1
|
Cao D, Zhao Y, Wang Y, Wei D, Yan M, Su S, Pan H, Wang Q. Effects of sleep deprivation on anxiety-depressive-like behavior and neuroinflammation. Brain Res 2024; 1836:148916. [PMID: 38609030 DOI: 10.1016/j.brainres.2024.148916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Depression is defined by a persistent low mood and disruptions in sleep patterns, with the WHO forecasting that major depression will rank as the third most prevalent contributor to the global burden of disease by the year 2030. Sleep deprivation serves as a stressor that triggers inflammation within the central nervous system, a process known as neuroinflammation. This inflammatory response plays a crucial role in the development of depression by upregulating the expression of inflammatory mediators that contribute to symptoms such as anxiety, hopelessness, and loss of pleasure. METHODS In this study, sleep deprivation was utilized as a method to induce anxiety and depressive-like behaviors in mice. The behavioral changes in the mice were then evaluated using the EZM, EPM, TST, FST, and SPT. H&E staining and Nissl staining was used to detect morphological changes in the medial prefrontal cortical (mPFC) regions. Elisa to assess serum CORT levels. Detection of mRNA levels and protein expression of clock genes, high mobility genome box-1 (Hmgb1), silent message regulator 6 (Sirt6), and pro-inflammatory factors by RT-qPCR, Western blotting, and immunofluorescence techniques. RESULTS Sleep deprivation resulted in decreased exploration of unfamiliar territory, increased time spent in a state of despair, and lower sucrose water intake in mice. Additionally, sleep deprivation led to increased secretion of serum CORT and upregulation of clock genes, IL6, IL1β, TNFα, Cox-2, iNOS, Sirt6, and Hmgb1. Sleep. CONCLUSIONS Sleep deprivation induces anxiety-depressive-like behaviors and neuroinflammation in the brain. Transcription of clock genes and activation of the Sirt6/Hmgb1 pathway may contribute to inflammatory responses in the mPFC.
Collapse
Affiliation(s)
- Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Yi Zhao
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yuting Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Dongyun Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Minhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China
| | - Huashan Pan
- Guangdong Chaozhou Health Vocational College, Guangdong, Chaozhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangdong, Guangzhou, China.
| |
Collapse
|
2
|
Jan M, Jimenez S, Hor CN, Dijk DJ, Skeldon AC, Franken P. Model integration of circadian- and sleep-wake-driven contributions to rhythmic gene expression reveals distinct regulatory principles. Cell Syst 2024; 15:610-627.e8. [PMID: 38986625 DOI: 10.1016/j.cels.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Analyses of gene-expression dynamics in research on circadian rhythms and sleep homeostasis often describe these two processes using separate models. Rhythmically expressed genes are, however, likely to be influenced by both processes. We implemented a driven, damped harmonic oscillator model to estimate the contribution of circadian- and sleep-wake-driven influences on gene expression. The model reliably captured a wide range of dynamics in cortex, liver, and blood transcriptomes taken from mice and humans under various experimental conditions. Sleep-wake-driven factors outweighed circadian factors in driving gene expression in the cortex, whereas the opposite was observed in the liver and blood. Because of tissue- and gene-specific responses, sleep deprivation led to a long-lasting intra- and inter-tissue desynchronization. The model showed that recovery sleep contributed to these long-lasting changes. The results demonstrate that the analyses of the daily rhythms in gene expression must take the complex interactions between circadian and sleep-wake influences into account. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maxime Jan
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
| | - Sonia Jimenez
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Charlotte N Hor
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK; Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK
| | - Anne C Skeldon
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London and University of Surrey, Guildford, UK; School of Mathematics and Physics, University of Surrey, Guildford, UK
| | - Paul Franken
- Center of Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Liu S, Zhuo K, Wang Y, Wang X, Zhao Y. Prolonged Sleep Deprivation Induces a Reprogramming of Circadian Rhythmicity with the Hepatic Metabolic Transcriptomic Profile. BIOLOGY 2024; 13:532. [PMID: 39056724 PMCID: PMC11274269 DOI: 10.3390/biology13070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Sleep disturbances can disrupt the overall circadian rhythm. However, the impact of sleep deprivation on the circadian rhythm of the liver and its underlying mechanisms still requires further exploration. In this study, we subjected male mice to 5 days of sleep deprivation and performed liver transcriptome sequencing analysis at various time points within a 24-h period. Subsequently, we monitored the autonomic activity and food intake in these male mice for six days post-sleep deprivation. We observed alterations in sleep-wake and feeding rhythms in the first two days following sleep deprivation. Additionally, we also observed a decrease in 24-h serum-glucose levels. Liver transcriptome sequencing has shown that sleep deprivation induces the rhythmic transcription of a large number of genes, or alters the rhythmic properties of genes, which were then significantly enriched in the carbohydrate, lipid, and protein metabolism pathways. Our findings suggest that under conditions of prolonged sleep deprivation, the expression of metabolic-related genes in the liver was reset, leading to changes in the organism's metabolic state to ensure energy supply to sustain prolonged wakefulness.
Collapse
Affiliation(s)
| | | | | | | | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (S.L.); (K.Z.); (Y.W.); (X.W.)
| |
Collapse
|
4
|
Wang L, Tian H, Wang H, Mao X, Luo J, He Q, Wen P, Cao H, Fang L, Zhou Y, Yang J, Jiang L. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int 2024; 105:1020-1034. [PMID: 38387504 DOI: 10.1016/j.kint.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Tian
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Luo
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyun He
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Yang Zhou
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Franken P, Dijk DJ. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat Rev Neurosci 2024; 25:43-59. [PMID: 38040815 DOI: 10.1038/s41583-023-00764-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Sleep is considered essential for the brain and body. A predominant concept is that sleep is regulated by circadian rhythmicity and sleep homeostasis, processes that were posited to be functionally and mechanistically separate. Here we review and re-evaluate this concept and its assumptions using findings from recent human and rodent studies. Alterations in genes that are central to circadian rhythmicity affect not only sleep timing but also putative markers of sleep homeostasis such as electroencephalogram slow-wave activity (SWA). Perturbations of sleep change the rhythmicity in the expression of core clock genes in tissues outside the central clock. The dynamics of recovery from sleep loss vary across sleep variables: SWA and immediate early genes show an early response, but the recovery of non-rapid eye movement and rapid eye movement sleep follows slower time courses. Changes in the expression of many genes in response to sleep perturbations outlast the effects on SWA and time spent asleep. These findings are difficult to reconcile with the notion that circadian- and sleep-wake-driven processes are mutually independent and that the dynamics of sleep homeostasis are reflected in a single variable. Further understanding of how both sleep and circadian rhythmicity contribute to the homeostasis of essential physiological variables may benefit from the assessment of multiple sleep and molecular variables over longer time scales.
