.62] years) and early adolescence (mean age [standard deviation] = 11.94 [0.64] years). METHODS Longitudinal Latent Class Analysis was used to derive longitudinal classes based on sleep duration from the Sleep Disturbance Scale for Children. The Child Behavior Checklist characterized behavioral (internalizing: anxious/depressed, withdrawn/depressed, somatic; externalizing: social, thought, attention, rule-breaking, and aggressive) problems. Regression analyses evaluated the effects of sleep classes on neurite density index, ODI, and standard tensor-based metrics (Fractional Anisotropy) changes over time, the focal or widespread effects along the tracts, and whether these effects were associated with behavioral problems. RESULTS Insufficient (<9 hours; N = 569) and sufficient sleep (>9 hours; N = 447) groups were identified. Insufficient sleep was associated with worsening fiber coherence (greater ODI) in most tracts, including cingulum bundle (F(1,982) = 9.22, p = .002, Q = 0.009), forceps minor (F(1,982) = 5.30, p = .021, Q = 0.026), and superior longitudinal fasciculus (F(1,982) = 7.41, p = .007, Q = 0.015). These effects were focal, particularly in the frontal portions of the tracts. No other metric was affected (p > .050). In addition, greater ODI in the cingulum bundle was associated with more anxious/depressed problems (β = 0.10, p = .012, Q = 0.036). DISCUSSION Our findings suggest that insufficient sleep during this sensitive period affects white matter development, which in turn affects internalizing problems. Our findings support the importance of promoting sufficient sleep during early adolescence.
Collapse
Affiliation(s)
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2024; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Chung S, Fieremans E, Novikov DS, Lui YW. Microstructurally informed subject-specific parcellation of the corpus callosum using axonal water fraction. Brain Struct Funct 2024; 230:1. [PMID: 39671086 DOI: 10.1007/s00429-024-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas known to consist of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC known to consist of a greater number of large diameter fibers. Based on the degree of change in ƒ along the callosum, seven callosal subregions were consistently delineated for each individual. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
Collapse
Affiliation(s)
- Sohae Chung
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States.
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| | - Dmitry S Novikov
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| | - Yvonne W Lui
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
4
|
de la Cruz F, Schumann A, Rieger K, Güllmar D, Reichenbach JR, Bär KJ. White matter differences between younger and older adults revealed by fixel-based analysis. AGING BRAIN 2024; 6:100132. [PMID: 39650611 PMCID: PMC11625364 DOI: 10.1016/j.nbas.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The process of healthy aging involves complex alterations in neural structures, with white matter (WM) changes significantly impacting cognitive and motor functions. Conventional methods such as diffusion tensor imaging provide valuable insights, but their limitations in capturing complex WM geometry advocate for more advanced approaches. In this study involving 120 healthy volunteers, we investigated whole-brain WM differences between young and old individuals using a novel technique called fixel-based analysis (FBA). This approach revealed that older adults exhibited reduced FBA-derived metrics in several WM tracts, with frontal areas particularly affected. Surprisingly, age-related differences in FBA-derived measures showed no significant correlation with risk factors such as alcohol consumption, exercise frequency, or pulse pressure but predicted cognitive performance. These findings emphasize FBA's potential in characterizing complex WM changes and the link between cognitive abilities and WM alterations in healthy aging. Overall, this study advances our understanding of age-related neurodegeneration, highlighting the importance of comprehensive assessments that integrate advanced neuroimaging techniques, cognitive evaluation, and demographic factors to gain insights into healthy aging.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Mamoon S, Xia Z, Alfakih A, Lu J. UCLN: Toward the Causal Understanding of Brain Disorders With Temporal Lag Dynamics. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3729-3740. [PMID: 39352819 DOI: 10.1109/tnsre.2024.3471646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a powerful tool for exploring interactions among brain regions. A growing body of research is actively investigating various computational approaches for estimating causal effects among brain regions. Compared to traditional methods, causal relationship reveals the causal influences among distinct brain regions, offering a deeper understanding of brain network dynamics. However, existing methods either neglect the concept of temporal lag across brain regions or set the temporal lag value to a fixed value. To address this limitation, we propose a Unified Causal and Temporal Lag Network (termed UCLN) that jointly learns the causal effects and temporal lag values among brain regions. Our method effectively captures variations in temporal lag between distant brain regions by avoiding the predefined lag value across the entire brain. The brain networks obtained are directed and weighted graphs, enabling a more comprehensive disentanglement of complex interactions. In addition, we also introduce three guiding mechanisms for efficient brain network modeling. The proposed method outperforms state-of-the-art approaches in classification accuracy on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our findings indicate that the method not only achieves superior classification but also successfully identifies crucial neuroimaging biomarkers associated with the disease.
