1
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dalman JM, Blaustein ER, van Solingen C. Gut Instincts: The Gut Microbiome-Cardiovascular Inflammation Axis. Circ Res 2025; 136:806-808. [PMID: 40208926 PMCID: PMC11990081 DOI: 10.1161/circresaha.125.326363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Jessie M. Dalman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emma R. Blaustein
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Koponen K, McDonald D, Jousilahti P, Meric G, Inouye M, Lahti L, Niiranen T, Männistö S, Havulinna A, Knight R, Salomaa V. Associations of alcohol with the human gut microbiome and prospective health outcomes in the FINRISK 2002 cohort. Eur J Nutr 2025; 64:153. [PMID: 40214782 PMCID: PMC11991935 DOI: 10.1007/s00394-025-03668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND AND AIMS Alcohol remains a global risk factor for non-communicable diseases with the gut microbiome emerging as a novel elucidator. We investigated how gut microbiome associates with alcohol on population level, if there is mediation reflected in health outcomes, and how functional potential is related. METHODS Our sample consisted of 4575 shallow-shotgun sequenced fecal samples from the FINRISK 2002 cohort (25-74yrs., 52.5% women). Alcohol (g 100% alcohol/week) use was self-reported. Diversity and differential species abundances were analyzed using multiple linear regression. Compositional differences were analyzed using PERMANOVA, and prospective associations with Cox-regression. Connections between alcohol, microbiome, inflammatory markers, and outcomes were assessed using serial mediation. Functional associations were assessed using KEGG-orthologies and multiple linear regression. RESULTS High-risk alcohol consumers had significantly lower bacterial diversity when compared to low-risk consumers (mean±SD:4.04±0.41 vs. 4.11±0.43, p = 9.56 × 10- 4). Alcohol also associated with significant shifts in overall composition (PERMANOVA; p ≤ 1.00 × 10- 4) and differential abundances of 344 species (ANCOM-BC2; q ≤ 0.05). These shifts were characterized by an increase in relative abundances of Gram-negative bacteria, the top genera of which were Bacteroides and Prevotella, and a decrease in putatively beneficial species in genera such as Lactobacillus, Bifidobacterium, and Akkermansia. Prospective associations with all-cause mortality (HR:1.12 [1.02-1.23]), and liver disease (HR:1.53 [1.22-1.92]) were observed. The association between alcohol and liver disease had a mediating link via a proinflammatory beta-diversity principal coordinate (OR:1.04 [1.001-1.10]). Functional associations were observed with 1643 KO-groups (q < 0.05, npositive=431, nnegative=1212). Antioxidative and gut integrity maintaining functions were diminished and lipopolysaccharide synthesis enriched. CONCLUSIONS Alcohol use is associated with community-level shifts in composition towards enriched Gram-negative bacteria, and diminished levels of putatively beneficial bacteria. Alcohol use associates with a proinflammatory gut microbiome profile that mediates alcohol's effect on incident liver disease risk, possibly via increased proliferation of endotoxins through the gut epithelial lining.
Collapse
Affiliation(s)
- Kari Koponen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland.
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland
| | - Guillaume Meric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
- Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland
| | - Aki Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland
- Institute for Molecular Medicine Finland, FiMM-HiLIFE, Helsinki, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), P.O. Box 30, Helsinki, 00271, Finland
| |
Collapse
|
4
|
Ma B, Barathan M, Ng MH, Law JX. Oxidative Stress, Gut Microbiota, and Extracellular Vesicles: Interconnected Pathways and Therapeutic Potentials. Int J Mol Sci 2025; 26:3148. [PMID: 40243936 PMCID: PMC11989138 DOI: 10.3390/ijms26073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) and gut microbiota are crucial factors influencing human health, each playing a significant role in the development and progression of chronic diseases. This review provides a comprehensive analysis of the complex interplay between these two factors, focusing on how an imbalance between reactive oxygen species (ROS) and antioxidants leads to OS, disrupting cellular homeostasis and contributing to a range of conditions, including metabolic disorders, cardiovascular diseases, neurological diseases, and cancer. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, is essential for regulating immune responses, metabolic pathways, and overall health. Dysbiosis, an imbalance in the gut microbiota composition, is closely associated with chronic inflammation, metabolic dysfunction, and various diseases. This review highlights how the gut microbiota influences and is influenced by OS, complicating the pathophysiology of many conditions. Furthermore, emerging evidence has identified extracellular vesicles (EVs) as critical facilitators of cellular crosstalk between the OS and gut microbiota. EVs also play a crucial role in signaling between the gut microbiota and host tissues, modulating immune responses, inflammation, and metabolic processes. The signaling function of EVs holds promise for the development of targeted therapies aimed at restoring microbial balance and mitigating OS. Personalized therapeutic approaches, including probiotics, antioxidants, and fecal microbiota transplantation-based strategies, can be used to address OS-related diseases and improve health outcomes. Nonetheless, further research is needed to study the molecular mechanisms underlying these interactions and the potential of innovative interventions to offer novel strategies for managing OS-related diseases and enhancing overall human health.
Collapse
Affiliation(s)
| | | | | | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (B.M.); (M.B.); (M.H.N.)
| |
Collapse
|
5
|
Newman AAC, Dalman JM, Moore KJ. Cardiovascular Disease and Cancer: A Dangerous Liaison. Arterioscler Thromb Vasc Biol 2025; 45:359-371. [PMID: 39781742 PMCID: PMC11864891 DOI: 10.1161/atvbaha.124.319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessie M Dalman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Kathryn J Moore
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Makram OM, Nain P, Vasbinder A, Weintraub NL, Guha A. Cardiovascular Risk Assessment and Prevention in Cardio-Oncology: Beyond Traditional Risk Factors. Cardiol Clin 2025; 43:1-11. [PMID: 39551552 DOI: 10.1016/j.ccl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This review goes beyond traditional approaches in cardio-oncology, highlighting often-neglected factors impacting patient care. Social determinants, environment, health care access, and gut microbiome significantly influence patient outcomes. Powerful tools like multi-omics and wearable technologies offer deeper insights into real-world experiences. The future lies in integrating these advancements with established practices to achieve precision cardio-oncology care. By crafting tailored therapies and continuously updating comprehensive management plans based on real-time data, we can unlock the full potential of personalized care for all patients.
Collapse
Affiliation(s)
- Omar M Makram
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Priyanshu Nain
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Alexi Vasbinder
- Department of Biobehavioral Nursing and Health Informatics, School of Nursing, University of Washington, Seattle, WA, USA
| | - Neal L Weintraub
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Avirup Guha
- Department of Medicine, Cardio-Oncology Program, Cardiology Division, Medical College of Georgia at Augusta University, Augusta, GA, USA; Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
7
|
Abd El-Salam MH, El-Shibiny S, Assem FM, El-Sayyad GS, Hasanien YA, Elfadil D, Soliman TN. Impact of Fermented Milk On Gut Microbiota And Human Health: A Comprehensive Review. Curr Microbiol 2025; 82:107. [PMID: 39888432 DOI: 10.1007/s00284-025-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The beneficial impact of gut microbiota on human health has encouraged studies on factors modulating it. Among the different factors, diet plays a vital role in this area. Many studies on animals and humans have been concerned with the effects of fermented milk products on gut microbiota and how they relate to health benefits. Yoghurt, kefir, Koumiss, and fermented kinds of milk made using different probiotic strains were tested for their capability to modulate gut microbiota. It is apparent that the microflora present in fermented milk, specifically probiotics, are capable of enduring the gastrointestinal tract's adverse conditions primarily through transit microorganisms. Meanwhile, they can alter the gut microbiota in several ways that benefit human health. The present article gives a comprehensive overview of the modulation of gut microbiota by consumption of fermented milk, particularly those containing probiotics, and their impact on human health.