Collapse
Affiliation(s)
- Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
6
|
Yang Y, Kim WS, Michaelian JC, Lewis SJG, Phillips CL, D'Rozario AL, Chatterjee P, Martins RN, Grunstein R, Halliday GM, Naismith SL. Predicting neurodegeneration from sleep related biofluid changes. Neurobiol Dis 2024; 190:106369. [PMID: 38049012 DOI: 10.1016/j.nbd.2023.106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Woojin Scott Kim
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Simon J G Lewis
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Angela L D'Rozario
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Ralph N Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Ron Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Glenda M Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
7
|
Tao Y, Qin Y, Chen S, Xu T, Lin J, Su D, Yu W, Chen X. Emerging trends and hot spots of sleep and genetic research: a bibliometric analysis of publications from 2002 to 2022 in the field. Front Neurol 2023; 14:1264177. [PMID: 38020599 PMCID: PMC10663257 DOI: 10.3389/fneur.2023.1264177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sleep is an important biological process and has been linked to many diseases; however, very little is known about which and how genes control and regulate sleep. Although technology has seen significant development, this issue has still not been adequately resolved. Therefore, we conducted a bibliometric analysis to assess the progress in research on sleep quality and associated genes over the past 2 decades. Through our statistical data and discussions, we aimed to provide researchers with better research directions and ideas, thus promoting the advancement of this field. Methods On December 29, 2022, we utilized bibliometric techniques, such as co-cited and cluster analysis and keyword co-occurrence, using tools such as CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), to conduct a thorough examination of the relevant publications extracted from the Web of Science Core Collection (WoSCC). Our analysis aimed to identify the emerging trends and hot spots in this field while also predicting their potential development in future. Results Cluster analysis of the co-cited literature revealed the most popular terms relating to sleep quality and associated genes in the manner of cluster labels; these included genome-wide association studies (GWAS), circadian rhythms, obstructive sleep apnea (OSA), DNA methylation, and depression. Keyword burst detection suggested that obstructive sleep apnea, circadian clock, circadian genes, and polygenic risk score were newly emergent research hot spots. Conclusion Based on this bibliometric analysis of the publications in the last 20 years, a comprehensive analysis of the literature clarified the contributions, changes in research hot spots, and evolution of research techniques regarding sleep quality and associated genes. This research can provide medical staff and researchers with revelations into future directions of the study on the pathological mechanisms of sleep-related diseases.
Collapse
Affiliation(s)
- Ying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sifan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tian Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
8
|
Millius A, Yamada RG, Fujishima H, Maeda K, Standley DM, Sumiyama K, Perrin D, Ueda HR. Circadian ribosome profiling reveals a role for the Period2 upstream open reading frame in sleep. Proc Natl Acad Sci U S A 2023; 120:e2214636120. [PMID: 37769257 PMCID: PMC10556633 DOI: 10.1073/pnas.2214636120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Daron M. Standley
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
9
|
Liu W, Ma R, Sun C, Xu Y, Liu Y, Hu J, Ma Y, Wang D, Wen D, Yu Y. Implications from proteomic studies investigating circadian rhythm disorder-regulated neurodegenerative disease pathology. Sleep Med Rev 2023; 70:101789. [PMID: 37253318 DOI: 10.1016/j.smrv.2023.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Neurodegenerative diseases (NDs) affect 15% of the world's population and are becoming an increasingly common cause of morbidity and mortality worldwide. Circadian rhythm disorders (CRDs) have been reported to be involved in the pathogenic regulation of various neurologic diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Proteomic technology is helpful to explore treatment targets for CRDs in patients with NDs. Here, we review the key differentially expressed (DE) proteins identified in previous proteomic studies investigating NDs, CRDs and associated models and the related pathways identified by enrichment analysis. Furthermore, we summarize the advantages and disadvantages of the above studies and propose new proteomic technologies for the precise study of circadian disorder-mediated regulation of ND pathology. This review provides a theoretical and technical reference for the precise study of circadian disorder-mediated regulation of ND pathology.
Collapse
Affiliation(s)
- Weiwei Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruze Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Chen Sun
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yang Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiajin Hu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yanan Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Deliang Wen
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
10
|
Wendrich KS, Azimi H, Ripperger JA, Ravussin Y, Rainer G, Albrecht U. Deletion of the Circadian Clock Gene Per2 in the Whole Body, but Not in Neurons or Astroglia, Affects Sleep in Response to Sleep Deprivation. Clocks Sleep 2023; 5:204-225. [PMID: 37092429 PMCID: PMC10123656 DOI: 10.3390/clockssleep5020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
The sleep-wake cycle is a highly regulated behavior in which a circadian clock times sleep and waking, whereas a homeostatic process controls sleep need. Both the clock and the sleep homeostat interact, but to what extent they influence each other is not understood. There is evidence that clock genes, in particular Period2 (Per2), might be implicated in the sleep homeostatic process. Sleep regulation depends also on the proper functioning of neurons and astroglial cells, two cell-types in the brain that are metabolically dependent on each other. In order to investigate clock-driven contributions to sleep regulation we non-invasively measured sleep of mice that lack the Per2 gene either in astroglia, neurons, or all body cells. We observed that mice lacking Per2 in all body cells (Per2Brdm and TPer2 animals) display earlier onset of sleep after sleep deprivation (SD), whereas neuronal and astroglial Per2 knock-out animals (NPer2 and GPer2, respectively) were normal in that respect. It appears that systemic (whole body) Per2 expression is important for physiological sleep architecture expressed by number and length of sleep bouts, whereas neuronal and astroglial Per2 weakly impacts night-time sleep amount. Our results suggest that Per2 contributes to the timing of the regulatory homeostatic sleep response by delaying sleep onset after SD and attenuating the early night rebound response.
Collapse
Affiliation(s)
- Katrin S Wendrich
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Hamid Azimi
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jürgen A Ripperger
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yann Ravussin
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gregor Rainer
- Section of Medicine, Department of Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol 2022; 10:956394. [PMID: 36092697 PMCID: PMC9449320 DOI: 10.3389/fcell.2022.956394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
A significant percentage of the mitochondrial mass is replaced on a daily basis via mechanisms of mitochondrial quality control. Through mitophagy (a selective type of autophagy that promotes mitochondrial proteostasis) cells keep a healthy pool of mitochondria, and prevent oxidative stress and inflammation. Furthermore, mitophagy helps adapting to the metabolic demand of the cells, which changes on a daily basis.Core components of the mitophagy process are PINK1 and Parkin, which mutations are linked to Parkinson’s Disease. The crucial role of PINK1/Parkin pathway during stress-induced mitophagy has been extensively studied in vitro in different cell types. However, recent advances in the field allowed discovering that mitophagy seems to be only slightly affected in PINK1 KO mice and flies, putting into question the physiological relevance of this pathway in vivo in the whole organism. Indeed, several cell-specific PINK1/Parkin-independent mitophagy pathways have been recently discovered, which appear to be activated under physiological conditions such as those that promote mitochondrial proteome remodeling during differentiation or in response to specific physiological stimuli.In this Mini Review we want to summarize the recent advances in the field, and add another level of complexity by focusing attention on a potentially important aspect of mitophagy regulation: the implication of the circadian clock. Recent works showed that the circadian clock controls many aspects of mitochondrial physiology, including mitochondrial morphology and dynamic, respiratory activity, and ATP synthesis. Furthermore, one of the essential functions of sleep, which is controlled by the clock, is the clearance of toxic metabolic compounds from the brain, including ROS, via mechanisms of proteostasis. Very little is known about a potential role of the clock in the quality control mechanisms that maintain the mitochondrial repertoire healthy during sleep/wake cycles. More importantly, it remains completely unexplored whether (dys)function of mitochondrial proteostasis feedbacks to the circadian clockwork.
