1
|
Zou K, Deng Q, Zhang H, Huang C. Glymphatic system: a gateway for neuroinflammation. Neural Regen Res 2024; 19:2661-2672. [PMID: 38595285 PMCID: PMC11168510 DOI: 10.4103/1673-5374.391312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
The glymphatic system is a relatively recently identified fluid exchange and transport system in the brain. Accumulating evidence indicates that glymphatic function is impaired not only in central nervous system disorders but also in systemic diseases. Systemic diseases can trigger the inflammatory responses in the central nervous system, occasionally leading to sustained inflammation and functional disturbance of the central nervous system. This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation. In addition, we discuss the hypothesis that disease conditions initially associated with peripheral inflammation overwhelm the performance of the glymphatic system, thereby triggering central nervous system dysfunction, chronic neuroinflammation, and neurodegeneration. Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders.
Collapse
Affiliation(s)
- Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qingwei Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Gao D, Zou B, Zhu K, Bi S, Zhang W, Yang X, Lai J, Liang G, Pan P. Enhancing Th17 cells drainage through meningeal lymphatic vessels alleviate neuroinflammation after subarachnoid hemorrhage. J Neuroinflammation 2024; 21:269. [PMID: 39428510 PMCID: PMC11492769 DOI: 10.1186/s12974-024-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disorder primarily caused by the rupture of aneurysm, which results in a high mortality rate and consequently imposes a significant burden on society. The occurrence of SAH initiates an immune response that further exacerbates brain damage. The acute inflammatory reaction subsequent to SAH plays a crucial role in determining the prognosis. Th17 cells, a subset of T cells, are related to the brain injury following SAH, and it is unclear how Th17 cells are cleared in the brain. Meningeal lymphatic vessels are a newly discovered intracranial fluid transport system that has been shown to drain large molecules and immune cells to deep cervical lymph nodes. There is limited understanding of the role of the meningeal lymphatic system in SAH. The objective of this research is to explore the impact and underlying mechanism of drainage Th17 cells by meningeal lymphatics on SAH. METHODS Treatments to manipulate meningeal lymphatic function and the CCR7-CCL21 pathway were administered, including laser ablation, injection of VEGF-C geneknockout, and protein injection. Mouse behavior was assessed using the balance beam experiment and the modified Garcia scoring system. Flow cytometry, enzyme-linked immunosorbent assays (ELISA), and immunofluorescence staining were used to study the impact of meningeal lymphatic on SAH drainage. Select patients with unruptured and ruptured aneurysms in our hospital as the control group and the SAH group, with 7 cases in each group. Peripheral blood and cerebrospinal fluid (CSF) samples were assessed by ELISA and flow cytometry. RESULTS Mice with SAH showed substantial behavioral abnormalities and brain damage in which immune cells accumulated in the brain. Laser ablation of the meningeal lymphatic system or knockout of the CCR7 gene leads to Th17 cell aggregation in the meninges, resulting in a decreased neurological function score and increased levels of inflammatory factors. Injection of VEGF-C or CCL21 protein promotes Th17 cell drainage to lymph nodes, an increased neurological function score, and decreased levels of inflammatory factors. Clinical blood and CSF results showed that inflammatory factors in SAH group were significantly increased. The number of Th17 cells in the SAH group was significantly higher than the control group. Clinical results confirmed Th17 cells aggravated the level of neuroinflammation after SAH. CONCLUSION This study shows that improving the drainage of Th17 cells by meningeal lymphatics via the CCR7-CCL21 pathway can reduce brain damage and improve behavior in the SAH mouse model. This could lead to new treatment options for SAH.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
- China Medical University, Shenyang, Liaoning, China
| | - Bin Zou
- Department of Aanesthesiology, General Hospital of Northern Theater Command, Shenyang, China
- Dalian Medical University, Dalian, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jieyu Lai
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
3
|
Shlobin NA, Staple BL, Sclafani M, Harter DH. The Glymphatic System and Subarachnoid Lymphatic-Like Membrane: Recent Developments in Cerebrospinal Fluid Research. World Neurosurg 2024; 190:147-156. [PMID: 39002777 DOI: 10.1016/j.wneu.2024.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) circulates throughout the ventricles, cranial and spinal subarachnoid spaces, and central spinal cord canal. CSF protects the central nervous system through mechanical cushioning, regulation of intracranial pressure, regulation of metabolic homeostasis, and provision of nutrients. Recently, investigators have characterized the glial-lymphatic (glymphatic) system, the analog of the lymphatic system in the central nervous system, and described a fourth meningeal layer; the subarachnoid lymphatic-like membrane (SLYM)relevant to the CSF. METHODS A narrative review was conducted. RESULTS In this review, we summarize these advances. We describe the development of the original model, controversies, a revised model, and a new conceptual framework. We characterize the biological functions, influence of sleep-wake cycles, and effect of aging with relevance to the glymphatic system. We highlight the role of the glymphatic system in Alzheimer's disease, idiopathic normal pressure hydrocephalus, ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Next, we characterize the structure and role of the SLYM. Finally, we explore the relevance of the glymphatic system and SLYM to neurosurgery. CONCLUSIONS This manuscript will inform clinicians and scientists regarding preclinical and translational advances in the understanding of the structure, dynamics, and function of the CSF.
Collapse
Affiliation(s)
- Nathan A Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Brandon L Staple
- College of Medicine, University of Nebraska, Omaha, Nebraska, USA
| | | | - David H Harter
- Department of Neurosurgery, NYU Langone, New York, New York, USA
| |
Collapse
|
4
|
Wang J, Lv T, Jia F, Li Y, Ma W, Xiao ZP, Yu W, Zhao H, Zhang X, Hu Q. Subarachnoid hemorrhage distinctively disrupts the glymphatic and meningeal lymphatic systems in beagles. Theranostics 2024; 14:6053-6070. [PMID: 39346537 PMCID: PMC11426235 DOI: 10.7150/thno.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) induced acute impairment of the glymphatic system, but few have investigated the dysfunction of the meningeal lymphatic system and their contribution to the pathophysiology of SAH. In addition, most studies were conducted in rodent animals. We aimed to investigate the impact of SAH on glymphatic and meningeal lymphatic function in a large animal model using beagles and to evaluate the effects of intermittent cistern magna CSF drainage on these systems. Methods: The SAH model was created in beagles via endovascular perforation using a digital subtraction angiography machine. Intermittent cistern magna CSF drain was performed daily from 1 d to 3 d after SAH. We examined CSF pressure, neuronal death, enlargement of perivascular space (PVS), hydrocephalus, and neurological and cognitive deficits before and after SAH. The dynamics of glymphatic and meningeal lymphatic functions were analyzed by quantifying the signal intensity of dimeglumine gadopentetate (Gd-DTPA) using T1-weighted magnetic resonance imaging (MRI). Measurements were taken before SAH and at 1 h, 1 week, and 2 weeks post-SAH. Results: SAH in beagles caused significant blood clots, neuronal death, increased CSF pressure, hydrocephalus, and neurological and cognitive deficits. MRI revealed dilated ventricles and enlarged PVS post-SAH. The glymphatic system's function, assessed by Gd-DTPA distribution, showed reduced CSF influx and glymphatic impairment after SAH, particularly in the ipsilateral hemisphere, persisting for a week with partial recovery at 2 weeks. For lymphatic clearance, Gd-DTPA rapidly filled the olfactory bulbs, optic nerves, facial and vestibulocochlear nerves, and spinal nerves under normal conditions. SAH caused delayed and reduced Gd-DTPA efflux outflow in these areas, disrupting lymphatic clearance. Despite initial dysfunction, increased hemoglobin levels in cervical lymph nodes indicated active blood clearance post-SAH, with recovery by 2 weeks. Treatment with intermittent cistern magna CSF drain significantly ameliorated the glymphatic and meningeal lymphatic dysfunction after SAH. Conclusion: SAH impaired both glymphatic and meningeal lymphatic functions in beagles, with better restoration of lymphatic function post-SAH, which may contribute to functional recovery after SAH. External CSF drain is an effective therapeutic approach to facilitate the recovery of glymphatic and meningeal lymphatic function following SAH.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Ma
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Peng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Weifeng Yu
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Hu
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
- Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Zhang R, Li J, Li X, Zhang S. Therapeutic approaches to CNS diseases via the meningeal lymphatic and glymphatic system: prospects and challenges. Front Cell Dev Biol 2024; 12:1467085. [PMID: 39310229 PMCID: PMC11413538 DOI: 10.3389/fcell.2024.1467085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The brain has traditionally been considered an "immune-privileged" organ lacking a lymphatic system. However, recent studies have challenged this view by identifying the presence of the glymphatic system and meningeal lymphatic vessels (MLVs). These discoveries offer new opportunities for waste clearance and treatment of central nervous system (CNS) diseases. Various strategies have been developed based on these pathways, including modulation of glymphatic system function, enhancement of meningeal lymphatic drainage, and utilization of these routes for drug delivery. Consequently, this review explores the developmental features and physiological roles of the cerebral lymphatic system as well as its significance in various CNS disorders. Notably, strategies for ameliorating CNS diseases have been discussed with a focus on enhancing glymphatic system and MLVs functionality through modulation of physiological factors along with implementing pharmacological and physical treatments. Additionally, emphasis is placed on the potential use of the CNS lymphatic system in drug delivery while envisioning future directions in terms of mechanisms, applications, and translational research.
