1
|
Tang M, Wu Y, Liang J, Yang S, Huang Z, Hu J, Yang Q, Liu F, Li S. Gut microbiota has important roles in the obstructive sleep apnea-induced inflammation and consequent neurocognitive impairment. Front Microbiol 2024; 15:1457348. [PMID: 39712898 PMCID: PMC11659646 DOI: 10.3389/fmicb.2024.1457348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a state of sleep disorder, characterized by repetitive episodes of apnea and chronic intermittent hypoxia. OSA has an extremely high prevalence worldwide and represents a serious challenge to public health, yet its severity is frequently underestimated. It is now well established that neurocognitive dysfunction, manifested as deficits in attention, memory, and executive functions, is a common complication observed in patients with OSA, whereas the specific pathogenesis remains poorly understood, despite the likelihood of involvement of inflammation. Here, we provide an overview of the current state of the art, demonstrating the intimacy of OSA with inflammation and cognitive impairment. Subsequently, we present the recent findings on the investigation of gut microbiota alteration in the OSA conditions, based on both patients-based clinical studies and animal models of OSA. We present an insightful discussion on the role of changes in the abundance of specific gut microbial members, including short-chain fatty acid (SCFA)-producers and/or microbes with pathogenic potential, in the pathogenesis of inflammation and further cognitive dysfunction. The transplantation of fecal microbiota from the mouse model of OSA can elicit inflammation and neurobehavioral disorders in naïve mice, thereby validating the causal relationship to inflammation and cognitive abnormality. This work calls for greater attention on OSA and the associated inflammation, which require timely and effective therapy to protect the brain from irreversible damage. This work also suggests that modification of the gut microbiota using prebiotics, probiotics or fecal microbiota transplantation may represent a potential adjuvant therapy for OSA.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Yongliang Wu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Junyi Liang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuai Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Zuofeng Huang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Jing Hu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Qiong Yang
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Fei Liu
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| | - Shuo Li
- Department of Otolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen, China
- Department of Otolaryngology, The 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Wang J, Wang W, Liu Y, Yao M, Du Q, Wei Y, Lu K, Li C, Li X, Li S, Tian X, Zhang T, Yin F, Ma Y. Relationship between cognitive function and sleep quality in middle-aged and older adults for minimizing disparities and achieving equity in health: Evidence from multiple nationwide cohorts. Arch Gerontol Geriatr 2024; 127:105585. [PMID: 39096555 DOI: 10.1016/j.archger.2024.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Cognitive decline, a heavy burden on middle-aged and older adults as global aging is aggravated, was found to be associated with sleep quality. However, the country-between heterogeneity of the association prevented us from quantifying underlying relationship and identifying potential effect modifiers for vulnerable populations and targeted interventions. METHODS We collected data from 79,922 eligible adults in five nationwide cohorts, examined the respective relationships between cognitive function and sleep quality, synthesized underlying average relationships by meta-analysis, and explored effect modifiers by meta-regressions. Additionally, we conducted subgroup and interaction analyses to identify vulnerable populations and to determine their disparities in vulnerability. RESULTS Although country-between disparities exist, cognitive function is robustly associated with sleep quality in middle-aged and older adults worldwide, with an effect (β) of 0.015 [0.003, 0.027]. Executive function is the subdomain most relevant to sleep quality. Disparities in the effects of sleep quality on subdomains exist in populations with different sexes (orientation: βfemale/βmale = 1.615, P = 0.020), marital statuses (orientation: βunmarried/βmarried = 2.074, P < 0.001), education levels (orientation:βuneducated/βeducated = 2.074, P < 0.001) and chronic disease statuses (memory: βunhealthy/βhealthy = 1.560, P = 0.005). CONCLUSIONS Cognitive function decreases with worsening sleep quality in middle-aged and older adults. Vulnerability to poor sleep generally persists in singles, females, the uneducated and people with chronic diseases. To minimize disparities and achieve health equity, we advocate for targeted interventions, i.e., encouraging socialization in singles, confirming effectiveness of hormone replacement therapy in females, employing compulsory education in middle-aged and older adults.
Collapse
Affiliation(s)
- Junyu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Wei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Menghan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Qianqian Du
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yuxin Wei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Kai Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Chen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Xuelin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Sheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Xinyue Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, Sichuan 610036, China.
| |
Collapse
|
3
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
4
|
Zeng L, Yu T, Liu H, Li M, Wang J, Wang C, Xu P. IGF-1's protective effect on OSAS rats' learning and memory. Sleep Breath 2024; 28:1919-1928. [PMID: 38858326 PMCID: PMC11450044 DOI: 10.1007/s11325-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE Patients with obstructive sleep apnea syndrome (OSAS) frequently experience cognitive dysfunction, which may be connected to chronic intermittent hypoxia (CIH). Insulin-like growth factor-1 (IGF-1) is thought to be closely associated with cognitive function, but its role in cognitive impairment caused by OSAS is unclear. The purpose of this study was to investigate the potential protective effect of IGF-1 on cognitive impairment in OSAS rats. METHODS Healthy male SD rats (n = 40) were randomly assigned into four groups: control group, CIH group, NS + CIH group, and IGF-1 + CIH group. All experimental rats except for those in the control group were exposed to intermittent hypoxic (IH) environments for 8 h per day over 28 days. Prior to daily exposure to IH, rats in the IGF-1 + CIH group received subcutaneous injections of IGF-1. The Morris water maze test was conducted on all experimental rats. Brain tissue testing methods included Enzyme-Linked Immunosorbent Assay, Hematoxylin and eosin staining, Immunohistochemistry, and Western blotting. RESULTS The rat model of OSAS was successfully established following exposure to CIH and exhibited significant cognitive impairment. However, daily subcutaneous injections of IGF-1 partially restored the impaired cognitive function in OSAS rats. Compared with the control group, there was a significant decrease in the expression levels of IGF-1, p-IGF-IR, and SYP in the CIH group; however, these expression levels increased significantly in the IGF-I + CIH group. CONCLUSION In OSAS rats, IGF-1 enhances learning memory; this effect may be linked to increased p-IGF-1R and SYP protein production in the hippocampus.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Ting Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Mi Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Changsheng Wang
- Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
5
|
El Amine B, Fournier J, Minoves M, Baillieul S, Roche F, Perek N, Pépin JL, Tamisier R, Khouri C, Rome C, Briançon-Marjollet A. Cerebral oxidative stress, inflammation and apoptosis induced by intermittent hypoxia: a systematic review and meta-analysis of rodent data. Eur Respir Rev 2024; 33:240162. [PMID: 39694586 DOI: 10.1183/16000617.0162-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/21/2024] [Indexed: 12/20/2024] Open
Abstract
Obstructive sleep apnoea (OSA) contributes to cerebrovascular diseases and cognitive decline. Preclinical studies support the deleterious impact on the brain of intermittent hypoxia (IH), one of the main components of OSA, but heterogeneity in rodent species and brain regions studied, or induced by IH paradigms, can challenge interpretation of the studies. Hence, we conducted a systematic review and meta-analysis to evaluate the impact of IH on rodent brain oxidative stress, inflammation, apoptosis and the expression of brain-derived neurotrophic factor (BDNF) and hypoxia-inducible factor 1 (HIF-1). PubMed and Web of Science searches identified 663 articles related to IH exposure, of which 60 were included. The examined outcomes were oxidative stress, inflammation, apoptosis, HIF-1 or BDNF in brains. Standardised mean difference was used to compare studies. Metaregressions were performed to clarify the impact of IH exposure parameters, rodent characteristics or cerebral localisation on these outcomes. IH-induced oxidative stress (increased malondialdehyde (MDA) and NADPH oxidase (NOX) and decreased superoxide dismutase), increased inflammation (tumour necrosis factor-α, NF-κB and inducible nitric oxide synthase), HIF-1 and apoptosis evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labelling and cleaved caspase-3. In contrast, B-cell lymphoma 2 (BCL2) and BDNF expression were not significantly modified. Metaregressions showed that MDA, NOX and BDNF were associated with determinants of IH cycles (inspired oxygen fraction and duration of hypoxia) and some parameters depended on localisation. Rodent characteristics had little impact on the outcomes. Our meta-analysis robustly establishes that IH, independently of other confounders, has a strong effect on the brain by inducing oxidative stress, inflammation and apoptosis in rodent models. Our findings support the interest of considering and treating cerebral consequences of OSA in clinical practice.
Collapse
Affiliation(s)
- Bayan El Amine
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Joey Fournier
- Univ. Grenoble Alpes, Inserm CIC1406, CHU de Grenoble, Grenoble, France
| | - Mélanie Minoves
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Sébastien Baillieul
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Frédéric Roche
- Université Jean Monnet, Inserm U1059 Sainbiose, Saint Etienne, France
- Physiologie Clinique et de l'Exercice, CHU, Saint Etienne, France
| | - Nathalie Perek
- Université Jean Monnet, Inserm U1059 Sainbiose, Saint Etienne, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
| | - Charles Khouri
- Univ. Grenoble Alpes, Inserm U1300, CHU Grenoble Alpes, HP2 Laboratory, Grenoble, France
- Univ. Grenoble Alpes, Inserm CIC1406, CHU de Grenoble, Grenoble, France
| | - Claire Rome
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | |
Collapse
|
6
|
Deyang T, Baig MAI, Dolkar P, Hediyal TA, Rathipriya AG, Bhaskaran M, PandiPerumal SR, Monaghan TM, Mahalakshmi AM, Chidambaram SB. Sleep apnoea, gut dysbiosis and cognitive dysfunction. FEBS J 2024; 291:2519-2544. [PMID: 37712936 DOI: 10.1111/febs.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Sleep disorders are becoming increasingly common, and their distinct effects on physical and mental health require elaborate investigation. Gut dysbiosis (GD) has been reported in sleep-related disorders, but sleep apnoea is of particular significance because of its higher prevalence and chronicity. Cumulative evidence has suggested a link between sleep apnoea and GD. This review highlights the gut-brain communication axis that is mediated via commensal microbes and various microbiota-derived metabolites (e.g. short-chain fatty acids, lipopolysaccharide and trimethyl amine N-oxide), neurotransmitters (e.g. γ-aminobutyric acid, serotonin, glutamate and dopamine), immune cells and inflammatory mediators, as well as the vagus nerve and hypothalamic-pituitary-adrenal axis. This review also discusses the pathological role underpinning GD and altered gut bacterial populations in sleep apnoea and its related comorbid conditions, particularly cognitive dysfunction. In addition, the review examines the preclinical and clinical evidence, which suggests that prebiotics and probiotics may potentially be beneficial in sleep apnoea and its comorbidities through restoration of eubiosis or gut microbial homeostasis that regulates neural, metabolic and immune responses, as well as physiological barrier integrity via the gut-brain axis.
Collapse
Affiliation(s)
- Tenzin Deyang
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Md Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Phurbu Dolkar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Center, University of Toledo Health Science Campus, OH, USA
| | - Seithikuruppu R PandiPerumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, UK
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- SIG-Brain, Behaviour and Cognitive Neurosciences Research (BBRC), JSS Academy of Higher Education & Research, Mysuru, India
| |
Collapse
|
7
|
Huang Q, Wang Y, Chen S, Liang F. Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging Dis 2024; 15:1155-1175. [PMID: 37611905 PMCID: PMC11081147 DOI: 10.14336/ad.2023.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Neurodegenerative diseases (ND) are conditions defined by progressive deterioration of the structure and function of the nervous system. Some major examples include Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). These diseases lead to various dysfunctions, like impaired cognition, memory, and movement. Chronic neuroinflammation may underlie numerous neurodegenerative disorders. Microglia, an important immunocell in the brain, plays a vital role in defending against neuroinflammation. When exposed to different stimuli, microglia are activated and assume different phenotypes, participating in immune regulation of the nervous system and maintaining tissue homeostasis. The immunological activity of activated microglia is affected by glucose metabolic alterations. However, in the context of chronic neuroinflammation, specific alterations of microglial glucose metabolism and their mechanisms of action remain unclear. Thus, in this paper, we review the glycometabolic reprogramming of microglia in ND. The key molecular targets and main metabolic pathways are the focus of this research. Additionally, this study explores the mechanisms underlying microglial glucose metabolism reprogramming in ND and offers an analysis of the most recent therapeutic advancements. The ultimate aim is to provide insights into the development of potential treatments for ND.