Collapse
Affiliation(s)
| | | | | | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Yasmeen A Hasanien
- Microbiology Laboratory, Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | | |
Collapse
|
8
|
Sharma A, Kapur S, Kancharla P, Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur J Pharmacol 2025; 987:177183. [PMID: 39647571 PMCID: PMC11714433 DOI: 10.1016/j.ejphar.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The intricate ecosystem of the gut microbiome exhibits sex-specific differences, influencing the susceptibility to cardiovascular diseases (CVD). Imbalance within the gut microbiome compromises the gut barrier, activates inflammatory pathways, and alters the production of metabolites, all of which initiate chronic diseases including CVD. In particular, the interplay between lifestyle choices, hormonal changes, and metabolic byproducts uniquely affects sex-specific gut microbiomes, potentially shaping the risk profiles for hypertension and CVD differently in men and women. Understanding the gut microbiome's role in CVD risk offers informative reasoning behind the importance of developing tailored preventative strategies based on sex-specific differences in CVD risk. Furthermore, insight into the differential impact of social determinants and biological factors on CVD susceptibility emphasizes the necessity for more nuanced approaches. This review also outlines specific dietary interventions that may enhance gut microbiome health, offering a glimpse into potential therapeutic avenues for reducing CVD risk that require greater awareness. Imbalance in natural gut microbiomes may explain etiologies of chronic diseases; we advocate for future application to alter the gut microbiome as possible treatment of the aforementioned diseases. This review mentions the idea of altering the gut microbiome through interventions such as fecal microbiota transplantation (FMT), a major application of microbiome-based therapy that is first-line for Clostridium difficile infections and patient-specific probiotics highlights more innovative approaches to hypertension and CVD prevention. Through increased analysis of gut microbiota compositions along with patient-centric probiotics and microbiome transfers, this review advocates for future preventative strategies for hypertension.
Collapse
Affiliation(s)
- Anish Sharma
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Sahil Kapur
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Priyal Kancharla
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA.
| |
Collapse
|
9
|
Lei S, Liu Y. Identifying the Involvement of Gut Microbiota in Retinal Vein Occlusion by Mendelian Randomization and Genetic Correlation Analysis. Transl Vis Sci Technol 2025; 14:5. [PMID: 39786739 PMCID: PMC11725986 DOI: 10.1167/tvst.14.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Previous researches have suggested an important association between gut microbiota (GM) and vascular pathologies such as atherosclerosis. This study aimed to explore the association between 196 GM taxa and retinal vein occlusion (RVO). Methods This study used Mendelian randomization (MR), linkage disequilibrium score regression (LDSC), and polygenic overlap analysis. Genome-wide association study (GWAS) data associated with 196 GM taxa was obtained from the MiBioGen consortium, involving a large number of European-ancestry participants. GWAS data of RVO was obtained from the FinnGen consortium and another study that also involved European-ancestry participants. Inverse-variance weighted was used as the primary approach for MR estimation. Moreover, LDSC and polygenic overlap analyses were performed to evaluate the genetic correlation between GM taxa and RVO. Results The MR results identified the association of six GM taxa, including class Bacilli, order Lactobacillales, family Streptococcaceae, genus Clostridium innocuum group, genus Family XIII AD3011 group, and genus Subdoligranulum with the development of RVO. In addition, the polygenic overlap analysis supported the genetic association between GM and RVO. Conclusions Our findings confirmed the association between six GM taxa and the development of RVO, thereby highlighting the effects of GM on retinal vascular health. Translational Relevance The results may provide the rationale for developing GM-based strategies for preventing the onset of RVO.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
10
|
Abdulrahim AO, Doddapaneni NSP, Salman N, Giridharan A, Thomas J, Sharma K, Abboud E, Rochill K, Shreelakshmi B, Gupta V, Lakkimsetti M, Mowo-Wale A, Ali N. The gut-heart axis: a review of gut microbiota, dysbiosis, and cardiovascular disease development. Ann Med Surg (Lond) 2025; 87:177-191. [PMID: 40109640 PMCID: PMC11918638 DOI: 10.1097/ms9.0000000000002789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide and there are strong links existing between gut health and cardiovascular health. Gut microbial diversity determines gut health. Dysbiosis, described as altered gut microbiota, causes bacterial translocations and abnormal gut byproducts resulting in systemic inflammation. Objective To review the current literature on the relationships between gut microbiota, dysbiosis, and CVD development, and explore therapeutic methods to prevent dysbiosis and support cardiovascular health. Summary Dysbiosis increases levels of pro-inflammatory substances while reducing those of anti-inflammatory substances. This accumulative inflammatory effect negatively modulates the immune system and promotes vascular dysfunction and atherosclerosis. High Firmicutes to Bacteroidetes ratios, high trimethylamine-n-oxide to short-chain fatty acid ratios, high indole sulfate levels, low cardiac output, and polypharmacy are all associated with worse cardiovascular outcomes. Supplementation with prebiotics and probiotics potentially alleviates some CVD risk. Blood and stool samples may be used in clinical practice to quantify and qualify gut bacterial ratios and byproducts, assess patients' risk for adverse cardiovascular outcomes, and track their gut health progress. Further research is required to set population-based cutoffs for normal and abnormal gut microbiota and byproduct ratios.
Collapse
Affiliation(s)
| | | | - Nadhra Salman
- Department of Internal Medicine, Baqai Medical University, Karachi, Pakistan
| | | | | | - Kavya Sharma
- Maharishi Markandeshwar Medical College and Hospital, Himachal Pradesh, India
| | - Elias Abboud
- Faculty of Medicine, University of Saint Joseph, Beirut, Lebanon
| | | | - B Shreelakshmi
- Navodaya Medical College Hospital & Research Centre, Karnataka, India
| | | | | | | | - Noor Ali
- Dubai Medical College, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Lai Y, Huang X, Sun H, Hui Q, Hu S. Research Progress in the Relationship between Intestinal Flora and Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2025; 25:281-290. [PMID: 38956918 DOI: 10.2174/0118715303308965240624054156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.
Collapse
Affiliation(s)
- Yingji Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianfeng Huang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shanshan Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Gnanasekaran D, Pandurangan AR, Ramaswamy PS, Raghavendra SK, Raman K, Somasundaram GS. Exploring the gut-heart axis: A prospective analysis of microbiota in cardiovascular health. Bioinformation 2024; 20:1900-1903. [PMID: 40230898 PMCID: PMC11993406 DOI: 10.6026/9732063002001900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 04/16/2025] Open
Abstract
The relationship between gut microbiota composition and the development of cardiovascular disease, with a potential role of microbial metabolites in inflammatory and metabolic pathways is of interest. We analyzed gut microbiota and markers of cardiovascular health in a cohort of 100 participants for three years to search for microbial signatures correlated with increased CVD risk. Our results show several correlations between specific microbial taxa, lipid metabolism and systemic inflammation, whereby a higher Firmicutes/Bacteroides ratio is associated with a greater incidence of CVD. These results suggest that intervention targeting the microbiome has the potential to reduce risk for CVD and point towards a role for gut microbiota in cardiovascular health.
Collapse
Affiliation(s)
- Deepika Gnanasekaran
- Department of Internal Medicine, Hillingdon Hospital, Uxbridge, London, United Kingdom
| | | | | | - Shrunga Kandhi Raghavendra
- Department of Internal Medicine, Chamarajanagar Institute of Medical Sciences (CIMS), Kasaba Hobli, Chamarajanagar, Karnataka, India
| | - Karthick Raman
- Department of Cardiology, Government Sivagangai Medical College Hospital, Sivagangai, Tamil Nadu, India
| | | |
Collapse
|
13
|
Dharmarathne G, Kazi S, King S, Jayasinghe TN. The Bidirectional Relationship Between Cardiovascular Medications and Oral and Gut Microbiome Health: A Comprehensive Review. Microorganisms 2024; 12:2246. [PMID: 39597635 PMCID: PMC11596509 DOI: 10.3390/microorganisms12112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of widespread morbidity and mortality. It has been found that the gut and oral microbiomes differ in individuals with CVDs compared to healthy individuals. Patients with CVDs often require long-term pharmacological interventions. While these medications have been extensively studied for their cardiovascular benefits, emerging research indicates that they may also impact the diversity and composition of the oral and gut microbiomes. However, our understanding of how these factors influence the compositions of the oral and gut microbiomes in individuals remains limited. Studies have shown that statins and beta-blockers, in particular, cause gut and oral microbial dysbiosis, impacting the metabolism and absorption of these medications. These alterations can lead to variations in drug responses, highlighting the need for personalized treatment approaches. The microbiome's role in drug metabolism and the impact of CVD medications on the microbiome are crucial in understanding these variations. However, there are very few studies in this area, and not all medications have been studied, emphasizing the necessity for further research to conclusively establish cause-and-effect relationships and determine the clinical significance of these interactions. This review will provide evidence of how the oral and gut microbiomes in patients with cardiovascular diseases (CVDs) interact with specific drugs used in CVD treatment.
