1
|
Fernández-Lainez C, Vela-Amieva M, Reyna-Fabián M, Fernández-Hernández L, Guillén-López S, López-Mejía L, Alcántara-Ortigoza MÁ, González-del Angel A, Carrillo-Nieto RI, Ortega-Valdez E, Rojas-Maruri M, Ridaura-Sanz C. Isolated methylmalonic acidemia in Mexico: Genotypic spectrum, report of two novel MMUT variants and a possible synergistic heterozygosity effect. Mol Genet Metab Rep 2024; 41:101155. [PMID: 39494389 PMCID: PMC11530693 DOI: 10.1016/j.ymgmr.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Isolated methylmalonic acidemia (iMMA) is a group of monogenic metabolic disorders affecting methylmalonate and cobalamin metabolism. Five iMMA-responsible genes have been described to date: MMUT (MIM *609058), MMAA (MIM *607481, MMAB (MIM *607568), MMADHC (MIM *611935), and MCEE (MIM *608419). Although iMMA is the most common form of organic acidemia reported in Mexico, its genotypic spectrum is still largely unknown. We performed a clinical exome analysis on 42 unrelated Mexican patients with iMMA. MMUT deficiency accounted for 73.8 % of all cases, followed by MMAA (14.2 %), MMAB (7.2 %), and MMADHC (2.4 %) deficiencies. One patient presented MMUT and MMAA double heterozygosity, which should be further experimentally confirmed to prove that synergistic heterozygosity could be another inheritance mechanism in iMMA. The most frequent MMUT genotype involved the Hispanic variant NM_000255.4:c. [322C > T];[322C > T] or p.[Arg108Cys];[Arg108Cys] (14.3 %). Two novel MMUT variants, NM_000255.4:c.589G > A or p.(Ala197Thr) and c.1476C > A or p.(Tyr492*), were identified in a deceased newborn presenting the neonatal-onset severe form of the disease. In silico protein modeling of the p.(Arg108Cys) and novel p.(Ala197Thr) MMUT variants suggested disruption of the substrate-binding and catalytic domains of the protein, respectively. This study expands the current knowledge on the molecular spectrum of iMMA in the Mexican population and reinforces the importance of genetic analysis in guiding clinical management.
Collapse
Affiliation(s)
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | | | | | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | | | | | | | - Enrique Ortega-Valdez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
- Facultad de Ciencias, UNAM, Mexico
| | | | | |
Collapse
|
2
|
Du M, Wu S, Chen Y, Yuan S, Dong S, Wang H, Wei H, Zhu C. Associations between elevated uric acid and brain imaging abnormalities in pediatric patients with methylmalonic acidemia under 5 years of age. Sci Rep 2024; 14:23992. [PMID: 39402119 PMCID: PMC11473513 DOI: 10.1038/s41598-024-74710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 10/17/2024] Open
Abstract
Methylmalonic acidemia (MMA) is the most common inborn organic acidemia, presenting multisystemic complications. Uric acid may have neurotoxic or neuroprotective effects due to its antioxidant or pro-inflammatory properties; however, its role in MMA brain injury remains unclear. We examined the correlation between the serum uric acid levels and brain imaging features of MMA. Data were collected from a cross-sectional study of 216 patients with MMA and 216 healthy matched controls aged 0-5 years in China. Serum uric acid levels were measured, and magnetic resonance imaging and computed tomography findings were retrieved from hospital records. Overall, 74.1% patients had brain abnormalities. Patients in the MMA group with abnormal brain imaging had higher serum uric acid levels than those in the MMA normal brain imaging and control groups. The area under the curve of serum uric acid was 0.74, 0.91, and 0.93 for MMA diagnosis with abnormal brain images, basal ganglia changes, and globus pallidus changes, respectively. Higher serum uric acid levels were independently associated with abnormal brain images. Children aged < 5 years with abnormal brain images in MMA exhibit elevated serum uric acid levels, serving as an effective auxiliary diagnostic indicator and independent risk factor for brain tissue injury.
Collapse
Affiliation(s)
- Mengmeng Du
- Henan Pediatric Clinical Research Center and Key Laboratory of Child Brain Injury, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, China
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shengnan Wu
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongxing Chen
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuxian Yuan
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shijie Dong
- Department of Radiology, Henan Children's Hospital, Zhengzhou, China
| | - Huizhen Wang
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyan Wei
- Henan Pediatric Clinical Research Center and Key Laboratory of Child Brain Injury, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, China.
- Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Changlian Zhu
- Henan Pediatric Clinical Research Center and Key Laboratory of Child Brain Injury, Institute of Neuroscience, Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfuqian Street, Erqi District, Zhengzhou, China.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Dos Reis BG, Becker GS, Marchetti DP, Coelho DDM, Sitta A, Wajner M, Vargas CR. Evidence That Long-Term Treatment Prevents Tissue Oxidative Damage in Patients With Inherited Disorders of the Propionate Pathway. Am J Med Genet A 2024:e63893. [PMID: 39360509 DOI: 10.1002/ajmg.a.63893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders clinically characterized by metabolic decompensation associated with life-threatening encephalopathic episodes in the neonatal period. Adequate and rapid therapeutic management is essential for patients' survival and prognosis. In this study, a restricted protein diet associated with L-carnitine (LC) supplementation was shown to decrease mortality and morbidity in patients affected by these disorders probably by decreasing the accumulation of the major metabolites and therefore their toxicity. Since oxidative stress was proposed as a contributing mechanism of tissue damage in PAcidemia and MMAcidemia and LC has potent antioxidant properties, our objective in this work was to investigate the effects of a long-term therapy consisting of reduced protein intake associated with LC supplementation on oxidative damage markers in patients affected by these diseases. We measured urinary isoprostanes, di-tyrosine, and oxidized guanine species, which reflect oxidative damage to lipids, proteins, and DNA/RNA, respectively, as well as the concentrations of NO products (nitrate plus nitrite) in patients untreated or submitted to short-term or a long-term treatment. Results revealed significant increases of isoprostanes, di-tyrosine, and oxidized guanine species, as well as a moderate nonsignificant increase of NO levels in the untreated patients, relatively to controls. Furthermore, these altered markers were attenuated after short-term treatment and normalized after prolonged treatment. In conclusion, data from this work show for the first time that long-standing treatment of patients with disorders of the propionate pathway can protect against oxidative damage. However, it remains to be elucidated whether oxidative stress identified in this study directly correlates with the clinical conditions of the affected patients.
Collapse
Affiliation(s)
- Bianca Gomes Dos Reis
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
4
|
Monfrini E, Baso G, Ronchi D, Meneri M, Gagliardi D, Quetti L, Verde F, Ticozzi N, Ratti A, Di Fonzo A, Comi GP, Ottoboni L, Corti S. Unleashing the potential of mRNA therapeutics for inherited neurological diseases. Brain 2024; 147:2934-2945. [PMID: 38662782 DOI: 10.1093/brain/awae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurological monogenic loss-of-function diseases are hereditary disorders resulting from gene mutations that decrease or abolish the normal function of the encoded protein. These conditions pose significant therapeutic challenges, which may be resolved through the development of innovative therapeutic strategies. RNA-based technologies, such as mRNA replacement therapy, have emerged as promising and increasingly viable treatments. Notably, mRNA therapy exhibits significant potential as a mutation-agnostic approach that can address virtually any monogenic loss-of-function disease. Therapeutic mRNA carries the information for a healthy copy of the defective protein, bypassing the problem of targeting specific genetic variants. Moreover, unlike conventional gene therapy, mRNA-based drugs are delivered through a simplified process that requires only transfer to the cytoplasm, thereby reducing the mutagenic risks related to DNA integration. Additionally, mRNA therapy exerts a transient effect on target cells, minimizing the risk of long-term unintended consequences. The remarkable success of mRNA technology for developing coronavirus disease 2019 vaccines has rekindled interest in mRNA as a cost-effective method for delivering therapeutic proteins. However, further optimization is required to enhance mRNA delivery, particularly to the CNS, while minimizing adverse drug reactions and toxicity. In this comprehensive review, we delve into past, present and ongoing applications of mRNA therapy for neurological monogenic loss-of-function diseases. We also discuss the promises and potential challenges presented by mRNA therapeutics in this rapidly advancing field. Ultimately, we underscore the full potential of mRNA therapy as a game-changing therapeutic approach for neurological disorders.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Giacomo Baso
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Stroke Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Lorenzo Quetti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federico Verde
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Nicola Ticozzi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Neurology, Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, Milan 20100, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giacomo P Comi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Linda Ottoboni
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
- Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| |
Collapse
|
5
|
Sikirica V, Schwartz EJ, Vockley J, Stagni K, Bellenger MA, Banerjee G, Durgam N, Moshkovich O. Development of a signs and symptoms outcome measure for caregivers of patients with methylmalonic acidemia and propionic acidemia (MMAPAQ). Mol Genet Metab 2024; 143:108577. [PMID: 39303317 DOI: 10.1016/j.ymgme.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Methylmalonic acidemia (MMA) and propionic acidemia (PA) are rare inborn errors of metabolism with shared signs and symptoms that are associated with significant morbidity and mortality. No disease-specific clinical outcomes assessment instruments for MMA and/or PA currently exist to capture the patient perspective in clinical trials. Because patients with these conditions are generally young and have cognitive impairments, an observer-reported outcome (ObsRO) instrument is crucial. We report results from qualitative research supporting development of the Methylmalonic Acidemia and Propionic Acidemia Questionnaire (MMAPAQ), a signs and symptoms ObsRO measure for caregivers of patients with MMA and/or PA. METHODS Concept elicitation (CE) interviews were conducted with 35 participants across 2 studies who were aged ≥18 years and caregivers of patients with a confirmed diagnosis of MMA or PA, and an additional 5 patients aged ≥6 years with MMA or PA in Study 1, to identify core signs/symptoms for inclusion in the MMAPAQ. All interviews were conducted in English. Study 2 included cognitive interviews (CI) with caregivers and clinical experts to further assess content validity. CE and a conceptual framework review were also conducted with clinical experts to further support findings. RESULTS A consistent set of signs/symptoms of MMA and PA were reported by eligible caregivers interviewed in study 1 (n = 21) and study 2 (n = 14), representing 11 patients with MMA and 20 with PA. Based on concepts reported in study 1, a draft instrument was constructed and compared with the Pediatric Quality of Life Inventory™ (PedsQL™) and Family Impact module, demonstrating face validity for measuring key signs/symptoms important to patients and caregivers. The PedsQL™ and Family Impact modules were preferred to assess patient and caregiver impacts. Two waves of CE and CIs were conducted in study 2, with wave 1 resulting in removal of 7 items and other revisions to improve clarity, and wave 2 resulting in modification of examples used for 2 items. The final instrument consisted of the following 7 items assessed over the past 7 days using a Likert-type response scale ranging from "never" to "very often": uncontrollable or involuntary movements, dehydration, rapid breathing at rest, appearing lethargic, appearing disinterested in eating, refusing to eat, and vomiting. CONCLUSIONS This study establishes the content validity of the MMAPAQ as the first ObsRO questionnaire for measuring core signs and symptoms of MMA and PA in clinical trials and community research. Scoring and psychometric measurement properties of the MMAPAQ will be established in future studies. The PedsQL™ was found to have face validity in measuring concepts that affect the MMA and PA patient populations and should also be considered for use in clinical trials in MMA and PA.
