1
|
Ganatra H, Tan JK, Simmons A, Bigogno CM, Khurana V, Ghose A, Ghosh A, Mahajan I, Boussios S, Maniam A, Ayodele O. Applying whole-genome and whole-exome sequencing in breast cancer: a review of the landscape. Breast Cancer 2024; 31:999-1009. [PMID: 39190283 PMCID: PMC11489287 DOI: 10.1007/s12282-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are crucial within the context of breast cancer (BC) research. They play a role in the detection of predisposed genes, risk stratification, and identification of rare single nucleotide polymorphisms (SNPs). These technologies aid in the discovery of associations between various syndromes and BC, understanding the tumour microenvironment (TME), and even identifying unknown mutations that could be useful in future for personalised treatments. Genetic analysis can find the associated risk of BC and can be used in early screening, diagnosis, specific treatment plans, and prevention in patients who are at high risk of tumour formation. This article focuses on the application of WES and WGS, and how uncovering novel candidate genes associated with BC can aid in treating and preventing BC.
Collapse
Affiliation(s)
- Hetvi Ganatra
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, UK
| | - Joecelyn Kirani Tan
- School of Medicine, University of St. Andrews, Fife, Scotland, UK
- Andrews Oncology Society, Scotland, UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), London, UK
| | - Vatsala Khurana
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK
| | - Adheesh Ghosh
- UCL Cancer Institute, University College London, London, UK
| | - Ishika Mahajan
- Department of Oncology, Lincoln Oncology Centre, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK.
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK.
- AELIA Organization, 9th Km Thessaloniki-hermi, 57001, Thessaloniki, Greece.
| | - Akash Maniam
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Caribbean Cancer Research Institute, Port of Spain, Trinidad and Tobago
| | - Olubukola Ayodele
- Department of Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Li X, Gu Q, Sun P, Yang L, Zhang X, Lu B, Ni Q. NSG2: a promising prognostic marker shaping the immune landscape of breast cancer. Front Immunol 2024; 15:1487447. [PMID: 39493764 PMCID: PMC11527618 DOI: 10.3389/fimmu.2024.1487447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Breast cancer (BC) remains a significant health issue globally and most common cause of mortality in women. Enhancing our understanding on biomarkers may greatly improve both diagnostic and therapeutic approaches to this disease. Methods We retrospectively assessed tumor samples from 228 BC cases and 51 normal samples, alongside relevant clinical data. Neuronal vesicle trafficking associated 2(NSG2) expression was evaluated through bioinformatics and multiplex immunohistochemistry. Associations between NSG2 expression, tumor-infiltrating immune cells (TIICs), immune checkpoints, and clinical outcomes were investigated. Results NSG2 was present in both breast cancer cells and adjacent stromal cells. Increased NSG2 expression in cancer cells correlated with greater tumor size, distant metastasis, and more advanced clinical stages. Kaplan-Meier survival and multivariate analyses identified NSG2 expression in both cancer and stromal cells as an independent prognostic factor for breast cancer survival. Elevated NSG2 levels both in cancer and stroma cells were linked to increased CD4+ T, CD8+ T, and Lamp3+ dendritic cells infiltration in stromal regions (P < 0.05). Conversely, the expression of NSG2 in the stroma was negatively correlated with CD20+ B cells (P < 0.05). Additionally, NSG2 expression was found to be associated with CTLA-4 levels (P < 0.05). Conclusion NSG2 seems to be a significant component of the BC immune microenvironment and may serve as an important prognostic marker.
Collapse
Affiliation(s)
- Xuan Li
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Qiming Gu
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaojing Zhang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Bakar-Ates F, Ozkan E. Synergistic ferroptosis in triple-negative breast cancer cells: Paclitaxel in combination with Erastin induced oxidative stress and Ferroportin-1 modulation in MDA-MB-231 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03523-8. [PMID: 39392483 DOI: 10.1007/s00210-024-03523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ferroptosis is an important regulated cell death mechanism characterized by iron-dependent lipid peroxidation and oxidative stress. In this study, we examined the ferroptosis-inducing effect of the combined use of Paclitaxel, a microtubule-stabilizing agent, and Erastin, a ferroptosis inducer, in breast cancer cells. In this context, the combination of the compounds in question was applied to the cells and the presence of a synergistic effect was determined by calculating the combination index. Glutathione (GSH) levels and glutathione peroxidase (GPX) activity were determined by commercial assay kits, and the effect of the compounds on lipid peroxidation was determined by measurement of malondialdehyde (MDA) levels. Additionally, the effect of combination treatment on ferroptotic protein expression was determined by western blot. Our findings revealed that the combination treatment caused a significant change in mitochondrial function by causing an increase in the depolarized/viable cell population. Additionally, there was a significant increase in intracellular reactive oxygen species (ROS) levels compared to single applications of the compounds. The significant increase observed in malondialdehyde (MDA) levels revealed that the combination treatment increased lipid peroxidation. Moreover, intracellular GSH levels and glutathione peroxidase (GPX) activity significantly decreased by Paclitaxel-Erastin combination. The expression of ferroptosis-regulating proteins was significantly downregulated. The findings showed that the Paclitaxel-Erastin combination synergistically contributed to the accumulation of lipid reactive oxygen species and induced the ferroptotic cell death pathway in breast cancer cells.
Collapse
Affiliation(s)
- Filiz Bakar-Ates
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Anadolu, Ankara, 06560, Turkey.
| | - Erva Ozkan
- Faculty of Pharmacy, Department of Biochemistry, Ankara Medipol University, Altindag, Ankara, 06050, Turkey
| |
Collapse
|
4
|
Hong L, Tanaka M, Yasui M, Hara-Chikuma M. HSP90 promotes tumor associated macrophage differentiation during triple-negative breast cancer progression. Sci Rep 2024; 14:22541. [PMID: 39341960 PMCID: PMC11438890 DOI: 10.1038/s41598-024-73394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Tumor-associated macrophages (TAMs) originating from monocytes are crucial for cancer progression; however, the mechanism of TAM differentiation is unclear. We investigated factors involved in the differentiation of monocytes into TAMs within the tumor microenvironment of triple-negative breast cancer (TNBC). We screened 172 compounds and found that a heat shock protein 90 (HSP90) inhibitor blocked TNBC-induced monocyte-to-TAM differentiation in human monocytes THP-1. TNBC-derived conditional medium (CM) activated cell signaling pathways, including MAP kinase, AKT and STAT3, and increased the expression of TAM-related genes and proteins. These inductions were suppressed by HSP90 inhibition or by knockdown of HSP90 in TNBC. Additionally, we confirmed that TNBC secreted HSP90 extracellularly and that HSP90 itself promoted TAM differentiation. In a mouse tumor model, treatment with an HSP90 inhibitor suppressed tumor growth and reduced TAMs in the tumor microenvironment. Our findings demonstrate the role of HSP90 in TAM differentiation, suggesting HSP90 as a potential target for TNBC immunotherapy due to its regulatory role in monocyte-to-TAM differentiation.
