1
|
Vastegani SM, Margha ZB, Farbood Y, Sarkaki A, Khoshnam SE. Caffeine and Exercise: A Dual Approach to Combat Cognitive Decline Induced by REM Sleep Deprivation. Mol Neurobiol 2025:10.1007/s12035-025-04845-1. [PMID: 40131698 DOI: 10.1007/s12035-025-04845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Sleep deprivation (SD) is known to impair memory and cognitive functions often linked to heightened oxidative stress and neuroinflammation. While caffeine and exercise individually offer neuroprotective effects, the combined influence of these interventions on preserving cognitive function and reducing hippocampal damage during REM-SD has yet to be fully explored. This study investigates the synergistic potential of caffeine and exercise in mitigating these neurological damages induced by REM-SD. Male Wistar rats were divided into five groups: control, SD, caffeine + SD, exercise + SD, and caffeine + exercise + SD. The rats received caffeine (30 mg/kg, p.o) and underwent a treadmill exercise regimen, running 5 days a week for 4 weeks. Following this, they were placed in a REM-SD apparatus for 72 h. We evaluated the cognitive functions of the animals using standard behavioral tests. In addition, we assessed BBB permeability, brain water content (BWC), oxidative-antioxidative status, inflammatory/anti-inflammatory conditions, and apoptotic and neurotrophic indices in the hippocampus of REM-SD rats. Our findings indicate that the combination of caffeine and exercise significantly enhanced cognitive functions in REM-SD rats. This combination also reduced BBB permeability and BWC, alleviated oxidative stress, lowered inflammatory and apoptotic indices, and increased neurotrophic gene expression in the hippocampus of REM-SD rats. This study highlights the protective effects of caffeine and exercise on cognitive function and BBB integrity, likely through the enhancement of antioxidant and anti-inflammatory indices in the hippocampus, as well as their anti-apoptotic and neurotrophic effects in REM-SD rats.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zeynab Behdarvand Margha
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Li J, Yang J, Liu Z, Li X. Effect of metformin on the level of aqueous humor inflammatory cytokines in patients with cataract. Sci Rep 2025; 15:3672. [PMID: 39880848 PMCID: PMC11779954 DOI: 10.1038/s41598-024-81424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025] Open
Abstract
This study investigated the content of inflammatory cytokines in the aqueous humor (AH) of cataract patients with type 2 diabetes (T2DM) and explored the effect of metformin on the level of cytokines. AH was collected from patients undergoing phacoemulsification and intraocular lens implantation in Peking University Third Hospital. Levels of cytokines were measured by Cytometric Bead Assay (CBA) Flex Set. Differences in level of AH cytokines were compared between patients using metformin and non-metformin medicine as blood sugar control drug for T2DM and age-related cataract patients without T2DM. A total of 67 patients were included, including 19 healthy controls, 33 patients in the metformin group, and 15 patients in the non-metformin group. The results showed that IL-6 levels were significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.019 and 0.014, respectively). IFN-γ levels were also significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.031 and 0.003, respectively). The levels of IL-10 in non-metformin group were significantly higher than those in the healthy control group (p = 0.008), whereas the levels of IL-10 showed no significant difference between metformin group and healthy controls. Metformin can reduce the level of cytokines in AH to a certain extent in cataract patients combined with T2DM. It is suggested that metformin may have preventive and therapeutic effects on the development of age-related cataract.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jiarui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Singh R, Walia A, Kaur J, Kumar P, Verma I, Rani N. Diabetic Retinopathy - Pathophysiology to Treatment: A Review. Curr Diabetes Rev 2025; 21:58-67. [PMID: 38315658 DOI: 10.2174/0115733998259940231105200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 02/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular disease affecting the eyes of diabetic patients, and is the most prevalent complication of diabetes mellitus. Vision improvement is not possible in the majority of DR patients. Several studies have indicated that microvascular changes, inflammation, oxidative stress, and retinal neurodegeneration are involved in the pathogenesis of DR. Therefore, there is an urgent need for the development of new and effective treatment for DR. Understanding the molecular mechanisms involved in the pathogenesis of disease will pave a way for better treatment and management of DR. This article has emphasized the molecular pathogenesis and treatment of DR.
Collapse
Affiliation(s)
- Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
- Department of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Aditya Walia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jasleen Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Praveen Kumar
- SunPharma, Hill Top Area, Vill. Bhatolikalan, P.O. Barotiwala, Distt.Solan, Himachal Pradesh, 174103, India
| | - Inderjeet Verma
- MM College of Pharmacy, Maharishi Markandeshwar (deemed to be) University, Mullana, Ambala, Haryana, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
4
|
Ogunwole E, Emojevwe VO, Shittu HB, Olagoke IE, Ayodele FO. Deleterious Effects of Caffeine Consumption on Reproductive Functions of Female Wistar Rats. JBRA Assist Reprod 2024; 28:658-669. [PMID: 39405421 PMCID: PMC11622411 DOI: 10.5935/1518-0557.20240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE The deleterious effects of caffeine consumption on reproductive functions of female Wistar rats were investigated in this study. METHODS In this experimental study, 35 female Wistar rats (180-200g) were divided into 7 groups: Control, II-IV received oral caffeine (10, 20, and 40mg/kg/day respectively) for 21 days. V-VII received similar caffeine doses for 21 days, followed by a 21-day withdrawal period. The ovaries, fallopian tubes, and uteri were assessed for levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activity using spectrophotometry. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels were measured by ELISA. Organ histology was performed using microscopy. Statistical analysis employed ANOVA with significance at p<0.05. RESULTS Caffeine caused dose-dependent increases in MDA, NO, and catalase activity in the ovaries, fallopian tubes, and uteri which decreased upon withdrawal. GSH levels in the ovary and fallopian tubes decreased with caffeine intake but recovered during withdrawal. Caffeine reduced estradiol levels in a dose-dependent manner, its withdrawal led to reductions in serum LH at 20 and 40mg/kg/day and FSH at 40mg/kg/day. Histology revealed dose-dependent alterations in ovarian architecture with congested connective tissues. Caffeine caused sloughing of plicae in the muscularis of the fallopian tubes, degenerated epithelial layer in the uterus, and severe inflammation of the myometrial stroma cells that persisted during caffeine withdrawal. CONCLUSIONS Caffeine consumption adversely impacted the female reproductive functions of rats, altering hormonal balance and organ structure which persisted even after caffeine withdrawal.