Collapse
|
6
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
8
|
Feusner JD, Nowacka A, Ly R, Luders E, Kurth F. Corpus callosum morphology and relationships to illness phenotypes in individuals with anorexia nervosa. Sci Rep 2024; 14:11112. [PMID: 38750237 PMCID: PMC11096409 DOI: 10.1038/s41598-024-61841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Anorexia nervosa is an often-severe psychiatric illness characterized by significantly low body weight, fear of gaining weight, and distorted body image. Multiple neuroimaging studies have shown abnormalities in cortical morphology, mostly associated with the starvation state. Investigations of white matter, while more limited in number, have suggested global and regional volume reductions, as well as abnormal diffusivity in multiple regions including the corpus callosum. Yet, no study has specifically examined thickness of the corpus callosum, a large white matter tract instrumental in the inter-hemispheric integration of sensory, motor, and cognitive information. We analyzed MRI data from 48 adolescents and adults with anorexia nervosa and 50 healthy controls, all girls/women, to compare corpus callosum thickness and examined relationships with body mass index (BMI), illness duration, and eating disorder symptoms (controlling for BMI). There were no significant group differences in corpus callosum thickness. In the anorexia nervosa group, severity of body shape concerns was significantly, positively correlated with callosal thickness in the rostrum, genu, rostral body, isthmus, and splenium. In addition, there were significant positive correlations between eating disorder-related obsessions and compulsions and thickness of the anterior midbody, rostral body, and splenium. There were no significant associations between callosal thickness and BMI or illness duration. In sum, those with AN with worse concerns about bodily appearance and worse eating disorder-related obsessive thought patterns and compulsive behaviours have regionally thicker corpus callosum, independent of current weight status. These findings provide important neurobiological links to key, specific eating disorder behavioural phenotypes.
Collapse
Affiliation(s)
- Jamie D Feusner
- Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
- Department of Women's and Children's Health, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Alicja Nowacka
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ronald Ly
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
- Departments of Neuroradiology and Radiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Liu H, Zhong Y, Liu G, Su H, Liu Z, Wei J, Mo L, Tan C, Liu X, Chen L. Corpus callosum and cerebellum participate in semantic dysfunction of Parkinson's disease: a diffusion tensor imaging-based cross-sectional study. Neuroreport 2024; 35:366-373. [PMID: 38526949 DOI: 10.1097/wnr.0000000000002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.
Collapse
Affiliation(s)
- Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Seas A, Noor MS, Choi KS, Veerakumar A, Obatusin M, Dahill-Fuchel J, Tiruvadi V, Xu E, Riva-Posse P, Rozell CJ, Mayberg HS, McIntyre CC, Waters AC, Howell B. Subcallosal cingulate deep brain stimulation evokes two distinct cortical responses via differential white matter activation. Proc Natl Acad Sci U S A 2024; 121:e2314918121. [PMID: 38527192 PMCID: PMC10998591 DOI: 10.1073/pnas.2314918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.