Collapse
Affiliation(s)
- Lingjia Hong
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Ayoub NM, Sardiah S, Al-Share QY, Alkader MS. Exploring angiogenic pathways in breast cancer: Clinicopathologic correlations and prognostic implications based on gene expression profiles from a large-scale genomic dataset. PLoS One 2024; 19:e0310557. [PMID: 39302921 DOI: 10.1371/journal.pone.0310557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Angiogenesis inhibitors targeting VEGF, or its receptors have consistently produced disappointing clinical outcomes in breast cancer. Therefore, there is an urgent need to explore alternative angiogenic pathways in breast cancer. This study aimed to describe the gene expression of pivotal pro-angiogenic genes in breast cancer and to further analyze the associations with the clinicopathologic tumor features, prognostic factors, and overall survival. Such findings would expand the understanding of the role of different angiogenic pathways in breast cancer pathogenesis and identify patients at risk of more aggressive disease who could be eligible for intense treatment regimens. Additionally, exploring angiogenic pathways helps identify new potential drug targets for breast cancer. METHODS The mRNA expression levels for eight pro-angiogenic genes [VEGFA, HGF, FGF1, FGF2, ANGPT1, ANGPT2, PDGFA, and PDGFB] were obtained from the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset available at cBioPortal public domain. Pertinent demographic and tumor information were retrieved. RESULTS VEGFA and ANGPT2 genes had the highest expression levels with average mRNA log intensities of 7.18±0.7 and 7.11±0.53, respectively. VEGFA expression was not correlated with the expression of other pro-angiogenic genes, the clinicopathologic tumor features, and the overall survival of patients. FGF1, ANGPT1, and PDGFA mRNA levels were negatively correlated with the age of patients at diagnosis. The expression of FGF1 and FGF2 correlated inversely with tumor size and the Nottingham Prognostic Index (p = 0.03 and p = 0.002, respectively). Expression of HGF was significantly associated with advanced tumor stage (p<0.05). Expression of ANGPT1 and ANGPT2 was associated with hormone receptor-negative status and the non-luminal subtypes. PDGFB expression was significantly higher in patients with high-grade disease and HER2-positive status. Patients with high expression status of ANGPT2 and PDGFB had significantly reduced overall survival compared to those with low expression levels of these genes (p = 0.004 and p = 0.0001, respectively). CONCLUSIONS In this dataset of patients with breast cancer, the expression levels of 8 different pro-angiogenic genes revealed remarkable differences in terms of their association with clinicopathologic tumor characteristics and prognosis. The expression of ANGPTs and PDGFs was associated with adverse tumor features, worse prognosis, and reduced survival in patients. Targeting ANGPTs and PDGF pathways could provide new insights for effective anti-angiogenic drugs in breast cancer.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Salam Sardiah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qusai Y Al-Share
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad S Alkader
- Department of Medical Oncology, Military Cancer Center, Jordanian Royal Medical Services, Amman, Jordan
| |
Collapse
|
6
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
7
|
Winkler J, Tan W, Diadhiou CM, McGinnis CS, Abbasi A, Hasnain S, Durney S, Atamaniuc E, Superville D, Awni L, Lee JV, Hinrichs JH, Wagner PS, Singh N, Hein MY, Borja M, Detweiler AM, Liu SY, Nanjaraj A, Sitarama V, Rugo HS, Neff N, Gartner ZJ, Oliveira Pisco A, Goga A, Darmanis S, Werb Z. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest 2024; 134:e164227. [PMID: 39225101 PMCID: PMC11364385 DOI: 10.1172/jci164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy and
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Weilun Tan
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Sophia Durney
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Elena Atamaniuc
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Joyce V. Lee
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Johanna H. Hinrichs
- Department of Anatomy and
- Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | - Patrick S. Wagner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Namrata Singh
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Y. Hein
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Michael Borja
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, California, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Genentech, South San Francisco, California, USA
| | | |
Collapse
|
8
|
Pedroza DA, Gao Y, Zhang XHF, Rosen JM. Leveraging preclinical models of metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189163. [PMID: 39084494 PMCID: PMC11390310 DOI: 10.1016/j.bbcan.2024.189163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Women that present to the clinic with established breast cancer metastases have limited treatment options. Yet, the majority of preclinical studies are actually not directed at developing treatment regimens for established metastatic disease. In this review we will discuss the current state of preclinical macro-metastatic breast cancer models, including, but not limited to syngeneic GEMM, PDX and xenografts. Challenges within these models which are often overlooked include fluorophore-immunogenic neoantigens, differences in experimental vs spontaneous metastasis and tumor heterogeneity. Furthermore, due to cell plasticity in the tumor immune microenvironment (TIME) of the metastatic landscape, the treatment efficacy of newly approved immune checkpoint blockade (ICB) may differ in metastatic sites as compared to primary localized tumors.
Collapse
Affiliation(s)
- Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
9
|
Thodi G, Triantopoulou A, Iliou A, Molou E, Dotsikas Y, Loukas YL. A simplified metabolomic analysis of dried blood spots in breast cancer patients. Scand J Clin Lab Invest 2024; 84:326-335. [PMID: 39225029 DOI: 10.1080/00365513.2024.2392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer (BC) is among the most commonly diagnosed cancers. Besides mammography, breast ultrasonography and the routinely monitored protein markers, the variations of small molecular metabolites in blood may be of great diagnostic value. This study aimed to quantify specific metabolite markers with potential application in BC detection. The study enrolled 50 participants, 25 BC patients and 25 healthy controls (CTRL). Dried blood spots (DBS) were utilized as biological media and were quantified via a simplified liquid chromatography tandem mass spectrometry (LC-MS/MS) method, used in expanded newborn screening. The targeted metabolomic analysis included 12 amino acids and 32 acylcarnitines. Statistical analysis revealed a significant variation of metabolic profiles between BC patients and CTRL. Among the 44 metabolites, 18 acylcarnitines and 10 amino acids remained significant after Bonferroni correction, showing increase or decrease and enabled classification of BC patients and CTRL. The well-established LC-MS/MS protocol could provide results within few minutes. Therefore, the combination of an easy-to-handle material-DBS and LC-MS/MS protocol could facilitate BC screening/diagnosis and in the next step applied to other cancer patients, as well.
Collapse
Affiliation(s)
| | - Aikaterini Triantopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Iliou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Elina Molou
- Neoscreen Diagnostic Laboratory, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Batra H, Bose PSC, Ding Y, Dai A, Chen H, Albarracin CT, Sun H, Sahin AA, Yang F, Wistuba II, Raso MG. MYB expression by immunohistochemistry is highly specific and sensitive for detection of solid variant of adenoid cystic carcinoma of the breast among all triple-negative breast cancers. Histopathology 2024; 85:503-509. [PMID: 38973399 DOI: 10.1111/his.15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Adenoid cystic carcinoma is a rare subtype of triple-negative breast carcinoma. These low-grade tumours, which are treated by simple mastectomy and have an excellent prognosis compared to other triple-negative breast carcinomas. Solid-variant adenoid cystic carcinomas have basaloid features and are difficult to distinguish morphologically from other triple-negative breast cancers. Breast adenoid cystic carcinoma exhibits MYB protein overexpression, which can be detected by immunohistochemistry (IHC). AIM We compared the IHC expression of MYB in solid-variant adenoid cystic carcinoma with that in other triple-negative breast cancers. METHODS We conducted IHC staining of 210 samples of triple-negative breast cancers, including solid-variant adenoid cystic carcinoma (n = 17), metaplastic breast carcinoma (n = 44), basaloid triple-negative breast cancer (n = 21), and other triple-negative invasive ductal carcinoma (n = 128). We classified nuclear staining of MYB as diffuse/strong (3+), focal moderate (2+), focal weak (1+), or none (0). RESULTS All 17 solid/basaloid adenoid cystic carcinoma cases exhibited 3+ MYB expression. Of the 21 solid/basaloid triple-negative breast cancers, one (5%) had 2+ expression, seven (33%) 1+ expression, and 13 (62%) 0 expression. Of the 44 metaplastic carcinoma cases, 39 cases (89%) had no (0) staining, and the other five cases had focal weak (1+) or moderate (2+) staining. Among the 128 triple-negative invasive ductal carcinoma cases, 92 cases (72%) had no (0) staining, 36 cases (28%) exhibited focal weak (1+) or moderate (2+) staining. CONCLUSIONS Our study revealed diffuse/strong MYB staining (3+) only in solid/basaloid adenoid cystic carcinomas. Thus, we recommend routine MYB IHC staining in triple-negative breast carcinoma with solid/basaloid morphology to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya S C Bose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alan Dai
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Constance T Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongxia Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
12
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
13
|
Alwahsh M, Hamadneh Y, Marchan R, Dahabiyeh LA, Alhusban AA, Hasan A, Alrawabdeh J, Hergenröder R, Hamadneh L. Glutathione and Xanthine Metabolic Changes in Tamoxifen Resistant Breast Cancer Cell Lines are Mediated by Down-Regulation of GSS and XDH and Correlated to Poor Prognosis. J Cancer 2024; 15:4047-4058. [PMID: 38947399 PMCID: PMC11212086 DOI: 10.7150/jca.96659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Tamoxifen is commonly used in the treatment of hormonal-positive breast cancer. However, 30%-40% of tumors treated with tamoxifen develop resistance; therefore, an important step to overcome this resistance is to understand the underlying molecular and metabolic mechanisms. In the present work, we used metabolic profiling to determine potential biomarkers of tamoxifen resistance, and gene expression levels of enzymes important to these metabolites and then correlated the expression to the survival of patients receiving tamoxifen. Methods: Tamoxifen-resistant cell lines previously developed and characterized in our laboratory were metabolically profiled with nuclear magnetic resonance spectroscopy (NMR) using cryogenic probe, and the findings were correlated with the expression of genes that encode the key enzymes of the significant metabolites. Moreover, the effect of significantly altered genes on the overall survival of patients was assessed using the Kaplan-Meier plotter web tool. Results: We observed a significant increase in the levels of glutamine, taurine, glutathione, and xanthine, and a significant decrease in the branched-chain amino acids, valine, and isoleucine, as well as glutamate and cysteine in the tamoxifen-resistant cells compared to tamoxifen sensitive cells. Moreover, xanthine dehydrogenase and glutathione synthase gene expression were downregulated, whereas glucose-6-phosphate dehydrogenase was upregulated compared to control. Additionally, increased expression of xanthine dehydrogenase was associated with a better outcome for breast cancer patients. Conclusion: Overall, this study sheds light on metabolic pathways that are dysregulated in tamoxifen-resistant cell lines and the potential role of each of these pathways in the development of resistance.
Collapse
Affiliation(s)
- Mohammad Alwahsh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | - Yazan Hamadneh
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, 11942 Amman, Jordan
| | - Ala A Alhusban
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | - Aya Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman-17138, Jordan
| | | | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| |
Collapse
|
14
|
Kim SM, Park N, Park HB, Lee J, Chun C, Kim KH, Choi JS, Kim HJ, Choi S, Lee JH. Exploring novel immunotherapy biomarker candidates induced by cancer deformation. PLoS One 2024; 19:e0303433. [PMID: 38743676 PMCID: PMC11093347 DOI: 10.1371/journal.pone.0303433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) demands urgent attention for the development of effective treatment strategies due to its aggressiveness and limited therapeutic options [1]. This research is primarily focused on identifying new biomarkers vital for immunotherapy, with the aim of developing tailored treatments specifically for TNBC, such as those targeting the PD-1/PD-L1 pathway. To achieve this, the study places a strong emphasis on investigating Ig genes, a characteristic of immune checkpoint inhibitors, particularly genes expressing Ig-like domains with altered expression levels induced by "cancer deformation," a condition associated with cancer malignancy. Human cells can express approximately 800 Ig family genes, yet only a few Ig genes, including PD-1 and PD-L1, have been developed into immunotherapy drugs thus far. Therefore, we investigated the Ig genes that were either upregulated or downregulated by the artificial metastatic environment in TNBC cell line. As a result, we confirmed the upregulation of approximately 13 Ig genes and validated them using qPCR. In summary, our study proposes an approach for identifying new biomarkers applicable to future immunotherapies aimed at addressing challenging cases of TNBC where conventional treatments fall short.
