1
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
2
|
Górczyńska-Kosiorz S, Kosiorz M, Dzięgielewska-Gęsiak S. Exploring the Interplay of Genetics and Nutrition in the Rising Epidemic of Obesity and Metabolic Diseases. Nutrients 2024; 16:3562. [PMID: 39458556 PMCID: PMC11510173 DOI: 10.3390/nu16203562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity has become a significant global health issue. This multifaceted condition is influenced by genetic, environmental, and lifestyle factors, significantly influenced by nutrition. Aim: The study's objective is to elucidate the relationship between obesity-related genes, nutrient intake, and the development of obesity and the importance of other metabolic diseases. Methods: A comprehensive literature review spanning the past two decades was conducted to analyze the contributions of genetic variants-including FTO, MC4R, and LEPR-and their associations with dietary habits, highlighting how specific nutrients affect gene expression and obesity risk and how the coexistence of metabolic diseases such as type 2 diabetes and osteoporosis may modulate these factors. Moreover, the role of epigenetic factors, such as dietary patterns that encourage the development of obesity, was explored. Discussion and Conclusions: By understanding the intricate relationships among genetics, nutrients, and obesity development, this study highlights the importance of personalized dietary strategies in managing obesity. Overall, an integrated approach that considers genetic predispositions alongside environmental influences is essential for developing effective prevention and treatment methodologies, ultimately contributing to better health outcomes in diverse populations.
Collapse
Affiliation(s)
- Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Matylda Kosiorz
- Students’ Scientific Association by the Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| |
Collapse
|
3
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Zhao X, Zou H, Wang M, Wang J, Wang T, Wang L, Chen X. Conformal Neuromorphic Bioelectronics for Sense Digitalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403444. [PMID: 38934554 DOI: 10.1002/adma.202403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.
Collapse
Affiliation(s)
- Xiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Haochen Zou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Jianwu Wang
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiaodong Chen
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Innovative Centre for Flexible Devices (iFLEX) Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Costanzo A. Temporal patterns in taste sensitivity. Nutr Rev 2024; 82:831-847. [PMID: 37558243 PMCID: PMC11082591 DOI: 10.1093/nutrit/nuad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Individuals vary in their ability to taste, and some individuals are more sensitive to certain tastes than others. Taste sensitivity is a predictor of various factors, such as diet, eating behavior, appetite regulation, and overall health. Furthermore, taste sensitivity can fluctuate within an individual over short to long periods of time: for example, in daily (diurnal) cycles, monthly (menstrual) cycles (in females), and yearly (seasonal) cycles. Understanding these temporal patterns is important for understanding individual eating habits and food preferences, particularly in the context of personalized and precision nutrition. This review provides a summary of the literature on taste sensitivity patterns across 3 temporal dimensions: daily, monthly, and yearly. Good evidence for diurnal patterns has been observed for sweet taste and fat taste, although the evidence is limited to rodent studies for the latter. Obese populations showed limited variation to sweet and fat taste sensitivities over a day, with limited variation in sweet taste sensitivity being linked to insulin resistance. There were mixed observations of temporal variation in sensitivity to sour and umami tastes, and there were no patterns in sensitivity to bitter taste. Menstrual patterns in sweet taste sensitivity were consistent with patterns in food intake. Other taste modality investigations had mixed findings that had little agreement across studies. Hormonal changes in females influence taste sensitivity to some degree, although the overall patterns are unclear. Seasonal patterns have been less well studied, but there is weak evidence that sweet, salty, and bitter taste sensitivities change across seasons. Differences in seasonal taste patterns have been observed in subgroups susceptible to mental health disorders, requiring further investigation. Patterns of taste sensitivity are evident across multiple temporal dimensions, and more research is needed to determine the influence of these patterns on food intake. Dysregulation of these patterns may also be a marker of certain diseases or health conditions, warranting further investigation. Notably, the alimentary tastes (umami, fat, and carbohydrate) are underrepresented in this research area and require additional investigation.
Collapse
Affiliation(s)
- Andrew Costanzo
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Schluterman HM, Linardos CG, Drulia T, Marshall JD, Kearns GL. Evaluating palatability in young children: a mini-review of relevant physiology and assessment techniques. Front Pediatr 2024; 12:1350662. [PMID: 38390280 PMCID: PMC10881860 DOI: 10.3389/fped.2024.1350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The palatability of pediatric pharmaceutical products plays a crucial role of influencing medication compliance. Rejection of unpalatable medications can potentially lead to treatment failure which can have immediate and delayed consequences. With advances in both the food and pharmaceutical industries, the systematic assessment of palatability has gained importance. Various methods such as visual analogue scales, facial hedonic scales, and facial recognition software, have been employed to assess palatability. While proven to be useful, these methods have significant limitations and may not be workable for young children. Despite these advancements, a universally accepted "gold standard" for assessing pediatric mediation palatability, recognized by drug regulatory agencies, is yet to be established.