Collapse
Affiliation(s)
- Eunice Ogunwole
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Victor Oghenekparobo Emojevwe
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Hannah Bolutife Shittu
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Iyanuoluwa Elizabeth Olagoke
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| | - Favour Omolewami Ayodele
- Reproductive Physiology and Developmental Programming unit, Department of
Physiology, University of Medical Sciences, Ondo City, Nigeria
| |
Collapse
|
5
|
Yan A, Rosa AL, Chhablani PP, Chhablani J. Caffeine and Vision: Effects on the Eye. Turk J Ophthalmol 2024; 54:291-300. [PMID: 39463170 PMCID: PMC11589232 DOI: 10.4274/tjo.galenos.2024.43895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 10/29/2024] Open
Abstract
Caffeine, commonly found in coffee and tea, affects various aspects of eye health as it blocks adenosine receptors, impacting tear production, intraocular pressure, macular perfusion, and choroidal thickness. However, its connection with eye conditions like glaucoma and cataracts remains uncertain due to conflicting research findings. Some studies suggest potential benefits for cataracts, while others warn against frequent caffeine intake in glaucoma and surgical scenarios due to possible increases in intraocular pressure. Conflicting evidence also exists regarding its effects on dry eye, macular degeneration, myopia/hyperopia, diabetic retinopathy, retinopathy of prematurity, and central serous retinopathy. Caffeine does not seem to be a risk factor for dry eye, although studies have shown that caffeine may offer protection against wet age-related macular degeneration, and the metabolite 7-methylxanthine could be a more promising treatment for myopia. Moreover, caffeine can potentially cause tremors and might hinder surgical performance, especially in less experienced surgeons. Recommendations from experts vary, highlighting the need for further research to fully understand how caffeine affects the eye. Individuals genetically predisposed to glaucoma should be cautious due to the possibility of clinically significant elevations in intraocular pressure with caffeine consumption. For delicate procedures like microsurgery, where tremors can be detrimental, caution should be exercised with caffeine. This review underscores the importance of additional studies to provide clearer insights and prudent recommendations regarding caffeine's impact on eye health.
Collapse
Affiliation(s)
- Audrey Yan
- West Virginia School of Osteopathic Medicine, Department of Medicine, Lewisburg, USA
| | - Antonio La Rosa
- IRCCS Humanitas Research Hospital, Department of Ophthalmology, Milan, Italy
| | - Preeti Patil Chhablani
- University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburg, USA
| | - Jay Chhablani
- University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburg, USA
| |
Collapse
|
6
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
7
|
Kinali H, Kalaycioglu GD, Boyacioglu O, Korkusuz P, Aydogan N, Vargel I. Clinic-oriented injectable smart material for the treatment of diabetic wounds: Coordinating the release of GM-CSF and VEGF. Int J Biol Macromol 2024; 276:133661. [PMID: 38992546 DOI: 10.1016/j.ijbiomac.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Chronic wounds are often caused by diabetes and present a challenging clinical problem due to vascular problems leading to ischemia. This inhibits proper wound healing by delaying inflammatory responses and angiogenesis. To address this problem, we have developed injectable particle-loaded hydrogels which sequentially release Granulocyte-macrophage- colony-stimulating-factor (GM-CSF) and Vascular endothelial growth factor (VEGF) encapsulated in polycaprolactone-lecithin-geleol mono-diglyceride hybrid particles. GM-CSF promotes inflammation, while VEGF facilitates angiogenesis. The hybrid particles (200-1000 nm) designed within the scope of the study can encapsulate the model proteins Bovine Serum Albumin 65 ± 5 % and Lysozyme 77 ± 10 % and can release stably for 21 days. In vivo tests and histological findings revealed that in the hydrogels containing GM-CSF/VEGF-loaded hybrid particles, wound depth decreased, inflammation phase increased, and fibrotic scar tissue decreased, while mature granulation tissue was formed on day 10. These findings confirm that the hybrid particles first initiate the inflammation phase by delivering GM-CSF, followed by VEGF, increasing the number of vascularization and thus increasing the healing rate of wounds. We emphasize the importance of multi-component and sequential release in wound healing and propose a unifying therapeutic strategy to sequentially deliver ligands targeting wound healing stages, which is very important in the treatment of the diabetic wounds.
Collapse
Affiliation(s)
- Hurmet Kinali
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Gokce Dicle Kalaycioglu
- Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Ozge Boyacioglu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Atılım University, 06830 Gölbaşı, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| | - Nihal Aydogan
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara 06800, Turkey.
| | - Ibrahim Vargel
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey; Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Hacettepe University, 06560 Ankara, Turkey.
| |
Collapse
|
8
|
Batista-da-Silva B, Limirio LS, de Oliveira EP. Association between caffeine metabolites in urine and muscle strength in young and older adults: A cross-sectional study from NHANES 2011-2012. Clin Nutr 2024; 43:1584-1592. [PMID: 38759491 DOI: 10.1016/j.clnu.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Elevated levels of reactive oxygen species may contribute to the gradual decline in muscle strength over time. Although caffeine and its metabolites have antioxidant properties that can mitigate oxidative stress, the association of caffeine and its metabolites with muscle strength remains unknown. AIM To investigate whether caffeine metabolites in urine are associated with muscle strength in young and older adults. METHODS A cross-sectional study was conducted with 1145 individuals aged over 20 years (n = 801 < 60 years and n = 344 ≥ 60 years) from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Muscle strength was assessed using a handgrip dynamometer, and combined grip strength was determined by summing the highest value from each hand. Caffeine and its metabolites in urine were quantified using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (1-methyluric acid, 3-methyluric acid, 7-methyluric acid, 1,3-dimethyluric acid, 1,7-dimethyluric acid, 3,7-dimethyluric acid, 1,3,7-trimethyluric acid, 1-methylxanthine, 3-methylxanthine, 7-methylxanthine, 1,3-dimethylxanthine, 1,7-dimethylxanthine, 3,7-dimethylxanthine, 1,3,7-trimethylxanthine, 5-acetylamino-6-amino-3-methyluracil). Linear regression analyses were performed to determine the association of caffeine and its metabolites with muscle strength in young and older adults, adjusting for confounders. RESULTS Positive associations between muscle strength and levels of 7-methyluric acid (β = 0.029; p = 0.021), 1,3-dimethyluric acid (β = 0.008; p = 0.004), 3,7-dimethyluric acid (β = 0.645; p = 0.012), 3-methylxanthine (β = 0.020; p = 0.002), 7-methylxanthine (β = 0.020; p = 0.006), 1,3-dimethylxanthine (theophylline) (β = 0.030; p = 0.004) and 3,7-dimethylxanthine (theobromine) (β = 0.035; p = 0.029) were observed in older adults. In contrast, no such associations were noted in young adults. CONCLUSION Our study indicates a positive association between certain caffeine metabolites in urine and muscle strength in older adults, but not in younger individuals. These findings indicate that specific caffeine metabolites may contribute to an antioxidant role especially in older adults.