Collapse
Affiliation(s)
| | | | | | | | - Elena Ziviani
- *Correspondence: Gabriella M. Mazzotta, Elena Ziviani,
| |
Collapse
|
12
|
Jha PK, Valekunja UK, Ray S, Nollet M, Reddy AB. Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep. Commun Biol 2022; 5:846. [PMID: 35986171 PMCID: PMC9391396 DOI: 10.1038/s42003-022-03800-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus) exhibited diverse transcriptional responses to sleep need. Sleep restriction modulates astrocyte-neuron crosstalk and sleep need enhances expression of specific sets of transcription factors in different brain regions. In cortex, we also interrogated the proteome of two major cell types: astrocytes and neurons. Sleep deprivation differentially alters the expression of proteins in astrocytes and neurons. Similarly, phosphoproteomics revealed large shifts in cell-type-specific protein phosphorylation. Our results indicate that sleep need regulates transcriptional, translational, and post-translational responses in a cell-specific manner.
Collapse
Affiliation(s)
- Pawan K Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Utham K Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandipan Ray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Mathieu Nollet
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Akhilesh B Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Reichert CF, Deboer T, Landolt HP. Adenosine, caffeine, and sleep-wake regulation: state of the science and perspectives. J Sleep Res 2022; 31:e13597. [PMID: 35575450 PMCID: PMC9541543 DOI: 10.1111/jsr.13597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/11/2023]
Abstract
For hundreds of years, mankind has been influencing its sleep and waking state through the adenosinergic system. For ~100 years now, systematic research has been performed, first started by testing the effects of different dosages of caffeine on sleep and waking behaviour. About 70 years ago, adenosine itself entered the picture as a possible ligand of the receptors where caffeine hooks on as an antagonist to reduce sleepiness. Since the scientific demonstration that this is indeed the case, progress has been fast. Today, adenosine is widely accepted as an endogenous sleep‐regulatory substance. In this review, we discuss the current state of the science in model organisms and humans on the working mechanisms of adenosine and caffeine on sleep. We critically investigate the evidence for a direct involvement in sleep homeostatic mechanisms and whether the effects of caffeine on sleep differ between acute intake and chronic consumption. In addition, we review the more recent evidence that adenosine levels may also influence the functioning of the circadian clock and address the question of whether sleep homeostasis and the circadian clock may interact through adenosinergic signalling. In the final section, we discuss the perspectives of possible clinical applications of the accumulated knowledge over the last century that may improve sleep‐related disorders. We conclude our review by highlighting some open questions that need to be answered, to better understand how adenosine and caffeine exactly regulate and influence sleep.
Collapse
Affiliation(s)
- Carolin Franziska Reichert
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Center for Affective, Stress, and Sleep Disorders, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Đukanović N, La Spada F, Emmenegger Y, Niederhäuser G, Preitner F, Franken P. Depriving Mice of Sleep also Deprives of Food. Clocks Sleep 2022; 4:37-51. [PMID: 35225952 PMCID: PMC8884003 DOI: 10.3390/clockssleep4010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Both sleep-wake behavior and circadian rhythms are tightly coupled to energy metabolism and food intake. Altered feeding times in mice are known to entrain clock gene rhythms in the brain and liver, and sleep-deprived humans tend to eat more and gain weight. Previous observations in mice showing that sleep deprivation (SD) changes clock gene expression might thus relate to altered food intake, and not to the loss of sleep per se. Whether SD affects food intake in the mouse and how this might affect clock gene expression is, however, unknown. We therefore quantified (i) the cortical expression of the clock genes Per1, Per2, Dbp, and Cry1 in mice that had access to food or not during a 6 h SD, and (ii) food intake during baseline, SD, and recovery sleep. We found that food deprivation did not modify the SD-incurred clock gene changes in the cortex. Moreover, we discovered that although food intake during SD did not differ from the baseline, mice lost weight and increased food intake during subsequent recovery. We conclude that SD is associated with food deprivation and that the resulting energy deficit might contribute to the effects of SD that are commonly interpreted as a response to sleep loss.
Collapse
Affiliation(s)
- Nina Đukanović
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Frédéric Preitner
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Correspondence:
| |
Collapse
|
15
|
Katsioudi G, Osorio-Forero A, Sinturel F, Hagedorn C, Kreppel F, Schibler U, Gatfield D. Recording of Diurnal Gene Expression in Peripheral Organs of Mice Using the RT-Biolumicorder. Methods Mol Biol 2022; 2482:217-242. [PMID: 35610430 DOI: 10.1007/978-1-0716-2249-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is high interest in investigating the daily dynamics of gene expression in mammalian organs, for example, in liver. Such studies help to elucidate how and with what kinetics peripheral clocks integrate circadian signals from the suprachiasmatic nucleus, which harbors the circadian master pacemaker, with other systemic and environmental cues, such as those associated with feeding and hormones. Organ sampling around the clock, followed by the analysis of RNA and/or proteins, is the most commonly used procedure in assessing rhythmic gene expression. However, this method requires large cohorts of animals and is only applicable to behaviorally rhythmic animals whose phases are known. Real-time recording of gene expression rhythms using luciferase reporters has emerged as a powerful method to acquire continuous, high-resolution datasets from freely moving individual mice. Here, we share our experience and protocols with this technique, using the RT-Biolumicorder setup.