Collapse
Affiliation(s)
- Qi Huang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Yanfu Wang
- Department of Rehabilitation, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Pholngam N, Jamrus P, Viwatpinyo K, Kiatpakdee B, Vadolas J, Chaichompoo P, Ngampramuan S, Svasti S. Cognitive impairment and hippocampal neuronal damage in β-thalassaemia mice. Sci Rep 2024; 14:10054. [PMID: 38698053 PMCID: PMC11066061 DOI: 10.1038/s41598-024-60459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
β-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in β-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of β-thalassaemia intrinsic factors, 22-month-old β-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in β-thalassaemia. Open field test showed that β-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in β-thalassaemia mice. Cognitive impairment in β-thalassaemia mice was significantly correlated with several intrinsic β-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in β-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.
Collapse
Affiliation(s)
- Nuttanan Pholngam
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Parinda Jamrus
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittikun Viwatpinyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
- Department of Medical Science, School of Medicine, Walailak University, Nakhonsithammarat, Thailand
| | - Benjaporn Kiatpakdee
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jim Vadolas
- Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Pornthip Chaichompoo
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sukonthar Ngampramuan
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Roche F, Briançon-Marjollet A, Dematteis M, Baldazza M, Gonthier B, Bertholon F, Perek N, Pépin JL. Early Increase in Blood-Brain Barrier Permeability in a Murine Model Exposed to Fifteen Days of Intermittent Hypoxia. Int J Mol Sci 2024; 25:3065. [PMID: 38474310 DOI: 10.3390/ijms25053065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent repeated episodes of hypoxia-reoxygenation. OSA is associated with cerebrovascular consequences. An enhanced blood-brain barrier (BBB) permeability has been proposed as a marker of those disorders. We studied in mice the effects of 1 day and 15 days intermittent hypoxia (IH) exposure on BBB function. We focused on the dorsal part of the hippocampus and attempted to identify the molecular mechanisms by combining in vivo BBB permeability (Evans blue tests) and mRNA expression of several junction proteins (zona occludens (ZO-1,2,3), VE-cadherin, claudins (1,5,12), cingulin) and of aquaporins (1,4,9) on hippocampal brain tissues. After 15 days of IH exposure we observed an increase in BBB permeability, associated with increased mRNA expressions of claudins 1 and 12, aquaporins 1 and 9. IH seemed to increase early for claudin-1 mRNA expression as it doubled with 1 day of exposure and returned near to its base level after 15 days. Claudin-1 overexpression may represent an immediate response to IH exposure. Then, after 15 days of exposure, an increase in functional BBB permeability was associated with enhanced expression of aquaporin. These BBB alterations are possibly associated with a vasogenic oedema that may affect brain functions and accelerate neurodegenerative processes.
Collapse
Affiliation(s)
- Frederic Roche
- INSERM, SAINBIOSE U1059, Université Jean Monnet Saint-Étienne, Mines Saint Etienne, F-42023 Saint-Étienne, France
- INSERM U1300, HP2 Laboratory, Université Grenoble Alpes, F-38042 Grenoble, France
| | | | - Maurice Dematteis
- INSERM U1300, HP2 Laboratory, Université Grenoble Alpes, F-38042 Grenoble, France
| | - Marie Baldazza
- INSERM U1300, HP2 Laboratory, Université Grenoble Alpes, F-38042 Grenoble, France
| | - Brigitte Gonthier
- INSERM U1300, HP2 Laboratory, Université Grenoble Alpes, F-38042 Grenoble, France
| | - Frederique Bertholon
- Centre de Ressources Biologiques, CHU de Saint Etienne, F-42055 Saint-Étienne, France
| | - Nathalie Perek
- INSERM, SAINBIOSE U1059, Université Jean Monnet Saint-Étienne, Mines Saint Etienne, F-42023 Saint-Étienne, France
| | - Jean-Louis Pépin
- INSERM U1300, HP2 Laboratory, Université Grenoble Alpes, F-38042 Grenoble, France
| |
Collapse
|
10
|
Herlihy R, Frasson Dos Reis L, Gvritishvili A, Kvizhinadze M, Dybas E, Malhotra A, Fenik VB, Rukhadze I. Chronic intermittent hypoxia attenuates noradrenergic innervation of hypoglossal motor nucleus. Respir Physiol Neurobiol 2024; 321:104206. [PMID: 38142024 PMCID: PMC10872249 DOI: 10.1016/j.resp.2023.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The state-dependent noradrenergic activation of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency and pathophysiology of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing neurodegenerative disorders in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to hypoglossal nucleus in DBH-cre mice and assessed the effect of CIH on these projections. We found that CIH significantly reduced the number of axonal projections from SubCoeruleus neurons to both dorsal (by 68%) and to ventral (by73%) subregions of the hypoglossal motor nucleus compared to sham-treated animals. The animals' body weight was also negatively affected by CIH. Both effects, the decrease in axonal projections and body weight, were more pronounced in male than female mice, which was likely caused by less sensitivity of female mice to CIH as compared to males. The A7 neurons appeared to have limited projections to the hypoglossal nucleus. Our findings suggest that CIH-induced reduction of noradrenergic innervation of hypoglossal motoneurons may exacerbate progression of OSA, especially in men.
Collapse
Affiliation(s)
- Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Leonardo Frasson Dos Reis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Anzor Gvritishvili
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Maya Kvizhinadze
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Elizabeth Dybas
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Atul Malhotra
- University of California San Diego, San Diego, CA 92093, USA
| | - Victor B Fenik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA.