Collapse
Affiliation(s)
- Breno Batista-da-Silva
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Larissa S Limirio
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Pacheco AIP. Cataractogenesis and molecular pathways, with reactive free oxygen species as a common pathway. Surv Ophthalmol 2023:S0039-6257(23)00144-3. [PMID: 37944599 DOI: 10.1016/j.survophthal.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Slowing down or stopping the natural process of cataractogenesis is certainly a challenge for those who today propose an option other than surgery. Addressing the same problem in different ways constitutes a new approach to solving what is today the number one cause of reversible blindness worldwide. The technological revolution, as well as the advances in the biological sciences, allows us to conceive mechanisms never thought of before to stop the process that, as a common pathway, constitutes opacification of the crystalline lens. A new dawn for cataracts is coming through molecular, newly-discovered mechanisms. Cataractogenesis and molecular pathways have reactive free oxygen species as a common pathway. Surgical removal is today's gold standard, but perhaps not for much longer.
Collapse
Affiliation(s)
- Arturo Iván Pérez Pacheco
- Department of Ophthalmology, The University of Medical Science, Ophthalmological General Teaching Center Hospital "Dr. Enrique Cabrera", Havana, Cuba.
| |
Collapse
|
10
|
Esteves F, Almeida CMM, Silva S, Saldanha I, Urban P, Rueff J, Pompon D, Truan G, Kranendonk M. Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism. Biomolecules 2023; 13:1083. [PMID: 37509119 PMCID: PMC10377444 DOI: 10.3390/biom13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Collapse
Affiliation(s)
- Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Inês Saldanha
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Denis Pompon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
11
|
Sanni O, Terre'Blanche G. Dual A 1 and A 2A adenosine receptor antagonists, methoxy substituted 2-benzylidene-1-indanone, suppresses intestinal postprandial glucose and attenuates hyperglycaemia in fructose-streptozotocin diabetic rats. BMC Endocr Disord 2023; 23:97. [PMID: 37143025 PMCID: PMC10157944 DOI: 10.1186/s12902-023-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND/AIM Recent research suggests that adenosine receptors (ARs) influence many of the metabolic abnormalities associated with diabetes. A non-xanthine benzylidene indanone derivative 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1 H-inden-1-one (2-BI), has shown to exhibit higher affinity at A1/A2A ARs compared to caffeine. Due to its structural similarity to caffeine, and the established antidiabetic effects of caffeine, the current study was initiated to explore the possible antidiabetic effect of 2-BI. METHODS The study was designed to assess the antidiabetic effects of several A1 and/or A2A AR antagonists, via intestinal glucose absorption and glucose-lowering effects in fructose-streptozotocin (STZ) induced diabetic rats. Six-week-old male Sprague-Dawley rats were induced with diabetes via fructose and streptozotocin. Rats were treated for 4 weeks with AR antagonists, metformin and pioglitazone, respectively. Non-fasting blood glucose (NFBG) was determined weekly and the oral glucose tolerance test (OGTT) was conducted at the end of the intervention period. RESULTS Dual A1/A2A AR antagonists (caffeine and 2-BI) decreased glucose absorption in the intestinal membrane significantly (p < 0.01), while the selective A2A AR antagonist (Istradefylline), showed the highest significant (p < 0.001) reduction in intestinal glucose absorption. The selective A1 antagonist (DPCPX) had the least significant (p < 0.05) reduction in glucose absorption. Similarly, dual A1/A2A AR antagonists and selective A2A AR antagonists significantly reduced non-fast blood glucose and improved glucose tolerance in diabetic rats from the first week of the treatment. Conversely, the selective A1 AR antagonist did not reduce non-fast blood glucose significantly until the 4th week of treatment. 2-BI, caffeine and istradefylline compared well with standard antidiabetic treatments, metformin and pioglitazone, and in some cases performed even better. CONCLUSION 2-BI exhibited good antidiabetic activity by reducing intestinal postprandial glucose absorption and improving glucose tolerance in a diabetic animal model. The dual antagonism of A1/A2A ARs presents a positive synergism that could provide a new possibility for the treatment of diabetes.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University (NWU), Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
12
|
Wang W, Li H, Lv J, Khan GJ, Duan H, Zhu J, Bao N, Zhai K, Xue Z. Determination of the Anti-Oxidative Stress Mechanism of Isodon suzhouensis Leaves by Employing Bioinformatic and Novel Research Technology. ACS OMEGA 2023; 8:3520-3529. [PMID: 36713735 PMCID: PMC9878666 DOI: 10.1021/acsomega.2c07913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Isodon suzhouensis from Suzhou, China, is a traditional Chinese herb with wide applications in medicine and food. The antioxidant activity against oxidative stress of the leaves of Isodon suzhouensis is a myth since long and is not explored earlier thoroughly. The present study is focused to explore the active components in Isodon suzhouensis leaf extracts responsible for antioxidant effects against oxidative stress and the potential mechanism of this activity. We obtained the chromatograms of Isodon suzhouensis leaf extracts by the high-performance liquid phase (HPLC) for possible detection of antioxidant constituents. Some compounds in Isodon suzhouensis leaf extracts were then further assessed through the luminol luminescence mechanism combined with HPLC analysis as well as with SwissTargetPrediction database that helped to screen out the other constituents. The targets for effects against oxidative stress were then further screened through the GeneCards database, and the PPI network was constructed. The targets were analyzed by GO and KEGG using the David database. The obtained results were then further studied by employing in vitro experimentation and protein expression analyses by Western blotting. It is found that Isodon suzhouensis leaf extracts contain rutin, isoquercetin, glaucocalyxin A, glaucocalyxin B, and other compounds with antioxidant activity. The activity map of the free radical scavenging signals from Isodon suzhouensis showed a strong ability to scavenge free radicals with the highest capacity of glaucocalyxin B followed by isoquercetin succeeding the glaucocalyxin A supervening the rutin. Further network pharmacological analyses and in vitro experimentation showed that Isodon suzhouensis leaf extracts interfere with TNF and the p38 MAPK signaling pathway for antioxidant effects against oxidative stress. Conclusively, it is found that Isodon suzhouensis leaf extracts possess strong antioxidant potential via targeting TNF and p38 MAPK signaling pathways against oxidative stress, providing scientific foundation for further studies on Isodon suzhouensis for the further therapeutic approach.