Collapse
Affiliation(s)
- Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Flore Sinturel
- Division of Endocrinology, Diabetes, Nutrition and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudia Hagedorn
- Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Florian Kreppel
- Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Ueli Schibler
- Department of Molecular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Hoekstra MM, Jan M, Katsioudi G, Emmenegger Y, Franken P. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2. eLife 2021; 10:69773. [PMID: 34895464 PMCID: PMC8798053 DOI: 10.7554/elife.69773] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022] Open
Abstract
In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements. Circadian rhythms are daily cycles in behavior and physiology which repeat approximately every 24 hours. The master regulator of these rhythms is located in a small part of the brain called the supra-chiasmatic nucleus. This brain structure regulates the timing of sleep and wakefulness and is also thought to control the daily rhythms of cells throughout the body on a molecular level. It does this by synchronizing the activity of a set of genes called clock genes. Under normal conditions, the levels of proteins coded for by clock genes change throughout the day following a rhythm that matches sleep-wake patterns. However, keeping animals and humans awake at their preferred sleeping times affects the protein levels of clock genes in many tissues of the body. This suggests that, in addition to the supra-chiasmatic nucleus, sleep-wake cycles may also influence clock-gene rhythms throughout the body. To test this theory, Hoekstra, Jan et al. measured the levels of PERIOD-2, a protein coded for by the clock gene Period-2, while tracking sleep-wake states in mice. They did this by imaging a bioluminescent version of the PERIOD-2 protein in the brain and the kidneys, at the same time as they recorded the brain activity, movement and muscle response of animals. Results showed that PERIOD-2 increased on waking and decreased when mice fell asleep. Additionally, in mice lacking a circadian rhythm in sleep-wake behavior – whose changes in PERIOD-2 levels with respect to time were greatly reduced – imposing a regular sleep-wake cycle restored normal PERIOD-2 rhythmicity. Next, Hoekstra, Jan et al. developed a mathematical model to understand how sleep-wake cycles together with circadian rhythms affect clock-gene activity in the brain and kidneys. Computer simulations suggested that sleep-wake cycles and circadian factors act as forces of comparable strength driving clock-gene dynamics. Both need to act in concert to keep clock-genes rhythmic. The model also predicted the large and immediate effects of sleep deprivation on PERIOD-2 levels, giving further credence to the idea that waking accelerated clock-gene rhythms while sleeping slowed them down. Modelling also suggested that having regular clock-gene rhythms protects against sleep disturbances. In summary, this work shows how sleep patterns contribute to the daily rhythms in clock genes in the brain and body. The findings support the idea that well-timed sleep-wake schedules could help people to adjust to new time zones. It might also be useful to inform other strategies to reduce the health impacts of shift work.
Collapse
Affiliation(s)
- Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Hugin + neurons provide a link between sleep homeostat and circadian clock neurons. Proc Natl Acad Sci U S A 2021; 118:2111183118. [PMID: 34782479 DOI: 10.1073/pnas.2111183118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep is controlled by homeostatic mechanisms, which drive sleep after wakefulness, and a circadian clock, which confers the 24-h rhythm of sleep. These processes interact with each other to control the timing of sleep in a daily cycle as well as following sleep deprivation. However, the mechanisms by which they interact are poorly understood. We show here that hugin + neurons, previously identified as neurons that function downstream of the clock to regulate rhythms of locomotor activity, are also targets of the sleep homeostat. Sleep deprivation decreases activity of hugin + neurons, likely to suppress circadian-driven activity during recovery sleep, and ablation of hugin + neurons promotes sleep increases generated by activation of the homeostatic sleep locus, the dorsal fan-shaped body (dFB). Also, mutations in peptides produced by the hugin + locus increase recovery sleep following deprivation. Transsynaptic mapping reveals that hugin + neurons feed back onto central clock neurons, which also show decreased activity upon sleep loss, in a Hugin peptide-dependent fashion. We propose that hugin + neurons integrate circadian and sleep signals to modulate circadian circuitry and regulate the timing of sleep.
Collapse
|
18
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
19
|
The role of clock genes in sleep, stress and memory. Biochem Pharmacol 2021; 191:114493. [DOI: 10.1016/j.bcp.2021.114493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
|
20
|
Knöchel C, Frickmann H, Nürnberger F. Effects of Sleep Deprivation by Olfactorily Induced Sexual Arousal Compared to Immobilization Stress and Manual Sleep Deprivation on Neuromessengers and Time Keeping Genes in the Suprachiasmatic Nuclei and Other Cerebral Entities of Syrian Hamsters-An Immunohistochemical Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179169. [PMID: 34501759 PMCID: PMC8430648 DOI: 10.3390/ijerph18179169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
We investigated the effects of sexual arousal induced by olfactory stimuli on the expression of neuromodulators, neurotransmitters and sexual steroid receptors in the suprachiasmatic nucleus (SCN, the circadian pacemaker of mammals) and other cerebral entities of Syrian hamsters (Mesocricetus auratus) compared to manual sleep deprivation and immobilization stress. The hamsters kept under a 12:12 hours (h) light:dark cycle were deprived of sleep by sexual stimulation, gentle manual handling or immobilization stress for 1 h at the beginning of the light phase and subsequently sacrificed at zeitgeber time 01:00, respectively; for comparison, hamsters were manually sleep deprived for 6 or 20 h or sacrificed after completing a full sleep phase. As demonstrated by immunohistochemistry, apart from various alterations after manual sleep deprivation, sexual stimulation caused down-regulation of arginine-vasopressin (AVP), vasointestinal peptide (VIP), serotonin (5-HT), substance P (SP), and met-enkephalin (ME) in the SCN. Somatostatin (SOM) was diminished in the medial periventricular nucleus (MPVN). In contrast, an increase in AVP was observed in the PVN, that of oxytocin (OXY) in the supraoptic nucleus (SON), of tyrosine-hydroxylase (TH) in the infundibular nucleus (IN), and dopamine beta-hydroxylase (DBH) in the A7 neuron population of the brain stem (A7), respectively. Testosterone in plasma was increased. The results indicate that sexual arousal extensively influences the neuropeptide systems of the SCN, suggesting an involvement of the SCN in reproductive behavior.
Collapse
Affiliation(s)
- Christian Knöchel
- Vitos Clincis of Forensic Psychiatry Eltville, 65346 Eltville, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Frank Nürnberger
- Institute for Anatomy II, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
21
|
Sleep-wake cycle disturbances and NeuN-altered expression in adult rats after cannabidiol treatments during adolescence. Psychopharmacology (Berl) 2021; 238:1437-1447. [PMID: 33635384 DOI: 10.1007/s00213-021-05769-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE The medical uses of cannabidiol (CBD), a constituent of the Cannabis sativa, have accelerated the legal and social acceptance for CBD-based medications but has also given the momentum for questioning whether the long-term use of CBD during the early years of life may induce adverse neurobiological effects in adulthood, including sleep disturbances. Given the critical window for neuroplasticity and neuro-functional changes that occur during stages of adolescence, we hypothesized that CBD might influence the sleep-wake cycle in adult rats after their exposure to CBD during the adolescence. OBJECTIVES Here, we investigated the effects upon behavior and neural activity in adulthood after long-term administrations of CBD in juvenile rats. METHODS We pre-treated juvenile rats with CBD (5 or 30 mg/Kg, daily) from post-natal day (PND) 30 and during 2 weeks. Following the treatments, the sleep-wake cycle and NeuN expression was analyzed at PND 80. RESULTS We found that systemic injections of CBD (5 or 30 mg/Kg, i.p.) given to adolescent rats (post-natal day 30) for 14 days increased in adulthood the wakefulness and decreased rapid eye movement sleep during the lights-on period whereas across the lights-off period, wakefulness was diminished and slow wave sleep was enhanced. In addition, we found that adult animals that received CBD during the adolescence displayed disruptions in sleep rebound period after total sleep deprivation. Finally, we determined how the chronic administrations of CBD during the adolescence affected in the adulthood the NeuN expression in the suprachiasmatic nucleus, a sleep-related brain region. CONCLUSIONS Our findings are relevant for interpreting results of adult rats that were chronically exposed to CBD during the adolescence and provide new insights into how CBD may impact the sleep-wake cycle and neuronal activity during developmental stages.