Collapse
Affiliation(s)
| | | | - Jerry Vockley
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Kathy Stagni
- Organic Acidemia Association, Golden Valley, MN, USA
| | | | | | | | | |
Collapse
|
6
|
Minnee RC, Sakamoto S, Fukuda A, Uchida H, Hirukawa K, Honda M, Okumura S, Ito T, Yilmaz TU, Fang Y, Ikegami T, Lee KW, Kasahara M. Long-Term Outcomes of Living Donor Liver Transplantation for Methylmalonic Acidemia. Pediatr Transplant 2024; 28:e14834. [PMID: 39099301 DOI: 10.1111/petr.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Despite early diagnosis and medical interventions, patients with methylmalonic acidemia (MMA) suffer from multi-organ damage and recurrent metabolic decompensations. METHODS We conducted the largest retrospective multi-center cohort study so far, involving five transplant centers (NCCHD, KUH, KUHP, ATAK, and EMC), and identified all MMA patients (n = 38) undergoing LDLT in the past two decades. Our primary outcome was patient survival, and secondary outcomes included death-censored graft survival and posttransplant complications. RESULTS The overall 10-year patient survival and death-censored graft survival rates were 92% and 97%, respectively. Patients who underwent LDLT within 2 years of MMA onset showed significantly higher 10-year patient survival compared to those with an interval more than 2 years (100% vs. 81%, p = 0.038), although the death-censored graft survival were not statistically different (100% vs. 93%, p = 0.22). Over the long-term follow-up, 14 patients (37%) experienced intellectual disability, while two patients developed neurological complications, three patients experienced renal dysfunction, and one patient had biliary anastomotic stricture. The MMA level significantly decreased from 2218.5 mmol/L preoperative to 307.5 mmol/L postoperative (p = 0.038). CONCLUSIONS LDLT achieves favorable long-term patient and graft survival outcomes for MMA patients. While not resulting in complete cure, our findings support the consideration of early LDLT within 2 years of disease onset. This approach holds the potential to mitigate recurrent metabolic decompensations, and preserve the long-term renal function.
Collapse
Affiliation(s)
- Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuya Hirukawa
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Okumura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tonguç U Yilmaz
- Department of Organ Transplantation, Atakent Hospital, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Yitian Fang
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kwang W Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Xiao D, Shi C, Zhang Y, Li S, Ye Y, Yuan G, Miu T, Ma H, Diao S, Su C, Li Z, Li H, Zhuang G, Wang Y, Lu F, Gu X, Zhou W, Xiao X, Huang W, Wei T, Hao H. Using metabolic abnormalities of carriers in the neonatal period to evaluate the pathogenicity of variants of uncertain significance in methylmalonic acidemia. Front Genet 2024; 15:1403913. [PMID: 39076170 PMCID: PMC11284102 DOI: 10.3389/fgene.2024.1403913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 07/31/2024] Open
Abstract
Objective To accurately verify the pathogenicity of variants of uncertain significance (VUS) in MUT and MMACHC genes through mass spectrometry and silico analysis. Methods This multicenter retrospective study included 35 participating units (ClinicalTrials.gov ID: NCT06183138). A total of 3,071 newborns (within 7 days of birth) were sorted into carrying pathogenic/likely pathogenic (P/LP) variants and carrying VUS, non-variant groups. Differences in metabolites among the groups were calculated using statistical analyses. Changes in conservatism, free energy, and interaction force of MMUT and MMACHC variants were analyzed using silico analysis. Results The percentage of those carrying VUS cases was 68.15% (659/967). In the MMUT gene variant, we found that C3, C3/C2, and C3/C0 levels in those carrying the P/LP variant group were higher than those in the non-variant group (p < 0.000). The conservative scores of those carrying the P/LP variant group were >7. C3, C3/C0, and C3/C2 values of newborns carrying VUS (c.1159A>C and c.1286A>G) were significantly higher than those of the non-variant group and the remaining VUS newborns (p < 0.005). The conservative scores of c.1159A>C and c.1286A>G calculated by ConSurf analysis were 9 and 7, respectively. Unfortunately, three MMA patients with c.1159A>C died during the neonatal period; their C3, C3/C0, C3/C2, and MMA levels were significantly higher than those of the controls. Conclusion Common variants of methylmalonic acidemia in the study population were categorized as VUS. In the neonatal period, the metabolic biomarkers of those carrying the P/LP variant group of the MUT gene were significantly higher than those in the non-variant group. If the metabolic biomarkers of those carrying VUS are also significantly increased, combined with silico analysis the VUS may be elevated to a likely pathogenic variant. The results also suggest that mass spectrometry and silico analysis may be feasible screening methods for verifying the pathogenicity of VUS in other inherited metabolic diseases.
Collapse
Affiliation(s)
- Dongfan Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congcong Shi
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinchun Zhang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhao Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guilong Yuan
- Neonates Department, Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - Taohan Miu
- Neonatology Departmen, Heyuan Women and Children’s Hospital and Health Institute, Heyuan, China
| | - Haiyan Ma
- Department of Neonatology, Zhuhai Women and Children’s Hospital, Zhuhai, China
| | - Shiguang Diao
- Department of Neonatology, Yuebei People’s Hospital, Shaoguan, China
| | - Chaoyun Su
- Department of Neonatology, Maoming Huazhou People’s Hospital, Huazhou, China
| | - Zhitao Li
- Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, China
| | - Haiyan Li
- Department of Pediatrics, Huidong County Maternal and Child Health Hospital, Huidong, China
| | - Guiying Zhuang
- Department of Neonatology, The Maternal and Child Healthcare Hospital of Huadu, Guangzhou, China
| | - Yuanli Wang
- Precision Medicine Laboratory, The First People’s Hospital of Qinzhou, Qinzhou, China
| | - Feiyan Lu
- Huizhou Huiyang District Maternal and Child Health Hospital, Huizhou, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiben Huang
- Department of Neonatology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Liu Y, Huang Z, Qiu H, Tang F, Liu F, Zhang Y, Wang S. The association between serum methylmalonic acid, cobalamin-related biomarkers, and long-term mortality risk in cancer survivors: a prospective cohort study. Am J Clin Nutr 2024; 119:1122-1132. [PMID: 38702109 DOI: 10.1016/j.ajcnut.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Elevated serum methylmalonic acid (MMA), a marker of cobalamin (vitamin B12) deficiency, has been linked to cancer progression. However, the impact of MMA or cobalamin on mortality risk in cancer survivors remains unknown. OBJECTIVES To explore the relationship between MMA, serum, dietary, and supplement of cobalamin, MMA metabolism-related genes, and poor prognosis in adult cancer survivors. METHODS We analyzed data from 1988 cancer survivors aged ≥20 y. Patients were selected from the National Health and Nutrition Examination Survey and followed up until December 31, 2019. Weighted Cox proportional hazard regression was used to estimate hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) for mortality risk assessment. Genomic analysis identified MMA metabolism-related genes linked to early death in a 33-cancer-type cohort from The Cancer Genome Atlas. RESULTS Among 1988 participants, 872 deaths occurred over a 10-year follow-up. Higher serum MMA levels were significantly linked to increased long-term mortality risk (tertile 3 compared with tertile 1: adjusted HR: 1.37; 95% CI: 1.11, 1.70; P-trend < 0.001). No associations were found between serum, dietary, and supplement of cobalamin and cancer survivor mortality (each P-trend > 0.143). However, MMA-associated mortality was notable in patients without deficiency. When combining cobalamin and MMA categories, multivariate-adjusted HR (95% CI) for all-cause mortality was 2.06 (95% CI: 1.60, 2.65) in participants with >250 nmol/L and cobalamin >295.1 pmol/L compared with those with MMA ≤250 nmol/L and cobalamin >295.1 pmol/L. Moreover, reduced transcriptional levels of MMA metabolism-related genes, indicating decreased mitochondrial MMA metabolism capability, are linked to an unfavorable prognosis in certain cancer types. CONCLUSIONS Serum MMA was associated with long-term mortality risk in adult cancer survivors, which was more significant among individuals with higher levels of serum cobalamin. These findings suggest that mortality related to MMA was attributed to the insufficient flux of MMA metabolism, not cobalamin deficiency.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, People's Republic of China
| | - Zemin Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, People's Republic of China
| | - Hongbin Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, People's Republic of China
| | - Fan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, People's Republic of China
| | - Fengyi Liu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yiying Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jiamusi University, Jiamusi, People's Republic of China.
| | - Shanjie Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People's Republic of China.
| |
Collapse
|
9
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang H, Tang Y, Shen Y. Late-Onset Diffuse Lung Disease in an 8-Year-Old Girl. Chest 2024; 165:e71-e74. [PMID: 38461021 DOI: 10.1016/j.chest.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 03/11/2024] Open
Abstract
CASE PRESENTATION An 8-year-old girl presented with a 34-day history of cough, fatigue, and impaired exercise tolerance. She experienced cyanosis on exertion but denied fever, hemoptysis, hematuria, or seizures. Her perinatal and family histories were unremarkable, and she had no history of exposure to TB. A chest radiogram from a local clinic showed diffuse pulmonary lesions. Tuberculin skin test, interferon-γ release assay, and HIV antibody test results were all negative. Immunoglobulin levels and lymphocyte subsets were normal. The patient did not respond to IV azithromycin for 1 week for community-acquired pneumonia. She was transferred to our hospital because of progressive respiratory distress and hypoxemia.
Collapse
Affiliation(s)
- Huiying Wang
- Respiratory Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yu Tang
- Respiratory Department, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuelin Shen
- Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
11
|
Hakimzadeh Z, Gilani A, Yousefichaijan P, Sarmadian R. Acute fatal ventricular arrhythmia induced by severe hyperkalemia in a toddler with decompensated methylmalonic acidemia. J Med Case Rep 2024; 18:73. [PMID: 38395924 PMCID: PMC10893669 DOI: 10.1186/s13256-024-04406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Methylmalonic acidemia is a very rare genetic metabolic disease. Patients with isolated methylmalonic acidemia typically present with acute alterations of consciousness, failure to thrive, anorexia, vomiting, respiratory distress, and muscular hypotonia. Despite the evidence-based management, affected individuals experience significant morbidity and mortality. Hyperkalemia is one of the unusual complications of methylmalonic acidemia. CASE PRESENTATION In this paper, we describe a 4-year-old Persian boy with methylmalonic acidemia who developed life-threatening arrhythmia following severe hyperkalemia and metabolic acidosis. Emergent management of the condition was successfully carried out, and the rhythm changed to normal sinus rhythm by effectively reducing the serum potassium level. We discuss the possible etiology of this lethal condition and describe its management on the basis of the available evidence. CONCLUSION During metabolic decompensation in methylmalonic acidemia, frequent blood gas and electrolyte testing to prescribe and adjust therapy and annual echocardiogram and electrocardiogram screening are essential.