Collapse
Affiliation(s)
- Se Min Kim
- Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Sinchon, Seoul, Korea
| | - Namu Park
- Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Hye Bin Park
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumidaero, Gumi, Gyeongbuk, South Korea
| | - JuKyung Lee
- Digital Health Care Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumidaero, Gumi, Gyeongbuk, South Korea
| | - Changho Chun
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kyung Hoon Kim
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Jong Seob Choi
- Division of Advanced Materials Engineering, Kongju National University, Chungnam, South Korea
| | - Hyung Jin Kim
- School of Electrical & Electronic Engineerin, Ulsan College, Ulsan, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jung Hyun Lee
- Department of Dermatology, School of Medicine, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Gupta S, Prem R, Sethy C, Shrivastava S, Singh M, Yadav P, Huddar VG, Prajapati PK, Roy A, Sundd M, Patel AK. Exploring Anticancer Properties of Medicinal Plants against Breast Cancer by Downregulating Human Epidermal Growth Factor Receptor 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9717-9734. [PMID: 38624258 DOI: 10.1021/acs.jafc.3c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Sunny Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashima Prem
- National Institute of Immunology, New Delhi 110067, India
| | - Chinmayee Sethy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Saurabh Shrivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manju Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Pramod Yadav
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - V G Huddar
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - P K Prajapati
- All India Institute of Ayurveda Delhi, New Delhi 110076, India
| | - Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Monica Sundd
- National Institute of Immunology, New Delhi 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
16
|
Ben Haj Othmen H, Othman H, Khamessi O, Bettaieb I, Gara S, Kharrat M. Overexpression of WT1 in all molecular subtypes of breast cancer and its impact on survival: exploring oncogenic and tumor suppressor roles of distinct WT1 isoforms. Mol Biol Rep 2024; 51:544. [PMID: 38642153 DOI: 10.1007/s11033-024-09450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Breast cancer is a highly heterogeneous solid tumor, posing challenges in developing targeted therapies effective for all mammary carcinoma subtypes. WT1 emerges as a promising target for breast cancer therapy due to its potential oncogenic role in various cancer types. Previous works have yielded inconsistent results. Therefore, further studies are needed to clarify the behavior of this complex gene in breast cancer. METHODS AND RESULTS In this study, we examined WT1 expression in both Formalin Fixed Paraffin Embedded breast tumors (n = 41) and healthy adjacent tissues (n = 41) samples from newly diagnosed cases of ductal invasive breast cancer. The fold change in gene expression between the tumor and healthy tissue was determined by calculating 2-∆∆Ct. Disease-free survival analysis was computed using the Kaplan-Meier method. To identify the expression levels of different WT1 isoforms, we explored the ISOexpresso database. Relative quantification of the WT1 gene revealed an overexpression of WT1 in most cases. The percentage of patients surviving free of disease at 8 years of follow-up was lower in the group overexpressing WT1 compared to the group with down-regulated WT1. CONCLUSIONS Interestingly, this overexpression was observed in all molecular subtypes of invasive breast cancer, underscoring the significance of WT1 as a potential target in all these subtypes. The observed WT1 down-expression in a few cases of invasive breast cancer, associated with better survival outcomes, may correspond to the down-regulation of a particular WT1-KTS (-) isoform: the WT1 A isoform (EX5-/KTS-). The co-expression of this WT1 oncogenic isoform with a regulated WT1- tumor suppressor isoform, such as the major WT1 F isoform (EX5-/KTS +), could also explain such survival outcomes. Due to its capacity to adopt dual roles, it becomes imperative to conduct individual molecular expression profiling of the WT1 gene. Such an approach holds great promise in the development of personalized treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hind Ben Haj Othmen
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia.
| | - Houcemeddine Othman
- Laboratory of Cytogenetics, Molecular Genetics and Biology of Human Reproduction, University Hospital Farhat Hached, Sousse, Tunisia
| | - Oussema Khamessi
- Biotechnology Institut of Sidi Thabet, University of Manouba, Ariana BP-66, 2010, Manouba, Tunisia
| | - Ilhem Bettaieb
- Laboratory of Immunohistocytology, Salah Azaiez Cancer Institute, 1006, Tunis, Tunisia
| | - Sonia Gara
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia
- Laboratory of Clinical Biochemistry, Salah Azaiez Cancer Institute, 1006, Tunis, Tunisia
| | - Maher Kharrat
- Human Genetics Laboratory LR99ES10, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007, Tunis, Tunisia
| |
Collapse
|
17
|
Kostadinov K, Popova-Sotirova I, Marinova Y, Musurlieva N, Iskrov G, Stefanov R. Availability and Access to Orphan Drugs for Rare Cancers in Bulgaria: Analysis of Delays and Public Expenditures. Cancers (Basel) 2024; 16:1489. [PMID: 38672571 PMCID: PMC11048562 DOI: 10.3390/cancers16081489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Rare cancers are defined by an annual incidence of fewer than 6 per 100,000. Bearing similarities to rare diseases, they are associated with substantial health inequalities due to diagnostic complexity and delayed access to innovative therapies. This situation is further aggravated in Southeastern European countries like Bulgaria, where limited public resources and expertise underscore the need for additional policy and translational research on rare cancers. This study aimed to explore the availability and access to orphan drugs for rare cancers in Bulgaria for the period of 2020-2023. We cross-compared data from both the European Union and national public sources to evaluate the number of available and accessible orphan drugs for rare cancers, the delay from market authorization to reimbursement, the dynamics of public expenditures, and regional disparities in access across the country. We juxtaposed the main characteristics of oncological and non-oncological orphan drugs as well. Only 15 out of 50 oncological orphan drugs that were authorized by the European Medicine Agency were accessible for rare cancer patients in Bulgaria. The median delay between market authorization and inclusion in the Bulgarian Positive Drug List was 760 days. The total expenditures for all orphan drugs for rare cancers amounted to EUR 74,353,493 from 2020 to 2023. The budgetary impact of this group rose from 0.24% to 3.77% of total public medicinal product expenditures for the study period. Rare cancer patients represent a vulnerable population that often faces limited to no access to treatment. We call for targeted European and national policies to address this major inequality.
Collapse
Affiliation(s)
- Kostadin Kostadinov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
| | - Ivelina Popova-Sotirova
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
| | - Yuliyana Marinova
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
| | - Nina Musurlieva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
| | - Georgi Iskrov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
- Institute for Rare Diseases, 4023 Plovdiv, Bulgaria
| | - Rumen Stefanov
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.-S.); (Y.M.); (N.M.); (G.I.); (R.S.)
- Institute for Rare Diseases, 4023 Plovdiv, Bulgaria
| |
Collapse
|
18
|
Bahrin NWS, Matusin SNI, Mustapa A, Huat LZ, Perera S, Hamid MRWHA. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: a systematic review and meta-analysis. Syst Rev 2024; 13:100. [PMID: 38576013 PMCID: PMC10993489 DOI: 10.1186/s13643-024-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021246295.
Collapse
Affiliation(s)
- Nurul Wafiqah Saipol Bahrin
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Siti Nur Idayu Matusin
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Aklimah Mustapa
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Lu Zen Huat
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Sriyani Perera
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mas Rina Wati Haji Abdul Hamid
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| |
Collapse
|
19
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
20
|
Zhao C, Li X, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Sense and anti-sense: Role of FAM83A and FAM83A-AS1 in Wnt, EGFR, PI3K, EMT pathways and tumor progression. Biomed Pharmacother 2024; 173:116372. [PMID: 38432129 DOI: 10.1016/j.biopha.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/β-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process. Among these noncoding RNAs, the most noteworthy is the antisense long noncoding (Lnc) RNA of FAM83A itself (FAM83A-AS1), indicating an outstanding synergistic carcinogenic effect between FAM83A and FAM83A-AS1. In the present study, the specific mechanisms by which FAM83A and FAM83A-AS1 cofunction in the Wnt/β-catenin and EGFR signaling pathways were reviewed in detail, which will guide subsequent research. We also described the applications of FAM83A and FAM83A-AS1 in tumor therapy and provided a certain theoretical basis for subsequent drug target development and combination therapy strategies.