Collapse
|
22
|
Bertile F, Plumel M, Maes P, Hirschler A, Challet E. Daytime Restricted Feeding Affects Day-Night Variations in Mouse Cerebellar Proteome. Front Mol Neurosci 2021; 14:613161. [PMID: 33912010 PMCID: PMC8072461 DOI: 10.3389/fnmol.2021.613161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum harbors a circadian clock that can be shifted by scheduled mealtime and participates in behavioral anticipation of food access. Large-scale two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry was used to identify day–night variations in the cerebellar proteome of mice fed either during daytime or nighttime. Experimental conditions led to modified expression of 89 cerebellar proteins contained in 63 protein spots. Five and 33 spots were changed respectively by time-of-day or feeding conditions. Strikingly, several proteins of the heat-shock protein family (i.e., Hsp90aa1, 90ab1, 90b1, and Hspa2, 4, 5, 8, 9) were down-regulated in the cerebellum of daytime food-restricted mice. This was also the case for brain fatty acid protein (Fabp7) and enzymes involved in oxidative phosphorylation (Ndufs1) or folate metabolism (Aldh1l1). In contrast, aldolase C (Aldoc or zebrin II) and pyruvate carboxylase (Pc), two enzymes involved in carbohydrate metabolism, and vesicle-fusing ATPase (Nsf) were up-regulated during daytime restricted feeding, possibly reflecting increased neuronal activity. Significant feeding × time-of-day interactions were found for changes in the intensity of 20 spots. Guanine nucleotide-binding protein G(o) subunit alpha (Gnao1) was more expressed in the cerebellum before food access. Neuronal calcium-sensor proteins [i.e., parvalbumin (Pvalb) and visinin-like protein 1 (Vsnl1)] were inversely regulated in daytime food-restricted mice, compared to control mice fed at night. Furthermore, expression of three enzymes modulating the circadian clockwork, namely heterogeneous nuclear ribonucleoprotein K (Hnrnpk), serine/threonine-protein phosphatases 1 (Ppp1cc and Ppp1cb subunits) and 5 (Ppp5), was differentially altered by daytime restricted feeding. Besides cerebellar proteins affected only by feeding conditions or daily cues, specific changes in in protein abundance before food access may be related to behavioral anticipation of food access and/or feeding-induced shift of the cerebellar clockwork.
Collapse
Affiliation(s)
- Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Marine Plumel
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Pauline Maes
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Aurélie Hirschler
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Etienne Challet
- Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
23
|
Jagannath A, Varga N, Dallmann R, Rando G, Gosselin P, Ebrahimjee F, Taylor L, Mosneagu D, Stefaniak J, Walsh S, Palumaa T, Di Pretoro S, Sanghani H, Wakaf Z, Churchill GC, Galione A, Peirson SN, Boison D, Brown SA, Foster RG, Vasudevan SR. Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun 2021; 12:2113. [PMID: 33837202 PMCID: PMC8035342 DOI: 10.1038/s41467-021-22179-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/18/2021] [Indexed: 01/01/2023] Open
Abstract
The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.
Collapse
Affiliation(s)
- Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK.
| | - Norbert Varga
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Robert Dallmann
- Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Gianpaolo Rando
- Department of Molecular Biology, University of Geneva, Geneva 4, Switzerland
| | - Pauline Gosselin
- Department of Molecular Biology, University of Geneva, Geneva 4, Switzerland
| | - Farid Ebrahimjee
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Dragos Mosneagu
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jakub Stefaniak
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Steven Walsh
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Harshmeena Sanghani
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Zeinab Wakaf
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Grant C Churchill
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Antony Galione
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, OMPI-G, Oxford, UK.
| | - Sridhar R Vasudevan
- Sleep and Circadian Neuroscience Institute (SCNi), Department of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Changes in sleep EEG with aging in humans and rodents. Pflugers Arch 2021; 473:841-851. [PMID: 33791849 PMCID: PMC8076123 DOI: 10.1007/s00424-021-02545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Sleep is one of the most ubiquitous but also complex animal behaviors. It is regulated at the global, systems level scale by circadian and homeostatic processes. Across the 24-h day, distribution of sleep/wake activity differs between species, with global sleep states characterized by defined patterns of brain electric activity and electromyography. Sleep patterns have been most intensely investigated in mammalian species. The present review begins with a brief overview on current understandings on the regulation of sleep, and its interaction with aging. An overview on age-related variations in the sleep states and associated electrophysiology and oscillatory events in humans as well as in the most common laboratory rodents follows. We present findings observed in different studies and meta-analyses, indicating links to putative physiological changes in the aged brain. Concepts requiring a more integrative view on the role of circadian and homeostatic sleep regulatory mechanisms to explain aging in sleep are emerging.
Collapse
|
25
|
Identification of hub genes correlated with sleep deprivation using co-expression analysis. Sleep Breath 2021; 25:1969-1976. [PMID: 33619665 DOI: 10.1007/s11325-021-02321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Sleep deprivation (SD) has become a serious concern worldwide. This study aimed to identify key modules and candidate hub genes correlated with diseases caused by SD, using co-expression analysis. METHODS The weighted gene co-expression network analysis was performed to construct a co-expression network of hub genes correlated with SD. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to search for signaling pathways. The protein-protein interaction network analysis of central genes was performed to recognize the interactions among central genes. Molecular Complex Detection, a plugin in Cytoscape, was used to discover the hub gene clusters involved in SD. RESULTS A total of 564 genes in the yellow module were identified based on the results of topological overlap measure-based clustering. The yellow module showed a pivotal correlation with SD. Six hub gene clusters prominently associated with SD were identified. Heat shock protein family and circadian clock genes among them may be the hub genes involved in SD. CONCLUSIONS These genes and pathways might become therapeutic targets with clinical usefulness in the future.