Collapse
Affiliation(s)
- Zahra Hakimzadeh
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roham Sarmadian
- Infectious Disease Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
12
|
Yuan Y, Ma Y, Wu Q, Huo L, Liu CF, Liu X. Clinical and electroencephalogram characteristics of methylmalonic acidemia with MMACHC and MUT gene mutations. BMC Pediatr 2024; 24:119. [PMID: 38355526 PMCID: PMC10865547 DOI: 10.1186/s12887-024-04559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVE This study investigated the clinical, imaging, and electroencephalogram (EEG) characteristics of methylmalonic acidemia (MMA) with nervous system damage as the primary manifestation. METHODS From January 2017 to November 2022, patients with nervous system injury as the main clinical manifestation, diagnosed with methylmalonic acidemia by metabolic and genetic testing, were enrolled and analyzed. Their clinical, imaging, and electroencephalogram data were analyzed. RESULTS A total of 18 patients were enrolled, including 15 males and 3 females. The clinical symptoms were convulsions, poor feeding, growth retardation, disorder of consciousness, developmental delay, hypotonia, and blood system changes. There were 6 cases (33%) of hydrocephalus, 9 (50%) of extracerebral space widened, 5 (27%) of corpus callosum thinning, 3 (17%) of ventricular dilation, 3 (17%) of abnormal signals in the brain parenchyma (frontal lobe, basal ganglia region, and brain stem), and 3 (17%) of abnormal signals in the lateral paraventricular. In addition, there were 3 cases (17%) of cerebral white matter atrophy and 1 (5%) of cytotoxic edema in the basal ganglia and cerebral peduncle. EEG data displayed 2 cases (11%) of hypsarrhythmia, 3 (17%) of voltage reduction, 12(67%) of abnormal discharge, 13 (72%) of abnormal sleep physiological waves or abnormal sleep structure, 1 (5%) of immature (delayed) EEG development, and 8 (44%) of slow background. There were 2 cases (11%) of spasms, 1 (5%) of atonic seizures, and 1 (5%) of myoclonic seizures. There were 16 patients (89%) with hyperhomocysteinemia. During follow-up, 1 patient was lost to follow-up, and 1 died. In total, 87.5% (14/16) of the children had varying developmental delays. EEG was re-examined in 11 cases, of which 8 were normal, and 3 were abnormal. Treatments included intramuscular injections of vitamin B12, L-carnitine, betaine, folic acid, and oral antiepileptic therapy. Acute treatment included anti-infective, blood transfusion, fluid replacement, and correcting acidosis. The other treatments included low-protein diets and special formula milk powder. CONCLUSION Methylmalonic acidemia can affect the central nervous system, leading to structural changes or abnormal signals on brain MRI. Metabolic screening and genetic testing help clarify the diagnosis. EEG can reflect changes in brain waves during the acute phase.
Collapse
Affiliation(s)
- Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Ma
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiong Wu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Moutapam-Ngamby-Adriaansen Y, Maillot F, Labarthe F, Lioger B. Blood cytopenias as manifestations of inherited metabolic diseases: a narrative review. Orphanet J Rare Dis 2024; 19:65. [PMID: 38355710 PMCID: PMC10865644 DOI: 10.1186/s13023-024-03074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Inherited Metabolic Diseases (IMD) encompass a diverse group of rare genetic conditions that, despite their individual rarity, collectively affect a substantial proportion, estimated at as much as 1 in 784 live births. Among their wide-ranging clinical manifestations, cytopenia stands out as a prominent feature. Consequently, IMD should be considered a potential diagnosis when evaluating patients presenting with cytopenia. However, it is essential to note that the existing scientific literature pertaining to the link between IMD and cytopenia is limited, primarily comprising case reports and case series. This paucity of data may contribute to the inadequate recognition of the association between IMD and cytopenia, potentially leading to underdiagnosis. In this review, we synthesize our findings from a literature analysis along with our clinical expertise to offer a comprehensive insight into the clinical presentation of IMD cases associated with cytopenia. Furthermore, we introduce a structured diagnostic approach underpinned by decision-making algorithms, with the aim of enhancing the early identification and management of IMD-related cytopenia.
Collapse
Affiliation(s)
- Yannick Moutapam-Ngamby-Adriaansen
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France.
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France.
| | - François Maillot
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1253, iBrain, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - François Labarthe
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- Service de Pédiatrie, CHRU de Tours, Tours Cedex 1, France
| | - Bertrand Lioger
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France
| |
Collapse
|
14
|
Guo Y, Zhu X, Song L, Wang Y, Gao J, Yuan E, Yu H, Fang Y, Shi Q, Zhao D, Zhang L. Genetic analysis of isolated methylmalonic acidemia in Henan, China: c.1663G>A variant of MMUT prevalent in the Henan population. Clin Chim Acta 2024; 553:117729. [PMID: 38128819 DOI: 10.1016/j.cca.2023.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is the most common organic acidemia in China, and isolated MMA accounts for approximately 30 % of all types of MMA. Common variants of the MMUT gene vary greatly around the world. The present study aims to determine the high-frequency and novel genetic variants of the MMUT gene in the Henan population of China and evaluate the prognosis of patients carrying the c.1663G>A (p.Ala555Thr) variant. METHODS We performed next-generation sequencing for 41 patients with isolated MMA screened by tandem mass spectrometry (MS/MS) and analysed the genetic results. We also evaluated the prognosis of patients with the c.1663G>A variant. We used Jalview software for multispecies sequence alignment and Missense3D and DynaMut to predict the protein function of the detected novel variants. RESULTS A total of 43 variants from 41 patients with isolated MMA were detected, of which c.1663G>A (14.63 %), c.729_730insTT (10.98 %), and c.1106G>A (8.53 %) are high-frequency variants of the MMUT gene in the Henan population. The patients carrying the c.1663G>A variant tended to be responsive to vitamin B12, have a low mortality rate. We also identified 5 novel variants (c.479C>T, c.811G>C, c.965T>A, c.1142G>A and c.1667C>T). CONCLUSION The rare variant c.1663G>A is prevalent in the Henan population, and infants with this variant tend to have good prognosis. Our findings, especially novel variants, will help broaden the spectrum of genetic variants and facilitate clinical diagnosis and genetic counselling for affected families.
Collapse
Affiliation(s)
- Yaqing Guo
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Xinyun Zhu
- Department of Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Liying Song
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Yu Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Jinshuang Gao
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Erfeng Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Haiyang Yu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Yang Fang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China
| | - Qianqian Shi
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| | - Dehua Zhao
- Department of Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
15
|
Hao Q, Jiang B, Zhao Y, Hu Z. Adult-onset combined methylmalonic acidemia and hyperhomocysteinemia, cblC type with aortic dissection and acute kidney injury: a case report. BMC Nephrol 2024; 25:13. [PMID: 38178022 PMCID: PMC10768229 DOI: 10.1186/s12882-023-03414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Combined methylmalonic acidemia (MMA) and hyperhomocysteinemia, cobalamin C (cblC) type, also named cblC deficiency is a rare autosomal recessive genetic metabolic disease. It progressively causes neurological, hematologic, renal and other system dysfunction. The clinical manifestations are relatively different due to the onset time of disease. CASE PRESENTATION This report describes a rare case of a 26 year old man with cblC deficiency who developed life-threatening aortic dissection and acute kidney injury (AKI) and showed neuropsychiatric symptoms with elevated serum homocysteine and methylmalonic aciduria. After emergent operation and intramuscular cobalamin supplementation therapy, the male recovered from aortic dissection, neurological disorder and AKI. Finally, two previously published compound heterozygous variants, c.482G > A (p.R161Q) and c.658_660del (p.K220del) in the MMACHC gene were detected in this patient and he was confirmed to have cblC deficiency. CONCLUSIONS Poor cognizance of presenting symptoms and biochemical features of adult onset cblC disease may cause delayed diagnosis and management. This case is the first to depict a case of adult-onset cblC deficiency with aortic dissection. This clinical finding may contribute to the diagnosis of cblC deficiency.
Collapse
Affiliation(s)
- Qiufa Hao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Bei Jiang
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| |
Collapse
|
16
|
Liang L, Ling S, Yu Y, Shuai R, Qiu W, Zhang H, Shen L, Wu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Gong Z, Chen T, Zhan X, Gu X, Han L. Evaluation of the clinical, biochemical, genotype and prognosis of mut-type methylmalonic acidemia in 365 Chinese cases. J Med Genet 2023; 61:8-17. [PMID: 37316190 DOI: 10.1136/jmg-2022-108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Methylmalonic acidemia (MMA), which results from defects in methylmalonyl-CoA mutase (mut type) or its cofactor, is the most common inherited organic acid metabolic disease in China. This study aimed to investigate the phenotype and genotype of mut-type MMA in Chinese patients. METHODS We recruited 365 patients with mut-type MMA; investigated their disease onset, newborn screening (NBS) status, biochemical metabolite levels, gene variations and prognosis; and explored the relationship between phenotype and genotype. RESULTS There were 152 patients diagnosed by tandem mass spectrometry (MS/MS) expanded NBS, 209 patients diagnosed because of disease onset without NBS and 4 cases diagnosed because of sibling diagnosis. The median age of onset was 15 days old, with a variety of symptoms without specificity. Urinary levels of methylmalonic acid and methylcitric acid (MCA) decreased after treatment. Regarding the prognosis, among the 152 patients with NBS, 50.6% were healthy, 30.3% had neurocognitive impairment and/or movement disorders and 13.8% died. Among the 209 patients without NBS, 15.3% were healthy, 45.9% had neurocognitive impairment and/or movement disorders and 33.0% died. In total, 179 variants were detected in the MMUT gene, including 52 novel variations. c.729_730insTT, c.1106G>A, c.323G>A, c.914T>C and c.1663G>A were the five most frequent variations. The c.1663G>A variation led to a milder phenotype and better prognosis. CONCLUSION There is a wide spectrum of variations in the MMUT gene with several common variations. Although the overall prognosis of mut-type MMA was poor, participation in MS/MS expanded NBS, vitamin B12 responsive and late onset are favourable factors for the prognosis.
Collapse
Affiliation(s)
- Lili Liang
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Shiying Ling
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yue Yu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatrics, Shanghai Changzheng Hospital, Shanghai, China
| | - Wenjuan Qiu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Linghua Shen
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Shengnan Wu
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Haiyan Wei
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Yongxing Chen
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xigui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Zhuwen Gong
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Ting Chen
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xia Zhan
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xuefan Gu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Lianshu Han
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
17
|
Vos EN, Demirbas D, Mangel M, Gozalbo MER, Levy HL, Berry GT. The treatment of biochemical genetic diseases: From substrate reduction to nucleic acid therapies. Mol Genet Metab 2023; 140:107693. [PMID: 37716025 DOI: 10.1016/j.ymgme.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.