Collapse
Affiliation(s)
- Haley M Schluterman
- Departments of Medical Education, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
| | - Constance G Linardos
- Departments of Medical Education, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
| | - Teresa Drulia
- Davies School of Communication Sciences and Disorders, The Harris College of Nursing and Health Sciences, Texas Christian University, Fort Worth, TX, United States
| | - James D Marshall
- Departments of Pediatrics, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
- The Divisions of Intensive Care Medicine, Cook Children's Medical Center, Fort Worth, TX, United States
- The Divisions of Palliative Care, Cook Children's Medical Center, Fort Worth, TX, United States
| | - Gregory L Kearns
- Departments of Pediatrics, The Anne Marion Burnett School of Medicine, Texas Christian University, Fort Worth, TX, United States
- The Divisions of Intensive Care Medicine, Cook Children's Medical Center, Fort Worth, TX, United States
| |
Collapse
|
7
|
Ervina E, Berget I, Skeie SB, L. Almli V. Basic taste sensitivity, eating behaviour, food propensity and BMI of preadolescent children: How are they related? OPEN RESEARCH EUROPE 2024; 1:127. [PMID: 38433733 PMCID: PMC10904958 DOI: 10.12688/openreseurope.14117.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/05/2024]
Abstract
Background Taste sensitivity has been reported to influence children's eating behaviour and contribute to their food preferences and intake. This study aimed to investigate the associations between taste sensitivity, eating behaviour, food frequency and BMI (Body Mass Index) in preadolescents. Methods Preadolescents' taste sensitivity was measured by detection threshold of sweetness (sucrose), sourness (citric acid), saltiness (sodium chloride), bitterness (caffeine, quinine), and umami (monosodium glutamate). In addition, the Child Eating Behaviour Questionnaire (CEBQ), the Food Propensity Questionnaire (FPQ) measuring food frequency, and the children's body weight and height were completed by the parents. A total of 69 child-parent dyads participated (preadolescents mean age =10.9 years). Results Taste sensitivity to caffeine bitterness was significantly associated with eating behaviour in food responsiveness, emotional overeating, and desire to drink. The preadolescents who were less sensitive to caffeine bitterness had higher food responsiveness scores. Those who were less sensitive to caffeine bitterness and to sweetness had higher emotional overeating scores. In addition, preadolescents who were less sensitive to sourness and bitterness of both caffeine and quinine demonstrated to have higher scores in desire to drink. There was no association between taste sensitivity and FPQ, but significant differences were observed across preadolescents' BMI for FPQ of dairy food items, indicating higher consumption of low-fat milk in the overweight/obese compared to the underweight/normal-weight subjects. There was no significant difference in taste sensitivity according to BMI. Preadolescents' eating behaviour differed across BMI, demonstrating a positive association between BMI and food approach, and a negative association between BMI and food avoidance. Conclusions This study contributes to the preliminary understanding of the relationships between taste sensitivity and eating behaviour in preadolescents. The results may be used to develop effective strategies to promote healthy eating practices by considering taste sensitivity in preadolescents.
Collapse
Affiliation(s)
- Ervina Ervina
- Department of Sensory and Consumer Sciences, Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, 1430, Norway
- Department of Chemistry, Biotechnology and Food Science (KBM), The Norwegian University of Life Science, Ås, 1433, Norway
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - Ingunn Berget
- Department of Raw Materials and Process Optimization, Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, 1430, Norway
| | - Siv Borghild Skeie
- Department of Chemistry, Biotechnology and Food Science (KBM), The Norwegian University of Life Science, Ås, 1433, Norway
| | - Valérie L. Almli
- Department of Sensory and Consumer Sciences, Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, 1430, Norway
- Department of Chemistry, Biotechnology and Food Science (KBM), The Norwegian University of Life Science, Ås, 1433, Norway
| |
Collapse
|
8
|
Nuvoli C, Fillion L, Lacoste Gregorutti C, Labbe D. Comparison of sensitivity to taste and astringency stimuli among vegans and omnivores. Physiol Behav 2023; 262:114092. [PMID: 36682431 DOI: 10.1016/j.physbeh.2023.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Taste perception plays a crucial role in determining food choices. It has been described in literature a relationship between diet composition and taste perception. Nowadays, with the rising concern in climate change and animal welfare, the number of people following a vegan diet is increasing to become a real trend. Research about differences in taste perception between vegan and omnivore is lacking. The aim of the study was to compare detection threshold for bitter, sour, umami and astringency stimuli (quinine monohydrochloride dihydrate, citric acid anhydrous, monosodium glutamate and tannic acid, respectively) participants following a vegan diet (n=24) and participants following an omnivore diet (n=30). Participants reported their consumption frequency for main food categories. The mean detection thresholds between the two groups narrowly missed significance with p-values of 0.07, 0.08, 0.06, for bitter, umami and astringency perception, respectively. No differences were found for sour taste (p-value=0.33). Further research is required to validate such findings and to understand the origin of the relationship between diet style and taste sensitivity.
Collapse
Affiliation(s)
| | | | | | - David Labbe
- Société des Produits Nestlé SA, Switzerland.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To provide a summary of current literature and propose potential mechanistic models to help us understand the role of HIV infection/antiretroviral therapy (ART), salt taste sensitivity (STS), and salt sensitivity of blood pressure (SSBP) in hypertension development. RECENT FINDINGS The epithelial sodium channel (ENaC) is the main protein/sodium channel for recognizing Na + in the tongue and mediates preference to low-medium salt concentrations in animals and humans. Considering the pressor response to oral salt in individuals with SSBP, poor STS may worsen blood pressure. Specific genetic variants in ENaC are linked to salt taste perception and hypertension. HIV infection, some ART, and specific antihypertensive drugs are associated with reduced STS and an increased liking for salty foods. Persons with HIV (PWH) on ART may have a decreased STS and are at a higher risk of developing salt-sensitive hypertension. Inflammation mediated by dietary salt is one of the drivers of poor STS and salt-sensitive hypertension among PWH.