Collapse
Affiliation(s)
- Gangani Dharmarathne
- Australian Laboratory Services Global, Water and Hydrographic, Hume, ACT 2620, Australia
| | - Samia Kazi
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Shalinie King
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW 2145, Australia
- The Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thilini N. Jayasinghe
- The Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- The Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Dominguez LJ, Veronese N, Parisi A, Seminara F, Vernuccio L, Catanese G, Barbagallo M. Mediterranean Diet and Lifestyle in Persons with Mild to Moderate Alzheimer's Disease. Nutrients 2024; 16:3421. [PMID: 39408386 PMCID: PMC11478982 DOI: 10.3390/nu16193421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the continuous aging of the population and consequent increase in dementia, focus on its prevention is of growing importance for public health. Since effective pharmacological treatments are not yet available, other determinants of cognitive decline have become fundamental. Several studies have indicated that the Mediterranean diet (MedDiet) is associated with reduced incident cognitive decline and dementia, but few studies have been conducted in persons already diagnosed with Alzheimer's disease (AD). We age-matched 73 patients with mild-moderate AD with 73 controls (mean age for the whole group = 76.5 ± 6.5; 67.5% women). The cases had a significantly lower adherence to the MedDiet and lower physical activity vs. controls, where only one participant (1.4%) had a high adherence to the MedDiet among cases compared to 5.5% among controls, while 52.5% of the cases had a moderate adherence to the MedDiet vs. 82.2% in controls. In multivariate analysis, only the presence of AD was significantly associated with a lower adherence to the MedDiet vs. controls. Other factors examined (gender, age, physical activity level, multimorbidity, and polypharmacy) were not significantly associated with adherence to the MedDiet. Thus, AD patients had a low adherence to the MedDiet and very low physical activity. Public health strategies aimed at promoting the Mediterranean diet and physical activity for older people should be a priority.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Department of Medicine and Surgery, University Kore of Enna, 94100 Enna, Italy
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| | - Angela Parisi
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| | - Flavia Seminara
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| | - Laura Vernuccio
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| | - Giuseppina Catanese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| | - Mario Barbagallo
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90144 Palermo, Italy; (N.V.); (A.P.); (F.S.); (L.V.); (G.C.); (M.B.)
| |
Collapse
|
15
|
Hernando-Redondo J, Malcampo M, Pérez-Vega KA, Paz-Graniel I, Martínez-González MÁ, Corella D, Estruch R, Salas-Salvadó J, Pintó X, Arós F, Bautista-Castaño I, Romaguera D, Lapetra J, Ros E, Cueto-Galán R, Fitó M, Castañer O. Mediterranean Diet Modulation of Neuroinflammation-Related Genes in Elderly Adults at High Cardiovascular Risk. Nutrients 2024; 16:3147. [PMID: 39339745 PMCID: PMC11434799 DOI: 10.3390/nu16183147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Individuals with dementia and neurodegenerative diseases (NDDs) often suffer from cardiovascular diseases (CVDs). Neuroinflammation driven by conditions involved in CVDs is linked to disruptions in the central nervous system triggering immune reactions, perpetuating an "inflammatory-like" environment. The Mediterranean diet (MedDiet), known for its anti-inflammatory and antioxidant properties, has been proposed as a key factor to attenuate these risks. Blood nuclear cell samples were collected from 134 participants of the PREDIMED trial, which randomized participants to three diets: one supplemented with extra-virgin olive oil (MedDiet-EVOO), another with nuts (MedDiet-Nuts), and a low-fat control diet. These samples were analyzed at baseline and 12-month follow-up to assess the impact of these dietary interventions on gene expression markers. We first selected target genes by analyzing intersections between NDD and CVD associations. Significant gene expression changes from baseline to 12 months were observed in the participants allocated to the MedDiet-EVOO, particularly in CDKN2A, IFNG, NLRP3, PIK3CB, and TGFB2. Additionally, TGFB2 expression changed over time in the MedDiet-Nuts group. Comparative analyses showed significant differences in TGFB2 between MedDiet-EVOO and control, and in NAMPT between MedDiet-Nuts and control. Longitudinal models adjusted for different covariates also revealed significant effects for TGFB2 and NAMPT. In conclusion, our results suggest that one year of traditional MedDiet, especially MedDiet-EVOO, modulates gene expression associated with CVD risk and NDDs in older adults at high CV risk.
Collapse
Affiliation(s)
- Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- Ph.D. Program in Food Science and Nutrition, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Malcampo
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Karla Alejandra Pérez-Vega
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Indira Paz-Graniel
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, 31009 Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 46010 Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Xavier Pintó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Lipids and Vascular Risk Unit, Internal Medicine, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitario de Bellvitge, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Cardiology Department, Organización Sanitaria Integrada Araba (OSI ARABA), University Hospital of Araba, 01009 Gasteiz, Spain
- University of País Vasco/Euskal Herria Unibersitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Inmaculada Bautista-Castaño
- Institute for Biomedical Research, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Dora Romaguera
- Research Group in Nutritional Epidemiology and Cardiovascular Pathophysiology, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Family Medicine, Research Unity, Distrito Sanitario Atención Primaria Sevilla, 41013 Seville, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 46010 Barcelona, Spain
| | - Raquel Cueto-Galán
- Preventive Medicine and Public Health Department, School of Medicine, University of Malaga, Spain, Biomedical Research Institute of Malaga (IBIMA), 29071 Malaga, Spain;
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Olga Castañer
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
17
|
Li Z, Xu Q, Huangfu N, Cui H. The effect and mechanism of inulin on atherosclerosis is mediated by the characteristic intestinal flora and metabolites. Coron Artery Dis 2024; 35:498-508. [PMID: 38767579 DOI: 10.1097/mca.0000000000001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Inflammation and hyperlipidemia can cause atherosclerosis. Prebiotic inulin has been proven to effectively reduce inflammation and blood lipid levels. Utilizing a mouse model induced by a high-fat diet, this study aimed to explore whether the characteristic intestinal flora and its metabolites mediate the effects of inulin intervention on atherosclerosis and to clarify the specific mechanism. METHODS Thirty apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into three groups. They were fed with a normal diet, a high-fat diet or an inulin+high-fat diet for 16 weeks. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) in the three groups were compared. The gross aorta and aortic sinus of mice were stained with oil red O, and the area of atherosclerotic plaque was observed and compared. The diversity and structure of the mouse fecal flora were detected by sequencing the V3-V4 region of the 16S rRNA gene, and the levels of metabolites in mouse feces were assessed by gas chromatography-mass spectrometry. The plasma lipopolysaccharide (LPS) levels and aortic inflammatory factors were measured by multi-index flow cytometry (CBA). RESULTS ApoE-/- mice fed with the high-fat diet exhibited an increase of approximately 46% in the area of atherosclerotic lesions, and the levels of TC, TG and LDL-C were significantly increased ( P < 0.05) compared with levels in the normal diet group. After inulin was added to the high-fat group, the area of atherosclerotic lesions, the level of serum LPS and aortic inflammation were reduced, and the levels of TC, TG and LDL-C were decreased ( P < 0.05). Based on 16S rRNA gene detection, we found that the composition of the intestinal microbiota, such as Prevotella, and metabolites, such as L-arginine, changed significantly due to hyperlipidemia, and the dietary inulin intervention partially reversed the relevant changes. CONCLUSION Inulin can inhibit the formation of atherosclerotic plaques, which may be related to the changes in lipid metabolism, the composition of the intestinal microbial community and its metabolites, and the inhibition of the expression of related inflammatory factors. Our study identified the relationships among the characteristic intestinal microbiota, metabolites and atherosclerosis, aiming to provide a new direction for future research to delay or treat atherosclerosis by changing the composition and function of the host intestinal microbiota and metabolites.
Collapse
Affiliation(s)
| | - Qingqing Xu
- Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | | | |
Collapse
|
18
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
19
|
Miele C, Mennitti C, Gentile A, Veneruso I, Scarano C, Vastola A, La Monica I, Uomo F, Iafusco F, Capasso F, Pero R, D’Argenio V, Lombardo B, Tinto N, Di Micco P, Scudiero O, Frisso G, Mazzaccara C. Thrombosis and Thrombotic Risk in Athletes. J Clin Med 2024; 13:4881. [PMID: 39201023 PMCID: PMC11355105 DOI: 10.3390/jcm13164881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The hemostatic system is characterized by a delicate balance between pro- and anticoagulant forces, and the smallest alteration can cause serious events such as hemorrhages or thrombosis. Although exercise has been shown to play a protective role in athletes, several factors may increase the risk of developing venous thromboembolism (VTE), including hemoconcentration induced by exertion, immobilization following sports injuries, frequent long-distance flights, dehydration, and the use of oral contraceptives in female athletes. Biomarkers such as D-dimer, Factor VIII, thrombin generation, inflammatory cytokines, and leukocyte count are involved in the diagnosis of deep vein thrombosis (DVT), although their interpretation is complex and may indicate the presence of other conditions such as infections, inflammation, and heart disease. Therefore, the identification of biomarkers with high sensitivity and specificity is needed for the screening and early diagnosis of thromboembolism. Recent evidence about the correlation between the intensity of physical activity and VTE is divergent, whereas the repeated gestures in sports such as baseball, hockey, volleyball, swimming, wrestling, or, on the other hand, soccer players, runners, and martial art training represent a risk factor predisposing to the onset of upper and lower DVT. Anticoagulant therapy is the gold standard, reducing the risk of serious complications such as pulmonary embolism. The aim of this review is to provide a general overview about the interplay between physical exercise and the risk of thromboembolism in athletes, focusing on the main causes of thrombosis in professional athletes and underlying the need to identify new markers and therapies that can represent a valid tool for safeguarding the athlete's health.