Collapse
Affiliation(s)
- Chenshu Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xiaowen Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
21
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
22
|
Tabnak P, HajiEsmailPoor Z, Baradaran B, Pashazadeh F, Aghebati Maleki L. MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:763-787. [PMID: 37925343 DOI: 10.1016/j.acra.2023.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy of MRI-based radiomics for predicting Ki-67 expression in breast cancer. MATERIALS AND METHODS A systematic literature search was performed to find relevant studies published in different databases, including PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the systematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67 antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta-regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis. RESULTS 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for predicting Ki-67 expression in training cohorts were 0.80 [95% CI, 0.73-0.86], 0.82 [95% CI, 0.78-0.86], and 0.88 [95%CI, 0.85-0.91], respectively. The corresponding values for validation cohorts were 0.81 [95% CI, 0.72-0.87], 0.73 [95% CI, 0.62-0.82], and 0.84 [95%CI, 0.80-0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains. However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts (I2 > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms of specificity and sensitivity. No publication bias was found based on Deeks' funnel plot. Sensitivity analysis showed that eliminating every study one by one does not impact overall results. CONCLUSION This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict Ki-67 expression accurately.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Zanyar HajiEsmailPoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (F.P.)
| | - Leili Aghebati Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.).
| |
Collapse
|
23
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
24
|
Scheffges C, Devy J, Giustiniani J, Francois S, Cartier L, Merrouche Y, Foussat A, Potteaux S, Bensussan A, Marie-Cardine A. Identification of CD160-TM as a tumor target on triple negative breast cancers: possible therapeutic applications. Breast Cancer Res 2024; 26:28. [PMID: 38360636 PMCID: PMC10870674 DOI: 10.1186/s13058-024-01785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Despite major therapeutic advances, triple-negative breast cancer (TNBC) still presents a worth prognosis than hormone receptors-positive breast cancers. One major issue relies in the molecular and mutational heterogeneity of TNBC subtypes that is reinforced by the absence of reliable tumor-antigen that could serve as a specific target to further promote efficient tumor cell recognition and depletion. CD160 is a receptor mainly expressed by NK lymphocytes and presenting two isoforms, namely the GPI-anchored form (CD160-GPI) and the transmembrane isoform (CD160-TM). While CD160-GPI is constitutively expressed on resting cells and involved in the generation of NK cells' cytotoxic activity, CD160-TM is neo-synthesized upon activation and promotes the amplification of NK cells' killing ability. METHODS CD160 expression was assessed by immunohistochemistry (IHC) and flow cytometry on TNBC patient biopsies or cell lines, respectively. Antibody (Ab)-mediated tumor depletion was tested in vitro by performing antibody-dependent cell cytotoxicity (ADCC) and phagocytosis (ADCP) assays, and in vivo on a TNBC mouse model. RESULTS Preliminary data obtained by IHC on TNBC patients' tumor biopsies revealed an unconventional expression of CD160 by TNBC tumor cells. By using a specific but conformation-dependent anti-CD160-TM Ab, we established that CD160-TM, but not CD160-GPI, was expressed by TNBC tumor cells. A conformation-independent anti-CD160-TM mAb (22B12; muIgG2a isotype) was generated and selected according to pre-defined specificity and functional criterions. In vitro functional assays demonstrated that ADCC and ADCP could be induced in the presence of 22B12, resulting in TNBC cell line apoptosis. The ability of 22B12 to exert an in vivo anti-tumor activity was also demonstrated on a TNBC murine model. CONCLUSIONS Our data identify CD160-TM as a tumor marker for TNBC and provide a rational for the use of anti-CD160-TM antibodies as therapeutic tools in this tumor context.
Collapse
Affiliation(s)
- Claire Scheffges
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
- Alderaan Biotechnology, 75005, Paris, France
| | - Jérôme Devy
- UMR CNRS/URCA 7369, MEDyC, Université de Reims-Champagne-Ardennes, 51100, Reims, France
| | | | | | - Lucille Cartier
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Yacine Merrouche
- Département de Recherche, Institut Godinot, 51100, Reims, France
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | | | - Stéphane Potteaux
- UR7509, IRMAIC, Université de Reims-Champagne-Ardennes, 51097, Reims, France
| | - Armand Bensussan
- INSERM U976, HIPI, Team 1, 75010, Paris, France
- Université Paris Cité, IRSL, 75010, Paris, France
| | - Anne Marie-Cardine
- INSERM U976, HIPI, Team 1, 75010, Paris, France.
- Université Paris Cité, IRSL, 75010, Paris, France.
| |
Collapse
|
25
|
Said SS, Ibrahim WN. Breaking Barriers: The Promise and Challenges of Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer. Biomedicines 2024; 12:369. [PMID: 38397971 PMCID: PMC10886684 DOI: 10.3390/biomedicines12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with pronounced immunogenicity, exhibiting rapid proliferation and immune cell infiltration into the tumor microenvironment. TNBC's heterogeneity poses challenges to immunological treatments, inducing resistance mechanisms in the tumor microenvironment. Therapeutic modalities, including immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4, are explored in preclinical and clinical trials. Promising results emerge from combining ICIs with anti-TGF-β and VISTA, hindering TNBC tumor growth. TNBC cells employ complex evasion strategies involving interactions with stromal and immune cells, suppressing immune recognition through various cytokines, chemokines, and metabolites. The recent focus on unraveling humoral and cellular components aims to disrupt cancer crosstalk within the tumor microenvironment. This review identifies TNBC's latest resistance mechanisms, exploring potential targets for clinical trials to overcome immune checkpoint resistance and enhance patient survival rates.
Collapse
Affiliation(s)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
26
|
Urban L, Novák Š, Čoma M, Dvořánková B, Lacina L, Šáchová J, Hradilová M, Svatoňová P, Kolář M, Strnad H, Březinová J, Smetana K, Gál P, Szabo P. Unravelling heterogeneous effects of cancer‑associated fibroblasts on poor prognosis markers in breast cancer EM‑G3 cell line: In vitro‑targeted treatment (anti‑IL-6, anti‑VEGF-A, anti‑MFGE8) based on transcriptomic profiling. Oncol Rep 2024; 51:3. [PMID: 37975220 PMCID: PMC10688412 DOI: 10.3892/or.2023.8662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. Although dramatically increased survival rates of early diagnosed cases have been observed, late diagnosed patients and metastatic cancer may still be considered fatal. The present study's main focus was on cancer‑associated fibroblasts (CAFs) which is an active component of the tumor microenvironment (TME) regulating the breast cancer ecosystem. Transcriptomic profiling and analysis of CAFs isolated from breast cancer skin metastasis, cutaneous basal cell carcinoma, and squamous cell carcinoma unravelled major gene candidates such as IL6, VEGFA and MFGE8 that induced co‑expression of keratins‑8/‑14 in the EM‑G3 cell line derived from infiltrating ductal breast carcinoma. Western blot analysis of selected keratins (keratin‑8, ‑14, ‑18, ‑19) and epithelial‑mesenchymal transition‑associated markers (SLUG, SNAIL, ZEB1, E‑/N‑cadherin, vimentin) revealed specific responses pointing to certain heterogeneity of the studied CAF populations. Experimental in vitro treatment using neutralizing antibodies against IL-6, VEGF‑A and MFGE8 attenuated the modulatory effect of CAFs on EM‑G3 cells. The present study provided novel data in characterizing and understanding the interactions between CAFs and EM‑G3 cells in vitro. CAFs of different origins support the pro‑inflammatory microenvironment and influence the biology of breast cancer cells. This observation potentially holds significant interest for the development of novel, clinically relevant approaches targeting the TME in breast cancer. Furthermore, its implications extend beyond breast cancer and have the potential to impact a wide range of other cancer types.
Collapse
Affiliation(s)
- Lukáš Urban
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovak Republic
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovak Republic
| | - Štepán Novák
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovak Republic
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovak Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- BIOCEV, Charles University, First Faculty of Medicine and Faculty of Sciences, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- BIOCEV, Charles University, First Faculty of Medicine and Faculty of Sciences, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, General University Hospital in Prague and First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Svatoňová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jana Březinová
- Cytogenetic Laboratory, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- BIOCEV, Charles University, First Faculty of Medicine and Faculty of Sciences, 252 50 Vestec, Czech Republic
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11 Košice, Slovak Republic
- Department for Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc., 040 11 Košice, Slovak Republic
- Department of Pharmacognosy, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
- Prague Burn Center, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
- Insitute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, 040 01 Košice, Slovak Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- BIOCEV, Charles University, First Faculty of Medicine and Faculty of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|
27
|
Ray SK, Jayashankar E, Kotnis A, Mukherjee S. Oxidative versus Reductive Stress in Breast Cancer Development and Cellular Mechanism of Alleviation: A Current Perspective with Anti-breast Cancer Drug Resistance. Curr Mol Med 2024; 24:205-216. [PMID: 36892117 DOI: 10.2174/1566524023666230309112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Redox homeostasis is essential for keeping our bodies healthy, but it also helps breast cancer cells grow, stay alive, and resist treatment. Changes in the redox balance and problems with redox signaling can make breast cancer cells grow and spread and make them resistant to chemotherapy and radiation therapy. Reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and the oxidant defense system are out of equilibrium, which causes oxidative stress. Many studies have shown that oxidative stress can affect the start and spread of cancer by interfering with redox (reduction-oxidation) signaling and damaging molecules. The oxidation of invariant cysteine residues in FNIP1 is reversed by reductive stress, which is brought on by protracted antioxidant signaling or mitochondrial inactivity. This permits CUL2FEM1B to recognize its intended target. After the proteasome breaks down FNIP1, mitochondrial function is restored to keep redox balance and cell integrity. Reductive stress is caused by unchecked amplification of antioxidant signaling, and changes in metabolic pathways are a big part of breast tumors' growth. Also, redox reactions make pathways like PI3K, PKC, and protein kinases of the MAPK cascade work better. Kinases and phosphatases control the phosphorylation status of transcription factors like APE1/Ref-1, HIF-1, AP-1, Nrf2, NF-B, p53, FOXO, STAT, and - catenin. Also, how well anti-breast cancer drugs, especially those that cause cytotoxicity by making ROS, treat patients depends on how well the elements that support a cell's redox environment work together. Even though chemotherapy aims to kill cancer cells, which it does by making ROS, this can lead to drug resistance in the long run. The development of novel therapeutic approaches for treating breast cancer will be facilitated by a better understanding of the reductive stress and metabolic pathways in tumor microenvironments.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Erukkambattu Jayashankar
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
28
|
Simsek T, Bal Albayrak MG, Akpinar G, Canturk NZ, Kasap M. Downregulated GPD1 and MAGL protein levels as potential biomarkers for the metastasis of triple‑negative breast tumors to axillary lymph nodes. Oncol Lett 2024; 27:34. [PMID: 38108074 PMCID: PMC10722549 DOI: 10.3892/ol.2023.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
Glycerol-3-phosphate dehydrogenase (GPD1) and monoacylglycerol lipase (MAGL) levels are known to be significantly downregulated in both the tissue and serum samples of patients with triple-negative breast cancer (TNBC), compared with other BC subtypes and healthy controls. As such, the association between GPD1 and MAGL levels and lymph node metastasis was evaluated in the present study. Utilizing western blotting, lymph node protein extracts from metastasized BC subtypes were analyzed and a significant downregulation of GPD1 and MAGL protein expression levels in the lymph node metastases was demonstrated in the TNBC subtype, compared with healthy controls. This finding further highlighted the potential use of these two proteins in early BC onset and metastasis detection.