Collapse
Affiliation(s)
| | | | | | - Si Zhang
- Department of Neurosurgery, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Tan X, Li X, Li R, Meng W, Xie Z, Li J, Pang Y, Huang G, Li L, Li H. β-hydroxybutyrate alleviates neurological deficits by restoring glymphatic and inflammation after subarachnoid hemorrhage in mice. Exp Neurol 2024; 378:114819. [PMID: 38763355 DOI: 10.1016/j.expneurol.2024.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Both glymphatic system dysfunction and inflammatory response aggravate neurological dysfunction after subarachnoid hemorrhage (SAH). Studies have shown that β-hydroxybutyrate (BHB) may mitigate painful diabetic neuropathy (PDN) by upregulating SNTA1 expression and reinstating AQP4 polarity. However, the potential of BHB to ameliorate glymphatic system function and inflammatory response in SAH mice remains uncertain. METHODS The SAH models were constructed by injection of arterial blood into cisterna Magana. Three groups of C57 mice were randomly assigned: Sham, SAH, and BHB. All mice were subjected to neurological function assessment, western blot, immunofluorescence double staining, and RNA-seq. Glymphatic system function was examined with tracer and immunofluorescence double staining, and the differential genes were examined with RNA-seq. In addition, the expression of related inflammation was detected. RESULTS Compared with the SAH group, BHB reinstated AQP4 polarization by upregulating SNTA1 protein to enhance the glymphatic system. According to RNA-seq, the different genes were primarily connected to microglia activation, astrocytes, and inflammation. Western blot and immunofluorescence further confirmed that the related inflammatory protein expression levels were upregulated. BHB attenuated neuroinflammation after SAH. Ultimately, it can mitigate the neurological deficits in SAH mice. CONCLUSION The study reveals a novel mechanism that BHB treatment mitigates neurologic impairment in SAH mice. We propose that BHB may play a neuroprotective effect by enhancing glymphatic system function and attenuating neuroinflammatory subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Xiaohong Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Ruhua Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Weiting Meng
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Zhuoxi Xie
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Jing Li
- Department of Cardiology, The 924th Hospital of Chinese People's Liberation Army Joint Service Support Force, Guilin, China
| | - Yeyu Pang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Guilan Huang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, China.
| | - Hao Li
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
7
|
Drenthen GS, Elschot EP, van der Knaap N, Uher D, Voorter PHM, Backes WH, Jansen JFA, van der Thiel MM. Imaging Interstitial Fluid With MRI: A Narrative Review on the Associations of Altered Interstitial Fluid With Vascular and Neurodegenerative Abnormalities. J Magn Reson Imaging 2024; 60:40-53. [PMID: 37823526 DOI: 10.1002/jmri.29056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Interstitial fluid (ISF) refers to the fluid between the parenchymal cells and along the perivascular spaces (PVS). ISF plays a crucial role in delivering nutrients and clearing waste products from the brain. This narrative review focuses on the use of MRI techniques to measure various ISF characteristics in humans. The complementary value of contrast-enhanced and noncontrast-enhanced techniques is highlighted. While contrast-enhanced MRI methods allow measurement of ISF transport and flow, they lack quantitative assessment of ISF properties. Noninvasive MRI techniques, including multi-b-value diffusion imaging, free-water-imaging, T2-decay imaging, and DTI along the PVS, offer promising alternatives to derive ISF measures, such as ISF volume and diffusivity. The emerging role of these MRI techniques in investigating ISF alterations in neurodegenerative diseases (eg, Alzheimer's disease and Parkinson's disease) and cerebrovascular diseases (eg, cerebral small vessel disease and stroke) is discussed. This review also emphasizes current challenges of ISF imaging, such as the microscopic scale at which ISF has to be measured, and discusses potential focus points for future research to overcome these challenges, for example, the use of high-resolution imaging techniques. Noninvasive MRI methods for measuring ISF characteristics hold significant potential and may have a high clinical impact in understanding the pathophysiology of neurodegenerative and cerebrovascular disorders, as well as in evaluating the efficacy of ISF-targeted therapies in clinical trials. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Gerhard S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Elles P Elschot
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noa van der Knaap
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Daniel Uher
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paulien H M Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Merel M van der Thiel
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
8
|
Duan S, Hu J. Pathogenesis and management of low-pressure hydrocephalus: A narrative review. J Neurol Sci 2024; 460:122988. [PMID: 38579413 DOI: 10.1016/j.jns.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Patients diagnosed with low-pressure hydrocephalus typically present with enlarged ventricles and unusually low intracranial pressure, often measuring below 5 cmH2O or even below atmospheric pressure. This atypical presentation often leads to low recognition and diagnostic rates. The development of low-pressure hydrocephalus is believed to be associated with a decrease in the viscoelasticity of brain tissue or separation between the ventricular and subarachnoid spaces. Risk factors for low-pressure hydrocephalus include subarachnoid hemorrhage, aqueduct stenosis, prior cranial radiotherapy, ventricular shunting, and cerebrospinal fluid leaks. For potential low-pressure hydrocephalus, diagnostic criteria include neurological symptoms related to hydrocephalus, an Evans index >0.3 on imaging, ICP ≤ 5 cm H2O, symptom improvement with negative pressure drainage, and exclusion of ventriculomegaly caused by neurodegenerative diseases. The pathogenesis and pathophysiological features of low-pressure hydrocephalus differ significantly from other types of hydrocephalus, making it challenging to restore normal ventricular morphology through conventional drainage methods. The primary treatment options for low-pressure hydrocephalus involve negative pressure drainage and third ventriculostomy. With appropriate treatment, most patients can regain their previous neurological function. However, in most cases, permanent shunt surgery is still necessary. Low-pressure hydrocephalus is a rare condition with a high rate of underdiagnosis and mortality. Early identification and appropriate intervention are crucial in reducing complications and improving prognosis.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of ICU of Hongqiao Campus, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Çavdar S, Altınöz D, Dilan Demir T, Ali Gürses İ, Özcan G. Extracranial transport of brain lymphatics via cranial nerve in human. Neurosci Lett 2024; 827:137737. [PMID: 38519013 DOI: 10.1016/j.neulet.2024.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Extracranial waste transport from the brain interstitial fluid to the deep cervical lymph node (dCLN) is not extensively understood. The present study aims to show the cranial nerves that have a role in the transport of brain lymphatics vessels (LVs), their localization, diameter, and number using podoplanin (PDPN) and CD31 immunohistochemistry (IHC) and Western blotting. Cranial nerve samples from 6 human cases (3 cadavers, and 3 autopsies) were evaluated for IHC and 3 autopsies for Western blotting. The IHC staining showed LVs along the optic, olfactory, oculomotor, trigeminal, facial, glossopharyngeal, accessory, and vagus nerves. However, no LVs present along the trochlear, abducens, vestibulocochlear, and hypoglossal nerves. The LVs were predominantly localized at the endoneurium of the cranial nerve that has motor components, and LVs in the cranial nerves that had sensory components were present in all 3 layers. The number of LVs accompanying the olfactory, optic, and trigeminal nerves was classified as numerous; oculomotor, glossopharyngeal, vagus, and accessory was moderate; and facial nerves was few. The largest diameter of LVs was in the epineurium and the smallest one was in the endoneurium. The majority of Western blotting results correlated with the IHC. The present findings suggest that specific cranial nerves with variable quantities provide a pathway for the transport of wastes from the brain to dCLN. Thus, the knowledge of the transport of brain lymphatics along cranial nerves may help understand the pathophysiology of various neurological diseases.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey.