Collapse
Affiliation(s)
- E Naomi Vos
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Didem Demirbas
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Matthew Mangel
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - M Estela Rubio Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; GROW, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy; UMD: United for Metabolic Diseases Member, Amsterdam, the Netherlands.
| | - Harvey L Levy
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Gerard T Berry
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
18
|
Fu X, Li S, Zhao Z, Kong L, Zhu J, Li H, Feng J, Tang W, Wu D, Kong X. Haplotype-based noninvasive prenatal diagnosis of methylmalonic acidemia and the discovery of a recurrent pathogenic haplotype associated with c.609G>A. Prenat Diagn 2023; 43:1544-1555. [PMID: 37957774 DOI: 10.1002/pd.6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Early diagnosis and intervention are crucial for the prognosis of methylmalonic acidemia (MMA). However, research focused on early prenatal diagnosis of MMA is limited. METHODS A 161.89kb capture panel was designed for selectively enriching highly heterozygous SNPs. Fetal genotypes were inferred using relative haplotype dosage (RHDO) and Bayes factor, followed by invasive prenatal diagnosis (IPD) for validation. A core pathogenic haplotype associated with c.609G>A was identified based on the frequency differences between pathogenic and normal haplotypes. RESULTS We recruited 41 pregnancies at risk of MMA with a median gestational age of 8+2 weeks. The assay success rate of NIPD-MMA for maternal variants was 92.7% (38/41), and after incorporating the paternal result, the overall assay success rate reached 100% (41/41). All NIPD results were concordant with IPD. Notably, a core haplotype (hap_2), comprising 28 SNPs, demonstrates significant enrichment within pathogenic haplotypes bearing the c.609G>A variation. On average, c.609G>A carriers had 22.38 heterozygous loci within these 28 SNPs. CONCLUSION NIPD-MMA presents a viable choice for early, accurate, and safe prenatal diagnosis. Furthermore, the discovery of the recurrent core pathogenic haplotype provides a novel approach for haplotype phasing and has the potential for realizing proband-independent NIPD in the future.
Collapse
Affiliation(s)
- Xinyu Fu
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaojun Li
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Zhenhua Zhao
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingrong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingqi Zhu
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanyun Li
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Feng
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Weiqin Tang
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Di Wu
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Yang H, Li M, Zou L, Zou H, Zhao Y, Cui Y, Han J. A regionally adapted HRM-based technique to screen MMACHC carriers for methylmalonic acidemia with homocystinuria in Shandong Province, China. Intractable Rare Dis Res 2023; 12:29-34. [PMID: 36873673 PMCID: PMC9976096 DOI: 10.5582/irdr.2023.01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Methylmalonic acidemia with homocystinuria (MMA-cblC) is an autosomal recessive genetic disorder of organic acid metabolism. Shandong, a northern province of China, has a significantly high incidence of about 1/4,000, suggesting a high carrying rate among the local population. The current study established a PCR technique involving high-resolution melting (HRM) to screen for carriers based on hotspot mutation analysis to further develop a preventive strategy to reduce the local incidence of this rare disease. Whole-exome sequencing of 22 families with MMA-cblC and a comprehensive literature review were used to identify MMACHC hotspot mutations in Shandong Province. Subsequently, a PCR-HRM assay based on the selected mutations was established and optimized for large-scale hotspot mutation screening. The accuracy and efficiency of the screening technique was validated using samples from 69 individuals with MMA-cblC and 1,000 healthy volunteers. Six hotspot mutations in the MMACHC gene (c.609G>A, c.658_660delAAG, c.80A>G, c.217C>T, c.567dupT and c.482G>A), which account for 74% of the alleles associated with MMA-cblC, were used to establish a screening technique. The established PCR-HRM assay detected 88 MMACHC mutation alleles in a validation study with 100% accuracy. In the general population in Shandong, the carrying rate of 6 MMACHC hotspot mutations was 3.4%. In conclusion, the 6 hotspots identified cover the majority of the MMACHC mutation spectrum, and the Shandong population has a particularly high carrying rate of MMACHC mutations. The PCR-HRM assay is highly accurate, cost-effective, and easy to use, making it an ideal choice for mass carrier screening.
Collapse
Affiliation(s)
- Haining Yang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Liang Zou
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Hui Zou
- Ji'nan Maternity and Child Care Hospital, Ji'nan 250000, Shandong, China
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| | - Yazhou Cui
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Yazhou Cui, and Yan Zhao, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, 6699 Qingdao Road, Ji'nan 250117, Shandong, China. E-mail: (JH); (YC); (YZ)
| |
Collapse
|
20
|
Chen T, Gao Y, Zhang S, Wang Y, Sui C, Yang L. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Front Neurosci 2023; 17:1110942. [PMID: 36777632 PMCID: PMC9909197 DOI: 10.3389/fnins.2023.1110942] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Methylmalonic acidemia (MMA) is a genetic disease of abnormal organic acid metabolism, which is one of the important factors affecting the survival rate and quality of life of newborns or infants. Early detection and diagnosis are particularly important. The diagnosis of MMA mainly depends on clinical symptoms, newborn screening, biochemical detection, gene sequencing and neuroimaging diagnosis. The accumulation of methylmalonic acid and other metabolites in the body of patients causes brain tissue damage, which can manifest as various degrees of intellectual disability and severe neurological dysfunction. Neuroimaging examination has important clinical significance in the diagnosis and prognosis of MMA. This review mainly reviews the etiology, pathogenesis, and nervous system development, especially the neuroimaging features of MMA.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengdong Zhang
- Department of Radiology, Shandong Yinan People’s Hospital, Linyi, Shandong, China
| | - Yuanyuan Wang
- Department of Radiology, Binzhou Medical University, Yantai, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Linfeng Yang
- Department of Radiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Linfeng Yang,
| |
Collapse
|
21
|
Chen T, Sui C, Lin S, Guo B, Wang Y, Yang L. Follow-up study of neuropsychological scores of infant patients with cobalamin C defects and influencing factors of cerebral magnetic resonance imaging characteristics. Front Neurosci 2022; 16:1093850. [PMID: 36590295 PMCID: PMC9795007 DOI: 10.3389/fnins.2022.1093850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to investigate whether baseline cerebral magnetic resonance imaging (MRI) characteristics could predict therapeutic responsiveness in patients with cobalamin C (cblC) defects. Materials and methods The cerebral MRI results of 40 patients with cblC defects were evaluated by a neuroradiologist. Neuropsychological scores and imaging data were collected. Neuropsychological tests were performed before and after standardized treatment. Results Thirty-eight patients initially underwent neuropsychological testing [developmental quotient (DQ)]. CblC defects with cerebellar atrophy, corpus callosum thinning and ventricular dilation had significantly lower DQs than those without (P < 0.05). Through a multivariate linear stepwise regression equation after univariate analysis, ventricular dilation was the most valuable predictor of lower DQs. Thirty-six patients (94.7%) underwent follow-up neuropsychological testing. The pre- and post-treatment DQ values were not significantly different (Z = -1.611, P = 0.107). The post-treatment DQ classification (normal, moderately low, or extremely low) showed nearly no change compared to the pretreatment DQ classification (k = 0.790, P < 0.001). Conclusion Ventricular dilation, cerebral atrophy and corpus callosum thinning are the main MRI abnormalities of cblC defects, and these manifestations are significantly correlated with delayed development in children. MRI findings can be considered an important tool for determining the severity of cblC defects.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Suna Lin
- Department of Scientific Research and Foreign Affairs, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bin Guo
- Department of Radiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Wang
- Department of Radiology, Binzhou Medical University, Yantai, Shandong, China
| | - Linfeng Yang
- Department of Radiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Linfeng Yang,
| |
Collapse
|
22
|
Sun S, Jin H, Rong Y, Song W, Li Q. Methylmalonic acid levels in serum, exosomes, and urine and its association with cblC type methylmalonic acidemia-induced cognitive impairment. Front Neurol 2022; 13:1090958. [PMID: 36582607 PMCID: PMC9792485 DOI: 10.3389/fneur.2022.1090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background The cblC type methylmalonic acidemia is the most common methylmalonic acidemia (MMA) in China. The biochemical characteristics of this disease include elevated methylmalonic acid and homocysteine (HCY), increased propionylcarnitine (C3), decreased free carnitine (C0). In this study, we aimed to clarify the roles of these biomarkers in cblC-MMA induced cognitive impairment and evaluate the capacity of methylmalonic acid in different fluids or exosomes to distinguish cblC-MMA induced cognitive impairment. Methods 15 non-inherited hyperhomocysteinemia (HHcy) patients, 42 cblC-MMA patients and 57 age- and sex-matched healthy children were recruited in this study. The levels of HCY were detected by an automatic immune analyzer. The levels of acylcarnitines and methylmalonic acid were detected by tandem mass spectrometer. Results The main findings were all biomarkers as HCY, acylcarnitines and methylmalonic acid had capacities for distinguishing patients with cblC-MMA induced cognitive impairment from healthy children. The methylmalonic acid in different fluids or exosomes had good performances for distinguishing patients with cblC-MMA induced cognitive impairment from HHcy patients. The methylmalonic acid in serum exosomes and neuronal-derived exosomes were able to distinguishing cblC-MMA patients with cognitive impairment from patients without cognitive impairment. The methylmalonic acid in neuronal-derived exosomes might be helpful to evaluate the severity of cblC-MMA induced cognitive impairment. Discussion Methylmalonic acid levels in serum exosomes, especially in serum neuronal-derived exosomes, serve as potential biomarkers for distinguishing cblC-MMA induced cognitive impairment.
Collapse
Affiliation(s)
- Shuqi Sun
- Department of Clinical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Jin
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Rong
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenqi Song
- Department of Clinical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiliang Li
- Department of Clinical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China,*Correspondence: Qiliang Li
| |
Collapse
|
23
|
Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022; 10:6077-6115. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exogenously delivered mRNA-based drugs are emerging as a new class of therapeutics with the potential to treat several diseases. Over the last decade, advancements in the design of non-viral delivery tools have enabled mRNA to be evaluated for several therapeutic purposes including protein replacement therapies, gene editing, and vaccines. However, in vivo delivery of mRNA to targeted organs and cells remains a critical challenge. Evaluation of the biodistribution of mRNA vehicles is of utmost importance for the development of effective pharmaceutical candidates. In this review, we discuss the recent advances in the design of nanoparticles loaded with mRNA and extrapolate the key factors influencing their biodistribution following administration. Finally, we highlight the latest developments in the preclinical and clinical translation of mRNA therapeutics for protein supplementation therapy.