Collapse
Affiliation(s)
- Andreas Seas
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
| | - M. Sohail Noor
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Ashan Veerakumar
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Mosadoluwa Obatusin
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Jacob Dahill-Fuchel
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Vineet Tiruvadi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Elisa Xu
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Helen S. Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Cameron C. McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Neurosurgery, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| | - Allison C. Waters
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA30329
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH10900
| |
Collapse
|
12
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
13
|
Lima Santos JP, Kontos AP, Holland CL, Suss SJ, Stiffler RS, Bitzer HB, Colorito AT, Shaffer M, Skeba A, Iyengar S, Manelis A, Brent D, Shirtcliff EA, Ladouceur CD, Phillips ML, Collins MW, Versace A. The Role of Puberty and Sex on Brain Structure in Adolescents With Anxiety Following Concussion. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:285-297. [PMID: 36517369 DOI: 10.1016/j.bpsc.2022.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Adolescence represents a window of vulnerability for developing psychological symptoms following concussion, especially in girls. Concussion-related lesions in emotion regulation circuits may help explain these symptoms. However, the contribution of sex and pubertal maturation remains unclear. Using the neurite density index (NDI) in emotion regulation tracts (left/right cingulum bundle [CB], forceps minor [FMIN], and left/right uncinate fasciculus), we sought to elucidate these relationships. METHODS No adolescent had a history of anxiety and/or depression. The Screen for Child Anxiety Related Emotional Disorders and Children's Depression Rating Scale were used at scan to assess anxiety and depressive symptoms in 55 concussed adolescents (41.8% girls) and 50 control adolescents with no current/history of concussion (44% girls). We evaluated if a mediation-moderation model including the NDI (mediation) and sex or pubertal status (moderation) could help explain this relationship. RESULTS Relative to control adolescents, concussed adolescents showed higher anxiety (p = .003) and lower NDI, with those at more advanced pubertal maturation showing greater abnormalities in 4 clusters: the left CB frontal (p = .002), right CB frontal (p = .011), FMIN left-sided (p = .003), and FMIN right-sided (p = .003). Across all concussed adolescents, lower NDI in the left CB frontal and FMIN left-sided clusters partially mediated the association between concussion and anxiety, with the CB being specific to female adolescents. These effects did not explain depressive symptoms. CONCLUSIONS Our findings indicate that lower NDI in the CB and FMIN may help explain anxiety following concussion and that adolescents at more advanced (vs less advanced) status of pubertal maturation may be more vulnerable to concussion-related injuries, especially in girls.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Stephen J Suss
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hannah B Bitzer
- Department of Psychology, Florida International University, Miami, Florida
| | - Adam T Colorito
- Department of Psychology, Florida International University, Miami, Florida
| | - Madelyn Shaffer
- Department of Psychology, Florida International University, Miami, Florida
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, UPMC Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Elizabeth A Shirtcliff
- Center for Translational Neuroscience and Department of Psychology, University of Oregon, Eugene, Oregon
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program, University of Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
14
|
Porcu M, Cocco L, Marrosu F, Cau R, Suri JS, Qi Y, Pineda V, Bosin A, Malloci G, Ruggerone P, Puig J, Saba L. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav 2024; 18:141-158. [PMID: 37955809 DOI: 10.1007/s11682-023-00814-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500 - CAP, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Victor Pineda
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Hsieh CCJ, Lo YC, Wang HH, Shen HY, Chen YY, Lee YC. Amelioration of the brain structural connectivity is accompanied with changes of gut microbiota in a tuberous sclerosis complex mouse model. Transl Psychiatry 2024; 14:68. [PMID: 38296969 PMCID: PMC10830571 DOI: 10.1038/s41398-024-02752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease that causes benign tumors and dysfunctions in many organs, including the brain. Aside from the brain malformations, many individuals with TSC exhibit neuropsychiatric symptoms. Among these symptoms, autism spectrum disorder (ASD) is one of the most common co-morbidities, affecting up to 60% of the population. Past neuroimaging studies strongly suggested that the impairments in brain connectivity contribute