Collapse
Affiliation(s)
- Wei Wang
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Han Li
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Jiamin Lv
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Ghulam Jilany Khan
- Department
of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Hong Duan
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Juan Zhu
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
- Faculty
of Pharmacy, Bengbu Medical College, Bengbu 233030, P.R. China
| | - Nina Bao
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Kefeng Zhai
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
- School
of Biological and Food Engineering, Engineering Research Center for
Development and High Value Utilization of Genuine Medicinal Materials
in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
- Faculty
of Pharmacy, Bengbu Medical College, Bengbu 233030, P.R. China
| | - Zhenglian Xue
- College
of Biological and Food Engineering, Anhui
Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
13
|
Dammak A, Pastrana C, Martin-Gil A, Carpena-Torres C, Peral Cerda A, Simovart M, Alarma P, Huete-Toral F, Carracedo G. Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023; 11:biomedicines11020292. [PMID: 36830827 PMCID: PMC9952931 DOI: 10.3390/biomedicines11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases.
Collapse
|
14
|
Andrade N, Peixoto JAB, Oliveira MBPP, Martel F, Alves RC. Can coffee silverskin be a useful tool to fight metabolic syndrome? Front Nutr 2022; 9:966734. [PMID: 36211502 PMCID: PMC9534380 DOI: 10.3389/fnut.2022.966734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Coffee is one of the most consumed products in the world, and its by-products are mainly discarded as waste. In order to solve this problem and in the context of a sustainable industrial attitude, coffee by-products have been studied concerning their chemical and nutritional features for a potential application in foodstuffs or dietary supplements. Under this perspective, coffee silverskin, the main by-product of coffee roasting, stands out as a noteworthy source of nutrients and remarkable bioactive compounds, such as chlorogenic acids, caffeine, and melanoidins, among others. Such compounds have been demonstrating beneficial health properties in the context of metabolic disorders. This mini-review compiles and discusses the potential health benefits of coffee silverskin and its main bioactive components on metabolic syndrome, highlighting the main biochemical mechanisms involved, namely their effects upon intestinal sugar uptake, glucose and lipids metabolism, oxidative stress, and gut microbiota. Even though additional research on this coffee by-product is needed, silverskin can be highlighted as an interesting source of compounds that could be used in the prevention or co-treatment of metabolic syndrome. Simultaneously, the valorization of this by-product also responds to the sustainability and circular economy needs of the coffee chain.
Collapse
Affiliation(s)
- Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- *Correspondence: Nelson Andrade
| | - Juliana A. Barreto Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Rita C. Alves
| |
Collapse
|
15
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Kemp JA, Lima LS, Almeida JSD, Leal VDO, Stenvinkel P, Shiels PG, Mafra D. The magical smell and taste: Can coffee be good to patients with cardiometabolic disease? Crit Rev Food Sci Nutr 2022; 64:562-583. [PMID: 35930394 DOI: 10.1080/10408398.2022.2106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is a beverage consumed globally. Although few studies have indicated adverse effects, it is typically a beneficial health-promoting agent in a range of diseases, including depression, diabetes, cardiovascular disease, and obesity. Coffee is rich in caffeine, antioxidants, and phenolic compounds, which can modulate the composition of the gut microbiota and mitigate both inflammation and oxidative stress, common features of the burden of lifestyle diseases. This review will discuss the possible benefits of coffee on complications present in patients with diabetes, cardiovascular disease and chronic kidney disease, outwith the social and emotional benefits attributed to caffeine consumption.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Livia Alvarenga
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Julie A Kemp
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ligia S Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Jonatas S de Almeida
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
| | - Viviane de O Leal
- Nutrition Division, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Unidade de Pesquisa Clinica (UPC), University Hospital Antonio Pedro, Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
16
|
Ruiss M, Findl O, Kronschläger M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev 2022; 79:101664. [PMID: 35690384 DOI: 10.1016/j.arr.2022.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/01/2022]
Abstract
Cataract is the leading cause of blindness worldwide and surgery is the only option to treat the disease. Although the surgery is considered to be relatively safe, complications may occur in a subset of patients and access to ophthalmic care may be limited. Due to a growing and ageing population, an increase in cataract prevalence is expected and its management will become a socioeconomic challenge. Hence, there is a need for an alternative to cataract surgery. It is well known that oxidative stress is one of the main pathological processes leading to the generation of the disease. Antioxidant supplementation may, therefore, be a strategy to delay or to prevent the progression of cataract. Caffeine is a widely consumed high-potency antioxidant and may be of interest for the prevention of the disease. This review aims to give an overview of the anatomy and function of the lens, its antioxidant and reactive oxygen species (ROS) composition, and the role of oxidative stress in cataractogenesis. Also, the pharmacokinetics and -dynamics of caffeine will be described and the literature will be reviewed to give an overview of its anti-cataract potential and its possible role in the prevention of the disease.