Collapse
Affiliation(s)
- Matthias Zadory
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Lopez
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Samuel Babity
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Simon-Pierre Gravel
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
24
|
Trofimova AV, Reddy KM. Imaging of Inherited Metabolic and Endocrine Disorders. Clin Perinatol 2022; 49:657-673. [PMID: 36113928 DOI: 10.1016/j.clp.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
"Inherited metabolic disorders represent a large group of disorders of which approximately 25% present in neonatal period with acute metabolic decompensation, rapid clinical deterioration, and often nonspecific imaging findings. Neonatal onset signifies the profound severity of the metabolic abnormality compared with cases with later presentation and necessitates rapid diagnosis and urgent therapeutic measures in an attempt to decrease the extent of brain injury and prevent grave neurologic sequela or death. Here, the authors discuss classification and clinical and imaging findings in a spectrum of metabolic and endocrine disorders with neonatal presentation."
Collapse
Affiliation(s)
- Anna V Trofimova
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA.
| | - Kartik M Reddy
- Children's Healthcare of Atlanta, Radiology Department, 1405 Clifton Road NE, Atlanta, GA 30322, USA; Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
25
|
Madhana Priya N, Udhaya Kumar S, Thirumal Kumar D, Magesh R, Siva R, Gnanasambandan R, George Priya Doss C. Deciphering the effect of mutations in MMAA protein causing methylmalonic acidemia-A computational approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:199-220. [PMID: 36088076 DOI: 10.1016/bs.apcsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Methylmalonic acidemia (MMA) is a rare genetic disorder affecting multiple body systems. We aimed to investigate the pathogenic mutations in MMAA that are associated with isolated methylmalonic acidemia to identify the structural behavior of MMAA upon mutation. The algorithms such as PredictSNP, iStable, ConSurf, and Align GVGD were employed to analyze the consequence of the mutations. Molecular docking was carried out for the native MMAA, L89P, G274D, and R359G to interpret its interactions with the GDP substrate. The docked complexes were simulated for 200ns aiding GROMACS in apprehending the behavior of MMAA upon mutation and GDP binding. After simulation, cα disruptions were observed using the RMSF plot, which indicated that several regions of mutant MMAAs have highly fluctuated. The gyration and H-bond plots were used to understand the compactness and intermolecular interaction with the GDP molecule. The MDS analysis showed that the mutations L89P, G274D, and R359G are highly unstable even after GDP binding, with the least compactness, fewer H-bonds, and larger conformational cα motions. Our study provided structural and dynamic insights into MMAA protein, which further helps to characterize these mutants and provide potential treatment strategies for MMA patients.
Collapse
Affiliation(s)
- N Madhana Priya
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, India
| | - R Magesh
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - R Siva
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
26
|
Li YQ, Tan GJ, Zhou YQ. Digital PCR and its applications in noninvasive prenatal testing. Brief Funct Genomics 2022; 21:376-386. [PMID: 35923115 DOI: 10.1093/bfgp/elac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
In the past decade, digital PCR (dPCR), as a new nucleic acid absolute quantification technology, has been widely used in clinical research. dPCR does not rely on the standard curve and has a higher tolerance to inhibitors. Therefore, it is more accurate than quantitative real-time PCR (qPCR) for the absolute quantification of target sequences. In this article, we aim to review the application of dPCR in noninvasive prenatal testing (NIPT). We focused on the progress of dPCR in screening and identifying fetal chromosome aneuploidies and monogenic mutations. We introduced some common strategies for dPCR in NIPT and analyzed the advantages and disadvantages of different methods. In addition, we compared dPCR with qPCR and next-generation sequencing, respectively, and described their superiority and shortcomings in clinical applications. Finally, we envisaged what the future of dPCR might be in NIPT. Although dPCR can provide reproducible results with improved accuracy due to the digital detection system, it is essential to combine the merits of dPCR and other molecular techniques to achieve more effective and accurate prenatal diagnostic strategies.
Collapse
Affiliation(s)
- Yue-Qi Li
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Gong-Jun Tan
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| | - Yu-Qiu Zhou
- Clinical Laboratory & Zhuhai Institute of Medical Genetics, Zhuhai Centre for Maternity and Child Healthcare & Zhuhai Women and Children's Hospital, Zhuhai City, Guangdong Province, China
| |
Collapse
|
27
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
28
|
Aliyar A, Endrakanti M, Singh RK, Elavarasi A, Gupta N, Vibha D, Tripathi M. Late-onset cobalamin C disease: rare but treatable. Pract Neurol 2022; 22:practneurol-2022-003447. [PMID: 35803728 DOI: 10.1136/practneurol-2022-003447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
Abstract
Cobalamin C disease is the most common inborn error of cobalamin metabolism, resulting from mutations in methylmalonic aciduria and homocystinuria type C protein (MMACHC) gene. There is associated elevation of homocysteine and methylmalonic acid and decreased synthesis of methionine. It is a multisystem disorder characterised by cognitive impairment, psychiatric manifestations, haematological manifestations and thromboembolic phenomena. Its variable clinical presentation and wide age distribution at presentation necessitates a high index of diagnostic suspicion. The diagnosis is suggested by amino acid chromatography and confirmed by sequencing analysis of the MMACHC gene Parenteral hydroxycobalamin and betaine can bring significant clinical and biochemical improvement and is the recommended long-term therapy.
Collapse
Affiliation(s)
- Aminu Aliyar
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mounika Endrakanti
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh K Singh
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Neerja Gupta
- Division of Genetics, Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Vibha
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Wang S, Wang X, Xi J, Yang W, Zhu M. Case Report: A Case of Adult Methylmalonic Acidemia With Bilateral Cerebellar Lesions Caused by a New Mutation in MMACHC Gene. Front Neurol 2022; 13:935604. [PMID: 35865640 PMCID: PMC9294225 DOI: 10.3389/fneur.2022.935604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acidemia is a severe heterogeneous disorder of methylmalonate and cobalamin (Cbl; vitamin B12) metabolism with poor prognosis. Around 90% of reported patients with methylmalonic acidemia (MMA) are severe infantile early onset, while cases with late-onset MMA have been rarely reported. Few reported late-onset MMA patients presented with atypical clinical symptoms, therefore, often misdiagnosed if without family history. Herein, we report a 29-year-old female who was admitted to our hospital due to symptoms manifested as encephalitis. The brain MRI showed symmetrical bilateral cerebellar lesions with Gd enhancement. Laboratory tests showed significantly elevated levels of homocysteine and methylmalonic acid. A genetic analysis identified a novel homozygous mutation (c.484G>A; p.Gly162 Arg) in the MMACHC gene. The patient was diagnosed with MMA, and her symptoms improved dramatically with intramuscular adenosine cobalamin treatment. In conclusion, for patients with symmetrical lesions in the brain, the possibility of metabolic diseases should be considered, detailed medical and family history should be collected, and metabolic screening tests as well as gene tests are necessary for correct diagnosis. The mutation diversity in MMACHC gene is an important factor leading to the heterogeneity of clinical manifestations of patients with MMA.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Mingqin Zhu
| |
Collapse
|
30
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
31
|
Waisbren SE. Review of neuropsychological outcomes in isolated methylmalonic acidemia: recommendations for assessing impact of treatments. Metab Brain Dis 2022; 37:1317-1335. [PMID: 35348993 DOI: 10.1007/s11011-022-00954-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.
Collapse
Affiliation(s)
- Susan E Waisbren
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Zhu J, Wan S, Zhao X, Zhu B, Lv Y, Jiang H. Acute Lymphoblastic Leukemia in Combined Methylmalonic Acidemia and Homocysteinemia (cblC Type): A Case Report and Literature Review. Front Genet 2022; 13:856552. [PMID: 35495149 PMCID: PMC9048794 DOI: 10.3389/fgene.2022.856552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Methylmalonic acidemia (MMA) can display many clinical manifestations, among which acute lymphoblastic leukemia (ALL) has not been reported, and congenital heart disease (CHD) is also rare. Case presentation: We report an MMA case with ALL and CHD in a 5.5-year-old girl. With developmental delay and local brain atrophy in MRI, she was diagnosed with cerebral palsy at 9 months old. Rehabilitation was performed since then. This time she was admitted to hospital because of weakness and widespread bleeding spots. ALL-L2 (pre-B-cell) was confirmed by bone marrow morphology and immunophenotyping. Echocardiography showed patent foramen ovale. The girl was treated with VDLD and CAML chemotherapy, during which she developed seizures, edema and renal insufficiency. Decrease of muscle strength was also found in physical examination. Screening for inherited metabolic disorders showed significantly elevated levels of methylmalonate-2, acetylcarnitine (C2), propionylcarnitine (C3), C3/C2 and homocysteine. Gene analysis revealed a compound heterozygous mutaion in MMACHC (NM_015,560): c.80A > G (p.Gln27Arg) and c.609G > A (p.Trp203*). CblC type MMA was diagnosed. Intramuscular injection of cyanocobalamin and intravenous L-carnitine treatment were applied. The edema vanished gradually, and chemotherapy of small dosage of vindesine was given intermittently when condition permitted. 2 months later, muscle strength of both lower limbs were significantly improved to nearly grade 5. The levels of methylmalonic acid and homocysteine were improved. Conclusion: Metabolic disease screening and gene analysis are very necessary for diseases with complex clinical symptoms. ALL can be a rare manifestation for MMA. Synopsis: We report a case of methylmalonic acidemia with acute lymphoblastic leukemia and congenital heart disease, which uncovered the importance of genetic testing and metabolic diseases screening in patients with multiple systemic organ involvement.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Shuisen Wan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xueqi Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Binlu Zhu
- Department of Pediatrics, West China Second University Hospital, Chengdu, China
| | - Yuan Lv
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Hongkun Jiang,
| |
Collapse
|
33
|
Hu S, Kong X. The genotype analysis and prenatal genetic diagnosis among 244 pedigrees with methylmalonic aciduria in China. Taiwan J Obstet Gynecol 2022; 61:290-298. [PMID: 35361390 DOI: 10.1016/j.tjog.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate the phenotypes, biochemical features and genotypes for 244 pedigrees with methylmalonic aciduria (MMA) in China, and to perform the prenatal genetic diagnosis by chorionic villus for these pedigrees. MATERIALS AND METHODS Gene analyses were performed for 244 pedigrees. There are 130 pedigrees, chorionic villus sampling was performed on the pregnant women to conduct the prenatal diagnosis. RESULTS Among 244 patients, 168 (68.9%) cases were combined methylmalonic aciduria and homocystinuria, 76 (31.1%) cases were isolated methylmalonic aciduria. All the patients were diagnosed with MMA by their clinical manifestation, elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and/or urine/blood methylmalonic acid with or without homocysteine. MMACHC, MMUT, SUCLG1 and LMBRD1 gene variants were found in 236 (96.7%) pedigrees included 6 probands with only one heterozygous variant out of 244 cases. For the 130 pedigrees who received a prenatal diagnosis, 22 fetuses were normal, 69 foetuses were carriers of heterozygous variants, and the remaining 39 foetuses harboured compound heterozygous variants or homozygous variants. The follow-up results were consistent with the prenatal diagnosis. CONCLUSION The present study indicates genetic heterogeneity in MMA patients. Genetic analysis is a convenient method for prenatal diagnosis that will aid in avoiding the delivery of MMA patients.