to ASD, whether or not TSC-related. Specifically, the tract-based diffusion tensor imaging (DTI) analysis provides information on the fiber integrity and has been used to study the neuropathological changes in the white matter of TSC patients with ASD symptoms. In our previous study, curcumin, a diet-derived mTOR inhibitor has been shown to effectively mitigate learning and memory deficits and anxiety-like behavior in Tsc2+/- mice via inhibiting astroglial proliferation. Recently, gut microbiota, which is greatly influenced by the diet, has been considered to play an important role in regulating several components of the central nervous system, including glial functions. In this study, we showed that the abnormal social behavior in the Tsc2+/- mice can be ameliorated by the dietary curcumin treatment. Second, using tract-based DTI analysis, we found that the Tsc2+/- mice exhibited altered fractional anisotropy, axial and radial diffusivities of axonal bundles connecting the prefrontal cortex, nucleus accumbens, hypothalamus, and amygdala, indicating a decreased brain network. Third, the dietary curcumin treatment improved the DTI metrics, in accordance with changes in the gut microbiota composition. At the bacterial phylum level, we showed that the abundances of Actinobacteria, Verrucomicrobia, and Tenericutes were significantly correlated with the DTI metrics FA, AD, and RD, respectively. Finally, we revealed that the expression of myelin-associated proteins, myelin bassic protein (MBP) and proteolipid protein (PLP) was increased after the treatment. Overall, we showed a strong correlation between structural connectivity alterations and social behavioral deficits, as well as the diet-dependent changes in gut microbiota composition.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hui Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Ying Shen
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Chung S, Fieremans E, Novikov DS, Lui YW. Microstructurally Informed Subject-Specific Parcellation of the Corpus Callosum using Axonal Water Fraction. RESEARCH SQUARE 2023:rs.3.rs-3645723. [PMID: 38045398 PMCID: PMC10690318 DOI: 10.21203/rs.3.rs-3645723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as the Hofer/Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project (HCP) dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas consisting of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC consisting of a greater number of large diameter fibers. Based on degree of change in ƒ along the callosum, seven callosal subregions can be consistently delineated for each individual. We observe that ƒ can capture differences in underlying tissue microstructures and seven subregions can be identified across CC. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
Collapse
Affiliation(s)
- Sohae Chung
- New York University Grossman School of Medicine
| | | | | | | |
Collapse
|
17
|
Urbanik A, Guz W, Gołębiowski M, Szurowska E, Majos A, Sąsiadek M, Stajgis M, Ostrogórska M. Assessment of the corpus callosum size in male individuals with high intelligence quotient (members of Mensa International). RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:49-54. [PMID: 37160478 PMCID: PMC10689507 DOI: 10.1007/s00117-023-01146-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES The aim of this study was to assess the size of the corpus callosum in members of Mensa International, which is the world's largest and oldest high-intelligence quotient (IQ) society. METHODS We performed T2-weighted magnetic resonance imaging (Repetition Time, TR = 3200 ms, Time of Echo, TE = 409 ms) to examine the brain of members of Mensa International (Polish national group) in order to assess the size of the corpus callosum. Results from 113 male MENSA members and 96 controls in the age range of 21-40 years were analyzed. RESULTS The comparative analysis showed that the mean length of the corpus callosum and the thickness of the isthmus were significantly greater in the Mensa members compared to the control groups. A statistically significant difference was also identified in the largest linear dimension of the brain from the frontal lobe to the occipital lobe. The mean corpus callosum cross-sectional area and its ratio to the brain area were significantly greater in the Mensa members. CONCLUSIONS The results show that the dimensions (linear measures and midsagittal cross-sectional surface area) of the corpus callosum were significantly greater in the group of Mensa members than in the controls.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Kopernika 19, 31-501, Krakow, Poland
| | - Wiesław Guz
- Department of Electroradiology, University of Rzeszów, Rzeszów, Poland
| | - Marek Gołębiowski
- I-st Department of Clinical Radiology, Medical University of Warsaw, Warszawa, Poland
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Majos
- Chair of Radiology and Imaging Diagnostics, Medical University of Łódź, Łódź, Poland
| | - Marek Sąsiadek
- Department of Radiology, Wroclaw Medical University, Wrocław, Poland
| | - Marek Stajgis
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Kopernika 19, 31-501, Krakow, Poland.