Collapse
|
26
|
Maywood ES, Chesham JE, Winsky-Sommerer R, Smyllie NJ, Hastings MH. Circadian Chimeric Mice Reveal an Interplay Between the Suprachiasmatic Nucleus and Local Brain Clocks in the Control of Sleep and Memory. Front Neurosci 2021; 15:639281. [PMID: 33679317 PMCID: PMC7935531 DOI: 10.3389/fnins.2021.639281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sleep is regulated by circadian and homeostatic processes. Whereas the suprachiasmatic nucleus (SCN) is viewed as the principal mediator of circadian control, the contributions of sub-ordinate local circadian clocks distributed across the brain are unknown. To test whether the SCN and local brain clocks interact to regulate sleep, we used intersectional genetics to create temporally chimeric CK1ε Tau mice, in which dopamine 1a receptor (Drd1a)-expressing cells, a powerful pacemaking sub-population of the SCN, had a cell-autonomous circadian period of 24 h whereas the rest of the SCN and the brain had intrinsic periods of 20 h. We compared these mice with non-chimeric 24 h wild-types (WT) and 20 h CK1ε Tau mutants. The periods of the SCN ex vivo and the in vivo circadian behavior of chimeric mice were 24 h, as with WT, whereas other tissues in the chimeras had ex vivo periods of 20 h, as did all tissues from Tau mice. Nevertheless, the chimeric SCN imposed its 24 h period on the circadian patterning of sleep. When compared to 24 h WT and 20 h Tau mice, however, the sleep/wake cycle of chimeric mice under free-running conditions was disrupted, with more fragmented sleep and an increased number of short NREMS and REMS episodes. Even though the chimeras could entrain to 20 h light:dark cycles, the onset of activity and wakefulness was delayed, suggesting that SCN Drd1a-Cre cells regulate the sleep/wake transition. Chimeric mice also displayed a blunted homeostatic response to 6 h sleep deprivation (SD) with an impaired ability to recover lost sleep. Furthermore, sleep-dependent memory was compromised in chimeras, which performed significantly worse than 24 h WT and 20 h Tau mice. These results demonstrate a central role for the circadian clocks of SCN Drd1a cells in circadian sleep regulation, but they also indicate a role for extra-SCN clocks. In circumstances where the SCN and sub-ordinate local clocks are temporally mis-aligned, the SCN can maintain overall circadian control, but sleep consolidation and recovery from SD are compromised. The importance of temporal alignment between SCN and extra-SCN clocks for maintaining vigilance state, restorative sleep and memory may have relevance to circadian misalignment in humans, with environmental (e.g., shift work) causes.
Collapse
Affiliation(s)
| | | | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicola Jane Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Sanchez RE, de la Iglesia HO. Sleep and the circadian system: The latest gossip on a tumultuous long-term relationship. Neurobiol Sleep Circadian Rhythms 2021; 10:100061. [PMID: 33665478 PMCID: PMC7906888 DOI: 10.1016/j.nbscr.2021.100061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
|
28
|
Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021; 123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
The master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus provides a temporal pattern of sleep and wake that - like many other behavioural and physiological rhythms - is oppositely phased in nocturnal and diurnal animals. The SCN primarily uses environmental light, perceived through the retina, to synchronize its endogenous circadian rhythms with the exact 24 h light/dark cycle of the outside world. The light responsiveness of the SCN is maximal during the night in both nocturnal and diurnal species. Behavioural arousal during the resting period not only perturbs sleep homeostasis, but also acts as a potent non-photic synchronizing cue. The feedback action of arousal on the SCN is mediated by processes involving several brain nuclei and neurotransmitters, which ultimately change the molecular functions of SCN pacemaker cells. Arousing stimuli during the sleeping period differentially affect the circadian system of nocturnal and diurnal species, as evidenced by the different circadian windows of sensitivity to behavioural arousal. In addition, arousing stimuli reduce and increase light resetting in nocturnal and diurnal species, respectively. It is important to address further question of circadian impairments associated with shift work and trans-meridian travel not only in the standard nocturnal laboratory animals but also in diurnal animal models.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | - Hanan Bouâouda
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| |
Collapse
|
29
|
Stress & sleep: A relationship lasting a lifetime. Neurosci Biobehav Rev 2020; 117:65-77. [DOI: 10.1016/j.neubiorev.2019.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/28/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022]
|
30
|
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - James Brian Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
31
|
Nakao A. Clockwork allergy: How the circadian clock underpins allergic reactions. J Allergy Clin Immunol 2019; 142:1021-1031. [PMID: 30293559 DOI: 10.1016/j.jaci.2018.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
Allergic disease is characterized by marked day-night changes in the clinical symptoms and laboratory parameters of allergy. Recent reports suggest that the circadian clock, which drives a biological rhythm with a periodicity of approximately 24 hours in behavior and physiology, underpins a time of day-dependent variation in allergic reactions. New studies also suggest that disruption of clock activity not only influences temporal variation but can also enhance the severity of allergic reactions and even increase susceptibility to allergic disease. These findings suggest that the circadian clock is a potent regulator of allergic reactions that plays more than a simple circadian timekeeping role in allergy. A better understanding of these processes will provide new insight into previously unknown aspects of the biology of allergies and can lead to the application of clock modifiers to treat allergic disease. Finally, this area of research provides a novel opportunity to consider how modern lifestyles in the developed world are changing the clinical manifestations of allergy as our society quickly transforms into a circadian rhythm-disrupted society in which sleeping, working, and eating habits are out of sync with endogenous circadian rhythmicity. Such findings might reveal lifestyle interventions that enable us to better control allergic disease.
Collapse
Affiliation(s)
- Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan; Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Sawai Y, Okamoto T, Muranaka Y, Nakamura R, Matsumura R, Node K, Akashi M. In vivo evaluation of the effect of lithium on peripheral circadian clocks by real-time monitoring of clock gene expression in near-freely moving mice. Sci Rep 2019; 9:10909. [PMID: 31358797 PMCID: PMC6662689 DOI: 10.1038/s41598-019-47053-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/01/2019] [Indexed: 01/31/2023] Open
Abstract
Lithium has been used as a mood stabilizer to treat human bipolar disorders for over half a century. Several studies have suggested the possibility that the efficacy of lithium treatment results in part from the amelioration of circadian dysfunction. However, the effect of lithium on clock gene expression has not yet been investigated in vivo because continuous measurement of gene expression in organs with high time resolution over a period of several days is difficult. To resolve this issue, we attached a small photo multiplier tube (PMT) tightly to the body surface of transgenic mice carrying a reporter gene such that the photon input window faced target organs such as the liver and kidney and succeeded in long-term continuous measurement of circadian gene expression in semi-freely moving mice over periods of several weeks. Using this simple method, we clearly showed that lithium causes circadian period elongation in peripheral clock gene expression rhythms in vivo. Further development of our detection system to maturity will aid a wide range of research fields in medicine and biology.