| | - Irma Rukhadze
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
13
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
14
|
Liu Y, Tan J, Miao Y, Zhang Q. Neurogenesis, A Potential Target for Intermittent Hypoxia Leading to Cognitive Decline. Curr Stem Cell Res Ther 2024; 19:63-70. [PMID: 37005547 DOI: 10.2174/1574888x18666230330083206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023]
Abstract
As a sleep breathing disorder, characterized by intermittent hypoxia (IH) and Obstructive sleep apnea (OSA), is believed to decrease the cognitive function of patients. Many factors are thought to be responsible for cognitive decline in OSA patients. Neurogenesis, a process by which neural stem cells (NSCs) differentiate into new neurons in the brain, is a major determinant affecting cognitive function. However, there is no clear relationship between IH or OSA and neurogenesis. In recent years, increasing numbers of studies on IH and neurogenesis are documented. Therefore, this review summarizes the effects of IH on neurogenesis; then discusses the influencing factors that may cause these effects and the potential signaling pathways that may exist. Finally, based on this impact, we discuss potential methods and future directions for improving cognition.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
15
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
16
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
17
|
Frohnhofen H, Stenmanns C, Gronewold J, Mayer G. [Frailty phenotype and risk factor for disturbed sleep]. Z Gerontol Geriatr 2023; 56:551-555. [PMID: 37438643 DOI: 10.1007/s00391-023-02219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Regardless of the nature of its operationalization, frailty has significant negative consequences for the person concerned and the community. Even if a generally accepted definition of frailty is still missing, there is no doubt about the existence of this phenomenon. Pathophysiologically, a dysfunctional interaction between multiple complex systems is discussed. Therapeutic interventions show that frailty is a dynamic state that can be improved. The pathophysiological characteristics of frailty and sleep disturbances show numerous similarities. In addition, the risk of frailty is increased in individuals with sleep disturbances. As the majority of sleep disorders can usually be well treated, screening for sleep disorders should be integrated into a comprehensive concept of management of frailty.
Collapse
Affiliation(s)
- Helmut Frohnhofen
- Klinik für Orthopädie und Unfallchirurgie, Heinrich Heine Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Carla Stenmanns
- Klinik für Orthopädie und Unfallchirurgie, Heinrich Heine Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - Janine Gronewold
- Klinik für Neurologie, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - Geert Mayer
- Klinik für Neurologie, Phillips Universität Marburg, Baldingerstr. 1, 35043, Marburg, Deutschland
| |
Collapse
|
18
|
Li X, Wang F, Gao Z, Huang W, Zhang X, Liu F, Yi H, Guan J, Wu X, Xu H, Yin S. Melatonin attenuates chronic intermittent hypoxia-induced intestinal barrier dysfunction in mice. Microbiol Res 2023; 276:127480. [PMID: 37659335 DOI: 10.1016/j.micres.2023.127480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND AND PURPOSE Chronic intermittent hypoxia (CIH) triggers subclinical intestinal barrier disruption prior to systemic low-grade inflammation. Increasing evidence suggests therapeutic effects of melatonin on systemic inflammation and gut microbiota remodelling. However, whether and how melatonin alleviates CIH-induced intestinal barrier dysfunction remains unclear. EXPERIMENTAL APPROACH C57BL/6 J mice and Caco-2 cell line were treated. We evaluated gut barrier function spectrophotometrically using fluorescein isothiocyanate (FITC)-labelled dextran. Immunohistochemical and immunofluorescent staining were used to detect morphological changes in the mechanical barrier. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) revealed the expression of tight junctions, signal transducer and activator of transcription 3 (STAT3) levels. 16 S rRNA analysis of the colonic contents microflora. Flow cytometry was used to detect cytokines and Th17 cells with and without melatonin supplementation. KEY RESULTS We found that CIH could induce colonic mucosal injury, including reduction in the number of goblet cells and decrease the expression of intestinal tight junction proteins. CIH could decrease the abundance of the beneficial genera Clostridium, Akkermansia, and Bacteroides, while increasing the abundance of the pathogenic genera Desulfovibrio and Bifidobacterium. Finally, CIH facilitated Th17 differentiation via the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in vitro and elevated the circulating pro-inflammatory cytokine in vivo. Melatonin supplementation ameliorated CIH-induced intestinal mucosal injury, gut microbiota dysbiosis, enteric Th17 polarization, and systemic low-grade inflammation reactions mentioned-above. CONCLUSION AND IMPLICATIONS Melatonin attenuated CIH-induced intestinal barrier dysfunction by regulating gut flora dysbiosis, mucosal epithelium integrity, and Th17 polarization via STAT3 signalling.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Fan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Zhenfei Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Weijun Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Xiaoman Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Feng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Xiaolin Wu
- Central Laboratory of Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Caobao Road 8, Shanghai 200235, China.
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China.
| | - Shankai Yin
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai JiaoTong University, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
19
|
Perrotta M, Carnevale D, Carnevale L. Mouse models of cerebral injury and cognitive impairment in hypertension. Front Aging Neurosci 2023; 15:1199612. [PMID: 37539342 PMCID: PMC10394515 DOI: 10.3389/fnagi.2023.1199612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Hypertension is a major risk factor for dementia, including both vascular and neurodegenerative etiologies. With the original aim of studying the effect of blood pressure elevation on canonical target organs of hypertension as the heart, the vasculature or the kidneys, several experimental models of hypertension have sprouted during the years. With the more recent interest of understanding the cerebral injury burden caused by hypertension, it is worth understanding how the main models of hypertension or localized cerebral hypertension stand in the field of hypertension-induced cerebral injury and cognitive impairment. With this review we will report main genetic, pharmacological and surgical models of cognitive impairment induced by hypertension, summarizing how each specific category and model can improve our understanding of the complex phenomenon of cognitive loss of vascular etiology.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| | - Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
| |
Collapse
|
20
|
Janssen Daalen JM, Meinders MJ, Straatsma IR, Ainslie PN, Thijssen DHJ, Bloem BR. Reply to: Hypoxia treatment of Parkinson's disease may disrupt the circadian system. BMC Neurol 2023; 23:235. [PMID: 37337147 DOI: 10.1186/s12883-023-03281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands.
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands.
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabel R Straatsma
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Zailani H, Satyanarayanan SK, Liao WC, Liao HF, Huang SY, Gałecki P, Su KP, Chang JPC. Omega-3 Polyunsaturated Fatty Acids in Managing Comorbid Mood Disorders in Chronic Obstructive Pulmonary Disease (COPD): A Review. J Clin Med 2023; 12:jcm12072653. [PMID: 37048736 PMCID: PMC10095486 DOI: 10.3390/jcm12072653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third-leading cause of mortality globally, significantly affecting people over 40 years old. COPD is often comorbid with mood disorders; however, they are frequently neglected or undiagnosed in COPD management, thus resulting in unintended treatment outcomes and higher mortality associated with the disease. Although the exact link between COPD and mood disorders remains to be ascertained, there is a broader opinion that inflammatory reactions in the lungs, blood, and inflammation-induced changes in the brain could orchestrate the onset of mood disorders in COPD. Although the current management of mood disorders such as depression in COPD involves using antidepressants, their use has been limited due to tolerability issues. On the other hand, as omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a vital role in regulating inflammatory responses, they could be promising alternatives in managing mood disorders in COPD. This review discusses comorbid mood disorders in COPD as well as their influence on the progression and management of COPD. The underlying mechanisms of comorbid mood disorders in COPD will also be discussed, along with the potential role of n-3 PUFAs in managing these conditions.