Collapse
Affiliation(s)
- Ciro Miele
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- UOC Laboratory Medicine, Haematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Aniello Vastola
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Fabiana Uomo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
| | - Fernanda Iafusco
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Filomena Capasso
- UOC Laboratory Medicine, Haematology and Laboratory Haemostasis and Special Investigations, AOU Federico II University of Naples, 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, 00100 Rome, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Pierpaolo Di Micco
- AFO Medicina, P.O. Santa Maria delle Grazie, Pozzuoli, ASL Napoli2 nord, 80076 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy; (C.M.); (C.M.); (A.G.); (I.V.); (C.S.); (A.V.); (F.U.); (R.P.); (B.L.); (N.T.); (G.F.); (C.M.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy; (I.L.M.); (F.I.); (V.D.)
| |
Collapse
|
20
|
Ibrahim Z, Khan NA, Siddiqui R, Qaisar R, Marzook H, Soares NC, Elmoselhi AB. Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being. Nutr Metab (Lond) 2024; 21:66. [PMID: 39123239 PMCID: PMC11316329 DOI: 10.1186/s12986-024-00836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS,, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Nelson C Soares
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid university of Medicine and Health Sciences, Dubai, 0000, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av Padre Cruz, Lisbon, 1649-016, Portugal
| | - Adel B Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE.
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
21
|
Trehan S, Singh G, Bector G, Jain P, Mehta T, Goswami K, Chawla A, Jain A, Puri P, Garg N. Gut Dysbiosis and Cardiovascular Health: A Comprehensive Review of Mechanisms and Therapeutic Potential. Cureus 2024; 16:e67010. [PMID: 39280497 PMCID: PMC11402436 DOI: 10.7759/cureus.67010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Recent research has identified gut dysbiosis - an imbalance in the gut microbiota - as a significant factor in the development of CVDs. This complex relationship between gut microbiota and cardiovascular health involves various mechanisms, including the production of metabolites such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs). These metabolites influence lipid metabolism, inflammation, and blood pressure regulation. In addition, the gut-brain axis and neurohormonal pathways play crucial roles in cardiovascular function. Epidemiological studies have linked gut dysbiosis to various cardiovascular conditions, highlighting the potential for therapeutic interventions. Dietary changes, probiotics, and prebiotics have shown promise in modulating gut microbiota and reducing cardiovascular risk factors. This underscores the critical role of gut health in preventing and treating CVDs. However, further research is needed to develop targeted therapies that can enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubam Trehan
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Gurjot Singh
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Gaurav Bector
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Prateek Jain
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Tejal Mehta
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Kanishka Goswami
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Avantika Chawla
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Aayush Jain
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Piyush Puri
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Nadish Garg
- Division of Cardiology, Memorial Hermann Pearland Hospital, Pearland, USA
- Division of Cardiology, Memorial Hermann Southeast Hospital, Houston, USA
| |
Collapse
|
22
|
DeChristopher LR, Tucker KL. Disproportionately higher cardiovascular disease risk and incidence with high fructose corn syrup sweetened beverage intake among black young adults-the CARDIA study. Nutr J 2024; 23:84. [PMID: 39075463 PMCID: PMC11285415 DOI: 10.1186/s12937-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The black/white heart disease mortality disparity began increasing in the early 1980's, coincident with the switch from sucrose to high-fructose-corn-syrup/(HFCS) in the US food supply. There has been more fructose in HFCS than generally-recognized-as-safe/GRAS, which has contributed to unprecedented excess-free-fructose/(unpaired-fructose) in foods/beverages. Average- per-capita excess-free-fructose, from HFCS, began exceeding dosages/(5-10 g) that trigger fructose-malabsorption in the early 1980's. Fructose malabsorption contributes to gut-dysbiosis and gut-in-situ-fructosylation of dietary peptides/incretins/(GLP-1/GIP) which forms atherosclerotic advanced-glycation-end-products. Both dysregulate gut endocrine function and are risk factors for cardiovascular disease/(CVD). Limited research shows that African Americans have higher fructose malabsorption prevalence than others. CVD risk begins early in life. METHODS Coronary-Artery-Risk-Development-in-Adults/(CARDIA) study data beginning in 1985-86 with 2186 Black and 2277 White participants, aged 18-30 y, were used to test the hypothesis that HFCS sweetened beverage intake increases CVD risk/incidence, more among Black than White young adults, and at lower intakes; while orange juice-a low excess-free-fructose juice with comparable total sugars and total fructose, but a 1:1 fructose-to-glucose-ratio, i.e., low excess-free-fructose, does not. Cox proportional hazards models were used to calculate hazard ratios. RESULTS HFCS sweetened beverage intake was associated with higher CVD risk (HR = 1.7) than smoking (HR = 1.6). CVD risk was higher at lower HFCS sweetened beverage intake among Black than White participants. Intake, as low as 3 times/wk, was associated with twice the CVD risk vs. less frequent/never, among Black participants only (HR 2.1, 95% CI 1.2-3.7; P = 0.013). Probability of an ordered relationship approached significance. Among Black participants, CVD incidence jumped 62% from 59.8/1000, among ≤ 2-times/wk, to 96.9/1000 among 3-6 times/wk consumers. Among White participants, CVD incidence increased from 37.6/1000, among ≤ 1.5-times/wk, to 41.1/1000, among 2 times/wk-once/d - a 9% increase. Hypertension was highest among Black daily HFCS sweetened beverage consumers. CONCLUSION The ubiquitous presence of HFCS over-the-past-40 years, at higher fructose-to-glucose ratios than generally-recognized-as-safe, may have contributed to CVD racial disparities, due to higher fructose-malabsorption prevalence among Black individuals, unpaired/excess-free-fructose induced gut dysbiosis and gut fructosylation of dietary peptides/incretins (GLP-1/GIP). These disturbances contribute to atherosclerotic plaque; promote incretin insufficiency/dysregulation/altered satiety/dysglycemia; decrease protective microbiota metabolites; and increase hypertension, CVD morbidity and mortality.
Collapse
Affiliation(s)
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
23
|
Ouyang W, Tang B, He Y, Wu H, Yang P, Yin L, Li X, Li Y, Huang X. Mediation effect of gut microbiota on the relationship between physical activity and carotid plaque. Front Microbiol 2024; 15:1432008. [PMID: 39056008 PMCID: PMC11269180 DOI: 10.3389/fmicb.2024.1432008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Background Physical activity has been shown to have an effect on Carotid plaque (CP) which is a predictor of Cardiovascular disease (CVD). Studies have shown that physical activity can alter the composition of gut microbiota, whether its influence on CP was mediated by gut microbiota has yet to be proved. Methods We conducted a case-control study involving 30 CP patients and 31 controls. Logistic regression was used to analyze the association between CP and physical activity. LefSe was used to explore the association between gut microbiota and physical activity as well as CP, and PhyloMed was used to examine the mediating effect of gut microbiota in the association between physical activity and CP. Results After adjusting for potential confounders, adequate physical activity showed a significant association with a decreased risk of CP (ORadj: 0.25, 95%CI: 0.06, 0.97). CP was associated with enrichment in the order Bacteroidales within the phylum Bacteroidetes and the predominant microbiota in individuals without plaque was the order Clostridiales (LDA scores >3). Individuals with adequate physical activity had a higher abundance of the order Clostridiales, while the order Bacteroidetes was enriched in individuals with inadequate physical activity (LDA scores >3). The PhyloMed revealed a significant mediation effect of gut microbiota in the association between physical activity and CP (p = 0.03). Conclusion Adequate physical activity was significantly associated with a decreased risk of CP, and this association was mediated by an increase in the abundance of gut microbiota in the order Clostridiales.