| |
Collapse
|
18
|
Schilling KG, Li M, Rheault F, Gao Y, Cai L, Zhao Y, Xu L, Ding Z, Anderson AW, Landman BA, Gore JC. Whole-brain, gray, and white matter time-locked functional signal changes with simple tasks and model-free analysis. Proc Natl Acad Sci U S A 2023; 120:e2219666120. [PMID: 37824529 PMCID: PMC10589709 DOI: 10.1073/pnas.2219666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Francois Rheault
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Leon Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Electrical Engineering and Computer Engineering, Vanderbilt University, Nashville, TN37235
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
19
|
Andrushko JW, Rinat S, Kirby ED, Dahlby J, Ekstrand C, Boyd LA. Females exhibit smaller volumes of brain activation and lower inter-subject variability during motor tasks. Sci Rep 2023; 13:17698. [PMID: 37848679 PMCID: PMC10582116 DOI: 10.1038/s41598-023-44871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Past work has shown that brain structure and function differ between females and males. Males have larger cortical and sub-cortical volume and surface area (both total and subregional), while females have greater cortical thickness in most brain regions. Functional differences are also reported in the literature, yet to date little work has systematically considered whether patterns of brain activity indexed with functional magnetic resonance imaging (fMRI) differ between females and males. The current study sought to remediate this issue by employing task-based whole brain motor mapping analyses using an openly available dataset. We tested differences in patterns of functional brain activity associated with 12 voluntary movement patterns in females versus males. Results suggest that females exhibited smaller volumes of brain activation across all 12 movement tasks, and lower patterns of variability in 10 of the 12 movements. We also observed that females had greater cortical thickness, which is in alignment with previous analyses of structural differences. Overall, these findings provide a basis for considering biological sex in future fMRI research and provide a foundation of understanding differences in how neurological pathologies present in females vs males.
Collapse
Affiliation(s)
- Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Eric D Kirby
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Julia Dahlby
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chelsea Ekstrand
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Videtta G, Squarcina L, Rossetti MG, Brambilla P, Delvecchio G, Bellani M. White matter modifications of corpus callosum in bipolar disorder: A DTI tractography review. J Affect Disord 2023; 338:220-227. [PMID: 37301293 DOI: 10.1016/j.jad.2023.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/08/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The recent widespread use of diffusion tensor imaging (DTI) tractography allowed researchers to investigate the diffusivity modifications and neuroanatomical changes of white matter (WM) fascicles in major psychiatric disorders, including bipolar disorder (BD). In BD, corpus callosum (CC) seems to have a crucial role in explaining the pathophysiology and cognitive impairment of this psychiatric disorder. This review aims to provide an overview on the latest results emerging from studies that investigated neuroanatomical changes of CC in BD using DTI tractography. METHODS Bibliographic research was conducted on PubMed, Scopus and Web of Science datasets until March 2022. Ten studies fulfilled our inclusion criteria. RESULTS From the reviewed DTI tractography studies a significant decrease of fractional anisotropy emerged in the genu, body and splenium of CC of BD patients compared to controls. This finding is coupled with reduction of fiber density and modification in fiber tract length. Finally, an increase of radial and mean diffusivity in forceps minor and in the entire CC was also reported. LIMITATIONS Small sample size, heterogeneity in terms of methodological (diffusion gradient) and clinical (lifetime comorbidity, BD status, pharmacological treatments) characteristics. CONCLUSIONS Overall, these findings suggest the presence of structural modifications in CC in BD patients, which may in turn explain the cognitive impairments often observed in this psychiatric disorder, especially in executive processing, motor control and visual memory. Finally, structural modifications may suggest an impairment in the amount of functional information and a morphological impact within those brain regions connected by CC.