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Feng Liao
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 833, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
22
|
Ou Y, Zong D, Ouyang R. Role of epigenetic abnormalities and intervention in obstructive sleep apnea target organs. Chin Med J (Engl) 2023; 136:631-644. [PMID: 35245923 PMCID: PMC10129098 DOI: 10.1097/cm9.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Obstructive sleep apnea (OSA) is a common condition that has considerable impacts on human health. Epigenetics has become a rapidly developing and exciting area in biology, and it is defined as heritable alterations in gene expression and has regulatory effects on disease progression. However, the published literature that is integrating both of them is not sufficient. The purpose of this article is to explore the relationship between OSA and epigenetics and to offer better diagnostic methods and treatment options. Epigenetic modifications mainly manifest as post-translational modifications in DNA and histone proteins and regulation of non-coding RNAs. Chronic intermittent hypoxia-mediated epigenetic alterations are involved in the progression of OSA and diverse multiorgan injuries, including cardiovascular disease, metabolic disorders, pulmonary hypertension, neural dysfunction, and even tumors. This article provides deeper insights into the disease mechanism of OSA and potential applications of targeted diagnosis, treatment, and prognosis in OSA complications.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
23
|
The Associations between Polysomnographic Parameters and Memory Impairment among Patients with Obstructive Sleep Apnea: A 10-Year Hospital-Based Longitudinal Study. Biomedicines 2023; 11:biomedicines11020621. [PMID: 36831157 PMCID: PMC9953626 DOI: 10.3390/biomedicines11020621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Obstructive sleep apnea (OSA) has been associated with cognitive decline via several mechanisms, including intermittent hypoxemia, sleep fragmentation, and neuroinflammation. The neurological consequences of OSA have evolved into a major biopsychosocial concern in the elderly, especially memory impairment. We aimed to identify the polysomnographic (PSG) parameters capable of predicting memory impairment among OSA patients at or over age 50 with OSA. We reviewed the 10-year electronic medical records of OSA patients and compared the initial PSG parameters between those presenting and not presenting self-reported memory impairment. We conducted subgroup analyses based on OSA severity and performed multivariate analysis to correlate PSG parameters with memory impairment. The result showed that 25 out of the 156 (16%) investigated patients experienced self-reported memory impairment during follow-up. As compared to OSA patients without self-reported memory impairment, those reported with self-reported memory impairment had a higher oxygen desaturation index (ODI) (23.9 ± 17.8 versus 18.2 ± 12.0, p = 0.048). Regarding the associations between apnea-hypopnea index (AHI) as well as ODI and self-reported memory impairment among OSA subgroups classified by severity, the associations were only evident in the severe OSA subgroup in both univariate (p < 0.001; p = 0.005) and multivariate analyses (p = 0.014; p = 0.018). We concluded that AHI and ODI are the most relevant PSG parameters in predicting memory impairment in severe OSA patients.
Collapse
|
24
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
25
|
Furlan JC, Loh E, Boulos MI. The potential effects of untreated sleep-related breathing disorders on neuropathic pain, spasticity, and cardiovascular dysfunction following spinal cord injury: A cross-sectional prospective study protocol. PLoS One 2023; 18:e0282860. [PMID: 37130111 PMCID: PMC10153696 DOI: 10.1371/journal.pone.0282860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023] Open
Abstract
INTRODUCTION Sleep-related breathing disorders (SRBDs), neuropathic pain, spasticity and cardiovascular autonomic dysfunction are common after spinal cord injury (SCI). Prior studies suggest that systemic inflammation following SCI may be implicated in the development of neuropathic pain, spasticity and cardiovascular dysfunction. Given that SRBDs also cause a systemic inflammatory response, we hypothesized that individuals with SCI who develop more severe SRBDs would experience more intense neuropathic pain, more severe spasticity and more significant cardiovascular autonomic dysfunction. METHODS This cross-sectional prospective study will explore the previously understudied hypothesis that SRBDs are associated with increased neuropathic pain, spasticity, and cardiovascular autonomic dysfunction in adult individuals with low-cervical/high-thoracic (injury level at C5 to T6), complete/incomplete (ASIA Impairment Scale A, B, C or D) SCI. DISCUSSION To our knowledge, no prior study has addressed this clinically relevant question on whether the degree of SRBDs affects the intensity of neuropathic pain, spasticity, and cardiovascular autonomic dysfunction in individuals with SCI. We anticipate that the results of this original study will provide key information for a future clinical trial on the use of continuous positive airway pressure (CPAP) therapy for moderate-to-severe SRBDs, which may better control neuropathic pain, spasticity, and cardiovascular autonomic dysfunction among individuals with SCI. TRIAL REGISTRATION The research protocol for this study was registered in the ClinicalTrials.gov website (NCT05687097). https://clinicaltrials.gov/ct2/show/NCT05687097.