Collapse
Affiliation(s)
- Yuka Sawai
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Takezo Okamoto
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yugo Muranaka
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Rino Nakamura
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Ritsuko Matsumura
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Makoto Akashi
- The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
33
|
Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res 2019; 364:167-176. [PMID: 30779975 DOI: 10.1016/j.bbr.2019.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Sleep disturbance can result in memory impairment, and both sleep and hippocampal memory formation are maintained by circadian clock genes. Although preoperative sleep deprivation is known to be an independent risk factor for postoperative cognitive dysfunction (POCD) after inhalation anesthesia, the circadian mechanisms involved are currently unclear. To examine this issue, we constructed models of rapid eye movement sleep deprivation (RSD) and POCD after sevoflurane inhalation, to evaluate the circadian mechanisms underlying preoperative sleep deprivation-induced POCD after sevoflurane inhalation. Morris water maze probe test performance revealed that RSD aggravated the hippocampal-dependent memory impairment induced by sevoflurane anesthesia, and the recovery period of memory impairment was prolonged for more than a week by sleep deprivation. Western blot analysis revealed that sleep deprivation inhibited hippocampal Bmal1 and Egr1 expression for more than 7 days after sevoflurane inhalation. Importantly, hippocampal Per2 expression levels were first decreased by sevoflurane inhalation then increased from the third day by sleep deprivation. Sleep deprivation enhanced the expression of hippocampal inflammatory factors IL-1β and IL-6 after sevoflurane inhalation. In addition, sevoflurane inhalation activated the plasma expression of S100β and IL-6, particularly after sleep deprivation. Sleep deprivation aggravated pathogenic impairment of pyramidal neurons and activated astrocytes in CA1 after sevoflurane inhalation. These results suggest that preoperative RSD aggravates hippocampal memory impairment by enhancing neuroinflammatory injuries after sevoflurane inhalation, which is related to hippocampal clock gene abnormalities.
Collapse
Affiliation(s)
- Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xing Wan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
34
|
Hoekstra MM, Emmenegger Y, Hubbard J, Franken P. Cold-inducible RNA-binding protein (CIRBP) adjusts clock-gene expression and REM-sleep recovery following sleep deprivation. eLife 2019; 8:43400. [PMID: 30720431 PMCID: PMC6379088 DOI: 10.7554/elife.43400] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Sleep depriving mice affects clock-gene expression, suggesting that these genes contribute to sleep homeostasis. The mechanisms linking extended wakefulness to clock-gene expression are, however, not well understood. We propose CIRBP to play a role because its rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock-gene expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-deprivation-induced changes in clock-gene expression, and consequently to differ in their sleep homeostatic regulation. Lack of CIRBP indeed blunted the sleep-deprivation incurred changes in cortical expression of Nr1d1, whereas it amplified the changes in Per2 and Clock. Concerning sleep homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained during recovery. Unexpectedly, KO mice were more active during lights-off which was accompanied with faster theta oscillations compared to WT mice. Thus, CIRBP adjusts cortical clock-gene expression after sleep deprivation and expedites REM-sleep recovery.
Collapse
Affiliation(s)
- Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Kim M, de la Peña JB, Cheong JH, Kim HJ. Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2. Biomol Ther (Seoul) 2018; 26:358-367. [PMID: 29223143 PMCID: PMC6029676 DOI: 10.4062/biomolther.2017.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
36
|
Deboer T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning? Neurobiol Sleep Circadian Rhythms 2018; 5:68-77. [PMID: 31236513 PMCID: PMC6584681 DOI: 10.1016/j.nbscr.2018.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Sleep is regulated by a homeostatic and a circadian process. Together these two processes determine most aspects of sleep and related variables like sleepiness and alertness. The two processes are known to be able to work independently, but also to both influence sleep and sleep related variables in an additive or more complex manner. The question remains whether the two processes are directly influencing each other. The present review summarizes evidence from behavioural and electroencephalographic determined sleep, electrophysiology, gene knock out mouse models, and mathematical modelling to explore whether sleep homeostasis can influence circadian clock functioning and vice versa. There is a multitude of data available showing parallel action or influence of sleep homeostatic mechanisms and the circadian clock on several objective and subjective variables related to sleep and alertness. However, the evidence of a direct influence of the circadian clock on sleep homeostatic mechanisms is sparse and more research is needed, particularly applying longer sleep deprivations that include a second night. The strongest evidence of an influence of sleep homeostatic mechanisms on clock functioning comes from sleep deprivation experiments, demonstrating an attenuation of phase shifts of the circadian rhythm to light pulses when sleep homeostatic pressure is increased. The data suggest that the circadian clock is less susceptible to light when sleep pressure is high. The available data indicate that a strong central clock will induce periods of deep sleep, which in turn will strengthen clock function. Both are therefore important for health and wellbeing. Weakening of one will also hamper functioning of the other. Shift work and jet lag are situations where one tries to adapt to zeitgebers in a condition where sleep is compromised. Adaptation to zeitgebers may be improved by introducing nap schedules to reduce sleep pressure, and through that increasing clock susceptibility to light.
Collapse
|
37
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
38
|
Husse J, Kiehn JT, Barclay JL, Naujokat N, Meyer-Kovac J, Lehnert H, Oster H. Tissue-Specific Dissociation of Diurnal Transcriptome Rhythms During Sleep Restriction in Mice. Sleep 2017; 40:3751182. [DOI: 10.1093/sleep/zsx068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Bortell N, Basova L, Semenova S, Fox HS, Ravasi T, Marcondes MCG. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro. J Neuroinflammation 2017; 14:49. [PMID: 28279172 PMCID: PMC5345234 DOI: 10.1186/s12974-017-0825-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. METHODS We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. RESULTS We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. CONCLUSIONS Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.
Collapse
Affiliation(s)
- Nikki Bortell
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Liana Basova
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA
| | - Howard S Fox
- Department of Experimental Pharmacology, University of Nebraska Medical School, Omaha, NE, 68198, USA
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.,Department of Medicine, Division of Genetic, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Maria Cecilia G Marcondes
- Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Present address: San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100 - San Diego, San Diego, CA, 92121, USA.
| |
Collapse
|
40
|
Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience 2016; 339:433-449. [DOI: 10.1016/j.neuroscience.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/16/2023]
|
41
|
Abstract
Disruptions of normal circadian rhythms and sleep cycles are consequences of aging and can profoundly affect health. Accumulating evidence indicates that circadian and sleep disturbances, which have long been considered symptoms of many neurodegenerative conditions, may actually drive pathogenesis early in the course of these diseases. In this Review, we explore potential cellular and molecular mechanisms linking circadian dysfunction and sleep loss to neurodegenerative diseases, with a focus on Alzheimer's disease. We examine the interplay between central and peripheral circadian rhythms, circadian clock gene function, and sleep in maintaining brain homeostasis, and discuss therapeutic implications. The circadian clock and sleep can influence a number of key processes involved in neurodegeneration, suggesting that these systems might be manipulated to promote healthy brain aging.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Zhang B, Gao Y, Li Y, Yang J, Zhao H. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula. Behav Neurol 2016; 2016:7919534. [PMID: 27413249 PMCID: PMC4930817 DOI: 10.1155/2016/7919534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 12/22/2022] Open
Abstract
Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yanxia Gao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
43
|
Qian J, Scheer FAJL. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol Metab 2016; 27:282-293. [PMID: 27079518 PMCID: PMC4842150 DOI: 10.1016/j.tem.2016.03.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/24/2022]
Abstract
The circadian system serves one of the most fundamental properties present in nearly all organisms: it generates 24-h rhythms in behavioral and physiological processes and enables anticipating and adapting to daily environmental changes. Recent studies indicate that the circadian system is important in regulating the daily rhythm in glucose metabolism. Disturbance of this circadian control or of its coordination relative to the environmental/behavioral cycle, such as in shift work, eating late, or due to genetic changes, results in disturbed glucose control and increased type 2 diabetes risk. Therefore, an in-depth understanding of the mechanisms underlying glucose regulation by the circadian system and its disturbance may help in the development of therapeutic interventions against the deleterious health consequences of circadian disruption.