Collapse
Affiliation(s)
- Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| |
Collapse
|
17
|
Antioxidant and Antihyperglycemic Effects of Ephedra foeminea Aqueous Extract in Streptozotocin-Induced Diabetic Rats. Nutrients 2022; 14:nu14112338. [PMID: 35684137 PMCID: PMC9182796 DOI: 10.3390/nu14112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Ephedra foeminea is known in Jordan as Alanda and traditionally. It is used to treat respiratory symptoms such as asthma and skin rashes as an infusion in boiling water. The purpose of this study was to determine the antidiabetic property of Ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Methods: The aqueous extract of Ephedra foeminea plant was used to determine the potential of its efficacy in the treatment of diabetes, and this extract was tested on diabetic rats as a model. The chemical composition of Ephedra foeminea aqueous extract was determined using liquid chromatography–mass spectrometry (LC-MS). Antioxidant activity was assessed using two classical assays (ABTS and DPPH). Results: The most abundant compounds in the Ephedra foeminea extract were limonene (6.3%), kaempferol (6.2%), stearic acid (5.9%), β-sitosterol (5.5%), thiamine (4.1%), riboflavin (3.1%), naringenin (2.8%), kaempferol-3-rhamnoside (2.3%), quercetin (2.2%), and ferulic acid (2.0%). The antioxidant activity of Ephedra foeminea aqueous extract was remarkable, as evidenced by radical scavenging capacities of 12.28 mg Trolox/g in ABTS and 72.8 mg GAE/g in DPPH. In comparison to control, induced diabetic rats treated with Ephedra foeminea extract showed significant improvement in blood glucose levels, lipid profile, liver, and kidney functions. Interleukin 1 and glutathione peroxidase levels in the spleen, pancreas, kidney, and liver of induced diabetic rats treated with Ephedra foeminea extract were significantly lower than in untreated diabetic rats. Conclusions: Ephedra foeminea aqueous extract appears to protect diabetic rats against oxidative stress and improve blood parameters. In addition, it has antioxidant properties that might be very beneficial medicinally.
Collapse
|
18
|
Biliverdin/Bilirubin Redox Pair Protects Lens Epithelial Cells against Oxidative Stress in Age-Related Cataract by Regulating NF- κB/iNOS and Nrf2/HO-1 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299182. [PMID: 35480872 PMCID: PMC9036166 DOI: 10.1155/2022/7299182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Age-related cataract (ARC) is the leading cause of vision impairment globally. It has been widely accepted that excessive reactive oxygen species (ROS) accumulation in lens epithelial cells (LECs) is a critical risk factor for ARC formation. Biliverdin (BV)/bilirubin (BR) redox pair is the active by-product of heme degradation with robust antioxidative stress and antiapoptotic effects. Thus, we purpose that BV and BR may have a therapeutic effect on ARC. In the present study, we determine the expression levels of enzymes regulating BV and BR generation in human lens anterior capsule samples. The therapeutic effect of BV/BR redox pair on ARC was assessed in hydrogen peroxide (H2O2)-damaged mouse LECs in vitro. The NF-κB/inducible nitric oxide synthase (iNOS) and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathways were evaluated to illustrate the molecular mechanism. The results revealed that the mRNA expressions of Nrf2, HO-1, and biliverdin reductase A (BVRA) were all decreased in human samples of age-related nuclear cataract. BV/BR redox pair pretreatment protected LECs against H2O2 damage by prohibiting NF-κB p65 nuclear trafficking, ameliorating iNOS expression, reducing intracellular and mitochondrial ROS levels, and restoring glutathione (GSH) and superoxide dismutase (SOD) levels. BV and BR pretreatment also regulated the expression of apoptotic molecules (Bax, Bcl-2, and cleaved caspase-3), thus decreasing the apoptosis of LECs. In addition, BV/BR pair promoted Nrf2 nuclear accumulation and HO-1 induction, whereas the knockdown of BVRA counteracted the effect of BV on activating Nrf2/HO-1 pathway and antiapoptosis. These findings implicated that BV/BR redox pair protects LECs against H2O2-induced apoptosis by regulating NF-κB/iNOS and Nrf2/HO-1 pathways. Moreover, BVRA is responsible for BV-mediated cytoprotection by reductive conversion of BV to BR. This trial is registered with ChiCTR2000036059.
Collapse
|
19
|
Mazidi M, Mikhailidis DP, Dehghan A, Jóźwiak J, Covic A, Sattar N, Banach M. The association between coffee and caffeine consumption and renal function: insight from individual-level data, Mendelian randomization, and meta-analysis. Arch Med Sci 2022; 18:900-911. [PMID: 35832703 PMCID: PMC9266873 DOI: 10.5114/aoms/144905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The reported relationship between coffee intake and renal function is poorly understood. By applying two-sample Mendelian randomization (MR) and systematic review and meta-analysis we investigated the association of caffeine and coffee intake with prevalent CKD and markers of renal function. MATERIAL AND METHODS For the individual data analysis we analyzed the National Health and Nutrition Examination Surveys (NHANES) data on renal function markers and caffeine intake. MR was implemented by using summary-level data from the largest ever genome-wide association studies (GWAS) conducted on coffee intake (N = 91,462) and kidney function (N = 133,413). The inverse variance weighted method (IVW), weighted median-based method, MR-Egger, MR-RAPS, and MR-PRESSO were applied. Random effects models and generic inverse variance methods were used to synthesize quantitative and pooled data for the meta-analysis, followed by a leave-one-out method for sensitivity analysis. RESULTS Finally, we included the data of 18,436 participants; 6.9% had prevalent CKD (based on eGFR). Caffeine intake for the general population was 131.1 ±1.1 mg. The percentage of participants with CKD, by caffeine quartile, was 16.6% in the first (lowest) quartile, 13.9% in the second, 12.2% in the third and 11.0% in the top quartile (p < 0.001). After adjustment, for increasing quartiles for caffeine consumption, mean urine albumin, albumin-creatinine ratio and estimated glomerular filtration rate (GFR) did not change significantly (p > 0.234). In fully adjusted logistic regression models, there was no significant difference in chances of CKD prevalence (p-trend = 0.745). In the same line, the results of MR showed no impact of coffee intake on CKD (IVW: β = -0.0191, SE = 0.069, p = 0.781) or on eGFR (overall = IVW: β = -0.0005, SE = 0.005, p = 0.926) either in diabetic (IVW: β = -0.006, SE = 0.009, p = 0.478) or non-diabetic patients (IVW: β = -6.772, SE = 0.006, p = 0.991). Results from the meta-analysis indicated that coffee consumption was not significantly associated with CKD (OR = 0.85, 95% CI: 0.71-1.02, p = 0.090, n = 6 studies, I 2 = 0.32). These findings were robust in sensitivity analyses. CONCLUSIONS Implementing different strategies, we detected no significant association between coffee consumption and renal function or risk of CKD.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St Thomas’ Hospital, Strand, London, UK
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Abbas Dehghan
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jacek Jóźwiak
- Department of Family Medicine and Public Health, Institute of Medicine, University of Opole, Opole, Poland
| | - Adrian Covic
- Department of Nephrology, “Dr. C. I. Parhon” Clinical Hospital Iasi, Iasi, Romania
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Maciej Banach
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
20
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
21
|