Collapse
Affiliation(s)
- Julio Cesar Furlan
- Toronto Rehabilitation Institute, Lyndhurst Centre, University Health Network, Toronto, Ontario, Canada
- KITE Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Eldon Loh
- Department of Physical Medicine and Rehabilitation, University of Western Ontario, London, ON, Canada
- Parkwood Institute Research, Lawson Health Research Institute, London, ON, Canada
| | - Mark Iskander Boulos
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute and Sunnybrook Health Sciences Centre, Hurvitz Brain Sciences Research Program, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Mishra I, Pullum KB, Eads KN, Strunjas AR, Ashley NT. Peripheral Sympathectomy Alters Neuroinflammatory and Microglial Responses to Sleep Fragmentation in Female Mice. Neuroscience 2022; 505:111-124. [PMID: 36240943 PMCID: PMC9671838 DOI: 10.1016/j.neuroscience.2022.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Sleep loss, either induced by obstructive sleep apnea or other forms of sleep dysfunction, induces an inflammatory response, as commonly measured by increased circulating levels of pro-inflammatory cytokines. Increased catecholamines from sympathetic nervous system (SNS) activation regulates this peripheral inflammation. However, the role that catecholamines play in mediating neuroinflammation from sleep perturbations is undescribed. The aims of this study were to determine (i) the effect of peripheral SNS inhibition upon neuroinflammatory responses to sleep fragmentation (SF) and (ii) whether homeostasis can be restored after 1 week of recovery sleep. We measured gene expression levels of pro- and anti-inflammatory cytokines and microglial activity in brain (prefrontal cortex, hippocampus and hypothalamus) of female mice that were subjected to acute SF for 24 hours, chronic SF for 8 weeks, or 7 days of recovery after chronic SF. In each experiment, SF and control mice were peripherally sympathectomized with 6-hydroxydopamine (6-OHDA) or injected with vehicle. SF elevated cytokine mRNA expression in brain and increased microglial density and cell area in some regions. In addition, chronic SF promoted hyper-ramification in resting microglia upon exposure to chronic, but not acute, SF. Effects of chronic SF were more pronounced than acute SF, and 1 week of recovery was not sufficient to alleviate neuroinflammation. Importantly, 6-OHDA treatment significantly alleviated SF-induced inflammation and microglial responses. This study provides evidence of SNS regulation of neural inflammation from SF, suggesting a potential role for therapeutics that could mitigate neuroinflammatory responses to sleep dysfunction.
Collapse
Affiliation(s)
- Ila Mishra
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; Harrington Discovery Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Keelee B Pullum
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristen N Eads
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Anna R Strunjas
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| |
Collapse
|
27
|
McCamy KM, Rees KA, Winzer-Serhan UH. Peripheral immune challenges elicit differential up-regulation of hippocampal cytokine and chemokine mRNA expression in a mouse model of the 15q13.3 microdeletion syndrome. Cytokine 2022; 159:156005. [PMID: 36084604 DOI: 10.1016/j.cyto.2022.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
The human heterozygous 15q13.3 microdeletion is associated with neuropathological disorders, most prominently with epilepsy and intellectual disability. The 1.5 Mb deletion encompasses six genes (FAN1 [MTMR15], MTMR10, TRPM1, KLF13, OTUD7A, and CHRNA7); all but one (TRPM1) are expressed in the brain. The 15q13.3 microdeletion causes highly variable neurological symptoms, and confounding factors may contribute to a more severe phenotype. CHRNA7 and KLF13 are involved in immune system regulation and altered immune responses may contribute to neurological deficits. We used the Df[h15q13]/+ transgenic mouse model with a heterozygous deletion of the orthologous region (Het) to test the hypothesis that the microdeletion increases innate immune responses compared to wild type (WT). Male and female mice were acutely challenged with the bacteriomimetic lipopolysaccharide (LPS, 0.1 mg/kg, i.p.) or the viral mimetic polyinosinic:polycytidylic acid (Poly(I:C), 5 mg/kg). Hippocampal mRNA expression of pro-inflammatory cytokines and chemokines were determined three hours after injection using quantitative PCR analysis. In controls, expression was not affected by sex or genotype. LPS and Poly(I:C) resulted in significantly increased hippocampal expression of cytokines, chemokines, and interferon-γ (IFNγ), with more robust increases for TNF-α, IL-6, IL-1β, CXCL1, and CCL2 by LPS, higher induction of IFNγ by Poly(I:C), and similar increases of CCL4 and CCL5 by both agents. Generally, Hets exhibited stronger responses than WT mice, and significant effects of genotype or genotype × treatment interactions were detected for CXCL1 and CCL5, and IL-6, IL-1β, and CCL4, respectively, after LPS. Sex differences were detected for some targets. LPS but not Poly(I:C), reduced overnight burrowing independent of sex or genotype, suggesting that LPS induced sickness behavior. Thus, mice carrying the microdeletion have an increased innate immune response following a LPS challenge, but further studies will have to determine the extent and mechanisms of altered immune activation and subsequent contributions to 15q13.3 microdeletion associated deficits.
Collapse
Affiliation(s)
- Kristin M McCamy
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Katherine A Rees
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States
| | - Ursula H Winzer-Serhan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, United States.
| |
Collapse
|
28
|
Devinney MJ, VanDusen KW, Kfouri JM, Avasarala P, Spector AR, Mathew JP, Berger M. The potential link between obstructive sleep apnea and postoperative neurocognitive disorders: current knowledge and possible mechanisms. Can J Anaesth 2022; 69:1272-1287. [PMID: 35982354 PMCID: PMC9924301 DOI: 10.1007/s12630-022-02302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE This narrative review examines the current evidence on whether obstructive sleep apnea (OSA) is associated with postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). The mechanisms that could predispose OSA patients to these disorders are also explored. SOURCE Relevant literature was identified by searching for pertinent terms in Medline®, Pubmed, ScopusTM, and Google scholar databases. Case reports, abstracts, review articles, original research articles, and meta-analyses were reviewed. The bibliographies of retrieved sources were also searched to identify relevant papers. PRINCIPAL FINDINGS Seven studies have investigated the association between OSA and POD, with mixed results. No studies have examined the potential link between OSA and POCD. If these relationships exist, they could be mediated by several mechanisms, including increased neuroinflammation, blood-brain barrier breakdown, cerebrovascular disease, Alzheimer's disease neuropathology, disrupted cerebral autoregulation, sleep disruption, sympathovagal imbalance, and/or disrupted brain bioenergetics. CONCLUSION There is very limited evidence that OSA plays a role in postoperative neurocognitive disorders because few studies have been conducted in the perioperative setting. Additional perioperative prospective observational cohort studies and randomized controlled trials of sleep apnea treatment are needed. These investigations should also assess potential underlying mechanisms that could predispose patients with OSA to postoperative neurocognitive disorders. This review highlights the need for more research to improve postoperative neurocognitive outcomes for patients with OSA.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Duke Hospital South, 3094 MS 01, 40 Medicine Circle, Rm 4324, Orange Zone, Durham, NC, 27710, USA.
| | - Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jad M Kfouri
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Pallavi Avasarala
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Andrew R Spector
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
Yang C, Zhou Y, Liu H, Xu P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 2022; 12:brainsci12101303. [PMID: 36291237 PMCID: PMC9599901 DOI: 10.3390/brainsci12101303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) has become a major worldwide public health concern, given its global prevalence. It has clear links with multiple comorbidities and mortality. Cognitive impairment is one related comorbidity causing great pressure on individuals and society. The clinical manifestations of cognitive impairment in OSAS include decline in attention/vigilance, verbal–visual memory loss, visuospatial/structural ability impairment, and executive dysfunction. It has been proven that chronic intermittent hypoxia (CIH) may be a main cause of cognitive impairment in OSAS. Inflammation plays important roles in CIH-induced cognitive dysfunction. Furthermore, the nuclear factor kappa B and hypoxia-inducible factor 1 alpha pathways play significant roles in this inflammatory mechanism. Continuous positive airway pressure is an effective therapy for OSAS; however, its effect on cognitive impairment is suboptimal. Therefore, in this review, we address the role inflammation plays in the development of neuro-impairment in OSAS and the association between OSAS and cognitive impairment to provide an overview of its pathophysiology. We believe that furthering the understanding of the inflammatory mechanisms involved in OSAS-associated cognitive impairment could lead to the development of appropriate and effective therapy.
Collapse
|
30
|
Marciante AB, Howard J, Kelly MN, Santiago Moreno J, Allen LL, Gonzalez-Rothi EJ, Mitchell GS. Dose-dependent phosphorylation of endogenous Tau by intermittent hypoxia in rat brain. J Appl Physiol (1985) 2022; 133:561-571. [PMID: 35861520 PMCID: PMC9448341 DOI: 10.1152/japplphysiol.00332.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia, or intermittent low oxygen interspersed with normal oxygen levels, has differential effects that depend on the "dose" of hypoxic episodes (duration, severity, number per day, and number of days). Whereas "low dose" daily acute intermittent hypoxia (dAIH) elicits neuroprotection and neuroplasticity, "high dose" chronic intermittent hypoxia (CIH) similar to that experienced during sleep apnea elicits neuropathology. Sleep apnea is comorbid in >50% of patients with Alzheimer's disease-a progressive, neurodegenerative disease associated with brain amyloid and chronic Tau dysregulation (pathology). Although patients with sleep apnea present with higher Tau levels, it is unknown if sleep apnea through attendant CIH contributes to onset of Tau pathology. We hypothesized CIH characteristic of moderate sleep apnea would increase dysregulation of phosphorylated Tau (phospho-Tau) species in Sprague-Dawley rat hippocampus and prefrontal cortex. Conversely, we hypothesized that dAIH, a promising neurotherapeutic, has minimal impact on Tau phosphorylation. We report a dose-dependent intermittent hypoxia effect, with region-specific increases in 1) phospho-Tau species associated with human Tauopathies in the soluble form and 2) accumulated phospho-Tau in the insoluble fraction. The latter observation was particularly evident with higher CIH intensities. This important and novel finding is consistent with the idea that sleep apnea and attendant CIH have the potential to accelerate the progression of Alzheimer's disease and/or other Tauopathies.NEW & NOTEWORTHY Sleep apnea is highly prevalent in people with Alzheimer's disease, suggesting the potential to accelerate disease onset and/or progression. These studies demonstrate that intermittent hypoxia (IH) induces dose-dependent, region-specific Tau phosphorylation, and are the first to indicate that higher IH "doses" elicit both endogenous, (rat) Tau hyperphosphorylation and accumulation in the hippocampus. These findings are essential for development and implementation of new treatment strategies that minimize sleep apnea and its adverse impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - John Howard
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Juan Santiago Moreno
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Gozal D. Brain structure-function relationships in sleep apnea among obese children: no time to waste! Sleep 2022; 45:zsac055. [PMID: 35554580 DOI: 10.1093/sleep/zsac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Affiliation(s)
- David Gozal
- Department of Child Health and the Child Health Research Institute, and the Comprehensive Sleep Medicine Program, University of Missouri School of Medicine, Columbia, MO 65201, USA
| |
Collapse
|
32
|
Abstract
Multiple Sclerosis (MS) is a common neuroinflammatory disorder which is associated with disabling clinical consequences. The MS disease process may involve neural centers implicated in the control of breathing, leading to ventilatory disturbances during both wakefulness and sleep. In this chapter, a brief overview of MS disease mechanisms and clinical sequelae including sleep disorders is provided. The chapter then focuses on obstructive sleep apnea-hypopnea (OSAH) which is the most prevalent respiratory control abnormality encountered in ambulatory MS patients. The diagnosis, prevalence, and clinical consequences as well as data on effects of OSAH treatment in MS patients are discussed, including the impact on the disabling symptom of fatigue and other clinical sequelae. We also review pathophysiologic mechanisms contributing to OSAH in MS, and in turn mechanisms by which OSAH may impact on the MS disease process, resulting in a bidirectional relationship between these two conditions. We then discuss central sleep apnea, other respiratory control disturbances, and the pathogenesis and management of respiratory muscle weakness and chronic hypoventilation in MS. We also provide a brief overview of Neuromyelitis Optica Spectrum Disorders and review current data on respiratory control disturbances and sleep-disordered breathing in that condition.
Collapse
Affiliation(s)
- R John Kimoff
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Marta Kaminska
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, McGill University, Montreal, QC, Canada; Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Daria Trojan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Sandhu MS, Rymer WZ. Brief exposure to systemic hypoxia enhances plasticity of the central nervous system in spinal cord injured animals and man. Curr Opin Neurol 2021; 34:819-824. [PMID: 34545014 DOI: 10.1097/wco.0000000000000990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We have known for many decades that animals that sustain injuries to the neuraxis, which result in respiratory impairment, are able to develop rapid neural compensation for these injuries. This compensation, which is linked to the systemic hypoxia resulting from damage to the respiratory apparatus, is a potent manifestation of neural plasticity. Hypoxia-induced plasticity is also applicable to somatic neural systems that regulate motor activity in extremity muscles. We report on recent developments in our understanding of the mechanisms underlying this seemingly beneficial action of acute intermittent hypoxia (AIH). RECENT FINDINGS AIH improves breathing in animal models of spinal cord injury, and increases strength and endurance in individuals with incomplete spinal injuries. The role of AIH as a therapeutic intervention remains to be confirmed but it has proved to be well tolerated for use in humans with no adverse effects reported to date. The effects of AIH emerge rapidly and persist for several hours raising the possibility that the intervention may serve as a priming mechanism for facilitating rehabilitation and promoting recovery after neurologic injury in man. SUMMARY AIH is emerging as a potent and relatively inexpensive modality for inducing neuroplasticity, so it may prove feasible to use AIH in a clinical setting.