Collapse
Affiliation(s)
- Shuang Hu
- The First Affiliated Hospital of Zhengzhou University, Genetic and Prenatal Diagnosis Center, No.1 Jianshe East Road, Zhengzhou, Henan, CN 450052, China.
| | - Xiangdong Kong
- The First Affiliated Hospital of Zhengzhou University, Genetic and Prenatal Diagnosis Center, No.1 Jianshe East Road, Zhengzhou, Henan, CN 450052, China.
| |
Collapse
|
34
|
Li X, He J, He L, Zeng Y, Huang X, Luo Y, Li Y. Spectrum Analysis of Inherited Metabolic Disorders for Expanded Newborn Screening in a Central Chinese Population. Front Genet 2022; 12:763222. [PMID: 35095998 PMCID: PMC8790479 DOI: 10.3389/fgene.2021.763222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal inherited metabolic disorders (IMDs) are closely associated with early neonatal death and abnormal growth and development. Increasing attention has been paid to IMDs because of their high incidence and diversity. However, there are no reports about the incidence of IMDs in Changsha, China. Therefore, we retrospectively analyzed the screening results of neonates to evaluate the characteristics of IMDs in the area. From January 2016 to December 2020, 300,849 neonates were enrolled for expanded newborn screening by tandem mass spectrometry in the Neonatal Disease Screening Center of the Changsha Hospital for Maternal & Child Health Care. Newborns with mild initial results were recalled for repeated tests; if the second test was still positive, the patient was referred for confirmatory tests. A total of 71 confirmed cases were identified in our study, with an incidence rate of 1:4,237. There were 28 cases of amino acid metabolic disorders, representing 39.44% of the IMDs diagnosed, with an incidence rate of 1:10,745. Twelve newborns were diagnosed with organic acid metabolic disorders, accounting for 16.66% of IMDs, with an incidence rate of 1:25,071. There were 31 cases of fatty acid oxidation disorders, representing 43.05% of IMDs, with an incidence rate of 1:9,705. Overall, 14 types of IMDs were found in Changsha. The most common disorders in the region were primary carnitine deficiency, hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase deficiency. Their incidence rate is respectively 1:13,675, 1:16,714 and 1:42,978. The mutations in PAH, SLC22A5, and ACADS are the leading causes of IMDs in this area. This study demonstrates the importance of utilizing MS/MS in IMD screening for early diagnosis and treatment. This strategy may be used for prenatal genetic counseling to avoid irreversible growth and intellectual development disorders in children.
Collapse
Affiliation(s)
- Xia Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Jun He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Ling He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yudong Zeng
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Xuzhen Huang
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Yechao Luo
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yujiao Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| |
Collapse
|
35
|
Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in Neurometabolic Diseases. CHILDREN (BASEL, SWITZERLAND) 2022; 9:97. [PMID: 35053723 PMCID: PMC8774396 DOI: 10.3390/children9010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Neurometabolic disorders are an important group of diseases that mostly occur in neonates and infants. They are mainly due to the lack or dysfunction of an enzyme or cofactors necessary for a specific biochemical reaction, which leads to a deficiency of essential metabolites in the brain. This, in turn, can cause certain neurometabolic diseases. Disruption of metabolic pathways, and the inhibition at earlier stages, may lead to the storage of reaction intermediates, which are often toxic to the developing brain. Symptoms are caused by the progressive deterioration of mental, motor, and perceptual functions. The authors review the diseases with microcephaly, which may be one of the most visible signs of neurometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Justyna Paprocka
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (W.K.); (K.K.); (M.M.)
| |
Collapse
|
36
|
Mukherjee S, Kotnis A, Ray SK, Vaidyanathan K, Singh S, Mittal R. Current Scenario of Clinical Diagnosis to Identify Inborn Errors of Metabolism with Precision Profiling for Expanded Screening in Infancy in a Resource-limited Setting. Curr Pediatr Rev 2022; 19:34-47. [PMID: 35379152 DOI: 10.2174/1573396318666220404113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Inborn errors of metabolism (IEM) are a diverse collection of abnormalities that cause a variety of morbidities and mortality in children and are classified as uncommon genetic diseases. Early and accurate detection of the condition can save a patient's life. By aiding families as they navigate the experience of having a child with an IEM, healthcare practitioners have the chance to reduce the burden of negative emotional consequences. New therapeutic techniques, such as enzyme replacement and small chemical therapies, organ transplantation, and cellular and gene-based therapies using whole-genome sequencing, have become available in addition to traditional medical intake and cofactor treatments. In the realm of metabolic medicine and metabolomics, the twentyfirst century is an exciting time to be alive. The availability of metabolomics and genomic analysis has led to the identification of a slew of novel diseases. Due to the rarity of individual illnesses, obtaining high-quality data for these treatments in clinical trials and real-world settings has proven difficult. Guidelines produced using standardized techniques have helped enhance treatment delivery and clinical outcomes over time. This article gives a comprehensive description of IEM and how to diagnose it in patients who have developed clinical signs early or late. The appropriate use of standard laboratory outcomes in the preliminary patient assessment is also emphasized that can aid in the ordering of specific laboratory tests to confirm a suspected diagnosis, in addition, to begin treatment as soon as possible in a resource limiting setting where genomic analysis or newborn screening facility is not available.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | | | - Kannan Vaidyanathan
- Department of Biochemistry, Amrita Institute of Medical Science & Research Center, Kochi, Kerala-682041, India
| | - Snighdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
37
|
Xu B, Zhang L, Chen Q, Wang Y, Peng Y, Tang H. Case Report: A Case of Late-Onset Combined Methylmalonic Acidemia and Hyperhomocysteinemia Induced by a Vegetarian Diet. Front Pediatr 2022; 10:896177. [PMID: 35903162 PMCID: PMC9315243 DOI: 10.3389/fped.2022.896177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acidemia is a rare autosomal recessive metabolic disease. However, because of the atypical clinical symptoms, the type of late-onset methylmalonic academia is often misdiagnosed. Especially when the blood vitamin B12 and folic acid levels are normal, it is not easy to think of this disease. Herein we report a 9-year-old girl who developed normally on a relatively balanced diet before 7 years of age. However, she presented with fatigue and attention deficit when she followed a vegetarian diet. Laboratory examination showed moderate macrocytic anemia, high levels of homocysteine, high level of propionylcarnitine/acetylcarnitine, urinary methylmalonic acid and methyl citrate. Gene mutation analysis showed c.609G > A and c.80A > G compound heterozygous mutations in the MMACHC gene, supported late-onset combined methylmalonic academia with homocysteinemia. Then treatment performed with add meat to the diet, vitamin B12, folic acid betaine and L-carnitine supplement. One week later, the child's clinical symptoms and the laboratory examinations were significantly improved.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Lihong Zhang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Qiang Chen
- Department of Emergency, Baoding No. 1 Central Hospital, Baoding, China
| | - Yajuan Wang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Yahong Peng
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| | - Hui Tang
- Department of Pediatrics, Baoding No. 1 Central Hospital, Baoding, China
| |
Collapse
|
38
|
Elkhalifa D, Rayan M, Negmeldin AT, Elhissi A, Khalil A. Chemically modified mRNA beyond COVID-19: Potential preventive and therapeutic applications for targeting chronic diseases. Biomed Pharmacother 2022; 145:112385. [PMID: 34915673 PMCID: PMC8552589 DOI: 10.1016/j.biopha.2021.112385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.
Collapse
Affiliation(s)
- Dana Elkhalifa
- Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T Negmeldin
- Department of Pharmaceutical Sciences, College of Pharmacy and Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar; Office of the Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
39
|
Brennerová K, Škopková M, Ostrožlíková M, Šaligová J, Staník J, Bzdúch V, Gašperíková D. Genetic testing is necessary for correct diagnosis and treatment in patients with isolated methylmalonic aciduria: a case report. BMC Pediatr 2021; 21:578. [PMID: 34915869 PMCID: PMC8675494 DOI: 10.1186/s12887-021-03067-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background Isolated methylmalonic aciduria can be caused by pathogenic mutations in the gene for methylmalonyl-CoA mutase or in the genes encoding enzymes involved in the intracellular metabolism of cobalamin. Some of these mutations may be cobalamin responsive. The type of methylmalonic aciduria cannot always be assumed from clinical manifestation and the responsiveness to cobalamin has to be assessed for appropriate cobalamin administration, or to avoid unnecessary treatment. The cases presented herein highlight the importance of genetic testing in methylmalonic aciduria cases and the need for standardisation of the in vivo cobalamin-responsiveness assessment. Case presentation We describe two patients who presented in the first week of life with rapid neurological deterioration caused by metabolic acidosis with severe hyperammonaemia requiring extracorporeal elimination in addition to protein restriction, energy support, carnitine, and vitamin B12 treatment. The severity of the clinical symptoms and high methylmalonic acid concentrations in the urine (>30,000 μmol/mmol of creatinine) without hyperhomocysteinaemia in both of our patients suggested isolated methylmalonic aciduria. Based on the neonatal manifestation and the high methylmalonic acid urine levels, we assumed the cobalamin non-responsive form. The in vivo test of responsiveness to cobalamin was performed in both patients. Patient 1 was evaluated as non-responsive; thus, intensive treatment with vitamin B12 was not used. Patient 2 was responsive to cobalamin, but the dose was decreased to 1 mg i.m. every two weeks with daily oral treatment due to non-compliance. Genetic tests revealed bi-allelic mutations in the genes MMAB and MMAA in Patient 1 and 2, respectively. Based on these results, we were able to start intensive treatment with hydroxocobalamin in both patients. After the treatment intensification, there was no acute crisis requiring hospitalisation in Patient 1, and the urine methylmalonic acid levels further decreased in Patient 2. Conclusions Despite carrying out the in vivo test of responsiveness to cobalamin in both patients, only the results of molecular genetic tests led us to the correct diagnosis and enabled intensive treatment with hydroxocobalamin. The combination of the standardized in vivo test of cobalamin responsiveness and genetic testing is needed for accurate diagnosis and appropriate treatment of isolated methylmalonic aciduria.