Collapse
Affiliation(s)
- Wenbin Ouyang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Bei Tang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Yongmei He
- Department of Health Management, Aerospace Center Hospital, Beijing, China
| | - Hao Wu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Yin
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Huang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
24
|
Kotlyarov S. Importance of the gut microbiota in the gut-liver axis in normal and liver disease. World J Hepatol 2024; 16:878-882. [PMID: 38948437 PMCID: PMC11212653 DOI: 10.4254/wjh.v16.i6.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The gut microbiota is of growing interest to clinicians and researchers. This is because there is a growing understanding that the gut microbiota performs many different functions, including involvement in metabolic and immune processes that are systemic in nature. The liver, with its important role in detoxifying and metabolizing products from the gut, is at the forefront of interactions with the gut microbiota. Many details of these interactions are not yet known to clinicians and researchers, but there is growing evidence that normal gut microbiota function is important for liver health. At the same time, factors affecting the gut microbiota, including nutrition or medications, may also have an effect through the gut-liver axis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia.
| |
Collapse
|
25
|
Seif El-Din MM, Hagras M, Mayhoub AS. Phenylthiazoles with potent & optimum selectivity toward Clostridium difficile. RSC Med Chem 2024; 15:1991-2001. [PMID: 38911156 PMCID: PMC11187570 DOI: 10.1039/d4md00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 06/25/2024] Open
Abstract
Clostridium difficile (C. difficile) is one of the most threatening bacteria globally, causing high mortality and morbidity in humans and animals, and is considered a public health threat that requires urgent and aggressive action. Interruption of the human gut microbiome and the development of antibiotic resistance urgently require development and synthesis of effective alternative antibiotics with minimal effects on the normal gut microbial flora. In this study, cyclization of the aminoguanidine head to the thiazole nucleus while maintaining its other pharmacophoric features leads to selective targeting of Clostridioides difficile as shown in the graphical abstract. The most promising compound, 5, was significantly more efficient than vancomycin and metronidazole against six strains of C. diff with MIC values as low as 0.030 μg mL-1. Additionally, compound 5 was superior to vancomycin and metronidazole, showing no inhibition toward nine tested strains of the normal human gut microbiota (>64 μg mL-1). The high safety profile of compound 5 was also observed with two cell lines HRT-18 and Vero cells.
Collapse
Affiliation(s)
- Mahmoud M Seif El-Din
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology Ahmed Zewail Street Giza Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo Egypt
| | - Abdelrahman S Mayhoub
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology Ahmed Zewail Street Giza Egypt
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo Egypt
| |
Collapse
|
26
|
Ondondo B. Editorial: Overcoming challenges in microbial immunology: 2022. Front Immunol 2024; 15:1436631. [PMID: 38953029 PMCID: PMC11215133 DOI: 10.3389/fimmu.2024.1436631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- Beatrice Ondondo
- Immunology Department, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| |
Collapse
|
27
|
Londoño-Osorio S, Leon-Carreño L, Cala MP, Sierra-Zapata L. The gut metabolome in a cohort of pregnant and lactating women from Antioquia-Colombia. Front Mol Biosci 2024; 11:1250413. [PMID: 38803424 PMCID: PMC11128665 DOI: 10.3389/fmolb.2024.1250413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
Nutrition during the perinatal period is an essential component of health and one that can severely impact the correct development of a human being and its overall condition, in all the subsequent stages of life. The availability of several compounds, mainly macronutrients and micronutrients, plays a key role in the balanced nutrition of both mother and baby and is a process with direct relation to the gut microbiome. Thus, we hereby refer to the set of small molecules derived from gut microbiome metabolism as the gut metabolome. These continuous processes occurring in the gut of a gestating or lactating mother related to microbial communities and nutrients, can be revealed by metabolomics. In this study, we explore for the first time the gut metabolome of pregnant and lactating women, from our region of Antioquia-Colombia, applying untargeted metabolomics by LC-QTOF-MS, and molecular networking. Regarding the gut metabolome composition of the cohort, we found, key metabolites that can be used as biomarkers of microbiome function, overall metabolic health, dietary intake, pharmacology, and lifestyle. In our cohort, pregnant women evidenced a significantly higher abundance of prostaglandins, alkaloids, corticosteroids, organosilicons, and natural toxins, while in lactating women, lipids stand out. Our results suggest that unveiling the metabolic phenotype of the gut microbiome of an individual, by untargeted metabolomics, allows a broad visualization of the chemical space present in this important niche and enables the recognition of influential indicators of the host's health status and habits, especially of women during this significant perinatal period. This study constitutes the first evidence of the use of untargeted LC-QTOF-MS coupled with molecular networking analysis, of the gut microbiome in a Colombian cohort and establishes a methodology for finding relative abundances of key metabolites, with potential use in nutritional and physiological state assessments, for future personalized health and nutrition practices.
Collapse
Affiliation(s)
- Sara Londoño-Osorio
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| | - Lizeth Leon-Carreño
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore–Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Laura Sierra-Zapata
- CIBIOP Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
28
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
29
|
Rostgaard-Hansen AL, Esberg A, Dicksved J, Hansen T, Pelve E, Brunius C, Halkjær J, Tjønneland A, Johansson I, Landberg R. Temporal gut microbiota variability and association with dietary patterns: From the one-year observational Diet, Cancer, and Health - Next Generations MAX study. Am J Clin Nutr 2024; 119:1015-1026. [PMID: 38301827 DOI: 10.1016/j.ajcnut.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Knowledge about the variability of gut microbiota within an individual over time is important to allow meaningful investigations of the gut microbiota in relation to diet and health outcomes in observational studies. Plant-based dietary patterns have been associated with a lower risk of morbidity and mortality and may alter gut microbiota in a favorable direction. OBJECTIVES To assess the gut microbiota variability during one year and investigate the association between adherence to diet indexes and the gut microbiota in a Danish population. METHODS Four hundred forty-four participants were included in the Diet, Cancer, and Health - Next Generations MAX study (DCH-NG MAX). Stool samples collected up to three times during a year were analyzed by 16S ribosomal ribonucleic acid gene sequencing. Diet was obtained by 24-hour dietary recalls. Intraclass correlation coefficient (ICC) was calculated to assess temporal microbial variability based on 214 individuals. Diet indexes (Nordic, Mediterranean, and plant-based diets) and food groups thereof were associated with gut microbiota using linear regression analyses. RESULTS We found that 91 out of 234 genera had an ICC >0.5. We identified three subgroups dominated by Bacteroides, Prevotella 9, and Ruminococcaceae and adherence to diet indexes differed between subgroups. Higher adherence to diet indexes was associated with the relative abundance of 22 genera. Across diet indexes, higher intakes of fruit, vegetables, whole grains/cereals, and nuts were most frequently associated with these genera. CONCLUSIONS In the DCH-NG MAX study, 39% of the genera had an ICC >0.5 over one year, suggesting that these genera could be studied with health outcomes in prospective analyses with acceptable precision. Adherence to the Nordic, Mediterranean, and plant-based diets differed between bacterial subgroups and was associated with a higher abundance of genera with fiber-degrading properties. Fruits, vegetables, whole grains/cereals, and nuts were frequently associated with these genera.
Collapse
Affiliation(s)
- Agnetha L Rostgaard-Hansen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark.
| | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carl Brunius
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jytte Halkjær
- Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark
| | - Anne Tjønneland
- Department of Diet, Cancer, and Health, Danish Cancer Institute, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
30
|
Khan S, Ahmad F, Khalid N. Applications of Strain-Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review. Mol Nutr Food Res 2024; 68:e2300675. [PMID: 38549453 DOI: 10.1002/mnfr.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/14/2024] [Indexed: 05/08/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and novel approaches for prevention and management are needed. The human gastrointestinal tract hosts a diverse microbiota that is crucial in maintaining metabolic homeostasis. The formulation of effective probiotics, alone or in combination, has been under discussion due to their impact on cardiovascular and metabolic diseases. Probiotics have been shown to impact cardiovascular health positively. An imbalance in the presence of Firmicutes and Bacteroidetes has been linked to the progression of CVDs due to their impact on bile acid and cholesterol metabolism. The probiotics primarily help in the reduction of plasma low-density lipoprotein levels and attenuation of the proinflammatory markers. These beneficial microorganisms contribute to lowering cholesterol levels and produce essential short-chain fatty acids. The impact of lipid-regulating probiotic strains on human health is quite significant. However, only a few have been tested for potential beneficial efficacy, and ambiguity exists regarding strain dosages, interactions with confounding factors, and potential adverse effects. Hence, more comprehensive studies and randomized trials are needed to understand the mechanisms of probiotics on CVDs and to ensure human health. This review assesses the evidence and highlights the roles of strain-specific probiotics in the management of CVDs.