Collapse
|
10
|
Orku SE, Suyen G, Bas M. The effect of regular consumption of four low- or no-calorie sweeteners on glycemic response in healthy women: A randomized controlled trial. Nutrition 2023; 106:111885. [PMID: 36470113 DOI: 10.1016/j.nut.2022.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to determine the effects of regular exposure to certain low- or no-calorie sweeteners (LNCS) on glucose tolerance and glucagon-like peptide 1 (GLP-1) release in healthy individuals. METHODS It was designed as a randomized, single-blinded, controlled study. Healthy and normoglycemic adults who did not have regular consumption of LNCS were recruited. Participants underwent a 75-g oral glucose tolerance test (OGTT) at baseline and were randomly assigned to consume 330 mL water sweetened with saccharine, sucralose, or aspartame + acesulfame-K (Asp+Ace-K), or plain water for the control group, daily for 4 wk. Fasting plasma glucose, insulin, GLP-1, and glycated hemoglobin A1c (HbA1c) levels and 1-h, 2-h, and 3-h plasma glucose and insulin levels during OGTT were obtained at baseline. The change in insulin sensitivity was assessed by both the Homeostatic Model Assessment Insulin Resistance (HOMA-IR) Index and the Matsuda Index. Anthropometric measurements and dietary intakes were determined at baseline. Baseline measurements were repeated at week 4. RESULTS Of the participants enrolled in the study, 42 (age, 21.24 ± 2.26 y; body mass index, 20.65 ± 2.88 kg/m2) completed the 4-wk intervention period. There were no differences for glucose, insulin, GLP-1, or HbA1c levels or HOMA-IR scores at baseline or at week 4 when compared with the control group. The area under the curve of mean glucose and insulin values during OGTT were also found to be similar between groups at baseline and week 4. There were also no effects of LNCS intake on body weight, body composition, and waist circumference. CONCLUSIONS These results suggest that regular consumption of LNCS-sweetened water similar to doses consumed in daily life over 4 wk had no significant effect on glycemic response, insulin sensitivity, GLP-1 release, and body weight in healthy individuals. This trial was registered at www. CLINICALTRIALS gov as NCT04904133.
Collapse
Affiliation(s)
- Saziye E Orku
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Murat Bas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
11
|
Luongo FP, Passaponti S, Haxhiu A, Raeispour M, Belmonte G, Governini L, Casarini L, Piomboni P, Luddi A. Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells. Int J Mol Sci 2022; 23:ijms232415540. [PMID: 36555195 PMCID: PMC9779643 DOI: 10.3390/ijms232415540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system.
Collapse
Affiliation(s)
- Francesca Paola Luongo
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Sofia Passaponti
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Maryam Raeispour
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Giuseppe Belmonte
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577586632
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy
| |
Collapse
|
12
|
Salt taste threshold and contributory factors of chronic kidney disease patients: a cross-sectional study. Int Urol Nephrol 2022; 55:1211-1218. [PMID: 36318407 DOI: 10.1007/s11255-022-03403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
PROPOSE High salt intake, correlated with high salt taste threshold, may accelerate renal injury in chronic kidney disease (CKD) patients. However, few studies have focused on factors that influence salt taste threshold. Therefore, we aimed to identify factors that influence the salt taste threshold of CKD patients, to provide more precise salt restriction recommendations in dietary therapy. METHODS Between April 2016 and March 2019, we measured the salt taste threshold of 1019 CKD patients, aged 22-78 years, from 52 hospitals across southwestern China, and then we performed a cross-sectional study. RESULTS The mean salt taste threshold was 0.37 ± 0.16% NaCl. There were 115 (11.3%), 670 (65.7%), and 234 (23.0%), respectively, patients who had low (≤ 0.1% NaCl), medium (0.1-0.4% NaCl), and high (> 0.4% NaCl) salt taste thresholds. One-way ANOVA and regression results revealed that sex (male), age, decreased estimated glomerular filtration rate, and absence of salt restriction were factors that influenced CKD groups with high salt taste threshold. CONCLUSION We found an independent correlation between contributory factors including sex, age, eGFR, and salt restriction behavior of subjects with the salt taste threshold of CKD patients. Our findings also offer insights on salt taste thresholds that could be useful for clinicians advising salt restriction to impair the salt taste sensitivity of the corresponding populations.