Collapse
Affiliation(s)
- Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res 2016; 25:131-43. [PMID: 26762182 DOI: 10.1111/jsr.12371] [Citation(s) in RCA: 764] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023]
Abstract
In the last three decades the two-process model of sleep regulation has served as a major conceptual framework in sleep research. It has been applied widely in studies on fatigue and performance and to dissect individual differences in sleep regulation. The model posits that a homeostatic process (Process S) interacts with a process controlled by the circadian pacemaker (Process C), with time-courses derived from physiological and behavioural variables. The model simulates successfully the timing and intensity of sleep in diverse experimental protocols. Electrophysiological recordings from the suprachiasmatic nuclei (SCN) suggest that S and C interact continuously. Oscillators outside the SCN that are linked to energy metabolism are evident in SCN-lesioned arrhythmic animals subjected to restricted feeding or methamphetamine administration, as well as in human subjects during internal desynchronization. In intact animals these peripheral oscillators may dissociate from the central pacemaker rhythm. A sleep/fast and wake/feed phase segregate antagonistic anabolic and catabolic metabolic processes in peripheral tissues. A deficiency of Process S was proposed to account for both depressive sleep disturbances and the antidepressant effect of sleep deprivation. The model supported the development of novel non-pharmacological treatment paradigms in psychiatry, based on manipulating circadian phase, sleep and light exposure. In conclusion, the model remains conceptually useful for promoting the integration of sleep and circadian rhythm research. Sleep appears to have not only a short-term, use-dependent function; it also serves to enforce rest and fasting, thereby supporting the optimization of metabolic processes at the appropriate phase of the 24-h cycle.
Collapse
Affiliation(s)
- Alexander A Borbély
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Serge Daan
- Centre for Behaviour and Neuroscience, University of Groningen, Groningen, the Netherlands
| | - Anna Wirz-Justice
- Centre for Chronobiology, University of Basel Psychiatric Clinics, Basel, Switzerland
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
45
|
Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, Depner CM, Elmquist J, Franken P, Grandner MA, Hanlon EC, Keene AC, Joyner MJ, Karatsoreos I, Kern PA, Klein S, Morris CJ, Pack AI, Panda S, Ptacek LJ, Punjabi NM, Sassone-Corsi P, Scheer FA, Saxena R, Seaquest ER, Thimgan MS, Van Cauter E, Wright KP. Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions. Sleep 2015; 38:1849-60. [PMID: 26564131 DOI: 10.5665/sleep.5226] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Joseph Bass
- Department of Medicine, Endocrinology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cecilia Diniz Behn
- Department of Applied Mathematics & Statistics, Colorado School of Mines, Golden, CO
| | - Matthew P Butler
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| | - Etienne Challet
- Institute for Cellular and Integrative Neuroscience, CNRS, University of Strasbourg, France
| | - Charles Czeisler
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | | | - Joel Elmquist
- Departments of Internal Medicine, Pharmacology and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | | | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Alex C Keene
- Department of Biology, University of Nevada, Reno, NV
| | | | - Ilia Karatsoreos
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology and Center for Clinical and Translational Sciences, University of Kentucky, Lexington, KY
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Louis J Ptacek
- Department of Neurology, Howard Hughes Medical Institute, University of California, San Francisco, CA
| | - Naresh M Punjabi
- Department of Medicine, The Johns Hopkins University, Baltimore, MD
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA
| | - Frank A Scheer
- Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | - Richa Saxena
- Department of Anesthesia, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Elizabeth R Seaquest
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO
| | - Eve Van Cauter
- Sleep, Metabolism and Health Center, The University of Chicago, Chicago, IL
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado, Boulder, CO.,Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
46
|
Abstract
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
47
|
Abstract
Since the kidney is integral to maintenance of fluid and ion homeostasis, and therefore blood pressure regulation, its proper function is paramount. Circadian fluctuations in blood pressure, renal blood flow, glomerular filtration rate, and sodium and water excretion have been documented for decades, if not longer. Recent studies on the role of circadian clock proteins in the regulation of a variety of renal transport genes suggest that the molecular clock in the kidney controls circadian fluctuations in renal function. The circadian clock appears to be a critical regulator of renal function with important implications for the treatment of renal pathologies, which include chronic kidney disease and hypertension. The development, regulation, and mechanism of the kidney clock are reviewed here.
Collapse
Affiliation(s)
- Kristen Solocinski
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
48
|
Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 2015; 24:476-93. [PMID: 26059855 DOI: 10.1111/jsr.12307] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
The mammalian circadian system is a multi-oscillator, hierarchically organised system where a central pacemaker synchronises behavioural, physiological and gene expression rhythms in peripheral tissues. Epidemiological studies show that disruption of this internal synchronisation by short sleep and shift work is associated with adverse health outcomes through mechanisms that remain to be elucidated. Here, we review recent animal and human studies demonstrating the profound effects of insufficient and mistimed sleep on the rhythms of gene expression in central and peripheral tissues. In mice, sleep restriction leads to an ~80% reduction in circadian transcripts in the brain and profound disruption of the liver transcriptome. In humans, sleep restriction leads to a 1.9% reduction in circadian transcripts in whole blood, and when sleep is displaced to the daytime, 97% of rhythmic genes become arrhythmic and one-third of all genes show changes in temporal expression profiles. These changes in mice and humans include a significant reduction in the circadian regulation of transcription and translation and core clock genes in the periphery, while at the same time rhythms within the suprachiasmatic nucleus are not disrupted. Although the physiological mediators of these sleep disruption effects on the transcriptome have not been established, altered food intake, changes in hormones such as cortisol, and changes in body and brain temperature may play important roles. Processes and molecular pathways associated with these disruptions include metabolism, immune function, inflammatory and stress responses, and point to the molecular mechanisms underlying the established adverse health outcomes associated with short sleep duration and shift work, such as metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Simon N Archer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|