Collapse
Affiliation(s)
- Turgay Simsek
- Department of General Surgery, Kocaeli University Medical School, 41001 Kocaeli, Turkey
| | | | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Medical School, 41001 Kocaeli, Turkey
| | - Nuh Zafer Canturk
- Department of General Surgery, Kocaeli University Medical School, 41001 Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University Medical School, 41001 Kocaeli, Turkey
| |
Collapse
|
29
|
Pascual‐Reguant L, Serra‐Camprubí Q, Datta D, Cianferoni D, Kourtis S, Gañez‐Zapater A, Cannatá C, Espinar L, Querol J, García‐López L, Musa‐Afaneh S, Guirola M, Gkanogiannis A, Miró Canturri A, Guzman M, Rodríguez O, Herencia‐Ropero A, Arribas J, Serra V, Serrano L, Tian TV, Peiró S, Sdelci S. Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer. EMBO Mol Med 2023; 15:e18459. [PMID: 37937685 PMCID: PMC10701626 DOI: 10.15252/emmm.202318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) often develops resistance to single-agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo. Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B-MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co-inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4-MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Laura Pascual‐Reguant
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | | | - Debayan Datta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Antoni Gañez‐Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Chiara Cannatá
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Laura García‐López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sara Musa‐Afaneh
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Maria Guirola
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrea Miró Canturri
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Marta Guzman
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Olga Rodríguez
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Joaquin Arribas
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de CáncerMonforte de LemosMadridSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autónoma de BarcelonaBellaterraSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
30
|
Tao X, Li T, Gandomkar Z, Brennan PC, Reed WM. Incidence, mortality, survival, and disease burden of breast cancer in China compared to other developed countries. Asia Pac J Clin Oncol 2023; 19:645-654. [PMID: 37026375 DOI: 10.1111/ajco.13958] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Breast cancer was the most diagnosed malignant neoplasm and the second leading cause of cancer mortality among Chinese females in 2020. Increased risk factors and widespread adoption of westernized lifestyles have resulted in an upward trend in the occurrence of breast cancer. Up to date knowledge on the incidence, mortality, survival, and burden of breast cancer is essential for optimized cancer prevention and control. To better understand the status of breast cancer in China, this narrative literature review collected data from multiple sources, including studies obtained from the PubMed database and text references, national annual cancer report, government cancer database, Global Cancer Statistics 2020, and Global Burden of Disease study (2019). This review provides an overview of the incidence, mortality, and survival rates of breast cancer, as well as a summary of disability-adjusted life years associated with breast cancer in China from 1990 to 2019, with comparisons to Japan, South Korea, Australia and the United States.
Collapse
Affiliation(s)
- Xuetong Tao
- Discipline of Medical Imaging Science, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tong Li
- The Daffodil Centre, A Joint Venture with Cancer Council NSW, The University of Sydney, Sydney, New South Wales, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Science, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Warren M Reed
- Discipline of Medical Imaging Science, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Dezem FS, Marção M, Ben-Cheikh B, Nikulina N, Omotoso A, Burnett D, Coelho P, Hurley J, Gomez C, Phan-Everson T, Ong G, Martelotto L, Lewis ZR, George S, Braubach O, Malta TM, Plummer J. A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics. BMC Genomics 2023; 24:717. [PMID: 38017371 PMCID: PMC10683105 DOI: 10.1186/s12864-023-09722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/07/2023] [Indexed: 11/30/2023] Open
Abstract
Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Felipe Segato Dezem
- Center for Spatial Omics, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maycon Marção
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bassem Ben-Cheikh
- Akoya Biosciences, The Spatial Biology Company, Marlborough, MA, USA
| | - Nadya Nikulina
- Akoya Biosciences, The Spatial Biology Company, Marlborough, MA, USA
| | - Ayodele Omotoso
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | - Destiny Burnett
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | - Priscila Coelho
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | - Judith Hurley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | - Carmen Gomez
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | | | - Giang Ong
- Nanostring Technologies, Seattle, WA, USA
| | | | | | - Sophia George
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, UHealth Medical Systems, Miami, FL, USA
| | - Oliver Braubach
- Akoya Biosciences, The Spatial Biology Company, Marlborough, MA, USA
| | - Tathiane M Malta
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Jasmine Plummer
- Center for Spatial Omics, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Cellular & Molecular Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Pescia C, Guerini-Rocco E, Viale G, Fusco N. Advances in Early Breast Cancer Risk Profiling: From Histopathology to Molecular Technologies. Cancers (Basel) 2023; 15:5430. [PMID: 38001690 PMCID: PMC10670146 DOI: 10.3390/cancers15225430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Early breast cancer (BC) is the definition applied to breast-confined tumors with or without limited involvement of locoregional lymph nodes. While risk stratification is essential for guiding clinical decisions, it can be a complex endeavor in these patients due to the absence of comprehensive guidelines. Histopathological analysis and biomarker assessment play a pivotal role in defining patient outcomes. Traditional histological criteria such as tumor size, lymph node involvement, histological type and grade, lymphovascular invasion, and immune cell infiltration are significant prognostic indicators. In addition to the hormone receptor, HER2, and-in specific scenarios-BRCA1/2 testing, molecular subtyping through gene expression profiling provides valuable insights to tailor clinical decision-making. The emergence of "omics" technologies, applicable to both tissue and liquid biopsy samples, has broadened our arsenal for evaluating the risk of early BC. However, a pressing need remains for standardized methodologies and integrated pathological models that encompass multiple analytical dimensions. In this study, we provide a detailed examination of the existing strategies for early BC risk stratification, intending to serve as a practical guide for histopathologists and molecular pathologists.
Collapse
Affiliation(s)
- Carlo Pescia
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- School of Pathology, University of Milan, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| |
Collapse
|
33
|
Adedokun KA, Oluogun WA, Oyenike MA, Imodoye SO, Yunus LA, Lasisi SA, Bello IO, Kamorudeen RT, Adekola SA. Expression Patterns of ER, PR, HER-2/neu and p53 in Association with Nottingham Tumour Grade in Breast Cancer Patients. Sultan Qaboos Univ Med J 2023; 23:526-533. [PMID: 38090235 PMCID: PMC10712386 DOI: 10.18295/squmj.7.2023.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023] Open
Abstract
Objectives Recent molecular studies show that breast cancer (BC) is a heterogeneous disease, and several molecular changes may accumulate over time to influence treatment response. As a result, employing reliable molecular biomarkers to monitor these modifications may help deliver personalised treatment. However, this may be unrealistic in the resource-limited parts of the world. Thus, this study aimed to investigate the expression pattern of hormone receptors and p53 tumour suppressor using immunohistochemistry (IHC) in BC compared to the traditional tumour grade. Methods In total, 205 cases were investigated, and the Modified Bloom-Richardson score system was adopted in grading the tumours. The tissue sections of the cases were stained with specific primary antibodies at dilutions of 1:60 for oestrogen receptors (ER) and progesterone receptors (PR), 1:350 for the human epidermal growth factor (HER-2/neu) and 1:50 for p53. Results Invasive ductal carcinoma of no-specific type (n = 190, 92.7%) was predominant and grade II tumour (n = 146, 71.2%) was the most frequent. Hormone receptors ER (n = 127) and PR (n = 145) had 62.0% and 70.7% positive cases, respectively; 34.1% (n = 70) were positive for HER-2/neu, while 76.1% (n = 156) were positive for p53. Significant associations between Nottingham grade and expression patterns of ER (P <0.01), PR (P <0.001), HER-2/neu (P <0.001) and p53 (P = 0.001) were observed. Conclusion Nottingham grade had a high degree of concordance with the patterns of expression of hormone receptors, HER-2/neu and p53, suggesting that it may play an important role in connection with the predictive and prognostic biomarkers for BC.