| | - Damlasu Altınöz
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Tevriz Dilan Demir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifener Yolu, Istanbul, Turkey
| | - İlke Ali Gürses
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Gülnihal Özcan
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifener Yolu, Istanbul, Turkey; Department of Medical Pharmacology, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| |
Collapse
|
10
|
Ang PS, Zhang DM, Azizi SA, Norton de Matos SA, Brorson JR. The glymphatic system and cerebral small vessel disease. J Stroke Cerebrovasc Dis 2024; 33:107557. [PMID: 38198946 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Cerebral small vessel disease is a group of pathologies in which alterations of the brain's blood vessels contribute to stroke and neurocognitive changes. Recently, a neurotoxic waste clearance system composed of perivascular spaces abutting the brain's blood vessels, termed the glymphatic system, has been identified as a key player in brain homeostasis. Given that small vessel disease and the glymphatic system share anatomical structures, this review aims to reexamine small vessel disease in the context of the glymphatic system and highlight novel aspects of small vessel disease physiology. MATERIALS AND METHODS This review was conducted with an emphasis on studies that examined aspects of small vessel disease and on works characterizing the glymphatic system. We searched PubMed for relevant articles using the following keywords: glymphatics, cerebral small vessel disease, arterial pulsatility, hypertension, blood-brain barrier, endothelial dysfunction, stroke, diabetes. RESULTS Cerebral small vessel disease and glymphatic dysfunction are anatomically connected and significant risk factors are shared between the two. These include hypertension, type 2 diabetes, advanced age, poor sleep, obesity, and neuroinflammation. There is clear evidence that CSVD hinders the effective functioning of glymphatic system. CONCLUSION These shared risk factors, as well as the model of cerebral amyloid angiopathy pathogenesis, hint at the possibility that glymphatic dysfunction could independently contribute to the pathogenesis of cerebral small vessel disease. However, the current evidence supports a model of cascading dysfunction, wherein concurrent small vessel and glymphatic injury hinder glymphatic-mediated recovery and promote the progression of subclinical to clinical disease.
Collapse
Affiliation(s)
- Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Douglas M Zhang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Saara-Anne Azizi
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | | | - James R Brorson
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States; Department of Neurology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
11
|
Licastro E, Pignataro G, Iliff JJ, Xiang Y, Lo EH, Hayakawa K, Esposito E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 2024; 7:229. [PMID: 38402351 PMCID: PMC10894274 DOI: 10.1038/s42003-024-05911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ester Licastro
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yanxiao Xiang
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Elga Esposito
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
12
|
Kovacs MA, Babcock IW, Royo Marco A, Sibley LA, Kelly AG, Harris TH. Vascular Endothelial Growth Factor-C Treatment Enhances Cerebrospinal Fluid Outflow during Toxoplasma gondii Brain Infection but Does Not Improve Cerebral Edema. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:225-237. [PMID: 38065361 PMCID: PMC10835445 DOI: 10.1016/j.ajpath.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024]
Abstract
Cerebral edema frequently develops in the setting of brain infection and can contribute to elevated intracranial pressure, a medical emergency. How excess fluid is cleared from the brain is not well understood. Previous studies have shown that interstitial fluid is transported out of the brain along perivascular channels that collect into the cerebrospinal fluid (CSF)-filled subarachnoid space. CSF is then removed from the central nervous system through venous and lymphatic routes. The current study tested the hypothesis that increasing lymphatic drainage of CSF would promote clearance of cerebral edema fluid during infection with the neurotropic parasite Toxoplasma gondii. Fluorescent microscopy and magnetic resonance imaging was used to show that C57BL/6 mice develop vasogenic edema 4 to 5 weeks after infection with T. gondii. Tracer experiments were used to evaluate how brain infection affects meningeal lymphatic function, which demonstrated a decreased rate in CSF outflow in T. gondii-infected mice. Next, mice were treated with a vascular endothelial growth factor (VEGF)-C-expressing viral vector, which induced meningeal lymphangiogenesis and improved CSF outflow in chronically infected mice. No difference in cerebral edema was observed between mice that received VEGF-C and those that rececived sham treatment. Therefore, although VEGF-C treatment can improve lymphatic outflow in mice infected with T. gondii, this effect does not lead to increased clearance of edema fluid from the brains of these mice.
Collapse
Affiliation(s)
- Michael A Kovacs
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Isaac W Babcock
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Ana Royo Marco
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Lydia A Sibley
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Abigail G Kelly
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
13
|
Al Masri M, Corell A, Michaëlsson I, Jakola AS, Skoglund T. The glymphatic system for neurosurgeons: a scoping review. Neurosurg Rev 2024; 47:61. [PMID: 38253938 PMCID: PMC10803566 DOI: 10.1007/s10143-024-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic system's role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included. Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension (IIH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies highlighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aquaporin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for glymphatic function and exploring the long-term effects of glymphatic dysfunction.
Collapse
Affiliation(s)
- Mohammad Al Masri
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Isak Michaëlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, 3 tr, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
14
|
Hu YH, Su T, Wu L, Wu JF, Liu D, Zhu LQ, Yuan M. Deregulation of the Glymphatic System in Alzheimer's Disease: Genetic and Non-Genetic Factors. Aging Dis 2024:AD.2023.1229. [PMID: 38270115 DOI: 10.14336/ad.2023.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive degeneration of brain function. AD gradually affects the parts of the brain that control thoughts, language, behavior and mental function, severely impacting a person's ability to carry out daily activities and ultimately leading to death. The accumulation of extracellular amyloid-β peptide (Aβ) and the aggregation of intracellular hyperphosphorylated tau are the two key pathological hallmarks of AD. AD is a complex condition that involves both non-genetic risk factors (35%) and genetic risk factors (58-79%). The glymphatic system plays an essential role in clearing metabolic waste, transporting tissue fluid, and participating in the immune response. Both non-genetic and genetic risk factors affect the glymphatic system to varying degrees. The main purpose of this review is to summarize the underlying mechanisms involved in the deregulation of the glymphatic system during the progression of AD, especially concerning the diverse contributions of non-genetic and genetic risk factors. In the future, new targets and interventions that modulate these interrelated mechanisms will be beneficial for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Hong Hu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting Su
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lin Wu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun-Fang Wu
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
15
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
16
|
Yuan J, Liu X, Nie M, Chen Y, Liu M, Huang J, Jiang W, Gao C, Quan W, Gong Z, Xiang T, Zhang X, Sha Z, Wu C, Wang D, Li S, Zhang J, Jiang R. Inactivation of ERK1/2 signaling mediates dysfunction of basal meningeal lymphatic vessels in experimental subdural hematoma. Theranostics 2024; 14:304-323. [PMID: 38164141 PMCID: PMC10750213 DOI: 10.7150/thno.87633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: Meningeal lymphatic vessels (MLVs) are essential for the clearance of subdural hematoma (SDH). However, SDH impairs their drainage function, and the pathogenesis remains unclear. Herein, we aimed to understand the pathological mechanisms of MLV dysfunction following SDH and to test whether atorvastatin, an effective drug for SDH clearance, improves meningeal lymphatic drainage (MLD). Methods: We induced SDH models in rats by injecting autologous blood into the subdural space and evaluated MLD using Gadopentetate D, Evans blue, and CFSE-labeled erythrocytes. Whole-mount immunofluorescence and transmission electron microscopy were utilized to detect the morphology of MLVs. Phosphoproteomics, western blot, flow cytometry, and in vitro experiments were performed to investigate the molecular mechanisms underlying dysfunctional MLVs. Results: The basal MLVs were detected to have abundant valves and play an important role in draining subdural substances. Following SDH, these basal MLVs exhibited disrupted endothelial junctions and dilated lumen, leading to impaired MLD. Subsequent proteomics analysis of the meninges detected numerous dephosphorylated proteins, primarily enriched in the adherens junction, including significant dephosphorylation of ERK1/2 within the meningeal lymphatic endothelial cells (LECs). Subdural injection of the ERK1/2 kinase inhibitor PD98059 resulted in dilated basal MLVs and impaired MLD, resembling the dysfunctional MLVs observed in SDH. Moreover, inhibiting ERK1/2 signaling severely disrupted intercellular junctions between cultured LECs. Finally, atorvastatin was revealed to protect the structure of basal MLVs and accelerate MLD following SDH. However, these beneficial effects of atorvastatin were abolished when combined with PD98059. Conclusion: Our findings demonstrate that SDH induces ERK1/2 dephosphorylation in meningeal LECs, leading to disrupted basal MLVs and impaired MLD. Additionally, we reveal a beneficial effect of atorvastatin in improving MLD.