Collapse
Affiliation(s)
- Giovanni Videtta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Maria Gloria Rossetti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Namli MN, Baykara S, Baykara M, Balcioglu YH. Statistical shape analysis of corpus callosum in delusional disorder. Psychiatry Res Neuroimaging 2023; 334:111695. [PMID: 37567087 DOI: 10.1016/j.pscychresns.2023.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Neurobiological foundations of delusional disorder (DD) have been studied less with neuroimaging techniques when compared to other psychotic disorders. The present study aimed to delineate the neural substrates of DD by investigating neuroanatomical characteristics of the corpus callosum (CC) with statistical shape analysis (SSA) conducted on magnetic resonance images (MRI). Twenty (female:male=1:1) DSM-5 DD patients and 20 age- and gender-matched healthy individuals were included. High-resolution 3D T1 Turbo Field Echo MRI images were scanned with a 1.5 T MR device. The landmarks that were selected to determine the shape differences in CC were identified based on previous studies. Furthermore, constructed landmarks were determined and employed to better assess regional shape differences. There was no significant difference in the CC area in the mid-sagittal images between the DD patients and controls. However, DD patients exhibited a pattern of structural CC changes in various regions. The study findings emphasizes the variable subregional nature of CC in DD patients. Future SSA studies with larger samples could shed further light on DD etiology, diagnosis, classification and treatment options.
Collapse
Affiliation(s)
- Mustafa Nuray Namli
- Department of Psychiatry, Hamidiye Faculty of Medicine, Saglik Bilimleri University, Istanbul, Turkiye; Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkiye
| | - Sema Baykara
- Department of Psychiatry, Faculty of Medicine, Firat University, Elazig, Turkiye; Department of Psychiatry, Erenkoy Psychiatry and Neurology Training and Research Hospital, Istanbul, Turkiye
| | - Murat Baykara
- Department of Radiology, Faculty of Medicine, Firat University, Elazig, Turkiye; Department of Radiology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkiye
| | - Yasin Hasan Balcioglu
- Department of Psychiatry, Forensic Psychiatry Unit, Bakirkoy Prof Mazhar Osman Training and Research Hospital for Psychiatry Neurology, and Neurosurgery, Istanbul, Turkiye.
| |
Collapse
|
22
|
Kim S, Nam K. Asymmetry in hemispheric strategies for visual recognition of homonyms. Laterality 2023; 28:305-335. [PMID: 37559235 DOI: 10.1080/1357650x.2023.2244732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
The primary objective of this investigation was to explore the strategic asymmetry exhibited by the two hemispheres during semantic processing, specifically focusing on the visual recognition of homonyms. By utilizing balanced and unbalanced homonyms, we sought to ascertain whether foveal processing adheres to a specific hemisphere's strategy. In Experiment 1, we employed a visual half-field presentation paradigm to elucidate the unihemispheric strategy employed for homonym recognition. Notably, our results revealed a significant type effect, whereby responses were more accurate for unbalanced homonyms compared to balanced homonyms, particularly in the LVF/RH. This outcome suggests that the RH exhibits a stronger activation of the dominant meaning, primarily driven by frequency, while the LH concurrently activates all candidate meanings of homonyms with comparable intensity. Building upon these insights, Experiment 2 involved the presentation of both homonym types within the foveal vision, leading to the identification of a significant type effect and providing evidence for the robust utilization of the RH strategy during foveal homonym recognition. Collectively, these findings delineate an asymmetric strategy employed during semantic processing across the hemispheres, with the RH assuming a dominant role in the semantic processing of foveal words.