Collapse
Affiliation(s)
- Kamoru A. Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Waheed A. Oluogun
- Department of Morbid Anatomy and Histopathology Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Lukman A. Yunus
- Department of Morbid Anatomy and Histopathology Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - smaila A. Lasisi
- Laboratory Unit, Health Centre, Osun State Polytechnic Iree, Osun State, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University at Edwardsville, Edwardsville, Illinois, USA
| | | | | |
Collapse
|
34
|
Urzì AG, Tropea E, Gattuso G, Spoto G, Marsala G, Calina D, Libra M, Falzone L. Ketogenic Diet and Breast Cancer: Recent Findings and Therapeutic Approaches. Nutrients 2023; 15:4357. [PMID: 37892432 PMCID: PMC10609494 DOI: 10.3390/nu15204357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), a complex disease with several influencing factors, is significantly impacted by dietary habits. The ketogenic diet (KD), characterized by high fat and low carbohydrate intake, has gained attention as a potential therapeutic approach, but its effects on BC remain unclear. This review seeks to summarize the current knowledge on the principles of the KD, its metabolic influence on BC cells, and the findings of recent clinical trials, in order to elucidate the potential therapeutic role of the KD in BC management. For these purposes, a comprehensive literature review was conducted selecting preclinical and clinical studies that investigate the relationship between the KD and BC. The selection criteria prioritized studies exploring the KD's metabolic effects on BC cells and current clinical trials involving the KD in BC management. The reviewed studies provide a diverse range of findings, with some suggesting potential benefits of the KD in inhibiting tumor growth and improving treatment response. However, robust clinical trials providing clear evidence of the KD's efficacy as a standalone therapeutic approach in BC are still lacking. There are also significant concerns regarding the safety and long-term effects of sustained ketosis in cancer patients. The therapeutic potential of the KD in BC remains an area of active research and debate. While preliminary findings are promising, definitive conclusions are hindered by inconsistent results and limited human trial data. Future research, specifically well-structured, large-scale clinical trials, is necessary to provide a comprehensive understanding of the role of the KD in BC treatment. Until then, caution should be exercised in its application, and patients should continue prioritizing evidence-based, standard-of-care treatments.
Collapse
Affiliation(s)
- Alfio Giuseppe Urzì
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
| | - Gabriella Marsala
- Dipartimento del Farmaco, U.O.C. di Farmaceutica Convenzionata, 95100 Catania, Italy
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.G.U.); (G.G.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy;
| |
Collapse
|
35
|
Luís C, Schmitt F, Fernandes R, Coimbra N, Rigor J, Dias P, Leitão D, Fernandes R, Soares R. Breast Cancer Molecular Subtypes Differentially Express Gluconeogenic Rate-Limiting Enzymes-Obesity as a Crucial Player. Cancers (Basel) 2023; 15:4936. [PMID: 37894303 PMCID: PMC10605212 DOI: 10.3390/cancers15204936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is a heterogeneous entity, where different molecular subtypes (MS) exhibit distinct prognostic and therapeutic responses. A series of 62 breast cancer samples stratified by MS was obtained from the tumor biobank of IPO-Porto. The expression of glycolysis and gluconeogenesis-regulating enzymes was investigated by immunohistochemistry. Data analysis included stratification according to MS, body mass index (BMI), and BMI with MS (mBMI). We observed significant differences in pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PCK), and fructose-1,6-bisphosphatase (FBP) tumor cell expression when stratified by MS and mBMI. The expression of these enzymes was also statistically dependent on hormonal receptors and HER2 status and correlated with pathological stage and histological grade. Obesity tended to attenuate these differences, particularly in PC expression, although these were not affected by adipocyte deposition or inflammatory infiltration at the tumor microenvironment. Nonetheless, PCK and FBP expression was also modified by the presence of obesity-associated disorders like diabetes, hypertension, and dyslipidemia. Taken together, these findings identify metabolic fingerprints for breast cancer as distinct histological types, which are affected by the presence of obesity and obesity-associated conditions. Despite the biological role of the differential expression of enzymes remaining unknown, the current study highlights the need to identify the expression of gluconeogenic-regulating enzymes as a tool for personalized medicine.
Collapse
Affiliation(s)
- Carla Luís
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.L.); (J.R.)
- i3S—Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| | - Fernando Schmitt
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal;
- Pathology and Oncology Unit, Pathological Anatomy Laboratory, Faculty of Medicine, University of Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- CINTESIS@RISE, Health Research Network, 4200-319 Porto, Portugal
| | - Rute Fernandes
- Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal; (R.F.); (N.C.)
| | - Nuno Coimbra
- Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal; (R.F.); (N.C.)
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Joana Rigor
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.L.); (J.R.)
- Internal Medicine Department, Póvoa de Varzim/Vila do Conde Hospital Centre, 4490-421 Póvoa de Varzim, Portugal
| | - Paula Dias
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal;
| | - Dina Leitão
- Pathology and Oncology Unit, Pathological Anatomy Laboratory, Faculty of Medicine, University of Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Rúben Fernandes
- i3S—Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal;
- FP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Resarci Unit, FFP—Fundação Fernando Pessoa, 4249-004 Porto, Portugal
| | - Raquel Soares
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.L.); (J.R.)
- i3S—Instituto de Inovação e Investigação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
36
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
37
|
Cavallaro PA, De Santo M, Belsito EL, Longobucco C, Curcio M, Morelli C, Pasqua L, Leggio A. Peptides Targeting HER2-Positive Breast Cancer Cells and Applications in Tumor Imaging and Delivery of Chemotherapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2476. [PMID: 37686984 PMCID: PMC10490457 DOI: 10.3390/nano13172476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Breast cancer represents the most common cancer type and one of the major leading causes of death in the female worldwide population. Overexpression of HER2, a transmembrane glycoprotein related to the epidermal growth factor receptor, results in a biologically and clinically aggressive breast cancer subtype. It is also the primary driver for tumor detection and progression and, in addition to being an important prognostic factor in women diagnosed with breast cancer, HER2 is a widely known therapeutic target for drug development. The aim of this review is to provide an updated overview of the main approaches for the diagnosis and treatment of HER2-positive breast cancer proposed in the literature over the past decade. We focused on the different targeting strategies involving antibodies and peptides that have been explored with their relative outcomes and current limitations that need to be improved. The review also encompasses a discussion on targeted peptides acting as probes for molecular imaging. By using different types of HER2-targeting strategies, nanotechnology promises to overcome some of the current clinical challenges by developing novel HER2-guided nanosystems suitable as powerful tools in breast cancer imaging, targeting, and therapy.
Collapse
Affiliation(s)
- Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Emilia Lucia Belsito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Camilla Longobucco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy; (P.A.C.); (M.D.S.); (E.L.B.); (C.L.); (M.C.); (C.M.)
| |
Collapse
|
38
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
39
|
Schandiz H, Park D, Kaiser YL, Lyngra M, Talleraas IS, Geisler J, Sauer T. Subtypes of high-grade breast ductal carcinoma in situ (DCIS): incidence and potential clinical impact. Breast Cancer Res Treat 2023:10.1007/s10549-023-07016-9. [PMID: 37453021 PMCID: PMC10361903 DOI: 10.1007/s10549-023-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate and classify the molecular subtypes of high-grade ductal carcinoma in situ (DCIS) and identify possible high-risk subtypes. The heterogenicity of DCIS with variable clinical and histopathological presentations has been recognized. Nevertheless, only histopathological grading and diameter are currently implemented in clinical decision-making following the diagnosis of DCIS. The molecular subtypes of DCIS and their IHC surrogate markers have not been defined in conventional treatment guidelines and recommendations. We applied the definitions of molecular subtypes according to the IHC surrogate markers defined for IBC and subclassified high-grade DCIS, accordingly. METHODS Histopathological specimens were collected, revised, and regraded from 494 patients diagnosed with DCIS between 1996 and 2018. Other in situ and papillary lesions observed in breast biopsies were excluded from this study. 357 high-grade DCIS cases were submitted to IHC analysis. The markers investigated were ER, PR, HER2, and Ki67. RESULTS 45 cases were classified as grade 1, 19 as grade 2, and 430 as grade 3. Sixty patients with high-grade DCIS had an additional invasive component in the surgical specimen. Thirty-three patients were diagnosed with recurrent DCIS or invasive cancer (minimum one year after their primary DCIS diagnosis). The proportions of luminal A and luminal B HER2-negative subtypes varied depending on whether 2011 or 2013 St. Gallen Consensus Conference guidelines were adopted. Luminal A was the most prevalent subtype, according to both classifications. The luminal B HER2-positive subtype was found in 22.1% of cases, HER2-enriched subtype in 21.8%, and TPN subtype in 5.6%. There were strong indications that HER2-enriched subtype was significantly more frequent among DCIS with invasive component (p = 0.0169). CONCLUSIONS High-grade DCIS exhibits all the molecular subtypes previously identified in IBC, but with a somewhat different distribution in our cohort. HER2-enriched subtype is substantially related to the presence of an invasive component in DCIS; consequently, it is regarded as a high-risk entity.