Collapse
Affiliation(s)
- Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Zhitao Gong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin 300052, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
17
|
Miyakoshi LM, Stæger FF, Li Q, Pan C, Xie L, Kang H, Pavan C, Dang J, Sun Q, Ertürk A, Nedergaard M. The state of brain activity modulates cerebrospinal fluid transport. Prog Neurobiol 2023; 229:102512. [PMID: 37482196 DOI: 10.1016/j.pneurobio.2023.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Earlier studies based on 2-photon imaging have shown that glymphatic cerebrospinal fluid (CSF) transport is regulated by the sleep-wake cycle. To examine this association, we used 3DISCO whole-body tissue clearing to map CSF tracer distribution in awake, sleeping and ketamine-xylazine anesthetized mice. The results of our analysis showed that CSF tracers entered the brain to a significantly larger extent in natural sleep or ketamine-xylazine anesthesia than in wakefulness. Furthermore, awake mice showed preferential transport of CSF tracers in the rostro-caudal direction towards the cervical and spinal cord lymphatic vessels, and hence to venous circulation and excretion by the kidneys. The study extends the current literature by showing that CSF dynamics on the whole-body scale is controlled by the state of brain activity.
Collapse
Affiliation(s)
- Leo M Miyakoshi
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark
| | - Frederik F Stæger
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark
| | - Qianliang Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark
| | - Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lulu Xie
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongyi Kang
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Chiara Pavan
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark
| | - Juliana Dang
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark
| | - Qian Sun
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics University of Copenhagen, 2200, Denmark; Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
18
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
19
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
20
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Gao Y, Liu K, Zhu J. Glymphatic system: an emerging therapeutic approach for neurological disorders. Front Mol Neurosci 2023; 16:1138769. [PMID: 37485040 PMCID: PMC10359151 DOI: 10.3389/fnmol.2023.1138769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
The functions of the glymphatic system include clearance of the metabolic waste and modulation of the water transport in the brain, and it forms a brain-wide fluid network along with cerebrospinal fluid (CSF) and interstitial fluid (ISF). The glymphatic pathway consists of periarterial influx of CSF, astrocyte-mediated interchange between ISF and CSF supported by aquaporin-4 (AQP4) on the endfeet of astrocyte around the periarterioles, and perivenous efflux of CSF. Finally, CSF is absorbed by the arachnoid granules or flows into the cervical lymphatic vessels. There is growing evidence from animal experiments that the glymphatic system dysfunction is involved in many neurological disorders, such as Alzheimer's disease, stroke, epilepsy, traumatic brain injury and meningitis. In this review, we summarize the latest progress on the glymphatic system and its driving factors, as well as changes in the glymphatic pathway in different neurological diseases. We significantly highlight the likely therapeutic approaches for glymphatic pathway in neurological diseases, and the importance of AQP4 and normal sleep architecture in this process.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
22
|
Ding Z, Fan X, Zhang Y, Yao M, Wang G, Dong Y, Liu J, Song W. The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci 2023; 15:1179988. [PMID: 37396658 PMCID: PMC10308198 DOI: 10.3389/fnagi.2023.1179988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The glymphatic system is a brain-wide perivascular pathway driven by aquaporin-4 on the endfeet of astrocytes, which can deliver nutrients and active substances to the brain parenchyma through periarterial cerebrospinal fluid (CSF) influx pathway and remove metabolic wastes through perivenous clearance routes. This paper summarizes the composition, overall fluid flow, solute transport, related diseases, affecting factors, and preclinical research methods of the glymphatic system. In doing so, we aim to provide direction and reference for more relevant researchers in the future.
Collapse
|
23
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Liu Y, Liu X, Sun P, Li J, Nie M, Gong J, He A, Zhao M, Yang C, Wang Z. rTMS treatment for abrogating intracerebral hemorrhage-induced brain parenchymal metabolite clearance dysfunction in male mice by regulating intracranial lymphatic drainage. Brain Behav 2023:e3062. [PMID: 37161559 DOI: 10.1002/brb3.3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The discovery of the glymphatic system and meningeal lymphatic vessels challenged the traditional view regarding the lack of a lymphatic system in the central nervous system. It is now known that the intracranial lymphatic system plays an important role in fluid transport, macromolecule uptake, and immune cell trafficking. Studies have also shown that the function of the intracranial lymphatic system is significantly associated with neurological diseases; for example, an impaired intracranial lymphatic system can lead to Tau deposition and an increased lymphocyte count in the brain tissue of mice with subarachnoid hemorrhage. METHODS In this study, we assessed the changes in the intracranial lymphatic system after intracerebral hemorrhage and the regulatory effects of repeated transcranial magnetic stimulation on the glymphatic system and meningeal lymphatic vessels in an intracerebral hemorrhage (ICH) model of male mice. Experimental mice were divided into three groups: Sham, ICH, and ICH + repeated transcranial magnetic stimulation (rTMS). Three days after ICH, mice in the ICH+rTMS group were subjected to rTMS daily for 7 days. Thereafter, the function of the intracranial lymphatic system, clearance of RITC-dextran and FITC-dextran, and neurological functions were evaluated. RESULTS Compared with the Sham group, the ICH group had an impaired glymphatic system. Importantly, rTMS treatment could improve intracranial lymphatic system function as well as behavioral functions and enhance the clearance of parenchymal RITC-dextran and FITC-dextran after ICH. CONCLUSION Our results indicate that rTMS can abrogate ICH-induced brain parenchymal metabolite clearance dysfunction by regulating intracranial lymphatic drainage.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Pengju Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Fuyang People's Hospital, Fuyang, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Anqi He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
Goertz JE, Garcia-Bonilla L, Iadecola C, Anrather J. Immune compartments at the brain's borders in health and neurovascular diseases. Semin Immunopathol 2023; 45:437-449. [PMID: 37138042 PMCID: PMC10279585 DOI: 10.1007/s00281-023-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
Recent evidence implicates cranial border immune compartments in the meninges, choroid plexus, circumventricular organs, and skull bone marrow in several neuroinflammatory and neoplastic diseases. Their pathogenic importance has also been described for cardiovascular diseases such as hypertension and stroke. In this review, we will examine the cellular composition of these cranial border immune niches, the potential pathways through which they might interact, and the evidence linking them to cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer E Goertz
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Luo Y, Chen J, Huang HY, Lam ESY, Wong GKC. Narrative review of roles of astrocytes in subarachnoid hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:302. [PMID: 37181334 PMCID: PMC10170286 DOI: 10.21037/atm-22-5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Background and Objective Astrocytes play an important role in healthy brain function, including the development and maintenance of blood-brain barrier (BBB), structural support, brain homeostasis, neurovascular coupling and secretion of neuroprotective factors. Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH) including neuroinflammation, glutamate toxicity, brain edema, vasospasm, BBB disruption, cortical spreading depolarization (SD). Methods We searched PubMed up to 31 May, 2022 and evaluated the articles for screening and inclusion for subsequent systemic review. We found 198 articles with the searched terms. After exclusion based on the selection criteria, we selected 30 articles to start the systemic review. Key Content and Findings We summarized the response of astrocytes induced by SAH. Astrocytes are critical for brain edema formation, BBB reconstruction and neuroprotection in the acute stage of SAH. Astrocytes clear extracellular glutamate by increasing the uptake of glutamate and Na+/K+ ATPase activity after SAH. Neurotrophic factors released by astrocytes contribute to neurological recovery after SAH. Meanwhile, Astrocytes also form glial scars which hinder axon regeneration, produce proinflammatory cytokines, free radicals, and neurotoxic molecules. Conclusions Preclinical studies showed that therapeutic targeting the astrocytes response could have a beneficial effect in ameliorating neuronal injury and cognitive impairment after SAH. Clinical trials and preclinical animal studies are still urgently needed in order to determine where astrocytes stand in various pathway of brain damage and repair after SAH and, above all, to develop therapeutic approaches which benefit patient outcomes.