Collapse
Affiliation(s)
- Katarína Brennerová
- Department of Paediatrics, Medical Faculty of Comenius University and National Institute for Children's Diseases, Limbová 1, 833 40, Bratislava, Slovakia
| | - Martina Škopková
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Mária Ostrožlíková
- Department of Laboratory Medicine, National Institute for Children's Diseases, Limbova 1, 833 40, Bratislava, Slovakia
| | - Jana Šaligová
- Department of Paediatrics, Medical Faculty of P. J. Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Juraj Staník
- Department of Paediatrics, Medical Faculty of Comenius University and National Institute for Children's Diseases, Limbová 1, 833 40, Bratislava, Slovakia.,Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Vladimír Bzdúch
- Department of Paediatrics, Medical Faculty of Comenius University and National Institute for Children's Diseases, Limbová 1, 833 40, Bratislava, Slovakia
| | - Daniela Gašperíková
- Laboratory of Diabetes and Metabolic Disorders, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
40
|
Inherited metabolic diseases: aminoacidopathies, organic acidemia, defects of mitochondrial β-oxidation. A brief overview. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inherited metabolic diseases are a large group of inherited monogenic diseases. Metabolic disorders can cause child disability and mortality. Tandem mass spectrometry is a powerful technology that allows to diagnosis a large number of hereditary metabolic diseases. Clinical manifestations are variable, but more often the damages of nervous system, heart, liver, kidneys, hyperammonemia, hypo/hyperglycemia take place. The disease can make its debut at any age, but the severe forms of the disease manifest at infancy. Early diagnosis and treatment can significantly improve the prognosis; many countries expand the list of diseases included in screening programs. At the beginning of 2021 in most regions of the Russian Federation mass newborn screening is carried out for five hereditary metabolic diseases. The age and the range of clinical manifestation are variable; therefore, knowledge of this pathology is very important both for pediatricians and therapists, and for specialized doctors. The article presents a brief description of next groups of metabolic diseases: aminoacidopathies, organic acidurias and fatty acid oxidation defects.
Collapse
|
41
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
42
|
Hwang N, Jang JH, Cho EH, Choi R, Choi SJ, Park HD. Prenatal diagnosis of combined methylmalonic acidemia and homocystinuria cobalamin C type using clinical exome sequencing and targeted gene analysis. Mol Genet Genomic Med 2021; 9:e1838. [PMID: 34655177 PMCID: PMC8606215 DOI: 10.1002/mgg3.1838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Background Combined methylmalonic acidemia and homocystinuria is a rare inherited disorder of intracellular cobalamin metabolism caused by biallelic variants in one of the following genes: MMACHC (cblC), MMADHC (cblD), LMBRD1 (cblF), ABCD4 (cblJ), THAP11 (cblX‐like), and ZNF143 (cblX‐like), or a hemizygous variant in HCFC1 (cblX). Prenatal diagnosis of combined methylmalonic acidemia with homocystinuria is crucial for high‐risk couples since the disorder can be life‐threatening for offspring. We would like to describe two infant deaths both of which are likely attributable to cblC despite not having a genetic confirmation, and subsequent pregnancy and prenatal genetic testing. Methods Parental clinical exome sequencing and targeted Sanger sequencing of MMACHC gene in amniotic fluid was performed to check the carrier status of the fetus. Results Parental clinical exome sequencing revealed a heterozygous pathogenic variant [NM_015506.2:c.217C>T (p.Arg73*)] in the MMACHC gene of the mother and [NM_015506.2:c.609G>A (p.Trp203*)] in the MMACHC gene of the father. Targeted Sanger sequencing of MMACHC gene in amniotic fluid revealed that the fetus carried only one nonsense variant [NM_015506.2:c.609G>A (p.Trp203*)], which was inherited from the father. The mother delivered a healthy baby and the neonate did not show any symptoms or signs of combined methylmalonic acidemia and homocystinuria after birth. Conclusion We present a case of prenatal diagnosis with parental exome sequencing, which successfully diagnosed the carrier status of the fetus and parents in a combined methylmalonic acidemia and homocystinuria family.
Collapse
Affiliation(s)
- Narae Hwang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Hae Cho
- Green Cross Genome, Yongin, Republic of Korea
| | - Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Green Cross Laboratories, Yongin, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
43
|
Yu Y, Ling S, Shuai R, Qiu W, Zhang H, Liang L, Ji W, Liu Y, Gu X, Han L. Clinical features and outcomes of patients with cblC type methylmalonic acidemia carrying gene c.609G>A mutation. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:436-443. [PMID: 34704411 PMCID: PMC8771641 DOI: 10.3724/zdxbyxb-2021-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To explore the clinical features and long-term outcomes of patients with cblC type methylmalonic acidemia (MMA) carrying c.609G>A (p.W203X) mutation of gene. The clinical and laboratory findings of 720 patients with MMA carrying the c.609G>A mutation were retrospectively analyzed. There were 172 cases carrying homozygous mutations of c.609G>A (group A), 169 cases carrying compound heterozygous mutations of c.609G>A with c.482G>A (p.R161Q), c.80A>G or c.394C>T (p.R132X) (group B), and 379 cases carrying compound heterozygous mutations of c.609G>A with c.658_660delAAG(p.K220del), c.315A>Tor c.567dupT(p.I190fs13)(group C).The clinical manifestations, the level of blood acylcarnitine, homocysteine and urinary organic acid, and the therapeutic efficacy were compared among groups. Logistic regression was used to analyze the factors influencing the prognosis of patients. There were 306 patients (42.5%) detected from newborn screening, including 156 cases with disease onset; and 414 patients were not detected from the screening, among whom 10 cases were diagnosed by testing after the sibling confirmed, and the remaining 404 were clinical cases. In 560 patients with disease onset, the median onset age is (3 days to 20 years). The onset age of patients in group B was later than that in group A and group C (<0.01). Patients aged mostly manifested as vomiting, diarrhea, feeding difficulties and convulsions, while those year mostly manifested as movement disorders and mental retardation. Patients with renal disease all carried mutations of c.80A>G or c.482G>A, and patients with pulmonary hypertension all carried c.80A>G mutations. A total of 621 cases had long-term follow-up, 156 cases (25.1%) developed well, 433 cases (69.7%) had development delay and 32 cases (5.2%) died. The available data of 559 cases were analyzed by logistic regression, and the results showed that the neonatal screening, disease onset, age of onset and gene mutation site were significantly associated with the prognosis of patients (<0.05 or <0.01). The c.609G>A mutation in gene is associated with early-onset MMA, and most patients, clinical onset occurred within 1 month after birth. The neonatal screening and early treatment can improve the prognosis of patients,whereas clinical onset is unfavorable for prognosis. Patients with c.609G>A homozygous mutation have a worse prognosis than those with the compound heterozygous mutation of c.609G>A with other mutations.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Shiying Ling
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ruixue Shuai
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yuchao Liu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrino- and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| |
Collapse
|
44
|
Cai X, Genchev GZ, He P, Lu H, Yu G. Demographics, in-hospital analysis, and prevalence of 33 rare diseases with effective treatment in Shanghai. Orphanet J Rare Dis 2021; 16:262. [PMID: 34103049 PMCID: PMC8186176 DOI: 10.1186/s13023-021-01830-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rare diseases are ailments which impose a heavy burden on individual patients and global society as a whole. The rare disease management landscape is not a smooth one-a rare disease is quite often hard to diagnose, treat, and investigate. In China, the country's rapid economic rise and development has brought an increased focus on rare diseases. At present, there is a growing focus placed on the importance and public health priority of rare diseases and on improving awareness, definitions, and treatments. METHODS In this work we utilized clinical data from the Shanghai HIE System to characterize the status of 33 rare diseases with effective treatment in Shanghai for the time period of 2013-2016. RESULTS AND CONCLUSION First, we describe the total number of patients, year-to-year change in new patients with diagnosis in one of the target diseases and the distribution of gender and age for the top six (by patient number) diseases of the set of 33 rare diseases. Second, we describe the hospitalization burden in terms of in-hospital ratio, length of stay, and medical expenses during hospitalization. Finally, rare disease period prevalence is calculated for the rare diseases set.
Collapse
Affiliation(s)
- Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Ping He
- Shanghai Hospital Development Center, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.,SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
45
|
Chen T, Liang L, Zhang H, Ye J, Qiu W, Xiao B, Zhu H, Wang L, Xu F, Gong Z, Gu X, Han L. Value of amniotic fluid homocysteine assay in prenatal diagnosis of combined methylmalonic acidemia and homocystinuria, cobalamin C type. Orphanet J Rare Dis 2021; 16:125. [PMID: 33691766 PMCID: PMC7945211 DOI: 10.1186/s13023-021-01762-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Combined methylmalonic acidemia and homocystinuria, cobalamin C type (cblC defect) is the most common inborn error of cobalamin metabolism, and different approaches have been applied to its prenatal diagnosis. To evaluate the reliability of biochemical method for the prenatal diagnosis of cblC defect, we conducted a retrospective study of our 10-year experience at a single center. METHODS 248 pregnancies whose probands were diagnosed as cblC defect were referred to our center for prenatal diagnosis from January 2010 to December 2019. Prenatal data of Hcy levels determined by enzymatic cycling assay, acylcarnitine analysis using liquid chromatography tandem mass spectrometry, organic acid analysis using gas chromatography mass spectrometry, and genetic analysis by direct sequencing of 248 at-risk fetuses were retrospectively reviewed. RESULTS For 2.0 and 16.0 μmol/L levels of Hcy AF samples, the relative errors were - 2.5% and 2.8%, respectively. The respective measurement uncertainties were 13.07% and 14.20%. For the 248 at-risk fetuses, 63 fetuses were affected and 185 fetuses were unaffected. Hcy level of 13.20 (6.62-43.30) μmol/L in 63 affected fetuses was significantly higher than that in 185 unaffected fetuses of 2.70 (0.00-5.80) μmol/L, and there was no overlap between the affected and unaffected groups. The diagnostic sensitivity and specificity of Hcy were 100% and 92.05%, respectively. The positive and negative predictive values of the combination of Hcy, propionylcarnitine (C3), ratio of C3 to acetylcarnitine (C2; C3/C2), methylmalonic acid (MMA), and methylcitric acid (MCA) were both 100%. Sixteen fetuses displayed inconclusive genetic results of MMACHC variants, in which seven fetuses were determined to be affected with elevated levels of Hcy, C3, C3/C2 and MMA, and their levels were 18.50 (6.70-43.30) μmol/L, 8.53(5.02-11.91) μmol/L, 0.77 (0.52-0.97), 8.96 (6.55-40.32) mmol/mol Cr, respectively. The remaining nine fetuses were considered unaffected based on a normal amniotic fluid metabolite profile. CONCLUSIONS Hcy appears to be another characteristic biomarker for the prenatal diagnosis of cblC defect. The combination of Hcy assay with acylcarnitine and organic acid analysis is a fast, sensitive, and reliable prenatal diagnostic biochemical approach. This approach could overcome the challenge of the lack of genetic analysis for families with at-risk cblC defect fetuses.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bing Xiao
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Wang
- Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China. .,Center for Prenatal Diagnosis, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
46
|
Yuan H, Deng S, Gao W, Li H, Yuan M. Identification of MMACHC and PROKR2 mutations causing coexistent cobalamin C disease and Kallmann syndrome in a young woman. Metab Brain Dis 2021; 36:447-452. [PMID: 33411215 DOI: 10.1007/s11011-020-00654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Cobalamin C (cblC) disease and Kallmann syndrome (KS) are rare hereditary diseases. To date, no report has described the coexistence of those two genetic disorders in the same patient, or an association between them. We report the case of a 23-year-old woman with cblC defect and KS. She first presented mild memory problems in puberty, which worsened in adulthood to progressive memory loss accompanied by slow and unsteady walking, slow response, inattention, cognitive impairment, insomnia, no sense of smell, and the lack of spontaneous puberty. Laboratory tests revealed gonadotropin deficiency, a low estrogen level, and remarkably elevated serum homocysteine and serum and urine organic acid levels. Whole-exome sequencing detected compound heterozygous variants in MMACHC [c.398_399del (p.Gln133Argfs*4) and c.482G > A (p.Arg161Gln)] and heterozygous variants in PROKR2 [c.337T > C (p.Tyr113His)]. Thus, clinical and genetic examinations confirmed the cblC disease and KS diagnoses. This report on coexisting cblC disease and KS caused by different pathogenic genes in a single patient enriches the clinical research on these two rare genetic diseases.