Collapse
|
13
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
14
|
Bawajeeh A, Zulyniak MA, Evans CEL, Cade JE. Characterizing Adolescents' Dietary Intake by Taste: Results From the UK National Diet and Nutrition Survey. Front Nutr 2022; 9:893643. [PMID: 35795580 PMCID: PMC9251474 DOI: 10.3389/fnut.2022.893643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The taste of foods is a key factor for adolescents' food choices and intakes, yet, exploring taste characteristics of adolescents' diet is limited. Using food records for 284 adolescents (10–19 years old) from the National Diet and Nutrition Survey (NDNS), year 9 (2016–2017), we classified diets according to taste. Tastes for each food consumed were generated from a previous survey that asked participants to allocate one main taste to each food. Responses from that survey were processed and included in a Hierarchical Cluster Analysis (HCA) to identify taste clusters. The resulting tastes were then applied to the adolescents' food records in the NDNS. For each individual, the total weight of food per day for each taste was calculated. A linear regression model was used to explore dietary intakes from each taste. Findings reveal that adolescents' daily energy intake was highest (34%) from foods that taste sweet. Sweet foods were the main calorie contributors at breakfast and daytime snacking, while energy intake from neutral-tasting foods was higher at lunch and dinner. Sweet food intake was significantly positively associated with higher energy, sugar, and fat intakes. For each percentage increase in sweet foods, energy increased by 10 kcal/d (95% CI 6, 15; P < 0.01). Savory food intake was lower in carbohydrates and sugars; with neutral food consumption inversely associated with energy, carbohydrate, sugars, saturated and total fat. Higher salty food intake was linked to higher saturated fat as well as sodium consumption. Sweet and neutral foods dominate the UK adolescent diet, followed by savory tastes. Balancing the contributions of different tasting foods could assist in improving adolescent diet quality.
Collapse
Affiliation(s)
- Areej Bawajeeh
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Areej Bawajeeh
| | - Michael A. Zulyniak
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Charlotte E. L. Evans
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Janet E. Cade
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Diepeveen J, Moerdijk‐Poortvliet TCW, van der Leij FR. Molecular insights into human taste perception and umami tastants: A review. J Food Sci 2022; 87:1449-1465. [PMID: 35301715 PMCID: PMC9314127 DOI: 10.1111/1750-3841.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/08/2023]
Abstract
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
Collapse
Affiliation(s)
- Johan Diepeveen
- Research Group Marine Biobased SpecialtiesChemistry Department, HZ University of Applied SciencesVlissingenThe Netherlands
| | | | - Feike R. van der Leij
- Research and Innovation Centre Agri, Food & Life Sciences (RIC‐AFL)Inholland University of Applied SciencesDelftThe Netherlands
| |
Collapse
|
16
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Tarté R. Leveraging Understanding of Meat Flavor for Product Success. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In order to get the most benefit out of the use of spices, seasonings, and flavors, an understanding of meat flavorand the factors that affect it is needed. This article discusses flavor and its sensory perception, the various factors that affectit, and how this understanding can be leveraged to achieve formulation objectives and product success.
Collapse
|
18
|
Thomas DC, Chablani D, Parekh S, Pichammal RC, Shanmugasundaram K, Pitchumani PK. Dysgeusia: A review in the context of COVID-19. J Am Dent Assoc 2021; 153:251-264. [PMID: 34799014 PMCID: PMC8595926 DOI: 10.1016/j.adaj.2021.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/07/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Background Taste disorders in general, and dysgeusia in particular, are relatively common disorders that may be a sign of a more complex acute or chronic medical condition. During the COVID-19 pandemic, taste disorders have found their way into the realm of general as well as specialty dentistry, with significance in screening for patients who potentially may have the virus. Types of Studies Reviewed The authors searched electronic databases (PubMed, Embase, Web of Science, Google Scholar) for studies focused on dysgeusia, ageusia, and other taste disorders and their relationship to local and systemic causes. Results The authors found pertinent literature explaining the normal physiology of taste sensation, proposals for suggested new tastes, presence of gustatory receptors in remote tissues of the body, and etiology and pathophysiology of taste disorders, in addition to the valuable knowledge gained about gustatory disorders in the context of COVID-19. Along with olfactory disorders, taste disorders are one of the earliest suggestive symptoms of COVID-19 infection. Conclusions Gustatory disorders are the result of local or systemic etiology or both. Newer taste sensations, such as calcium and fat tastes, have been discovered, as well as taste receptors that are remote from the oropharyngeal area. Literature published during the COVID-19 pandemic to date reinforces the significance of early detection of potential patients with COVID-19 by means of screening for recent-onset taste disorders. Practical Implications Timely screening and identification of potential gustatory disorders are paramount for the dental care practitioner to aid in the early diagnosis of COVID-19 and other serious systemic disorders.