Collapse
Affiliation(s)
- Yujie Luo
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Junfan Chen
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yin Huang
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Erica Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - George Kwok-Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Warren KE, Coupland KG, Hood RJ, Kang L, Walker FR, Spratt NJ. Movement of cerebrospinal fluid tracer into brain parenchyma and outflow to nasal mucosa is reduced at 24 h but not 2 weeks post-stroke in mice. Fluids Barriers CNS 2023; 20:27. [PMID: 37041551 PMCID: PMC10088200 DOI: 10.1186/s12987-023-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Recent data indicates that cerebrospinal fluid (CSF) dynamics are disturbed after stroke. Our lab has previously shown that intracranial pressure rises dramatically 24 h after experimental stroke and that this reduces blood flow to ischaemic tissue. CSF outflow resistance is increased at this time point. We hypothesised that reduced transit of CSF through brain parenchyma and reduced outflow of CSF via the cribriform plate at 24 h after stroke may contribute to the previously identified post-stroke intracranial pressure elevation. METHODS Using a photothrombotic permanent occlusion model of stroke in C57BL/6 adult male mice, we examined the movement of an intracisternally infused 0.5% Texas Red dextran throughout the brain and measured tracer efflux into the nasal mucosa via the cribriform plate at 24 h or two weeks after stroke. Brain tissue and nasal mucosa were collected ex vivo and imaged using fluorescent microscopy to determine the change in CSF tracer intensity in these tissues. RESULTS At 24 h after stroke, we found that CSF tracer load was significantly reduced in brain tissue from stroke animals in both the ipsilateral and contralateral hemispheres when compared to sham. CSF tracer load was also reduced in the lateral region of the ipsilateral hemisphere when compared to the contralateral hemisphere in stroke brains. In addition, we identified an 81% reduction in CSF tracer load in the nasal mucosa in stroke animals compared to sham. These alterations to the movement of CSF-borne tracer were not present at two weeks after stroke. CONCLUSIONS Our data indicates that influx of CSF into the brain tissue and efflux via the cribriform plate are reduced 24 h after stroke. This may contribute to reported increases in intracranial pressure at 24 h after stroke and thus worsen stroke outcomes.
Collapse
Affiliation(s)
- K E Warren
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - K G Coupland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - R J Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - L Kang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - N J Spratt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia.
- Hunter New England Health District, New Lambton Heights, NSW, Australia.
| |
Collapse
|
28
|
Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Transl Stroke Res 2023; 14:146-159. [PMID: 35524026 DOI: 10.1007/s12975-022-01027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Inflammation and microvascular dysfunction have been associated with brain injury and long-term disability after both ischemic and hemorrhagic stroke. Recent studies have suggested a potential role of extracellular vesicles (EVs) as a link underlying these pathogenic processes. EVs are cell-derived particles enveloped by a lipid bilayer, containing proteins, lipids, and nucleic acids. From a functional standpoint, EVs can facilitate intercellular communication, including across the blood-brain barrier (BBB). Recent advances in EV research have shown a preferential release of EVs from specific cell types in the context of stroke, some of which were associated with increased neuroinflammation, microvascular dysfunction, and neuronal cytotoxicity while others offered a degree of neuroprotection. However, one historic challenge in the studies of EVs in stroke is the lack of consistent definitions and methods to analyze EVs, only recently updated in the MISEV2018 guidelines. Given limitations and complexity in the treatment of stroke, particularly delivery of therapeutics across the BBB, increasing attention has been paid towards manipulating EVs as one vehicle that can permit targeted therapeutic delivery to the central nervous system. These discoveries point towards a future where a better understanding of EVs will advance our knowledge of stroke-associated mechanisms of cerebral and systemic injury and contribute to the development of novel treatments. Here, we review the role that EVs play in ischemic and hemorrhagic stroke.
Collapse
|
29
|
Peng S, Liu J, Liang C, Yang L, Wang G. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis 2023; 179:106035. [PMID: 36796590 DOI: 10.1016/j.nbd.2023.106035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The clearance function is essential for maintaining brain tissue homeostasis, and the glymphatic system is the main pathway for removing brain interstitial solutes. Aquaporin-4 (AQP4) is the most abundantly expressed aquaporin in the central nervous system (CNS) and is an integral component of the glymphatic system. In recent years, many studies have shown that AQP4 affects the morbidity and recovery process of CNS disorders through the glymphatic system, and AQP4 shows notable variability in CNS disorders and is part of the pathogenesis of these diseases. Therefore, there has been considerable interest in AQP4 as a potential and promising target for regulating and improving neurological impairment. This review aims to summarize the pathophysiological role that AQP4 plays in several CNS disorders by affecting the clearance function of the glymphatic system. The findings can contribute to a better understanding of the self-regulatory functions in CNS disorders that AQP4 were involved in and provide new therapeutic alternatives for incurable debilitating neurodegenerative disorders of CNS in the future.
Collapse
Affiliation(s)
- Shasha Peng
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiachen Liu
- 172 Tongzipo Rd, Xiangya Medical College of Central South University, Changsha, Hunan 410013, China
| | - Chuntian Liang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lijun Yang
- 56 Xinjian southern St, Department of Pharmacology, School of Basical Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- 56 Xinjian southern St, Department of Neurology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; 146 JieFang forth Rd, Department of Neurology, SanYa Central Hospital (Hainan Third People's Hospital), Hainan Medical University, SanYa, Hainan 572000, China.