Collapse
Affiliation(s)
- Hossein Schandiz
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway.
| | - Daehoon Park
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Yan Liu Kaiser
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Marianne Lyngra
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS, Oslo, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS, Oslo, Norway
| |
Collapse
|
40
|
Massimino M, Martorana F, Stella S, Vitale SR, Tomarchio C, Manzella L, Vigneri P. Single-Cell Analysis in the Omics Era: Technologies and Applications in Cancer. Genes (Basel) 2023; 14:1330. [PMID: 37510235 PMCID: PMC10380065 DOI: 10.3390/genes14071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell omics has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional omics at single-cell resolution.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
41
|
Stella S, Massimino M, Manzella L, Parrinello NL, Vitale SR, Martorana F, Vigneri P. Glucose-dependent effect of insulin receptor isoforms on tamoxifen antitumor activity in estrogen receptor-positive breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1081831. [PMID: 37361518 PMCID: PMC10289407 DOI: 10.3389/fendo.2023.1081831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Breast cancer is the most common malignancy in women, and it is linked to several risk factors including genetic alterations, obesity, estrogen signaling, insulin levels, and glucose metabolism deregulation. Insulin and Insulin-like growth factor signaling exert a mitogenic and pro-survival effect. Indeed, epidemiological and pre-clinical studies have shown its involvement in the development, progression, and therapy resistance of several cancer types including breast cancer. Insulin/Insulin-like growth factor signaling is triggered by two insulin receptor isoforms identified as IRA and IRB and by Insulin-like growth factor receptor I. Both classes of receptors show high homology and can initiate the intracellular signaling cascade alone or by hybrids formation. While the role of Insulin-like growth factor receptor I in breast cancer progression and therapy resistance is well established, the effects of insulin receptors in this context are complex and not completely elucidated. Methods We used estrogen-dependent insulin-like growth factor receptor I deleted gene (MCF7IGFIRKO) breast cancer cell models, lentivirally transduced to over-express empty-vector (MCF7IGFIRKO/EV), IRA (MCF7IGFIRKO/IRA) or IRB (MCF7IGFIRKO/IRB), to investigate the role of insulin receptors on the antiproliferative activity of tamoxifen in presence of low and high glucose concentrations. The tamoxifen-dependent cytotoxic effects on cell proliferation were determined by MTT assay and clonogenic potential measurement. Cell cycle and apoptosis were assessed by FACS, while immunoblot was used for protein analysis. Gene expression profiling was investigated by a PCR array concerning genes involved in apoptotic process by RT-qPCR. Results We found that glucose levels played a crucial role in tamoxifen response mediated by IRA and IRB. High glucose increased the IC50 value of tamoxifen for both insulin receptors and IRA-promoted cell cycle progression more than IRB, independently of glucose levels and insulin stimulation. IRB, in turn, showed anti-apoptotic properties, preserving cells' survival after prolonged tamoxifen exposure, and negatively modulated pro-apoptotic genes when compared to IRA. Discussion Our findings suggest that glucose levels modify insulin receptors signaling and that this event can interfere with the tamoxifen therapeutic activity. The investigation of glucose metabolism and insulin receptor expression could have clinical implications in Estrogen Receptor positive breast cancer patients receiving endocrine treatments.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico-S. Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - San Marco”, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
42
|
Kitsios K, Sharifi S, Mahmoudi M. Nanomedicine Technologies for Diagnosis and Treatment of Breast Cancer. ACS Pharmacol Transl Sci 2023; 6:671-682. [PMID: 37200812 PMCID: PMC10186357 DOI: 10.1021/acsptsci.3c00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 05/20/2023]
Abstract
Breast cancer is one of the most common cancers in women worldwide, yet conventional treatments have several shortcomings, including low specificity, systemic toxicity, and drug resistance. Nanomedicine technologies provide a promising alternative while also overcoming the limitations posed by conventional therapies. This mini-Review highlights important signaling pathways related to occurrence and development of breast cancer and current breast cancer therapies, followed by an analysis of various nanomedicine technologies developed for diagnosis and treatment of breast cancers.
Collapse
Affiliation(s)
- Katerina Kitsios
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Shahriar Sharifi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Department of Radiology and
Precision Health Program, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
43
|
Fazal F, Bashir MN, Adil ML, Tanveer U, Ahmed M, Chaudhry TZ, Ijaz AA, Haider M. Pathologic Complete Response Achieved in Early-Stage HER2-Positive Breast Cancer After Neoadjuvant Therapy With Trastuzumab and Chemotherapy vs. Trastuzumab, Chemotherapy, and Pertuzumab: A Systematic Review and Meta-Analysis of Clinical Trials. Cureus 2023; 15:e39780. [PMID: 37398703 PMCID: PMC10312476 DOI: 10.7759/cureus.39780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Patients diagnosed with human epidermal growth factor receptor 2 (HER2)-positive breast cancer require treatment upfront because of the aggressive nature of this type of cancer. Patients with early-stage HER2-positive breast cancer are usually treated with neoadjuvant therapy. This neoadjuvant therapy comprises targeted therapy and chemotherapy. Targeted therapy is given with trastuzumab. Pertuzumab is either administered or not with trastuzumab as a targeted therapy. This systematic review and meta-analysis aim to find out and compare the benefit achieved in terms of pathologic complete response (pCR) by adding pertuzumab to the neoadjuvant treatment regimen for early-stage HER2-positive breast cancer patients. Various databases were searched to find out relevant clinical trials. After going through PubMed, Embase, and Cochrane, three clinical trials were shortlisted for this systematic review and meta-analysis. These three clinical trials were double-armed. Pertuzumab was present in one arm while being absent in one arm to assess the benefit of adding pertuzumab in terms of pCR achieved. Data were analyzed using RevMan Web (Cochrane, London, UK). The odds ratio and 95% confidence interval were calculated for the outcome. The Mantel-Haenszel method and random effect model were used for analysis. The risk of bias in studies was evaluated using the Cochrane risk of bias tool for randomized controlled trials (ROB2). The summary statistics showed that the incidence of pCR was more in the experimental group (having pertuzumab) as compared to the control group (without pertuzumab) with an odds ratio of 2.10 (95% CI: 1.56-2.83) with I2 = 0%. In three double-arm trials, there were 840 participants, 445 in the experimental group and 395 in the control group. A total of 203 (45%) patients out of 445 in the experimental group achieved pCR, whereas 127 (32%) patients out of 395 in the control group achieved pCR. Through the results of this study, it can be concluded that the rate of pCR achieved was higher in that arm in which pertuzumab was present compared to the study arm in which only trastuzumab was given as targeted therapy. Thus, it can be suggested that pertuzumab be added to the neoadjuvant regimen for early-stage HER2-positive breast cancer patients. This would result in achieving a better pCR. And by improving pCR rates, the survival outcomes of patients can be significantly improved.
Collapse
Affiliation(s)
- Faizan Fazal
- Department of Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | | | | | - Usama Tanveer
- Department of Medicine, Holy Family Hospital, Rawalpindi, PAK
| | - Mansoor Ahmed
- Department of Surgery, Holy Family Hospital, Rawalpindi, PAK
| | | | - Ali Ahmad Ijaz
- Department of Medicine, Holy Family Hospital, Rawalpindi, PAK
| | - Muhammad Haider
- Department of Orthopedics, Holy Family Hospital, Rawalpindi, PAK
| |
Collapse
|
44
|
Sakibuzzaman M, Mahmud S, Afroze T, Fathma S, Zakia UB, Afroz S, Zafar F, Hossain M, Barua A, Akter S, Chowdhury HI, Ahsan E, Eshan SH, Fariza TT. Pathology of breast cancer metastasis and a view of metastasis to the brain. Int J Neurosci 2023; 133:544-554. [PMID: 34044732 DOI: 10.1080/00207454.2021.1935929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Despite the advances in diagnosis and management of breast cancer, metastasis has been responsible for the staggering percentage of breast cancer-related death. Mortality threat can be explained mostly by the lack of proper understanding of the diversity of pathological features and underlying mechanism of breast cancer metastasis and effective targeted therapy. Breast cancer stem cells (BCSCs) are the potential source of tumor cells spread to distant organs. BCSCs targeted therapy can suppress the breast cancer progression to metastasis. Spreading of tumor cells to the bone, lung, liver, and brain occurs through a distinct non-random process; called metastasis organotropism. Recently, brain metastasis in breast cancer patients has been detected more frequently, causing a significant clinical burden. BRCA1 and BRCA2 associated breast cancers carry a remarkably higher propensity of CNS metastasis. BRCA1 and BRCA2 associated breast cancers commonly have the propensity to be the triple-negative (TN) and hormone receptors (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative molecular subtypes, respectively. Regardless of molecular subtypes, metastasis is most commonly evident at the bone. Heterogeneity is a critical pathological feature, leads to therapeutic resistance. BCSCs, biomarkers expression patterns, and mutations contribute to heterogeneity. In this paper, we discuss crucial pathological features of breast cancer metastasis, emphasizing metastasis organotropism and heterogeneity; and mechanisms of breast cancer metastasis, highlighting the pathways of metastasis to the brain. We consider that this paper reinforces future research areas and benefits the general readers, physicians, and researchers to identify potential areas to develop targeted therapies.