Collapse
Affiliation(s)
- Saleha Khan
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nauman Khalid
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| |
Collapse
|
31
|
Hou C, Chen Y, Hazeena SH, Tain Y, Hsieh C, Chen D, Liu R, Shih M. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio 2024; 14:358-379. [PMID: 38151750 PMCID: PMC10909991 DOI: 10.1002/2211-5463.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.
Collapse
Affiliation(s)
- Chih‐Yao Hou
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Yu‐Wei Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - You‐Lin Tain
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
- Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Wei Hsieh
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - De‐Quan Chen
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Rou‐Yun Liu
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Ming‐Kuei Shih
- Graduate Institute of Food Culture and InnovationNational Kaohsiung University of Hospitality and TourismTaiwan
| |
Collapse
|
32
|
Dubey AK, Kaur I, Madaan R, Raheja S, Bala R, Garg M, Kumar S, Lather V, Mittal V, Pandita D, Gundamaraju R, Singla RK, Sharma R. Unlocking the potential of oncology biomarkers: advancements in clinical theranostics. Drug Metab Pers Ther 2024; 39:5-20. [PMID: 38469723 DOI: 10.1515/dmpt-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Shikha Raheja
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa, Haryana, India
| | - Rajni Bala
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research, 77282 Amity University, Sector-125 , Noida, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, 429174 Punjabi University Patiala , Patiala, India
| | - Viney Lather
- Amity Institute of Pharmacy, 77282 Amity University , Noida, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, 29062 Maharshi Dayanand University , Rohtak, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, PushpVihar, 633274 Govt. of NCT of Delhi , New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Govt. of NCT of Delhi, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, 8785 University of Tasmania , Launceston, Tasmania, Australia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- School of Pharmaceutical Sciences, 34753 Lovely Professional University , Phagwara, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, 80095 Banaras Hindu University , Varanasi, Uttar Pradesh, India
| |
Collapse
|
33
|
Volarić M, Šojat D, Majnarić LT, Vučić D. The Association between Functional Dyspepsia and Metabolic Syndrome-The State of the Art. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:237. [PMID: 38397726 PMCID: PMC10888556 DOI: 10.3390/ijerph21020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Functional dyspepsia is a common functional disorder of the gastrointestinal tract that is responsible for many primary care visits. No organic changes have been found to explain its symptoms. We hypothesize that modern lifestyles and environmental factors, especially psychological stress, play a crucial role in the high prevalence of functional dyspepsia and metabolic syndrome. While gastrointestinal tract diseases are rarely linked to metabolic disorders, chronic stress, obesity-related metabolic syndrome, chronic inflammation, intestinal dysbiosis, and functional dyspepsia have significant pathophysiological associations. Functional dyspepsia, often associated with anxiety and chronic psychological stress, can activate the neuroendocrine stress axis and immune system, leading to unhealthy habits that contribute to obesity. Additionally, intestinal dysbiosis, which is commonly present in functional dyspepsia, can exacerbate systemic inflammation and obesity, further promoting metabolic syndrome-related disorders. It is worth noting that the reverse is also true: obesity-related metabolic syndrome can worsen functional dyspepsia and its associated symptoms by triggering systemic inflammation and intestinal dysbiosis, as well as negative emotions (depression) through the brain-gut axis. To understand the pathophysiology and deliver an effective treatment strategy for these two difficult-to-cure disorders, which are challenging for both caregivers and patients, a psychosocial paradigm is essential.
Collapse
Affiliation(s)
- Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
- Department of Gastroenterology and Hepatology, School of Medicine, University of Mostar Clinical Hospital, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Domagoj Vučić
- Department of Cardiology, General Hospital “Dr. Josip Benčević”, A. Štampara, 35105 Slavonski Brod, Croatia;
| |
Collapse
|
34
|
Sung J, Rajendraprasad SS, Philbrick KL, Bauer BA, Gajic O, Shah A, Laudanski K, Bakken JS, Skalski J, Karnatovskaia LV. The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers. J Crit Care 2024; 79:154436. [PMID: 37769422 PMCID: PMC11034825 DOI: 10.1016/j.jcrc.2023.154436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
With approximately 39 trillion cells and over 20 million genes, the human gut microbiome plays an integral role in both health and disease. Modern living has brought a widespread use of processed food and beverages, antimicrobial and immunomodulatory drugs, and invasive procedures, all of which profoundly disrupt the delicate homeostasis between the host and its microbiome. Of particular interest is the human gut microbiome, which is progressively being recognized as an important contributing factor in many aspects of critical illness, from predisposition to recovery. Herein, we describe the current understanding of the adverse impacts of standard intensive care interventions on the human gut microbiome and delve into how these microbial alterations can influence patient outcomes. Additionally, we explore the potential association between the gut microbiome and post-intensive care syndrome, shedding light on a previously underappreciated avenue that may enhance patient recuperation following critical illness. There is an impending need for future epidemiological studies to encompass detailed phenotypic analyses of gut microbiome perturbations. Interventions aimed at restoring the gut microbiome represent a promising therapeutic frontier in the quest to prevent and treat critical illnesses.
Collapse
Affiliation(s)
- Jaeyun Sung
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kemuel L Philbrick
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| | - Johan S Bakken
- Department of Infectious Diseases, St Luke's Hospital, Duluth, MN, United States of America
| | - Joseph Skalski
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
35
|
Siddiqui R, Qaisar R, Al-Dahash K, Altelly AH, Elmoselhi AB, Khan NA. Cardiovascular changes under the microgravity environment and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:89-96. [PMID: 38245353 DOI: 10.1016/j.lssr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
In view of the critical role the gut microbiome plays in human health, it has become clear that astronauts' gut microbiota composition changes after spending time in space. Astronauts are exposed to several risks in space, including a protracted period of microgravity, radiation, and mechanical unloading of the body. Several deleterious effects of such an environment are reported, including orthostatic intolerance, cardiovascular endothelial dysfunction, cellular and molecular changes, and changes in the composition of the gut microbiome. Herein, the correlation between the gut microbiome and cardiovascular disease in a microgravity environment is evaluated. Additionally, the relationship between orthostatic hypotension, cardiac shrinkage and arrhythmias during spaceflight, and cellular alterations during spaceflight is reviewed. Given its impact on human health in general, modifying the gut microbiota may significantly promote astronaut health and performance. This is merited, given the prospect of augmented human activities in future space missions.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khulood Al-Dahash
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Hashem Altelly
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey.