| |
Collapse
|
30
|
Liu Y, Peng J, Leng Q, Tian Y, Wu X, Tan R. Effects of Aloe-Emodin on the Expression of Brain Aquaporins and Secretion of Neurotrophic Factors in a Rat Model of Post-Stroke Depression. Int J Mol Sci 2023; 24:5206. [PMID: 36982280 PMCID: PMC10048947 DOI: 10.3390/ijms24065206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Post-stroke depression (PSD) is a common complication of stroke that can damage patients' brains. More and more studies have been conducted on PSD in recent years, but the exact mechanism is still not understood. Currently, animal models provide an alternative approach to better understand the pathophysiology of PSD and may also pave the way for the discovery of new treatments for depression. This study investigated the therapeutic effect and mechanism of aloe-emodin (AE) on PSD rats. Previous studies have shown that AE positively affects PSD in rats by improving depression, increasing their activities and curiosities, enhancing the number of neurons, and ameliorating damage to brain tissue. Meanwhile, AE could up-regulate the expression of brain-derived neurotrophic factor (BDNF) and neurotrophic 3 (NTF3), but it could also down-regulate the expression of aquaporins (AQP3, AQP4, and AQP5), glial fibrillary acidic protein (GFAP), and transient receptor potential vanilloid 4 (TRPV4), which is helpful in maintaining homeostasis and alleviating encephaledema. AE may be a prospective solution in the future for the treatment of PSD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Wu
- College of Life Science and Engineering, Southwest Jiao tong University, Chengdu 610031, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiao tong University, Chengdu 610031, China
| |
Collapse
|
31
|
Park JH, Bae YJ, Kim JS, Jung WS, Choi JW, Roh TH, You N, Kim SH, Han M. Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury. Neuroradiology 2023; 65:551-557. [PMID: 36274107 DOI: 10.1007/s00234-022-03073-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Glymphatic system dysfunction has been reported in animal models of traumatic brain injury (TBI). This study aimed to evaluate the activity of the human glymphatic system using the non-invasive Diffusion Tensor Image-Analysis aLong the Perivascular Space (DTI-ALPS) method in patients with TBI. METHODS A total of 89 patients with TBI (June 2018 to May 2020) were retrospectively enrolled, and 34 healthy volunteers were included who had no previous medical or neurological disease. Magnetic resonance imaging (MRI) with DTI was performed, and the ALPS index was calculated to evaluate the glymphatic system's activity. Wilcoxon rank-sum test was used to compare the ALPS index between patients with TBI and healthy controls. ANOVA was done to compare the ALPS index among controls and patients with mild/moderate-to-severe TBI. Multivariate logistic regression analyses were used to identify independent clinical and radiological factors associated with the ALPS index. The correlation between Glasgow Coma Scale (GCS) score and the ALPS index was also assessed. RESULTS The ALPS index was significantly lower in patients with TBI than in healthy controls (median, 1.317 vs. 1.456, P < 0.0001). There were significant differences in the ALPS index between healthy controls and patients with mild/moderate-to-severe TBI (ANOVA, P < 0.001). The presence of subarachnoid hemorrhage (P = 0.004) and diffuse axonal injury (P = 0.001) was correlated with a lower ALPS index in the multivariate analysis. There was a weak positive correlation between the ALPS index and GCS scores (r = 0.242, P = 0.023). CONCLUSIONS The DTI-ALPS method is useful for evaluating glymphatic system impairment and quantifying its activity in patients with TBI.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Su Kim
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Woo Sang Jung
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.,Department of Radiology, Graduate School of Kangwon National University, Chuncheon, South Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Namkyu You
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, South Korea
| | - Miran Han
- Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea. .,Department of Radiology, Graduate School of Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
32
|
Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases. Int J Mol Sci 2023; 24:ijms24043221. [PMID: 36834631 PMCID: PMC9965491 DOI: 10.3390/ijms24043221] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer's and Parkinson's diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.
Collapse
|
33
|
Feng W, Zhang Y, Ding S, Chen S, Wang T, Wang Z, Zou Y, Sheng C, Chen Y, Pang Y, Marshall C, Shi J, Nedergaard M, Li Q, Xiao M. B lymphocytes ameliorate Alzheimer's disease-like neuropathology via interleukin-35. Brain Behav Immun 2023; 108:16-31. [PMID: 36427805 DOI: 10.1016/j.bbi.2022.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence supports the involvement of the peripheral immune system in the pathogenesis of Alzheimer's disease (AD). In the present study, we found that B lymphocytes could mitigate beta-Amyloid (Aβ) pathology and memory impairments in a transgenic AD mouse model. Specifically, in young 5 × FAD mice, we evidenced increased B cells in the frontal cortex and meningeal tissues; depletion of mature B cells aggravated these mice's Aβ load and memory deficits. The increased B cells produced more interleukin-35 (IL-35) in the front cortex. We further found IL-35 neutralization exacerbated Aβ pathology, while injecting IL-35 mitigated Aβ load and cognitive dysfunction in 5 × FAD mice with or without mature B cell deficiency. Mechanistically, IL-35 inhibited neuronal BACE1 transcription through modulating the SOCS1/STAT1 pathway, and reduced Aβ production accordingly. Reanalysis of the single-cell RNA sequencing data from blood samples of AD patients suggested an increased population of IL-35-producing B cells. Together, the present study revealed a novel effect of B lymphocyte-derived IL-35 on inhibiting Aβ production in the frontal cortex, which may serve as a potential target for future AD treatment.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Jingping Shi
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
34
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
35
|
Jiang H, Wei H, Zhou Y, Xiao X, Zhou C, Ji X. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders. Cell Biosci 2022; 12:202. [PMID: 36528776 PMCID: PMC9759913 DOI: 10.1186/s13578-022-00942-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the aging process and central nervous system (CNS) diseases, the functions of the meningeal lymphatic vessels (MLVs) are impaired. Alterations in MLVs have been observed in aging-related neurodegenerative diseases, brain tumors, and even cerebrovascular disease. These findings reveal a new perspective on aging and CNS disorders and provide a promising therapeutic target. Additionally, recent neuropathological studies have shown that MLVs exchange soluble components between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) and drain metabolites, cellular debris, misfolded proteins, and immune cells from the CSF into the deep cervical lymph nodes (dCLNs), directly connecting the brain with the peripheral circulation. Impairment and dysfunction of meningeal lymphatics can lead to the accumulation of toxic proteins in the brain, exacerbating the progression of neurological disorders. However, for many CNS diseases, the causal relationship between MLVs and neuropathological changes is not fully clear. Here, after a brief historical retrospection, we review recent discoveries about the hallmarks of MLVs and their roles in the aging and CNS diseases, as well as potential therapeutic targets for the treatment of neurologic diseases.
Collapse
Affiliation(s)
- Huimin Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069 China
| | - Huimin Wei
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Yifan Zhou
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069 China
| | - Xuechun Xiao
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Chen Zhou
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069 China
| | - Xunming Ji
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|
36
|
Xiang T, Feng D, Zhang X, Chen Y, Wang H, Liu X, Gong Z, Yuan J, Liu M, Sha Z, Lv C, Jiang W, Nie M, Fan Y, Wu D, Dong S, Feng J, Ponomarev ED, Zhang J, Jiang R. Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. J Cereb Blood Flow Metab 2022; 42:2287-2302. [PMID: 35962479 PMCID: PMC9670008 DOI: 10.1177/0271678x221119855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
The glymphatic-lymphatic fluid transport system (GLFTS) consists of glymphatic pathway and cerebrospinal fluid (CSF) lymphatic outflow routes, allowing biological liquids from the brain parenchyma to access the CSF along with perivascular space and to be cleaned out of the skull through lymphatic vessels. It is known that increased local pressure due to physical compression of tissue improves lymphatic transport in peripheral organs, but little is known about the exact relationship between increased intracranial pressure (IICP) and GLFTS. In this study, we verify our hypothesis that IICP significantly impacts GLFTS, and this effect depends on severity of the IICP. Using a previously developed inflating balloon model to induce IICP and inject fluorescent tracers into the cisterna magna, we found significant impairment of the glymphatic circulation after IICP. We further found that cerebrovascular occlusion occurred, and cerebrovascular pulsation decreased after IICP. IICP also interrupted the drainage of deep cervical lymph nodes and dorsal meningeal lymphatic function, enhancing spinal lymphatic outflow to the sacral lymph nodes. Notably, these effects were associated with the severity of IICP. Thus, our findings proved that the intensity of IICP significantly impacts GLFTS. This may have translational applications for preventing and treating related neurological disorders.