Collapse
Affiliation(s)
- Sangyub Kim
- Wisdom Science Center, Korea University, Seoul, Republic of Korea
| | - Kichun Nam
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Kumpulainen V, Merisaari H, Silver E, Copeland A, Pulli EP, Lewis JD, Saukko E, Shulist SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Sex differences, asymmetry, and age-related white matter development in infants and 5-year-olds as assessed with tract-based spatial statistics. Hum Brain Mapp 2023; 44:2712-2725. [PMID: 36946076 PMCID: PMC10089102 DOI: 10.1002/hbm.26238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The rapid white matter (WM) maturation of first years of life is followed by slower yet long-lasting development, accompanied by learning of more elaborate skills. By the age of 5 years, behavioural and cognitive differences between females and males, and functions associated with brain lateralization such as language skills are appearing. Diffusion tensor imaging (DTI) can be used to quantify fractional anisotropy (FA) within the WM and increasing values correspond to advancing brain development. To investigate the normal features of WM development during early childhood, we gathered a DTI data set of 166 healthy infants (mean 3.8 wk, range 2-5 wk; 89 males; born on gestational week 36 or later) and 144 healthy children (mean 5.4 years, range 5.1-5.8 years; 76 males). The sex differences, lateralization patterns and age-dependent changes were examined using tract-based spatial statistics (TBSS). In 5-year-olds, females showed higher FA in wide-spread regions in the posterior and the temporal WM and more so in the right hemisphere, while sex differences were not detected in infants. Gestational age showed stronger association with FA values compared to age after birth in infants. Additionally, child age at scan associated positively with FA around the age of 5 years in the body of corpus callosum, the connections of which are important especially for sensory and motor functions. Lastly, asymmetry of WM microstructure was detected already in infants, yet significant changes in lateralization pattern seem to occur during early childhood, and in 5-year-olds the pattern already resembles adult-like WM asymmetry.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Elmo P Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Satu J Shulist
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Riitta Parkkola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Pediatric Neurology, Turku University Hospital, University of Turku, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital & University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Fabri M, Polonara G. Functional topography of the corpus callosum as revealed by fMRI and behavioural studies of control subjects and patients with callosal resection. Neuropsychologia 2023; 183:108533. [PMID: 36906223 DOI: 10.1016/j.neuropsychologia.2023.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The concept of a topographical map of the corpus callosum (CC), the main interhemispheric commissure, has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in also the CC. This short review summarizes the functional and behavioral studies performed in groups of healthy subjects and in patients undergone to partial or total callosal resection, and it is focused on the work conducted by the authors. Functional data have been collected by diffusion tensor imaging and tractography (DTI and DTT) and functional magnetic resonance imaging (fMRI), both techniques allowing to expand and refine our knowledge of the commissure. Neuropsychological test were also administered, and simple behavioral task, as imitation perspective and mental rotation ability, were analyzed. These researches added new insight on the topographic organization of the human CC. By combining DTT and fMRI it was possible to observe that the callosal crossing points of interhemispheric fibers connecting homologous primary sensory cortices, correspond to the CC sites where the fMRI activation elicited by peripheral stimulation was detected. In addition, CC activation during imitation and mental rotation performance was also reported. These studies demonstrated the presence of specific callosal fiber tracts that cross the commissure in the genu, body, and splenium, at sites showing fMRI activation, consistently with cortical activated areas. Altogether, these findings lend further support to the notion that the CC displays a functional topographic organization, also related to specific behavior.
Collapse
Affiliation(s)
- Mara Fabri
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica Delle Marche, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
25
|
Neuronal nitric oxide synthase positive neurons in the human corpus callosum: a possible link with the callosal blood-oxygen-level dependent (BOLD) effect. Brain Struct Funct 2023; 228:511-523. [PMID: 36460768 DOI: 10.1007/s00429-022-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Brain functions have been investigated in the past decades via the blood-oxygen-level dependent (BOLD) effect using functional magnetic resonance imaging. One hypothesis explaining the BOLD effect involves the Nitric Oxide (NO) gaseous neurotransmitter, possibly released also by cells in the corpus callosum (CC). The eventual presence of NO releasing neurons and/or glial cells in the CC can be assessed by immunohistochemistry. Serial sections both from paraffin-embedded and frozen samples of CC obtained from adult human brains autopsy were studied with immunohist |