Collapse
|
19
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Liu J, Lv C, Wu D, Wang Y, Sun C, Cheng C, Yu Y. Subjective Taste and Smell Changes in Conjunction with Anxiety and Depression Are Associated with Symptoms in Patients with Functional Constipation and Irritable Bowel Syndrome. Gastroenterol Res Pract 2021; 2021:5491188. [PMID: 34589124 PMCID: PMC8476287 DOI: 10.1155/2021/5491188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with functional constipation (FC) and irritable bowel syndrome (IBS) often report psychological abnormalities and decreased eating enjoyment. Several patients also complain of changes in the sense of smell and taste, but these are often disregarded clinically. AIMS Therefore, there is a need to determine whether taste/smell disturbances and psychological abnormalities are present in patients with FC or IBS and whether these are related to the severity of lower gastrointestinal symptoms. METHODS A total of 337 subjects were recruited, including FC (n = 115), IBS (n = 126), and healthy controls (n = 96). All participants completed questionnaires evaluating taste and smell (taste and smell survey (TSS)), Lower Gastrointestinal Symptoms Rating Scale (LGSRS), Hamilton anxiety scale (HAMA), and Hamilton depression scale (HAMD). TSS recorded information on the nature of taste and smell changes (TSCs) and the impact of these changes on the quality of life. LGSRS was used to assess the severity of lower gastrointestinal symptoms; HAMA and HAMD scales were used to reflect the psychosocial state. This study protocol was registered on the Chinese Clinical Trial Registry (No. ChiCTR-2100044643). RESULTS Firstly, we found that taste and smell scores were higher in patients with IBS than in healthy controls. Secondly, for FC and IBS patients, LGSRS was significantly correlated with the taste score (Spearman's rho = 0.832, P < 0.001). LGSRS was also significantly correlated with HAMA (Spearman's rho = 0.357, P = 0.017) and HAMD (Spearman's rho = 0.377, P = 0.012). In addition, the taste score was significantly correlated with HAMD (Spearman's rho = 0.479, P = 0.001), while the smell score was also significantly correlated with HAMD (Spearman's rho = 0.325, P = 0.031). Thirdly, 60.87% and 71.43% of patients complained of taste abnormality, while 65.22% and 71.43% had smell abnormality in the FC and IBS groups, respectively. Meanwhile, 47.83% and 47.62% of patients suffered from anxiety, while 43.48% and 57.14% suffered from depression in the FC and IBS groups, respectively. Finally, we found significant differences in the taste, smell, HAMD, and LGSRS scores between the female and male IBS groups (P < 0.050). CONCLUSIONS TSCs and psychological disorders are prominent in FC and IBS patients. Taste abnormalities, as well as anxiety and depression, are significantly correlated with LGSRS. Awareness of this high prevalence of taste/smell abnormalities and the psychological changes among patients with FC and IBS may help better predict and understand the severity of symptoms.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gastroenterology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chaolan Lv
- Department of Gastroenterology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dandan Wu
- South District of Endoscopic Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ying Wang
- South District of Endoscopic Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, 60657 Illinois, USA
| | - Ce Cheng
- The University of Arizona College of Medicine at South Campus, 2800 E Ajo Way, Tucson, 85713 AZ, USA
| | - Yue Yu
- Department of Gastroenterology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- South District of Endoscopic Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
21
|
Shen T, Li J. Drinking Non-nutritive Sweetness Solution of Sodium Saccharin or Rebaudioside a for Guinea Pigs: Influence on Histologic Change and Expression of Sweet Taste Receptors in Testis and Epididymis. Front Nutr 2021; 8:720889. [PMID: 34422887 PMCID: PMC8375269 DOI: 10.3389/fnut.2021.720889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Saccharin sodium and rebaudioside A are extensively used as non-nutritive sweeteners (NNSs) in daily life. NNSs elicit a multitude of endocrine influences on animals, differing across species and chemically distinct sweeteners, whose exposure induce activation of sweet taste receptors in oral and extra-oral tissues with consequences of metabolic changes. To evaluate the influence of NNSs on histologic change and expression of sweet taste receptors in testis and epididymis of young male guinea pigs, thirty 4-week-old male guinea pigs with body weight 245.73 ± 6.02 g were randomly divided into five groups (n = 6) and received normal water (control group) and equivalent sweetness low dose or high dose of sodium saccharin (L-SS, 1.5 mM or H-SS, 7.5 mM) or rebaudioside A (L-RA, 0.5 mM or H-RA, 2.5 mM) solution for 28 consecutive days. The results showed that the relative testis weight in male guinea pig with age of 56 days represented no significant difference among all groups; in spite of heavier body weight in L-SS and H-RA, NNS contributes no significant influence on serum testosterone and estradiol level. Low-dose 0.5 mM rebaudioside A enhanced testicular and epididymal functions by elevating the expressions of taste receptor 1 subunit 2 (T1R2) and gustducin α-subunit (GNAT3), and high-dose 7.5 mM sodium saccharin exerted adverse morphologic influences on testis and epididymis with no effect on the expression of T1R2, taste receptor 1 subunit 2 (T1R3), and GNAT3. In conclusion, these findings suggest that a high dose of sodium saccharin has potential adverse biologic effects on the testes and epididymis, while rebaudioside A is a potential steroidogenic sweetener for enhancing reproductive functions.
Collapse
Affiliation(s)
- Ting Shen
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats. Proc Natl Acad Sci U S A 2021; 118:2021516118. [PMID: 33479172 PMCID: PMC7848599 DOI: 10.1073/pnas.2021516118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sense of taste provides key information on diet, but evolution of taste receptor genes in vertebrates is sometimes unable to predict their feeding ecology. Here we use behavioral experiments and functional assays to demonstrate the loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats. Although sweet taste receptor genes were highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed dramatic divergence in two bat species with distinct diets: the insectivorous bat showed no preference for natural sugars, whereas the frugivorous bat showed strong preferences for sucrose and fructose. Our cell-based assays from multiple representative bat species across the phylogeny further supported the behavioral preference tests. The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2. Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.