| |
Collapse
|
36
|
Luqman A, Hassan A, Ullah M, Naseem S, Ullah M, Zhang L, Din AU, Ullah K, Ahmad W, Wang G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front Immunol 2024; 15:1321395. [PMID: 38343539 PMCID: PMC10853344 DOI: 10.3389/fimmu.2024.1321395] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The gut microbiome is a heterogeneous population of microbes comprising viruses, bacteria, fungi, and protozoa. Such a microbiome is essential for sustaining host equilibrium, and its impact on human health can be altered by a variety of factors such as external variables, social behavior, age, nutrition, and genetics. Gut microbes' imbalances are related to a variety of chronic diseases including cancer, obesity, and digestive disorders. Globally, recent findings show that intestinal microbes have a significant role in the formation of cardiovascular disease (CVD), which is still the primary cause of fatalities. Atherosclerosis, hypertension, diabetes, inflammation, and some inherited variables are all cardiovascular risk variables. However, studies found correlations between metabolism, intestinal flora, and dietary intake. Variations in the diversity of gut microbes and changes in their activity are thought to influence CVD etiology. Furthermore, the gut microbiota acts as an endocrine organ, producing bioactive metabolites such as TMA (trimethylamine)/TMAO (trimethylamine N-oxide), SCFA (short-chain fatty acids), and bile acids, which have a substantial impact on host wellness and disease by multiple mechanisms. The purpose of this overview is to compile current evidence highlighting the intricate links between gut microbiota, metabolites, and the development of CVD. It focuses on how intestinal dysbiosis promotes CVD risk factors such as heart failure, hypertension, and atherosclerosis. This review explores the normal physiology of intestinal microbes and potential techniques for targeting gut bacteria for CVD treatment using various microbial metabolites. It also examines the significance of gut bacteria in disease treatment, including supplements, prebiotics, probiotics, antibiotic therapies, and fecal transplantation, which is an innovative approach to the management of CVD. As a result, gut bacteria and metabolic pathways become increasingly attractive as potential targets for CVD intervention.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Mehraj Ullah
- School of Fermentation Engineering Tianjin University of Science and Technology, Tianjin, China
| | | | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratories, Chongqing, China
| |
Collapse
|
37
|
Chowdhury M, Raj Chaudhary N, Kaur P, Goyal A, Sahu SK. Different Strategies Targeting Gut Microbiota for the Management of Several Disorders: A Sustainable Approach. Infect Disord Drug Targets 2024; 24:e160124225675. [PMID: 38317473 DOI: 10.2174/0118715265267536231121095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND A potential limelight is flashed on the Gut Microbiota (GM) in the human body, which confers additional psychological as well as physiological attributes to health. Other than just occupying a wide portion of the gastrointestinal tract, it also plays numerous functions in the systems of the body. Gut Microbiota is largely responsible for a considerably vast array of conditions such as obesity, diabetes ,other metabolic disorders, and cardiovascular disorders. Strategies targeting the gut microbiota have been proposed as a promising approach for the management of these disorders. OBJECTIVE This review aims to summarize the different strategies targeting the gut microbiota for the management of several disorders and to highlight the importance of a sustainable approach. METHODS A comprehensive literature search was conducted using various databases between 2008 and 2022 that focused on the use of prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, dietary interventions, and antibiotics. RESULTS Different strategies targeting the gut microbiota for the management of several disorders were identified, including probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and dietary interventions. Modification in diet and lifestyle, allowing favorable microbiota growth in the stomach, intake of prebiotics and probiotics, and fecal microbiota transplantation are amongst the widely accepted recent approaches allowing the application of GM in the field of treatment. CONCLUSION Although considerable steps in enhancing and understanding the mechanism of treatment with the help of gut microbiota are under progress, much diversified and elaborate research must be conducted in order to enhance and implement the use of GM with high effectiveness.
Collapse
Affiliation(s)
- Mahima Chowdhury
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Neil Raj Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| |
Collapse
|
38
|
Dinu LD, Gatea F, Matei F, Banciu C, Vamanu E. Gut Microbiota Modulation by Selenium and Zinc Enrichment Postbiotic on Dysbiosis Associated with Hypertension. Curr Vasc Pharmacol 2024; 22:365-374. [PMID: 38779729 DOI: 10.2174/0115701611290537240509061549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Targeting gut dysbiosis to treat chronic diseases or to alleviate the symptoms is a new direction for medical adjuvant therapies. Recently, postbiotics have received considerable attention as they are non-viable probiotic preparations that confer various health benefits to the host without the safety problems associated with using live microbial cells. OBJECTIVE The aim of the study is to obtain selenium (Se) and zinc (Zn) enriched Saccharomyces boulardii postbiotic biomass and to analyze its modulation effect because these minerals play an important role in reducing gut dysbiosis linked to cardiovascular (CV) diseases. METHOD The effect of the S. boulardii and Se/Zn enriched yeast postbiotics on CV microbial fingerprint was studied in vitro using the gastrointestinal system (GIS 1) and analyzed by microbiological, chemical, and qPCR methods. RESULT There was a 2.2 log CFU/mL increase in the total bacterial load after SeZn postbiotic treatment and in the qPCR counts of Firmicutes phyla for both treatments. Beneficial taxa, Bifidobacterium spp. and Lactobacillus spp., as well as Bacteroidesspp. were up to 1.5 log higher after mineral- enriched postbiotic application, while the acetic acid level increased. CONCLUSION These preliminary studies highlight the therapeutic potential of using Se/Zn enriched yeast postbiotics as adjuvants for clinical treatments of CV diseases.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Florentina Gatea
- Department of Biotechnology, Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Florentina Matei
- Faculty of Food Industry and Tourism, Transylvania University of Brasov, Brasov, Romania
| | - Cristian Banciu
- Department of Ecology, Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
39
|
Dmytriv TR, Lushchak VI. Gut Microbiome as a Target for Anti-ageing Interventions. Subcell Biochem 2024; 107:307-325. [PMID: 39693030 DOI: 10.1007/978-3-031-66768-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Trillions of various microorganisms inhabit the human intestine whilst having myriads of effects on the body. They participate in the metabolism of nutrients, support the work of the immune system, regulate operation of the nervous system, and produce vitamins, short-chain fatty acids, and a number of other compounds necessary for the host. An imbalance or disruption in the normal microbial community is called dysbacteriosis or dysbiosis. This condition is often associated with the occurrence of various pathologies including chronic low-intensity inflammation. The latter is one of the key signs of ageing. In this chapter, we consider the gut microbiome as a target for anti-ageing interventions. In particular, we describe the main functions of the gut microbiome, its changes with ageing, and discuss dysbacteriosis as a trigger of accelerated ageing. We also present anti-ageing interventions such as a diet, nutritional supplements (probiotics, prebiotics, antioxidants), and exercise and how they may affect the microbiome and enable or impede healthy longevity.
Collapse
Affiliation(s)
- Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
- Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
40
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
41
|
Akshay A, Gasim R, Ali TE, Kumar YS, Hassan A. Unlocking the Gut-Cardiac Axis: A Paradigm Shift in Cardiovascular Health. Cureus 2023; 15:e51039. [PMID: 38264397 PMCID: PMC10805229 DOI: 10.7759/cureus.51039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
The gut-cardiac axis represents an emerging area of research focusing on the relationship between gut health and cardiovascular function. This narrative review examines the Gut-Cardiac Axis, emphasizing its emerging role in cardiovascular health and disease management. Traditionally viewed as a component of the digestive system, the gut is now recognized for its significant influence on cardiac health. The gut microbiota, its metabolites, and gut-related inflammation are key factors affecting heart structure and function. This review highlights how dietary and nutritional interventions can effectively modulate the gut-cardiac axis, leading to personalized strategies for optimizing cardiovascular health. We discuss the clinical relevance of the gut-cardiac axis, particularly its role in providing diagnostic and prognostic markers for cardiovascular diseases. This exploration of the gut-cardiac axis marks a significant shift in cardiology, integrating gut health into cardiovascular risk assessment and treatment strategies. The review provides an in-depth overview of current research and its potential to impact cardiovascular medicine significantly. We emphasize the importance of this research in advancing patient care and improving cardiac outcomes, underlining the potential of the gut-cardiac axis to transform cardiovascular health management.