Rodak K, Kokot I, Kratz EM. Caffeine as a Factor Influencing the Functioning of the Human Body-Friend or Foe? Nutrients 2021; 13:3088. [PMID: 34578966 PMCID: PMC8467199 DOI: 10.3390/nu13093088] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Nowadays, caffeine is one of the most commonly consumed substances, which presents in many plants and products. It has both positive and negative effects on the human body, and its activity concerns a variety of systems including the central nervous system, immune system, digestive system, respiratory system, urinary tract, etc. These effects are dependent on quantity, the type of product in which caffeine is contained, and also on the individual differences among people (sex, age, diet etc.). The main aim of this review was to collect, present, and analyze the available information including the latest discoveries on the impact of caffeine on human health and the functioning of human body systems, taking into account the role of caffeine in individual disease entities. We present both the positive and negative sides of caffeine consumption and the healing properties of this purine alkaloid in diseases such as asthma, Parkinson's disease, and others, not forgetting about the negative effects of excess caffeine (e.g., in people with hypertension, children, adolescents, and the elderly). In summary, we can conclude, however, that caffeine has a multi-directional influence on various organs of the human body, and because of its anti-oxidative properties, it was, and still is, an interesting topic for research studies including those aimed at developing new therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Rodak
- Student Research Club, “Biomarkers in Medical Diagnostics”, Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
22
|
Fazelipour S, Hadipour Jahromy M, Tootian Z, Goodarzi N. Antidiabetic effects of the ethanolic extract of Allium saralicum R.M. Fritsch on streptozotocin-induced diabetes in a mice model. Food Sci Nutr 2021; 9:4815-4826. [PMID: 34531994 PMCID: PMC8441324 DOI: 10.1002/fsn3.2405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022] Open
Abstract
Medicinal plants can protect different organs against diabetes-induced oxidative stress due to their antioxidant compounds. The present study was designed to investigate the potential of Allium saralicum R.M. Fritsch (A. saralicum) ethanolic extract to alleviate the adverse effects of streptozotocin (STZ)-induced diabetes in male BALB/c mice. Seventy male mice were randomly divided into seven groups (n = 10). Diabetes was experimentally induced by STZ (60 mg/kg bw). A. saralicum ethanolic extract with doses 5, 20, 80, and 320 mg/kg was administrated for 20 consecutive days in diabetic animals. Based on the obtained results, the untreated diabetic mice showed high blood glucose level, cholesterol, low-density lipoprotein (LDL), white blood cells count (WBC), and platelets, as well as liver enzymes, urea, and creatinine. Administration of different doses of A. saralicum extract significantly reduced blood glucose level similar to glibenclamide. Also, the levels of catalase and superoxide dismutase enzymes restored toward normal level. All hepatic and renal function parameters as well as hematological parameters were improved following treatment with A. saralicum extract particularly at high doses. Histopathological studies showed a decrease in hepatic, renal, and pancreatic damage after treatment with A. saralicum extract. The results of the present work indicate that A. saralicum ethanolic extract can attenuate diabetic hepato-renal, pancreatic, and hematological damages.
Collapse
Affiliation(s)
- Simin Fazelipour
- Department of AnatomyFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahsa Hadipour Jahromy
- Herbal Pharmacology Research CenterFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Tootian
- Department of Basic SciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Nader Goodarzi
- Department of Basic Sciences and PathobiologyFaculty of Veterinary MedicineRazi UniversityKermanshahIran
| |
Collapse
|
23
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
24
|
Zhang H, Jiang Q, Gong G, Li M, Alotaibi SH. Alpinetin: anti-human gastric cancer potential and urease inhibition activity in vitro. Arch Med Sci 2021; 19:1479-1486. [PMID: 37732032 PMCID: PMC10507754 DOI: 10.5114/aoms/138832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction Alpinetin is the bioactive component of a traditional Chinese medicine. This compound, one of the main constituents of the seeds of Alpinia katsumadai Hayata, is a member of the flavonoids, with anti-inflammatory, antibacterial, and other significant therapeutic activities of important potency and low systemic toxicity. Material and methods In our study, the inhibitory effect of isoliquiritigenin on HMG-CoA reductase showed a lower value of IC50 = 21.86 ±1.44 μg/ml. A molecular docking study was performed as a complementary study to provide additional data about the biological activities of alpinetin in the presence of urease. The docking calculations revealed that alpinetin with a docking score of -5.097 (kcal/mol) has an acceptable binding affinity to the enzyme, and because of various hydrophobic contacts and hydrogen bonds created by this chemical compound, alpinetin could be considered as an adequate inhibitor of urease. Results In the cellular and molecular part of the study, the cells treated with alpinetin were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h as regards the cytotoxicity and anti-human gastric carcinoma properties towards normal (human umbilical vein endothelial cells (HUVECs)) and gastric carcinoma cell lines, i.e. SNU-1, Hs 746T, and KATO III. The IC50 values of alpinetin were 426, 586, and 424 μg/ml against SNU-1, Hs 746T, and KATO III cell lines, respectively. The viability of the malignant gastric cell line decreased dose-dependently in the presence of alpinetin. Conclusions It seems that the anti-human gastric carcinoma effect of the investigated molecule is due to its antioxidant effects.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Inner Mongolia People’s Hospital, Hohhot city, Inner Mongolia, China
| | - Qian Jiang
- Department of Oncological Radiotherapy, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Guojin Gong
- Department of Gastrointestinal Surgery, Xichang People’s Hospital, Xichang City, Sichuan Province, China
| | - Mingzhen Li
- Department of Health Management Center, Xiang’an Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Saad H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
25
|
Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021; 469:175-190. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. Researchers have widely accepted that oxidative stress regulates the autophagy pathway. The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
Collapse
Affiliation(s)
- Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
26
|
Fundamentals of Diabetic Cataractogenesis and Promising Ways of its Pharmacological Correction. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cataracts in diabetes mellitus lead to decreased visual function and blindness. Cataract surgery for diabetes mellitus has limitations and complications. The search for effective means of conservative cataract therapy continues. The review presents the analysis of data from scientific sources, mainly for 2015–2020 using Internet resources (PubMed, Web of Science, Medline, eLibrary.Ru, Cyberleninka). In the work, diabetic cataractogenesis is presented as a sum of interrelated pathobiochemical processes. The main ones are the polyol pathway of glucose conversion, non-enzymatic glycation and oxidative modification of lens proteins, which are enhanced in diabetes mellitus. The lens has a high protein content. The formation of high molecular weight protein aggregates is of particular importance for the appearance of light scattering zones and a decrease in lens transparency. This review presents data on anti-cataract compounds that affect post-translational crystallin modification, prevent osmotic and oxidative stress in the lens, and exhibit antiglycation properties. This information shows that the search for means of pharmacological correction of cataractogenesis should be carried out among compounds with antioxidant and antiglycation activity.