Collapse
|
23
|
Breijyeh Z, Karaman R. Enzyme Models-From Catalysis to Prodrugs. Molecules 2021; 26:molecules26113248. [PMID: 34071328 PMCID: PMC8198240 DOI: 10.3390/molecules26113248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Enzymes are highly specific biological catalysts that accelerate the rate of chemical reactions within the cell. Our knowledge of how enzymes work remains incomplete. Computational methodologies such as molecular mechanics (MM) and quantum mechanical (QM) methods play an important role in elucidating the detailed mechanisms of enzymatic reactions where experimental research measurements are not possible. Theories invoked by a variety of scientists indicate that enzymes work as structural scaffolds that serve to bring together and orient the reactants so that the reaction can proceed with minimum energy. Enzyme models can be utilized for mimicking enzyme catalysis and the development of novel prodrugs. Prodrugs are used to enhance the pharmacokinetics of drugs; classical prodrug approaches focus on alternating the physicochemical properties, while chemical modern approaches are based on the knowledge gained from the chemistry of enzyme models and correlations between experimental and calculated rate values of intramolecular processes (enzyme models). A large number of prodrugs have been designed and developed to improve the effectiveness and pharmacokinetics of commonly used drugs, such as anti-Parkinson (dopamine), antiviral (acyclovir), antimalarial (atovaquone), anticancer (azanucleosides), antifibrinolytic (tranexamic acid), antihyperlipidemia (statins), vasoconstrictors (phenylephrine), antihypertension (atenolol), antibacterial agents (amoxicillin, cephalexin, and cefuroxime axetil), paracetamol, and guaifenesin. This article describes the works done on enzyme models and the computational methods used to understand enzyme catalysis and to help in the development of efficient prodrugs.
Collapse
|
24
|
Wu Z, Zhao K. Impact of pulsation rate and viscosity on taste perception - Application of a porous medium model for human tongue surface. Comput Biol Med 2021; 134:104419. [PMID: 33962089 DOI: 10.1016/j.compbiomed.2021.104419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Temporal dynamics may importantly modulate sensory perception, including taste. For example, enhanced perceived taste intensity is often observed when tastant concentration is fluctuating in pulses. The perceived intensity is higher than that of the solutions with a same averaged, but constant concentrations. Meanwhile, taste intensity often decreases with increase of tastant viscosity, despite no changes to the stimuli concentration. The mechanisms to these phenomena are not well understood, in part due to the complicated transport process of tastant through papillae, taste pores, etc. to reach the taste receptors, a cascade of events that are difficult to quantify. METHOD We computationally modeled the human tongue surface as a porous micro-fiber medium, extending a previous study and exposed it to pulsatile tastant solution (0.2 and 0.4Hz) with various added viscosity (~0.0011-~0.09 Pa⋅s). RESULTS Our simulation revealed that the stimuli concentration within the papillae structure increase with pulsed stimulation, especially those with a longer period (16% increase at 0.4Hz and 23% at 0.2Hz compared to continuous stimuli) and decrease (-6%) with added viscosity. The trend matched well with measured taste perception to sucrose added apple juice in the literature (R2 > 0.97 for both low and high viscosity stimuli series). Decreased diffusivity due to the increase in viscosity, however, was not a major factor underlying this process. CONCLUSION This study re-affirms the validity and accuracy of modeling human tongue surface as a porous medium to investigate taste stimuli transport processes and such peripheral transport dynamics may have significant effects on taste perception.
Collapse
Affiliation(s)
- Zhenxing Wu
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University, Columbus, USA
| | - Kai Zhao
- Department of Otolaryngology-Head & Neck Surgery, The Ohio State University, Columbus, USA.
| |
Collapse
|
25
|
Kalveram L, Gohlisch J, Brauchmann J, Overberg J, Kühnen P, Wiegand S. Gustatory Function Can Improve after Multimodal Lifestyle Intervention: A Longitudinal Observational Study in Pediatric Patients with Obesity. Child Obes 2021; 17:136-143. [PMID: 33524304 DOI: 10.1089/chi.2020.0318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Obesity is a major health burden in children and adolescents. One influential factor is the choice of food, which is partly determined by gustatory perception. Cross-sectional studies have provided evidence that gustatory function is reduced in patients with obesity compared to individuals with normal weight. This longitudinal study was aimed at investigating potential effects of a multimodal lifestyle intervention program on gustatory function in pediatric patients with obesity. Methods: Gustatory perception of five different taste qualities (sweet, sour, salty, bitter, and umami) was assessed in n = 102 patients (age 6-18) with obesity (BMI >97th percentile). Testing was performed before (T0) and after (T1) a residential multimodal weight reduction program between June and December 2015 using well-established taste strips. Results: Overall, identification performance increased between T0 and T1. Patients were most successful at identifying the taste quality sweet at both time points and reached higher scores at identifying umami and bitter at T1 compared to T0. Moreover, patients rated the highest concentration of sweet significantly sweeter at T1 compared to T0. Conclusion: Gustatory function can improve after a multimodal lifestyle intervention program in pediatric patients with obesity. This may lead to a modified choice of food, possibly resulting in a long-term therapeutic success. Therefore, these findings underline the importance of professional nutritional counseling as part of treatment for obesity.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jacob Gohlisch
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Brauchmann
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johanna Overberg
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
26
|
Dunkel A, Hofmann T, Di Pizio A. In Silico Investigation of Bitter Hop-Derived Compounds and Their Cognate Bitter Taste Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10414-10423. [PMID: 32027492 DOI: 10.1021/acs.jafc.9b07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The typical bitter taste of beer is caused by adding hops (Humulus lupulus L.) during the wort boiling process. The bitter taste of hop-derived compounds was found to be mediated by three bitter taste receptors: TAS2R1, TAS2R14, and TAS2R40. In this work, structural bioinformatics analyses were used to characterize the binding modes of trans-isocohumulone, trans-isohumulone, trans-isoadhumulone, cis-isocohumulone, cis-isohumulone, cis-isoadhumulone, cohumulone, humulone, adhumulone, and 8-prenylnaringenin into the orthosteric binding site of their cognate receptors. A conserved asparagine in transmembrane 3 was found to be essential for the recognition of hop-derived compounds, whereas the surrounding residues in the binding site of the three receptors encode the ligand specificity. Hop-derived compounds are renowned bioactive molecules and are considered as potential hit molecules for drug discovery to treat metabolic diseases. A chemoinformatics analysis revealed that hop-derived compounds cluster in a different region of the chemical space compared to known bitter food-derived compounds, pinpointing hop-derived compounds as a very peculiar class of bitter compounds.