Collapse
Affiliation(s)
- Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Dongyi Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Hanhua Wang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhitao Gong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin
University, Changchun, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yibing Fan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| |
Collapse
|
37
|
Priemer DS, Rhodes CH, Karlovich E, Perl DP, Goldman JE. Aβ Deposits in the Neocortex of Adult and Infant Hypoxic Brains, Including in Cases of COVID-19. J Neuropathol Exp Neurol 2022; 81:988-995. [PMID: 36264253 DOI: 10.1093/jnen/nlac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The brain of a 58-year-old woman was included as a civilian control in an ongoing autopsy study of military traumatic brain injury (TBI). The woman died due to a polysubstance drug overdose, with Coronavirus Disease 2019 (COVID-19) serving as a contributing factor. Immunohistochemical stains for β-amyloid (Aβ), routinely performed for the TBI study, revealed numerous, unusual neocortical Aβ deposits. We investigated the autopsied brains of 10 additional young patients (<60 years old) who died of COVID-19, and found similar Aβ deposits in all, using two different Aβ antibodies across three different medical centers. The deposits failed to stain with Thioflavin-S. To investigate whether or not these deposits formed uniquely to COVID-19, we applied Aβ immunostains to the autopsied brains of COVID-19-negative adults who died with acute respiratory distress syndrome and infants with severe cardiac anomalies, and also biopsy samples from patients with subacute cerebral infarcts. Cortical Aβ deposits were also found in these cases, suggesting a link to hypoxia. The fate of these deposits and their effects on function are unknown, but it is possible that they contribute to the neurocognitive sequelae observed in some COVID-19 patients. Our findings may also have broader implications concerning hypoxia and its role in Aβ deposition in the brain.
Collapse
Affiliation(s)
- David S Priemer
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University, F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
| | - Charles Harker Rhodes
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Esma Karlovich
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Perl
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University, F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
| | - James E Goldman
- Division of Neuropathology, Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, The Taub Center for Research in Alzheimer's Disease and Aging, and the New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
38
|
Lynch M, Pham W, Sinclair B, O’Brien TJ, Law M, Vivash L. Perivascular spaces as a potential biomarker of Alzheimer's disease. Front Neurosci 2022; 16:1021131. [PMID: 36330347 PMCID: PMC9623161 DOI: 10.3389/fnins.2022.1021131] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease (AD) is a highly damaging disease that affects one's cognition and memory and presents an increasing societal and economic burden globally. Considerable research has gone into understanding AD; however, there is still a lack of effective biomarkers that aid in early diagnosis and intervention. The recent discovery of the glymphatic system and associated Perivascular Spaces (PVS) has led to the theory that enlarged PVS (ePVS) may be an indicator of AD progression and act as an early diagnostic marker. Visible on Magnetic Resonance Imaging (MRI), PVS appear to enlarge when known biomarkers of AD, amyloid-β and tau, accumulate. The central goal of ePVS and AD research is to determine when ePVS occurs in AD progression and if ePVS are causal or epiphenomena. Furthermore, if ePVS are indeed causative, interventions promoting glymphatic clearance are an attractive target for research. However, it is necessary first to ascertain where on the pathological progression of AD ePVS occurs. This review aims to examine the knowledge gap that exists in understanding the contribution of ePVS to AD. It is essential to understand whether ePVS in the brain correlate with increased regional tau distribution and global or regional Amyloid-β distribution and to determine if these spaces increase proportionally over time as individuals experience neurodegeneration. This review demonstrates that ePVS are associated with reduced glymphatic clearance and that this reduced clearance is associated with an increase in amyloid-β. However, it is not yet understood if ePVS are the outcome or driver of protein accumulation. Further, it is not yet clear if ePVS volume and number change longitudinally. Ultimately, it is vital to determine early diagnostic criteria and early interventions for AD to ease the burden it presents to the world; ePVS may be able to fulfill this role and therefore merit further research.
Collapse
Affiliation(s)
- Miranda Lynch
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - William Pham
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Neurology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Xu JQ, Liu QQ, Huang SY, Duan CY, Lu HB, Cao Y, Hu JZ. The lymphatic system: a therapeutic target for central nervous system disorders. Neural Regen Res 2022; 18:1249-1256. [PMID: 36453401 PMCID: PMC9838139 DOI: 10.4103/1673-5374.355741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis, metabolite clearance, and immune surveillance. The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology. They emerge as major pathways for fluid exchange. The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity. The lymphatic system, through its role in the clearance of neurotoxic proteins, autoimmune cell infiltration, and the transmission of pro-inflammatory signals, participates in the pathogenesis of a variety of neurological disorders, including neurodegenerative and neuroinflammatory diseases and traumatic injury. Vascular endothelial growth factor C is the master regulator of lymphangiogenesis, a process that is critical for the maintenance of central nervous system homeostasis. In this review, we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian-Qi Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Sheng-Yuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chun-Yue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| | - Jian-Zhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan Province, China,Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Correspondence to: Yong Cao, or ; Hong-Bin Lu, ; Jian-Zhong Hu, .
| |
Collapse
|
40
|
Dickerson M, Murphy S, Hyppolite N, Brolinson PG, VandeVord P. Osteopathy in the Cranial Field as a Method to Enhance Brain Injury Recovery: A Preliminary Study. Neurotrauma Rep 2022; 3:456-472. [PMCID: PMC9622209 DOI: 10.1089/neur.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michelle Dickerson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Susan Murphy
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Natalie Hyppolite
- Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | | | - Pamela VandeVord
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
- Salem VA Medical Center, Salem, Virginia, USA
| |
Collapse
|
41
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
42
|
Molecular, Pathological, Clinical, and Therapeutic Aspects of Perihematomal Edema in Different Stages of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3948921. [PMID: 36164392 PMCID: PMC9509250 DOI: 10.1155/2022/3948921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
Acute intracerebral hemorrhage (ICH) is a devastating type of stroke worldwide. Neuronal destruction involved in the brain damage process caused by ICH includes a primary injury formed by the mass effect of the hematoma and a secondary injury induced by the degradation products of a blood clot. Additionally, factors in the coagulation cascade and complement activation process also contribute to secondary brain injury by promoting the disruption of the blood-brain barrier and neuronal cell degeneration by enhancing the inflammatory response, oxidative stress, etc. Although treatment options for direct damage are limited, various strategies have been proposed to treat secondary injury post-ICH. Perihematomal edema (PHE) is a potential surrogate marker for secondary injury and may contribute to poor outcomes after ICH. Therefore, it is essential to investigate the underlying pathological mechanism, evolution, and potential therapeutic strategies to treat PHE. Here, we review the pathophysiology and imaging characteristics of PHE at different stages after acute ICH. As illustrated in preclinical and clinical studies, we discussed the merits and limitations of varying PHE quantification protocols, including absolute PHE volume, relative PHE volume, and extension distance calculated with images and other techniques. Importantly, this review summarizes the factors that affect PHE by focusing on traditional variables, the cerebral venous drainage system, and the brain lymphatic drainage system. Finally, to facilitate translational research, we analyze why the relationship between PHE and the functional outcome of ICH is currently controversial. We also emphasize promising therapeutic approaches that modulate multiple targets to alleviate PHE and promote neurologic recovery after acute ICH.
Collapse
|
43
|
Ocular Lymphatic and Glymphatic Systems: Implications for Retinal Health and Disease. Int J Mol Sci 2022; 23:ijms231710139. [PMID: 36077535 PMCID: PMC9456449 DOI: 10.3390/ijms231710139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Clearance of ocular fluid and metabolic waste is a critical function of the eye in health and disease. The eye has distinct fluid outflow pathways in both the anterior and posterior segments. Although the anterior outflow pathway is well characterized, little is known about posterior outflow routes. Recent studies suggest that lymphatic and glymphatic systems play an important role in the clearance of fluid and waste products from the posterior segment of the eye. The lymphatic system is a vascular network that runs parallel to the blood circulatory system. It plays an essential role in maintenance of fluid homeostasis and immune surveillance in the body. Recent studies have reported lymphatics in the cornea (under pathological conditions), ciliary body, choroid, and optic nerve meninges. The evidence of lymphatics in optic nerve meninges is, however, limited. An alternative lymphatic system termed the glymphatic system was recently discovered in the rodent eye and brain. This system is a glial cell-based perivascular network responsible for the clearance of interstitial fluid and metabolic waste. In this review, we will discuss our current knowledge of ocular lymphatic and glymphatic systems and their role in retinal degenerative diseases.