Collapse
|
27
|
Liu Z, Zhang Z, Du X, Liu Y, Alarfaj A, Hirad A, Ansari SA, Zhang Z. Novel green synthesis of silver nanoparticles mediated by Curcumae kwangsiensis for anti-lung cancer activities: a preclinical trial study. Arch Med Sci 2021; 19:1463-1471. [PMID: 37732031 PMCID: PMC10507782 DOI: 10.5114/aoms/134059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/07/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction The present work describes the green synthesis and characterization and cytotoxicity, antioxidant, and anti-human lung cancer activities of silver nanoparticles containing Curcumae kwangsiensis folium leaf aqueous extract. Material and methods Ag nanoparticles were produced by mixing the AgNO3 solution with aqueous C. kwangsiensis folium leaf extract. Characterization of Ag nanoparticles was done by FE-SEM, FT-IR, TEM, and UV-Vis. FE-SEM and TEM images revealed an average diameter of 15-21 nm for the nanoparticles. MTT assay was used on common human lung cancer cell lines, i.e., lung well-differentiated bronchogenic adenocarcinoma (HLC-1), lung moderately differentiated adenocarcinoma (LC-2/ad), and lung poorly differentiated adenocarcinoma (PC-14) cell lines, to survey the cytotoxicity and anti-human lung cancer effects of Ag nanoparticles. Results They had very low cell viability and high anti-human lung cancer activities dose-dependently against HLC-1, LC-2/ad, and PC-14 cell lines without any cytotoxicity towards the normal cell line (HUVEC). The IC50 values of Ag nanoparticles were 249, 187, and 152 μg/ml against HLC-1, LC-2/ad, and PC-14 cell lines, respectively. The best results of cytotoxicity and anti-human lung cancer properties were seen at the concentration of 1000 μg/ml. Ag nanoparticles inhibited half of the DPPH molecules in the concentration of 135 μg/ml. Maybe significant anti-human lung cancer potentials of Ag nanoparticles synthesized by C. kwangsiensis folium leaf aqueous extract against common human lung cancer cell lines are linked to their antioxidant activities. Conclusions After confirming the above results in the clinical trial research, this formulation can be administered to treat human lung cancers in humans.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhuohong Zhang
- Department of Respiratory and Critical Care Medicine, Xian XD Group Hospital, Lianhu District, Xi’an City, Shaanxi Province, China
| | - Xiaomei Du
- Department of Respiratory and Critical Care Medicine, Xian XD Group Hospital, Lianhu District, Xi’an City, Shaanxi Province, China
| | - Ying Liu
- Department of Surgery, Dayi County People’s Hospital, Dali County, Weinan, Shaanxi, China
| | - Abdullah Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdurahman Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhiguo Zhang
- Department of Respiratory and Critical Care Medicine, Xian XD Group Hospital, Lianhu District, Xi’an City, Shaanxi Province, China
| |
Collapse
|
28
|
Potential of Caffeine in Alzheimer's Disease-A Review of Experimental Studies. Nutrients 2021; 13:nu13020537. [PMID: 33562156 PMCID: PMC7915779 DOI: 10.3390/nu13020537] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia leading to progressive memory loss and cognitive impairment. Considering that pharmacological treatment options for AD are few and not satisfactory, increasing attention is being paid to dietary components that may affect the development of the disease. Such a dietary component may be caffeine contained in coffee, tea or energy drinks. Although epidemiological data suggest that caffeine intake may counteract the development of cognitive impairment, results of those studies are not conclusive. The aim of the present study is to review the existing experimental studies on the efficacy of caffeine against AD and AD-related cognitive impairment, focusing on the proposed protective mechanisms of action. In conclusion, the reports of studies on experimental AD models generally supported the notion that caffeine may exert some beneficial effects in AD. However, further studies are necessary to elucidate the role of caffeine in the effects of its sources on cognition and possibly AD risk.