Collapse
Affiliation(s)
- Andreas Dunkel
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner Straße 34, D-85354 Freising, Germany
| |
Collapse
|
27
|
Abbott S, Zelesco M, Gibson D. Tongue sonography: An introduction. SONOGRAPHY 2020. [DOI: 10.1002/sono.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Steven Abbott
- Medical Imaging Department Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Marilyn Zelesco
- Medical Imaging Department Fiona Stanley Hospital Murdoch Western Australia Australia
| | - Daren Gibson
- Medical Imaging Department Fiona Stanley Hospital Murdoch Western Australia Australia
| |
Collapse
|
28
|
Rohde K, Schamarek I, Blüher M. Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets? Diabetes Metab J 2020; 44:509-528. [PMID: 32431111 PMCID: PMC7453985 DOI: 10.4093/dmj.2020.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Premature obesity-related mortality is caused by cardiovascular and pulmonary diseases, type 2 diabetes mellitus, physical disabilities, osteoarthritis, and certain types of cancer. Obesity is caused by a positive energy balance due to hyper-caloric nutrition, low physical activity, and energy expenditure. Overeating is partially driven by impaired homeostatic feedback of the peripheral energy status in obesity. However, food with its different qualities is a key driver for the reward driven hedonic feeding with tremendous consequences on calorie consumption. In addition to visual and olfactory cues, taste buds of the oral cavity process the earliest signals which affect the regulation of food intake, appetite and satiety. Therefore, taste buds may play a crucial role how food related signals are transmitted to the brain, particularly in priming the body for digestion during the cephalic phase. Indeed, obesity development is associated with a significant reduction in taste buds. Impaired taste bud sensitivity may play a causal role in the pathophysiology of obesity in children and adolescents. In addition, genetic variation in taste receptors has been linked to body weight regulation. This review discusses the importance of taste buds as contributing factors in the development of obesity and how obesity may affect the sense of taste, alterations in food preferences and eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Imke Schamarek
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Wu Z, Zhao K. Taste of time: A porous-medium model for human tongue surface with implications for early taste perception. PLoS Comput Biol 2020; 16:e1007888. [PMID: 32497080 PMCID: PMC7271999 DOI: 10.1371/journal.pcbi.1007888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Most sensory systems are remarkable in their temporal precision, reflected in such phrases as “a flash of light” or “a twig snap”. Yet taste is complicated by the transport processes of stimuli through the papilla matrix to reach taste receptors, processes that are poorly understood. We computationally modeled the surface of the human tongue as a microfiber porous medium and found that time-concentration profiles within the papilla zone rise with significant delay that well match experimental ratings of perceived taste intensity to a range of sweet and salty stimuli for both rapid pulses and longer sip-and-hold exposures. Diffusivity of these taste stimuli, determined mostly by molecular size, correlates greatly with time and slope to reach peak intensity: smaller molecular size may lead to quicker taste perception. Our study demonstrates the novelty of modeling the human tongue as a porous material to drastically simplify computational approaches and that peripheral transport processes may significantly affect the temporal profile of taste perception, at least to sweet and salty compounds. Taste perception is an important gateway for food selection, food intake, energy and nutrition balance–as world is facing epidemic of obesity and diabetes. Information conveyed via the taste system provide crucial behavior choices, e.g. in identifying edible and nutritious food source, driving hedonic evaluation and craving, as well as avoiding poisonous substances. Thus, the interest to understand early taste responses is important, not only for basic science, but also for clinical and public health applications.