Collapse
|
44
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Aryal M, Azadian MM, Hart AR, Macedo N, Zhou Q, Rosenthal EL, Airan RD. Noninvasive ultrasonic induction of cerebrospinal fluid flow enhances intrathecal drug delivery. J Control Release 2022; 349:434-442. [PMID: 35798095 DOI: 10.1016/j.jconrel.2022.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Intrathecal drug delivery is routinely used in the treatment and prophylaxis of varied central nervous system conditions, as doing so allows drugs to directly bypass the blood-brain barrier. However, the utility of this route of administration is limited by poor brain and spinal cord parenchymal drug uptake from the cerebrospinal fluid. We demonstrate that a simple noninvasive transcranial ultrasound protocol can significantly increase influx of cerebrospinal fluid into the perivascular spaces of the brain, to enhance the uptake of intrathecally administered drugs. Specifically, we administered small (~1 kDa) and large (~155 kDa) molecule agents into the cisterna magna of rats and then applied low, diagnostic-intensity focused ultrasound in a scanning protocol throughout the brain. Using real-time magnetic resonance imaging and ex vivo histologic analyses, we observed significantly increased uptake of small molecule agents into the brain parenchyma, and of both small and large molecule agents into the perivascular space from the cerebrospinal fluid. Notably, there was no evidence of brain parenchymal damage following this intervention. The low intensity and noninvasive approach of transcranial ultrasound in this protocol underscores the ready path to clinical translation of this technique. In this manner, this protocol can be used to directly bypass the blood-brain barrier for whole-brain delivery of a variety of agents. Additionally, this technique can potentially be used as a means to probe the causal role of the glymphatic system in the variety of disease and physiologic processes to which it has been correlated.
Collapse
Affiliation(s)
- Muna Aryal
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Departments of Engineering and Radiation Oncology, Loyola University Chicago, Chicago, IL, United States
| | - Matine M Azadian
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alex R Hart
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicholas Macedo
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Quan Zhou
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, United States; Stanford Cancer Center, Stanford Medical Center, Stanford, CA, United States; Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Raag D Airan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States; Department of Materials Science and Engineering, Stanford University School of Medicine, Stanford, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
46
|
Hou C, Li J, Wang B, Liu Q, Zhao Y, Zhang H, Wang W, Ren W, Cui X, Yang X. Dynamic Evolution of the Glymphatic System at the Early Stages of Subarachnoid Hemorrhage. Front Neurol 2022; 13:924080. [PMID: 35847203 PMCID: PMC9283644 DOI: 10.3389/fneur.2022.924080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
The early stages of subarachnoid hemorrhage (SAH) are extremely important for the progression and prognosis of this disease. The glymphatic system (GS) has positive implications for the nervous system due to its ability to clearance tau and amyloid-β (Aβ) protein. Previous studies have shown that GS dysfunction will appear after SAH. However, there is no systematic evaluation of the degree of damage and development process of GS function in the early stage after SAH. In this study, we evaluated the GS function and neurobehavioral in the sham, 6 h, 1, 3, and 7 days after SAH, respectively. Our results showed that the function of GS was severely attenuated in mice after SAH with a decreased polarity of Aquaporin-4 (AQP4), increased expression of AQP4, a linear correlation with the dystrophin-associated complex (DAC), the proliferation of reactive astrocytes, increased tau protein accumulation, and decreased neurological function. Collectively, these findings provide a comprehensive understanding of the functional changes of GS after SAH, provide references for subsequent scholars studying SAH, and suggest some potential mechanistic insight that affects AQP4 polarity and GS function.
Collapse
Affiliation(s)
- Changkai Hou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanlei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Ren
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaopeng Cui
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xinyu Yang
| |
Collapse
|
47
|
Delayed cerebral ischemia: A look at the role of endothelial dysfunction, emerging endovascular management, and glymphatic clearance. Clin Neurol Neurosurg 2022; 218:107273. [PMID: 35537284 DOI: 10.1016/j.clineuro.2022.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
|
48
|
Li Q, Chen Y, Feng W, Cai J, Gao J, Ge F, Zhou T, Wang Z, Ding F, Marshall C, Sheng C, Zhang Y, Sun M, Shi J, Xiao M. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav Immun 2022; 103:85-96. [PMID: 35427759 DOI: 10.1016/j.bbi.2022.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022] Open
Abstract
Recent progress on the central lymphatic system has greatly increased our understanding of how the brain maintains its own waste homeostasis. Here, we showed that perivascular spaces and meningeal lymphatic vessels form a functional route for clearance of senescent astrocytes from the aging brain. Blocking meningeal lymphatic drainage by ligation of the deep cervical lymph nodes impaired clearance of senescent astrocytes from brain parenchyma, subsequently increasing neuroinflammation in aged mice. By contrast, enhancing meningeal lymphatic vessel diameter by a recombinant adeno-associated virus encoding mouse vascular endothelial growth factor-C (VEGF-C) improved clearance of senescent astrocytes and mitigated neuroinflammation. Mechanistically, VEGF-C was highly expressed in senescent astrocytes, contributing themselves to migrate across lymphatic vessels along C-C motif chemokine ligand 21 (CCL21) gradient by interacting with VEGF receptor 3. Moreover, intra-cisternal injection of antibody against CCL21 hampered senescent astrocytes into the lymphatic vessels and exacerbated short memory defects of aged mice. Together, these findings reveal a new perspective for the meningeal lymphatics in the removal of senescent astrocytes, thus offering a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Ge
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiantian Zhou
- Department of Anesthesia, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210028, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Yongjie Zhang
- Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- Department of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
49
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
50
|
Liu Y, Wang Z, Cao C, Xu Z, Lu J, Shen H, Li X, Li H, Wu J, Chen G. Aquaporin 4 Depolarization-Enhanced Transferrin Infiltration Leads to Neuronal Ferroptosis after Subarachnoid Hemorrhage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8808677. [PMID: 35761873 PMCID: PMC9233479 DOI: 10.1155/2022/8808677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022]
Abstract
The infiltration of blood components into the brain parenchyma through the lymphoid system is an important cause of subarachnoid hemorrhage injury. AQP4, a water channel protein located at the astrocyte foot, has been reported to regulate blood-brain barrier integrity, and its polarization is disrupted after SAH. Neuronal ferroptosis is involved in subarachnoid hemorrhage- (SAH-) induced brain injury, but the inducing factors are not completely clear. Transferrin is one of the inducing factors of ferroptosis. This study is aimed at researching the role and mechanism of AQP4 in brain injury after subarachnoid hemorrhage in mice. An experimental mouse SAH model was established by endovascular perforation. An AAV vector encoding AQP4 with a GFAP-specific promoter was administered to mice to achieve specific overexpression of AQP4 in astrocytes. PI staining, Fer-1 intervention, and transmission electron microscopy were used to detect neuronal ferroptosis, and dextran (40 kD) leakage was used to detect BBB integrity. Western blot analysis of perfused brain tissue protein samples was used to detect transferrin infiltration. First, neuronal ferroptosis 24 h after SAH was observed by PI staining and Fer-1 intervention. Second, a significant increase in transferrin infiltration was found in the brain parenchyma 24 h after SAH modeling, while transferrin content was positively correlated with neuronal ferroptosis. Then, we observed that AQP4 overexpression effectively improved AQP depolarization and BBB injury induced by SAH and significantly reduced transferrin infiltration and neuronal ferroptosis after SAH. Finally, we found that AQP4 overexpression could effectively improve the neurobehavioral ability of SAH mice, and the neurobehavioral ability was negatively correlated with transferrin brain content. Taken together, these data indicate that overexpression of AQP4 in the mouse brain can effectively improve post-SAH neuronal ferroptosis and brain injury, at least partly by inhibiting transferrin infiltration into the brain parenchyma in the glymphatic system.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street Suzhou Jiangsu Province 215006, China
- Institute of Stroke Research, Soochow University, China
| |
Collapse
|