Collapse
Affiliation(s)
| | - Rayan Gasim
- Internal Medicine, University of Khartoum, Khartoum, SDN
| | - Thowaiba E Ali
- Medicine and Surgery, University of Tennessee, Chattanooga, USA
| | | | | |
Collapse
|
42
|
Miteva D, Peshevska-Sekulovska M, Snegarova V, Peruhova M, Vasilev GH, Vasilev GV, Sekulovski M, Lazova S, Gulinac M, Tomov L, Mihova A, Velikova T. Microbiome and Genetic Factors in the Pathogenesis of Liver Diseases. GASTROENTEROLOGY INSIGHTS 2023; 14:575-597. [DOI: 10.3390/gastroent14040041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Our genetic background has not changed over the past century, but chronic diseases are on the rise globally. In addition to the genetic component, among the critical factors for many diseases are inhabitants of our intestines (gut microbiota) as a crucial environmental factor. Dysbiosis has been described in liver diseases with different etiologies like non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease (ALD), viral hepatitis, autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), cirrhosis, hepatocellular carcinoma (HCC). On the other hand, new technologies have increased our understanding of liver disease genetics and treatment options. Genome-wide association studies (GWAS) identify unknown genetic risk factors, positional cloning of unknown genes associated with different diseases, gene tests for single nucleotide variations (SNVs), and next-generation sequencing (NGS) of selected genes or the complete genome. NGS also allowed studying the microbiome and its role in various liver diseases has begun. These genes have proven their effect on microbiome composition in host genome–microbiome association studies. We focus on altering the intestinal microbiota, and supplementing some bacterial metabolites could be considered a potential therapeutic strategy. The literature data promote probiotics/synbiotics role in reducing proinflammatory cytokines such as TNF-α and the interleukins (IL-1, IL-6, IL-8), therefore improving transaminase levels, hepatic steatosis, and NAFLD activity score. However, even though microbial therapy appears to be risk-free, evaluating side effects related to probiotics or synbiotics is imperative. In addition, safety profiles for long-term usage should be researched. Thus, this review focuses on the human microbiome and liver diseases, recent GWASs on liver disease, the gut-liver axis, and the associations with the microbiome and microbiome during/after liver disease therapy.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Kozyak 1 Str., 1407 Sofia, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital—Varna, Military Medical Academy, Medical Faculty, Medical University, Blvd. Hristo Smirnenski 3, 9000 Varna, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, Heart and Brain Hospital, Zdrave 1 Str., 8000 Burgas, Bulgaria
| | - Georgi H. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, “Plovdivsko Pole” Str. 6, 1756 Sofia, Bulgaria
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Emergency Medicine and Clinic of Neurology, University Hospital “Sv. Georgi”, Blvd. Peshtersko Shose 66, 4000 Plovdiv, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Pediatric Department, University Hospital “N. I. Pirogov”, 21 “General Eduard I. Totleben” Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 Str., 1527 Sofia, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Latchezar Tomov
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Informatics, New Bulgarian University, Montevideo 21 Str., 1618 Sofia, Bulgaria
| | - Antoaneta Mihova
- SMDL Ramus, Department of Immunology, Blvd. Kap. Spisarevski 26, 1527 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| |
Collapse
|
43
|
Krishnamurthy HK, Pereira M, Bosco J, George J, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Gut commensals and their metabolites in health and disease. Front Microbiol 2023; 14:1244293. [PMID: 38029089 PMCID: PMC10666787 DOI: 10.3389/fmicb.2023.1244293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose of review This review comprehensively discusses the role of the gut microbiome and its metabolites in health and disease and sheds light on the importance of a holistic approach in assessing the gut. Recent findings The gut microbiome consisting of the bacteriome, mycobiome, archaeome, and virome has a profound effect on human health. Gut dysbiosis which is characterized by perturbations in the microbial population not only results in gastrointestinal (GI) symptoms or conditions but can also give rise to extra-GI manifestations. Gut microorganisms also produce metabolites (short-chain fatty acids, trimethylamine, hydrogen sulfide, methane, and so on) that are important for several interkingdom microbial interactions and functions. They also participate in various host metabolic processes. An alteration in the microbial species can affect their respective metabolite concentrations which can have serious health implications. Effective assessment of the gut microbiome and its metabolites is crucial as it can provide insights into one's overall health. Summary Emerging evidence highlights the role of the gut microbiome and its metabolites in health and disease. As it is implicated in GI as well as extra-GI symptoms, the gut microbiome plays a crucial role in the overall well-being of the host. Effective assessment of the gut microbiome may provide insights into one's health status leading to more holistic care.
Collapse
Affiliation(s)
| | | | - Jophi Bosco
- Vibrant America LLC., San Carlos, CA, United States
| | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States
| | | |
Collapse
|
44
|
Oktaviono YH, Lamara AD, Tri Saputra PB, Arnindita JN, Pasahari D, Saputra ME, Made Adnya Suasti N. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. BIOMOLECULES & BIOMEDICINE 2023; 23:936-948. [PMID: 37337893 PMCID: PMC10655873 DOI: 10.17305/bb.2023.8893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Current research supports the evidence that the gut microbiome (GM), which consist of gut microbiota and their biologically active metabolites, is associated with atherosclerosis development. Trimethylamine-N-oxide (TMAO), a metabolite produced by the GM through trimethylamine (TMA) oxidation, significantly enhances the formation and vulnerability of atherosclerotic plaques. TMAO promotes inflammation and oxidative stress in endothelial cells, leading to vascular dysfunction and plaque formation. Dimethyl-1-butanol (DMB), iodomethylcholine (IMC) and fluoromethylcholine (FMC) have been recognized for their ability to reduce plasma TMAO by inhibiting trimethylamine lyase, a bacterial enzyme involved in the choline cleavage anaerobic process, thus reducing TMA formation. Conversely, indole-3-carbinol (I3C) and trigonelline inhibit TMA oxidation by inhibiting flavin-containing monooxygenase-3 (FMO3), resulting in reduced plasma TMAO. The combined use of inhibitors of choline trimethylamine lyase and flavin-containing monooxygenase-3 could provide novel therapeutic strategies for cardiovascular disease prevention by stabilizing existing atherosclerotic plaques. This review aims to present the current evidence of the roles of TMA/TMAO in atherosclerosis as well as its potential therapeutic prevention aspects.
Collapse
Affiliation(s)
- Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ariikah Dyah Lamara
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Pandit Bagus Tri Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | - Diar Pasahari
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mahendra Eko Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | |
Collapse
|
45
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
46
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
47
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
48
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
49
|
Lin CY, Chen CW, Wang C, Sung FC, Su TC. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. TOXICS 2023; 11:757. [PMID: 37755767 PMCID: PMC10537624 DOI: 10.3390/toxics11090757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
As one of the most common alkylphenols, 4-tertiary-octylphenol (4-tOP) is commonly used in many consumer products. Our previous epidemiological study revealed a negative correlation between serum 4-tOP levels and carotid intima-media thickness (CIMT), which serves as a biomarker of arteriosclerosis. We aimed to explore the role of apoptotic microparticles, markers of vascular endothelial cell function, in the 4-tOP and CIMT connection. To investigate this, we enrolled 886 Taiwanese adolescents and young adults (aged 12-30 years) and examined the relationships among serum 4-tOP levels, apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+), and CIMT. Our results showed negative associations among serum 4-tOP levels, both apoptotic microparticles, and CIMT in multiple linear regression analysis. The odds ratios for CIMT (≥75th percentile) and the natural logarithm of 4-tOP were highest when both CD31+/CD42a- and CD31+/CD42a+ were greater than the 50th percentile. Conversely, the odds ratios were lowest when both CD31+/CD42a- and CD31+/CD42a+ were less than the 50th percentile. In the structural equation model, we demonstrated that serum 4-tOP levels were negatively correlated with CIMT and indirectly and negatively correlated with CIMT through both apoptotic microparticles. In conclusion, our study reported the inverse association between 4-tOP apoptotic microparticles and CIMT in a young Taiwanese population. Further experimental studies are needed to clarify these associations.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan;
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
50
|
Bonaccio M, Di Castelnuovo A, Costanzo S, Ruggiero E, Esposito S, Persichillo M, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. Ultraprocessed food consumption is associated with all-cause and cardiovascular mortality in participants with type 2 diabetes independent of diet quality: a prospective observational cohort study. Am J Clin Nutr 2023; 118:627-636. [PMID: 37506883 DOI: 10.1016/j.ajcnut.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Nutritional strategies for prevention and management of type 2 diabetes traditionally emphasize dietary patterns reflecting nutrient goals, but the health implications of ultraprocessed food (UPF) for patients with type 2 diabetes remain unknown. OBJECTIVES This study aimed to evaluate the association of UPF intake with all-cause and cardiovascular disease (CVD) mortality among participants with type 2 diabetes from the Moli-sani Study in Italy (enrollment 2005-2010). METHODS This was a prospective observational cohort study on 1065 individuals with type 2 diabetes at baseline, followed up for 11.6 y (median). Food intake was assessed by a 188-item food-frequency questionnaire. UPF was defined following the Nova classification and calculated as the ratio (weight ratio; %) between UPF (g/d) and total food eaten (g/d). Overall diet quality was assessed through the Mediterranean Diet Score (MDS). Multivariable-adjusted Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality. RESULTS The average UPF consumption was 7.4% (±5.0%). In multivariable-adjusted Cox analyses, greater UPF intake (Q4, ≥10.5% and ≥9% of total food eaten for females and males, respectively), as opposed to the lowest (Q1, UPF <4.7% and <3.7% for females and males, respectively), was associated with higher hazards of both all-cause (HR: 1.70; 95% CI: 1.25, 2.33) and CVD mortality (HR: 2.64; 95% CI: 1.59, 4.40); inclusion of the MDS into the model did not substantially alter the magnitude of these associations (HR: 1.64; 95% CI: 1.19, 2.25 and HR: 2.55; 95% CI: 1.53, 4.24 for all-cause and CVD mortality, respectively). A linear dose-response relationship of UPF intake with both all-cause and CVD mortality was also observed. CONCLUSIONS In participants with type 2 diabetes at study entry, higher UPF consumption was associated with reduced survival and higher CVD mortality rate, independent of diet quality. Besides prioritizing the adoption of a diet based on nutritional requirements, dietary guidelines for the management of type 2 diabetes should also recommend limiting UPF.
Collapse
Affiliation(s)
- Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy.
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy
| | - Simona Esposito
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy
| | | | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli (IS), Italy; Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy
| |
Collapse
|