Collapse
|
29
|
Ma Z, Li J, Jiang H, Chu Y. Expression of α-Klotho Is Downregulated and Associated with Oxidative Stress in the Lens in Streptozotocin-induced Diabetic Rats. Curr Eye Res 2020; 46:482-489. [PMID: 32744464 DOI: 10.1080/02713683.2020.1805768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: Oxidative stress, an imbalance between the production of reactive oxygen species and antioxidant defenses, plays an important role in the pathogenesis of diabetic cataract. The lens in diabetes mellitus (DM) has been shown to exhibit impaired antioxidant defenses, but the underlying mechanisms remain poorly understood. Accumulating evidence reveals that Klotho family genes can regulate antioxidant defenses and prevent oxidative stress in multiple tissues. Here, we examined whether DM alters Klotho expression in the lens and if so, whether altered Klotho expression is associated with oxidative stress in the lens in DM. Methods: Male Wistar rats were divided into DM and control groups. DM was induced by injection of streptozotocin (STZ, 60 mg/kg ip) and control rats were injected with vehicle. Twelve weeks after DM induction, levels of α-Klotho in plasma, expression of α- and γ-Klotho, and nuclear factor erythroid 2-related factor 2 (Nrf2), and levels of antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione (GSH) and oxidative stress marker malondialdehyde (MDA) in the lens were measured. Results: Diabetic rats had markedly higher blood glucose concentrations and lower plasma α-Klotho levels than control rats. Both α- and γ-Klotho were expressed in the lens in diabetic and control rats. The expression of α-Klotho but not γ-Klotho in the lens was downregulated in diabetic rats, which was accompanied by reduced expression of nuclear Nrf2 and levels of all antioxidants and increased levels of MDA. Moreover, expression of α-Klotho in the lens was positively correlated with expression of nuclear Nrf2 and levels of all antioxidants, but negatively correlated with levels of MDA. Conclusions: These findings suggest that DM selectively reduces α-Klotho levels in the circulation and lens, which may attenuate transcriptional activity of Nrf2 and impair antioxidant defenses in response to oxidative insults, contributing to oxidative stress and cataract formation in DM.
Collapse
Affiliation(s)
- Zhongxu Ma
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yanhua Chu
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
30
|
Ikonne EU, Ikpeazu VO, Ugbogu EA. The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 2020; 6:e04408. [PMID: 32685729 PMCID: PMC7355812 DOI: 10.1016/j.heliyon.2020.e04408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
In the past decade, there has been a tremendous increase in the number of cases of age-related eye diseases such as age-related macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. These diseases are the leading causes of visual impairment and blindness all over the world and are associated with many pathological risk factors such as aging, pollution, high levels of glucose (hyperglycaemia), high metabolic rates, and light exposure. These risk factors lead to the generation of uncontrollable reactive oxygen species (ROS), which causes oxidative stress. Oxidative stress plays a crucial role in the pathogenesis of age-related eye diseases through the activation of nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and lipid peroxidation, which leads to the production of inflammatory cytokines, angiogenesis, protein and DNA damages, apoptosis that causes macular degeneration (AMD), cataract, diabetic retinopathy and glaucoma. This review provides updated information on the beneficial effects of dietary natural plant products (DPNPs) against age-related eye diseases. In this review, supplementation of DPNPs demonstrated preventive and therapeutic effects on people at risk of or with age-related eye diseases due to their capacity to scavenge free radicals, ameliorate inflammatory molecules, neutralize the oxidation reaction that occurs in photoreceptor cells, decrease vascular endothelial growth factor and the blood-retinal barrier and increase the antioxidant defence system. However, further experiments and clinical trials are required to establish the daily doses of DPNPs that will safely and effectively prevent age-related eye diseases.
Collapse
Affiliation(s)
| | - Victor Okezie Ikpeazu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Abia State University, P.M.B 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
31
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|
32
|
Ma Z, Liu J, Li J, Jiang H, Kong J. Klotho ameliorates the onset and progression of cataract via suppressing oxidative stress and inflammation in the lens in streptozotocin-induced diabetic rats. Int Immunopharmacol 2020; 85:106582. [PMID: 32438076 DOI: 10.1016/j.intimp.2020.106582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Increased oxidative stress and inflammation play an important role in the pathogenesis of diabetic cataract. Klotho, known as an anti-ageing protein, has antioxidative and anti-inflammatory properties. Klotho is expressed in limited tissues including the lens. Here we examined whether klotho expression is decreased in diabetic lens and, if so, whether klotho treatment can prevent diabetic cataract formation. Streptozotocin (STZ)-induced diabetic rats and age-matched control rats were treated with vehicle or klotho protein, starting at 1 week after STZ injection. Twelve weeks after treatment, cataract formation was observed in diabetic rats but not control rats. Cataract formation and scores were significantly less in klotho-treated diabetic rats than vehicle-treated diabetic rats. Levels of klotho in plasma, aqueous humor and lens were significantly decreased in vehicle-treated diabetic rats, compared with control rats, but were restored in klotho-treated diabetic rats. Additionally, vehicle-treated diabetic rats had increased oxidative stress and inflammation in the lens, which were associated with decreased antioxidant transcriptional master regulator Nrf2 activity and increased transcription factor NF-κB activity. All of these findings were ameliorated in klotho-treated diabetic rats. Notably, klotho treatment did not alter blood glucose in diabetic rats. These results indicate that klotho reduction may increase susceptibility of the lens to oxidative and inflammatory insults, promoting cataract formation under diabetic conditions. Klotho treatment can ameliorate the onset and progression of diabetic cataract via enhancing Nrf2-mediated antioxidant defense and suppressing NF-κB-mediated inflammatory responses. Klotho in the lens may be a novel therapeutic target for prevention of cataract formation in diabetes.
Collapse
Affiliation(s)
- Zhongxu Ma
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, China.
| | - Jingjing Liu
- The Fourth Affiliated Hospital of China Medical University, Provincial Key Laboratory of Lens Research, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, China
| | - Jun Kong
- The Fourth Affiliated Hospital of China Medical University, Provincial Key Laboratory of Lens Research, China.
| |
Collapse
|
33
|
Zhang ZY, Miao LF, Qian LL, Wang N, Qi MM, Zhang YM, Dang SP, Wu Y, Wang RX. Molecular Mechanisms of Glucose Fluctuations on Diabetic Complications. Front Endocrinol (Lausanne) 2019; 10:640. [PMID: 31620092 PMCID: PMC6759481 DOI: 10.3389/fendo.2019.00640] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates the occurrence and development of diabetic complications relates to not only constant high plasma glucose, but also glucose fluctuations which affect various kinds of molecular mechanisms in various target cells and tissues. In this review, we detail reactive oxygen species and their potentially damaging effects upon glucose fluctuations and resultant downstream regulation of protein signaling pathways, including protein kinase C, protein kinase B, nuclear factor-κB, and the mitogen-activated protein kinase signaling pathway. A deeper understanding of glucose-fluctuation-related molecular mechanisms in the development of diabetic complications may enable more potential target therapies in future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|