Collapse
Affiliation(s)
- Zhenxing Wu
- Department of Otolaryngology - Head & Neck Surgery, the Ohio State University, Columbus, Ohio, United States of America
| | - Kai Zhao
- Department of Otolaryngology - Head & Neck Surgery, the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Tang Y, Illes P, Verkhratsky A. Glial-neuronal Sensory Organs: Evolutionary Journey from Caenorhabditis elegans to Mammals. Neurosci Bull 2020; 36:561-564. [PMID: 31960268 DOI: 10.1007/s12264-020-00464-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/08/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, 610075, China.
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China.
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
32
|
Di Pizio A, Ben Shoshan-Galeczki Y, Hayes JE, Niv MY. Bitter and sweet tasting molecules: It's complicated. Neurosci Lett 2018; 700:56-63. [PMID: 29679682 DOI: 10.1016/j.neulet.2018.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
"Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - John E Hayes
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park PA, USA
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
33
|
Bastiaan-Net S, van den Berg-Somhorst DB, Ariëns RM, Paques M, Mes JJ. A novel functional screening assay to monitor sweet taste receptor activation in vitro. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shanna Bastiaan-Net
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| | | | - Renata M.C. Ariëns
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| | | | - Jurriaan J. Mes
- Research Institute Wageningen Food & Biobased Research; Wageningen University and Research; Wageningen The Netherlands
| |
Collapse
|
34
|
Fekete T, Židek R, Maršálková L. Assessing expression of TAS2R16 receptor on the tongue of elderly persons. POTRAVINARSTVO 2015. [DOI: 10.5219/574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In conducted study, we assessed expression of TAS2R16 receptor gene on the tongue of elderly persons. The TAS2R16 receptor belongs to family of G-protein coupled bitter taste receptors and is expressed in type 2 taste cells, which are a part of taste buds. The taste buds are distributed across the tongue's surface on the specialised structures called papillae. The TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides such as salicin. The purpose of conducted study was to examine, whether the ageing process influence gene expression and hence the perception of taste at the molecular level. Ageing process is often related to either decreased or total lost perception of taste qualities. It is due to physiological changes in the oral cavity. The changes in taste cell membranes involve altered function of ion channels and receptors, which ultimately lead to decreased tasting ability of elderly people. In addition, various causes, such as oral and systemic diseases, drug administration, lifestyle (i.e. smoking) and some oral conditions (wearing dentures, dental caries and coated tongue), may extracerbate this issue. Loss of taste may become a large factor in reduction of appetite, which may lead to malnutrition. To accomplish the objective of this study, we recruited ten elderly persons. One 25-year old human was used as calibrator. We used non-invasive scrapping method for collecting taste cells from fungiform papillae of each subject. A multiplex TaqMan real-time PCR was performed to amplify cDNA of TAS2R16 and PGK1 genes, whereas the last one served as housekeeping gene. The TAS2R16 gene expression for elderly persons relative to that of young one was calculated according to the 2-ΔCT formula. Results pointed out to increased expression of TAS2R16 gene by 2-fold in 5th and 8th seniors. It is assumed that they perceive more intense bitterness from salicin at the molecular level than 25-year old person. The 2nd, 3rd, 7th and 10th elderly persons have had decreased expression level about 70%, whereas in case of 6th one that was even about 90%. It is supposed that these subjects, in particular last one, respond to salicin very weakly. This data may show evidence of almost total loss of taste. The causes and consequences are discussed in more detail.
Collapse
|
35
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
36
|
Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T. Nature's chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed Engl 2014; 53:7124-43. [PMID: 24939725 DOI: 10.1002/anie.201309508] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/02/2014] [Indexed: 02/03/2023]
Abstract
The biocatalytic production of flavor naturals that determine chemosensory percepts of foods and beverages is an ever challenging target for academic and industrial research. Advances in chemical trace analysis and post-genomic progress at the chemistry-biology interface revealed odor qualities of nature's chemosensory entities to be defined by odorant-induced olfactory receptor activity patterns. Beyond traditional views, this review and meta-analysis now shows characteristic ratios of only about 3 to 40 genuine key odorants for each food, from a group of about 230 out of circa 10 000 food volatiles. This suggests the foodborn stimulus space has co-evolved with, and roughly match our circa 400 olfactory receptors as best natural agonists. This perspective gives insight into nature's chemical signatures of smell, provides the chemical odor codes of more than 220 food samples, and beyond addresses industrial implications for producing recombinants that fully reconstruct the natural odor signatures for use in flavors and fragrances, fully immersive interactive virtual environments, or humanoid bioelectronic noses.
Collapse
Affiliation(s)
- Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitnerstrasse 34, 85354 Freising-Weihenstephan (Germany)
| | | | | | | | | | | | | |
Collapse
|
37
|
Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T. Genuine Geruchssignaturen der Natur – Perspektiven aus der Lebensmittelchemie für die Biotechnologie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Dunkel
- Lehrstuhl für Lebensmittelchemie und molekulare Sensorik, Technische Universität München, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Martin Steinhaus
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Matthias Kotthoff
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Bettina Nowak
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Peter Schieberle
- Deutsche Forschungsanstalt für Lebensmittelchemie – Leibniz Institut, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| | - Thomas Hofmann
- Lehrstuhl für Lebensmittelchemie und molekulare Sensorik, Technische Universität München, Lise‐Meitner‐Straße 34, 85354 Freising‐Weihenstephan (Deutschland)
| |
Collapse
|