Collapse
Affiliation(s)
- Md Sakibuzzaman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shahriar Mahmud
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Sawsan Fathma
- Bangladesh Medical College and Hospital, Dhaka, Bangladesh
| | | | - Sabrina Afroz
- Faridpur Medical College and Hospital, Faridpur, Bangladesh
| | - Farzina Zafar
- Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh
| | - Maksuda Hossain
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amit Barua
- Institute of Applied Health Sciences, Chattogram, Bangladesh
| | - Sabiha Akter
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Eram Ahsan
- Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Shayet Hossain Eshan
- Department of Internal Medicine, Amita Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | | |
Collapse
|
45
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
46
|
Birukova V, Scherbakov A, Ilina A, Salnikova D, Andreeva O, Dzichenka Y, Zavarzin I, Volkova Y. Discovery of highly potent proapoptotic antiestrogens in a series of androst-5,16-dienes D-modified with imidazole-annulated pendants. J Steroid Biochem Mol Biol 2023; 231:106309. [PMID: 37037385 DOI: 10.1016/j.jsbmb.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Heterocyclic derivatives of steroid hormones are potent anticancer agents, which are used in the chemotherapy of breast and prostate cancers. Here, we describe a novel series of androstenes, D-modified with imidazole-annulated pendants, with significant anticancer activity. Novel C17-linked imidazole-annulated heterocyclic derivatives of dehydropregnenolone acetate were synthesized by the cyclocondensation with amidines using 3β-acetoxy-21-bromopregna-5,16-dien-20-one as the substrate. The antiproliferative potency of all the synthesized compounds was evaluated against human prostate (22Rv1) and human breast (MCF7) cancer cell lines and cytochromes P450. The lead compound, imidazo[1,2-a]pyridine derivative 3h, was revealed to be a promising candidate for future anticancer drug design, particularly against ERα-positive breast cancer. Lead compound 3h was found to be selective against MCF7 cells with IC50 of 0.1μM and to act as both a potent selective agent blocking estrogen receptor α, which is involved in the stimulation of breast cancer growth, and an effective apoptosis inducer. The potential ability of compound 3h to bind to ERα was studded using molecular docking and molecular dynamics simulation. The selectivity analysis showed that lead steroid 3h produces no effects on cytochromes P450 CYP17A1, CYP7A1, and CYP21A2.
Collapse
Affiliation(s)
- Valentina Birukova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Anastasia Ilina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Diana Salnikova
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Olga Andreeva
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevich str., 220141, Minsk, Belarus
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| |
Collapse
|
47
|
Southekal S, Shakyawar SK, Bajpai P, Elkholy A, Manne U, Mishra NK, Guda C. Molecular Subtyping and Survival Analysis of Osteosarcoma Reveals Prognostic Biomarkers and Key Canonical Pathways. Cancers (Basel) 2023; 15:2134. [PMID: 37046795 PMCID: PMC10093233 DOI: 10.3390/cancers15072134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Osteosarcoma (OS) is a common bone malignancy in children and adolescents. Although histological subtyping followed by improved OS treatment regimens have helped achieve favorable outcomes, a lack of understanding of the molecular subtypes remains a challenge to characterize its genetic heterogeneity and subsequently to identify diagnostic and prognostic biomarkers for developing effective treatments. In the present study, global analysis of DNA methylation, and mRNA and miRNA gene expression in OS patient samples were correlated with their clinical characteristics. The mucin family of genes, MUC6, MUC12, and MUC4, were found to be highly mutated in the OS patients. Results revealed the enrichment of molecular pathways including Wnt signaling, Calcium signaling, and PI3K-Akt signaling in the OS tumors. Survival analyses showed that the expression levels of several genes such as RAMP1, CRIP1, CORT, CHST13, and DDX60L, miRNAs and lncRNAs were associated with survival of OS patients. Molecular subtyping using Cluster-Of-Clusters Analysis (COCA) for mRNA, lncRNA, and miRNA expression; DNA methylation; and mutation data from the TARGET dataset revealed two distinct molecular subtypes, each with a distinctive gene expression profile. Between the two subtypes, three upregulated genes, POP4, HEY1, CERKL, and seven downregulated genes, CEACAM1, ABLIM1, LTBP2, ISLR, LRRC32, PTPRF, and GPX3, associated with OS metastasis were found to be differentially regulated. Thus, the molecular subtyping results provide a strong basis for classification of OS patients that could be used to develop better prognostic treatment strategies.
Collapse
Affiliation(s)
- Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sushil Kumar Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Nitish Kumar Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
48
|
Clinicopathological Factors Affecting Breast Cancer Survival in Jamaican Women: A Retrospective Review. J Racial Ethn Health Disparities 2023; 10:844-858. [PMID: 35266120 DOI: 10.1007/s40615-022-01273-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Breast cancer is the leading cause of cancer affecting women worldwide. The survival rate is primarily affected by the stage of the disease and several other demographic and clinicopathological factors. METHODS This study is a retrospective cohort study of female patients of the University Hospital of the West Indies diagnosed with breast cancer between 2011 and 2016. The age, tumor size, SBR/Nottingham grade, tumor histologic subtype, tumor molecular subtype, and survival status of the cohort on November 1, 2019, were determined. The data were summarized. Survival across each variable was compared using univariate log-rank tests, Cox proportional hazard models, and crude and adjusted models. A second wave analysis was performed excluding patients whose survival status was presumed. RESULTS A total of 503 patients were analyzed. The overall survival rate at 1, 3, and 5 years were 96.4%, 84.9%, and 79.0%, respectively, for the entire cohort. The molecular subtype was the most significant clinicopathological factor affecting overall survival. A younger age < 40 years, higher histologic grade, estrogen receptor-negative breast cancers, invasive ductal type breast cancers, and T1 lesions were associated with poorer survival outcomes at 5 years. The findings were reproduced after a second wave analysis excluding patients who were presumed alive was applied. CONCLUSIONS Breast cancer overall survival in Jamaica is consistent with that of other developing countries in the literature. This study is an important contribution to the growing body of literature available and aids to the overall understanding of the behavior of breast cancer locally.
Collapse
|
49
|
Mahdieh A, Yeganeh H, Sande SA, Nyström B. Design of novel polyurethane-based ionene nanocarriers for cancer therapy: Synthesis, in-vitro, and in-vivo studies. Int J Pharm 2023; 635:122768. [PMID: 36841369 DOI: 10.1016/j.ijpharm.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
New strategies for constructing versatile nanocarriers are needed for cancer therapy to overcome the multiple challenges of targeted delivery. This work explores the advantages of polyurethane with main-chain quaternary ammonium salt moieties (ionene) as a novel carrier for targeted drug delivery. We have developed a novel cationic soybean oil-based polyurethane ionene nanocarrier (CPUI) that can act as an effective anticancer agent and efficiently deliver the anticancer drug 5-fluorouracil (5FU). We also report a potential anticancer drug delivery system targeting the folate receptor. In vitro experiments with blank CPUI carriers on the 4T1 (mouse breast cancer cell line) and the NIH-3T3 (mouse fibroblast cell line) revealed high cytotoxicity for the cancer cells but only low cytotoxicity for the normal fibroblast cells. The CPUI nanoparticles were readily loaded with 5FU (5FU-CPUI) in water using electrostatic interactions between the cationic quaternary ammonium groups of ionene and the anionic 5FU. The in vivo study in mice with tumors showed that the blank CPUI carriers significantly inhibited tumor growth, even more than the free drug (5FU). The inhibitory effect on tumor growth was slightly enhanced when the carriers were loaded with 5FU. The prepared nanoparticles had a high loading capacity of 41.8 %. Further enhancement of the inhibitory effect was observed when folic acid (FA) was added as a targeting moiety to the system via ion exchange with the bromine counterion of the quaternary ammonium moieties. The results suggest that the efficacy of FA-CPUI-5FU nanoparticles as vehicles for drug delivery can be enhanced via folate receptor (FR) mediated endocytosis in 4T1 cells and these novel nanocarriers may provide a potential platform for effective targeted drug delivery to tumor tissue and breast cancer therapy in the clinic.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sverre Arne Sande
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
50
|
Brogowska KK, Zajkowska M, Mroczko B. Vascular Endothelial Growth Factor Ligands and Receptors in Breast Cancer. J Clin Med 2023; 12:jcm12062412. [PMID: 36983412 PMCID: PMC10056253 DOI: 10.3390/jcm12062412] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy responsible for the largest number of deaths in women worldwide. The risk of developing BC is predisposed by many factors such as age, presence of genetic mutations or body weight. The diagnosis is mostly made relatively late, which is why patients are exposed to radical surgical treatments, long-term chemotherapy and lower survival rates. There are no sufficiently sensitive and specific screening tests; therefore, researchers are still looking for new diagnostic biomarkers that would indicate the appearance of neoplastic changes in the initial stage of neoplasm. The VEGF family of proteins (VEGF-A, VEGF-B, VEGF-C, VEGF-D, EG-VEGF, PlGF) and their receptors are significant factors in the pathogenesis of BC. They play a significant role in the process of angiogenesis and lymphangiogenesis in both physiological and pathological conditions. The usefulness of these proteins as potential diagnostic biomarkers has been initially proven. Moreover, the blockage of VEGF-related pathways seems to be a valid therapeutic target. Recent studies have tried to describe novel strategies, including targeting pericytes, use of miRNAs and extracellular tumor-associated vesicles, immunotherapeutic drugs and nanotechnology. This indicates their possible contribution to the formation of breast cancer and their usefulness as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|