Collapse
Affiliation(s)
- Haijun Yuan
- Department of Emergence, the Second Hospital, University of South China, Hengyang, Hunan, China
- Department of Emergence, Foresea Life Insurance Guangxi Hospital, Nanning, Guangxi, China
| | - Sipeng Deng
- Institute of Neurology, the Second Hospital, University of South China, Hengyang, Hunan, China
| | - Wei Gao
- Institute of Neurology, the Second Hospital, University of South China, Hengyang, Hunan, China
| | - Huaxin Li
- Institute of Neurology, the Second Hospital, University of South China, Hengyang, Hunan, China
| | - Mei Yuan
- Institute of Neurology, the Second Hospital, University of South China, Hengyang, Hunan, China.
- Department of Neurology, The Second Hospital, University of South China, 35 Jiefang Road, Huaxin Development District, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
47
|
Liang L, Shuai R, Yu Y, Qiu W, Shen L, Wu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Ye J, Zhang H, Lu D, Gong Z, Zhan X, Ji W, Yu Y, Gu X, Han L. A rare mutation c.1663G > A (p.A555T) in the MMUT gene associated with mild clinical and biochemical phenotypes of methylmalonic acidemia in 30 Chinese patients. Orphanet J Rare Dis 2021; 16:22. [PMID: 33413471 PMCID: PMC7792044 DOI: 10.1186/s13023-020-01632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023] Open
Abstract
Background Methylmalonic acidemia is an inherited organic acid metabolic disease. It involves multiple physiological systems and has variable manifestations. The primary causative gene MMUT carries wide range of mutations, and one of them, c.1663G > A (p.A555T), is considered to be a rare type, which is seen more frequently in Asian than other populations. So far, little is known about the clinical features of patients carrying this mutation. In the present study, we aimed to define the clinical and biochemical features of the patients with this genotype. Methods Among 328 mut type methylmalonic acidemia patients from multiple hospitals in China, we collected 30 compound heterozygous patients sharing the mutation c.1663G > A (p.A555T) in the MMUT gene. Their clinical characteristics and biochemical index were described in detail and compared with methylmalonic acidemia patients without this variant. Results Most of these patients were diagnosed via newborn screening (26/30), treated in a timely manner, and kept healthy (24/30). Disease onset occurred in 7 patients. Developmental delay or intellectual impairment occurred in 4 patients. 100% of these patients (29/29) were responsive to Vitamin B12 administration. The blood propionylcarnitine, blood propionylcarnitine/acetylcarnitine ratio, urinary methylmalonic acid, urinary methylcitric acid before and after treatment in c.1663G > A (p.A555T) carrying patients were much lower than those in non-c.1663G > A (p.A555T) carrying patients. Conclusion Compared to patients with other mutations in the MMUT gene, patients with the c.1663G > A (p.A555T) mutation showed later onset, milder clinical phenotype, lighter biochemical abnormalities, better vitamin B12 responsiveness, lower morbidity, easier metabolic control, and thereby better prognosis. Newborn screening project plays an important role in early diagnosis, treatment, and prognosis of these patients.
Collapse
Affiliation(s)
- Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Shen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shengnan Wu
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyan Wei
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongxing Chen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xigui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Jun Ye
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
48
|
Ma H, Tang Z, Xiao F, Li L, Li Y, Tang W, Chen L, Kang W, Lu Y, Dong X, Cheng G, Wang L, Lu W, Yang L, Ni Q, Peng X, Wang Y, Cao Y, Wu B, Zhou W, Zhuang D, Lin G, Wang H. Neonatal Metabolic Acidosis in the Neonatal Intensive Care Unit: What Are the Genetic Causes? Front Pediatr 2021; 9:727301. [PMID: 34733806 PMCID: PMC8558493 DOI: 10.3389/fped.2021.727301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal metabolic acidosis (NMA) is a common problem, particularly in critically ill patients in neonatal intensive care units (NICUs). Complex etiologies and atypical clinical signs make diagnosis difficult; thus, it is crucial to investigate the underlying causes of NMA rapidly and provide disorder-specific therapies. Our study aims to provide an overview of the genetic causes of NMA in patients from NICUs. We performed next-generation sequencing (NGS) on neonates with NMA from January 2016 to December 2019. Clinical features, genetic diagnoses, and their effects on clinical interventions were collected for analysis. In the 354 enrolled patients, 131 (37%) received genetic diagnoses; 95 (72.5%) of them were autosomal recessively inherited diseases. Two hundred and fifteen variants spanning 57 genes were classified as pathogenic (P) or likely pathogenic (LP) in 131 patients. The leading cause was metabolic disorders due to 35 genes found in 89 patients (68%). The other 42 NMA patients (32%) with 22 genes had malformations and renal, neuromuscular, and immune-hematological disorders. Seven genes (MMUT, MMACHC, CHD7, NPHS1, OTC, IVD, and PHOX2B) were noted in more than four patients, accounting for 48.9% (64/131) of the identified P/LP variants. Forty-six diagnosed patients with uncorrected NMA died or gave up. In conclusion, 37% of neonates with metabolic acidosis had genetic disorders. Next-generation sequencing should be considered when investigating the etiology of NMA in NICUs. Based on early molecular diagnoses, valuable treatment options can be provided for some genetic diseases to achieve better outcomes.
Collapse
Affiliation(s)
- Haiyan Ma
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, China
| | - Zezhong Tang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Long Li
- Department of Neonatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yangfang Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, China
| | - Wenyan Tang
- Department of Neonatology, Jiangxi Maternal Hospital, Nanchang, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Laishuan Wang
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Ni
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.,Department of Neonatology, Children's Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Deyi Zhuang
- Xiamen Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Guang Lin
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
49
|
Li Q, Jin H, Liu Y, Rong Y, Yang T, Nie X, Song W. Determination of Cytokines and Oxidative Stress Biomarkers in Cognitive Impairment Induced by Methylmalonic Acidemia. Neuroimmunomodulation 2021; 28:178-186. [PMID: 34340239 DOI: 10.1159/000511590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/06/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Methylmalonic acidemia (MMA) is the most common organic acidemia in children. Many patients with MMA suffered from cognitive impairments. The aim of this study was to identify the significance of cytokines and oxidative stress biomarkers in MMA-induced cognitive impairment. METHODS We enrolled 64 children with combined MMA and homocystinuria and 64 age- and sex-matched healthy volunteers. Participants were subsequently classified as with or without cognitive impairments using a uniform neuropsychological assessment test. Serum samples were collected. The serum levels of cytokines and oxidative stress biomarkers were measured using the ELISA or chemical methods. RESULTS Compared to control group, the serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, malondialdehyde (MDA), and nitric oxide (NO) in the MMA patients increased markedly (p < 0.05); glutathione (GSH) and superoxide dismutase (SOD) decreased obviously (p < 0.01). The levels of IL-6, TNF-α, NO, and MDA in the serum were negatively associated with DQ or IQ scores. The levels of GSH and SOD in the serum were positively correlated with DQ or IQ scores. After receiver operating characteristic curve analysis, NO was the most useful individual marker for distinguishing the cognitive dysfunction, corresponding to the area under ROC curve (AUC) of 0.82 (95% CI, 0.74-0.91), sensitivity of 76.60%, and specificity of 80.25%. GSH and MDA were also useful for diagnosis of MMA-induced cognitive dysfunction, corresponding to the AUC of 0.80 (95% CI, 0.70-0.89), and 0.73 (95% CI, 0.63-0.82), respectively. The sensitivity and specificity of GSH were 72.34 and 80.25%, respectively. The sensitivity and specificity of MDA were 85.11 and 51.85%, respectively. CONCLUSIONS The high-concentration methylmalonic acid in the blood induced immune cells to release pro-inflammatory cytokines such as TNF-α and IL-6. These cytokines and high-concentration methylmalonic acid stimulated the immune cells to produce reactive oxygen species (ROS) and reactive nitrogen species (RNS). The serum methylmalonic acid, cytokines, ROS, and RNS were across the blood-brain barrier and induced cognitive impairment. The small molecule substances such as serum NO, MDA, and GSH participated in the process of neuroinflammation and oxidative stress injury induced by MMA and could be useful for distinguishing the cognitive impairment.
Collapse
Affiliation(s)
- Qiliang Li
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hong Jin
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Liu
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yu Rong
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tana Yang
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolu Nie
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenqi Song
- Department of Medical Laboratory, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
50
|
Bharadwaj A, Wahi N, Saxena A. Occurrence of Inborn Errors of Metabolism in Newborns, Diagnosis and Prophylaxis. Endocr Metab Immune Disord Drug Targets 2020; 21:592-616. [PMID: 33357204 DOI: 10.2174/1871530321666201223110918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Inborn errors of metabolism (IEM) are a heterogeneous group of rare genetic disorders that are generally transmitted as autosomal or X-linked recessive disorders. These defects arise due to mutations associated with specific gene(s), especially the ones associated with key metabolic enzymes. These enzymes or their product(s) are involved in various metabolic pathways, leading to the accumulation of intermediary metabolite(s), reflecting their toxic effects upon mutations. The diagnosis of these metabolic disorders is based on the biochemical analysis of the clinical manifestations produced and their molecular mechanism. Therefore, it is imperative to devise diagnostic tests with high sensitivity and specificity for early detection of IEM. Recent advances in biochemical and polymerase chain reaction-based genetic analysis along with pedigree and prenatal diagnosis can be life-saving in nature. The latest development in exome sequencing for rapid diagnosis and enzyme replacement therapy would facilitate the successful treatment of these metabolic disorders in the future. However, the longterm clinical implications of these genetic manipulations is still a matter of debate among intellectuals and requires further research.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Nitin Wahi
- Department of Bioinformatics, Pathfinder Research and Training Foundation, Greater Noida - 201308, Uttar Pradesh, India
| | - Aditya Saxena
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|