Collapse
Affiliation(s)
- Milap S Sandhu
- Shirley Ryan AbilityLab
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - William Z Rymer
- Shirley Ryan AbilityLab
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
34
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Ulland TK, Ewald AC, Knutson AO, Marino KM, Smith SMC, Watters JJ. Alzheimer's Disease, Sleep Disordered Breathing, and Microglia: Puzzling out a Common Link. Cells 2021; 10:2907. [PMID: 34831129 PMCID: PMC8616348 DOI: 10.3390/cells10112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep Disordered Breathing (SDB) and Alzheimer's Disease (AD) are strongly associated clinically, but it is unknown if they are mechanistically associated. Here, we review data covering both the cellular and molecular responses in SDB and AD with an emphasis on the overlapping neuroimmune responses in both diseases. We extensively discuss the use of animal models of both diseases and their relative utilities in modeling human disease. Data presented here from mice exposed to intermittent hypoxia indicate that microglia become more activated following exposure to hypoxia. This also supports the idea that intermittent hypoxia can activate the neuroimmune system in a manner like that seen in AD. Finally, we highlight similarities in the cellular and neuroimmune responses between SDB and AD and propose that these similarities may lead to a pathological synergy between SDB and AD.
Collapse
Affiliation(s)
- Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Andrew O. Knutson
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Kaitlyn M. Marino
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Stephanie M. C. Smith
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Jyoti J. Watters
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| |
Collapse
|
36
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
37
|
Correia SC, Moreira PI. Oxygen Sensing and Signaling in Alzheimer's Disease: A Breathtaking Story! Cell Mol Neurobiol 2021; 42:3-21. [PMID: 34510330 DOI: 10.1007/s10571-021-01148-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Oxygen sensing and homeostasis is indispensable for the maintenance of brain structural and functional integrity. Under low-oxygen tension, the non-diseased brain has the ability to cope with hypoxia by triggering a homeostatic response governed by the highly conserved hypoxia-inducible family (HIF) of transcription factors. With the advent of advanced neuroimaging tools, it is now recognized that cerebral hypoperfusion, and consequently hypoxia, is a consistent feature along the Alzheimer's disease (AD) continuum. Of note, the reduction in cerebral blood flow and tissue oxygenation detected during the prodromal phases of AD, drastically aggravates as disease progresses. Within this scenario a fundamental question arises: How HIF-driven homeostatic brain response to hypoxia "behaves" during the AD continuum? In this sense, the present review is aimed to critically discuss and summarize the current knowledge regarding the involvement of hypoxia and HIF signaling in the onset and progression of AD pathology. Importantly, the promises and challenges of non-pharmacological and pharmacological strategies aimed to target hypoxia will be discussed as a new "hope" to prevent and/or postpone the neurodegenerative events that occur in the AD brain.
Collapse
Affiliation(s)
- Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Polo I, 1st Floor, 3004-504, Coimbra, Portugal.,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| |
Collapse
|
38
|
Liu T, Ouyang R. Effect of continuous positive air pressure on cognitive impairment associated with obstructive sleep apnea. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:865-871. [PMID: 34565731 PMCID: PMC10929983 DOI: 10.11817/j.issn.1672-7347.2021.190600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 11/03/2022]
Abstract
Obstructive sleep apnea (OSA) is a kind of sleep-related breathing disorder, involving multiple organs and systems, which can lead to cognitive impairment. At present, the pathophysiological mechanism of cognitive impairment related to OSA is not clear. It is still unknown whether continuous positive airway pressure (CPAP) has therapeutic effect on cognitive impairment in patients with OSA. These patients repeatedly experience intermittent hypoxia and have sleep fragmentation, which results in abnormal brain structure and function, characterizing by extensive cognitive impairment. Appropriate CPAP can correct the abnormal pathophysiological process of OSA patients, restore brain structure and function to a certain extent, and improve cognitive function. Domestic OSA patients have poor acceptance and compliance to CPAP, while the therapeutic effect of CPAP depends on the timing of treatment and compliance, so many patients do not get effective treatment. Systematically expounding the influence of CPAP on the cognitive function of patients with OSA can help clinicians and patients improve their understanding of CPAP treatment and establish a correct concept of early and standardized treatment.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
39
|
Burtscher J, Mallet RT, Burtscher M, Millet GP. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev 2021; 68:101343. [PMID: 33862277 DOI: 10.1016/j.arr.2021.101343] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
The absolute reliance of the mammalian brain on oxygen to generate ATP renders it acutely vulnerable to hypoxia, whether at high altitude or in clinical settings of anemia or pulmonary disease. Hypoxia is pivotal to the pathogeneses of myriad neurological disorders, including Alzheimer's, Parkinson's and other age-related neurodegenerative diseases. Conversely, reduced environmental oxygen, e.g. sojourns or residing at high altitudes, may impart favorable effects on aging and mortality. Moreover, controlled hypoxia exposure may represent a treatment strategy for age-related neurological disorders. This review discusses evidence of hypoxia's beneficial vs. detrimental impacts on the aging brain and the molecular mechanisms that mediate these divergent effects. It draws upon an extensive literature search on the effects of hypoxia/altitude on brain aging, and detailed analysis of all identified studies directly comparing brain responses to hypoxia in young vs. aged humans or rodents. Special attention is directed toward the risks vs. benefits of hypoxia exposure to the elderly, and potential therapeutic applications of hypoxia for neurodegenerative diseases. Finally, important questions for future research are discussed.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
40
|
Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (Albany NY) 2021; 13:15240-15254. [PMID: 34035184 PMCID: PMC8221356 DOI: 10.18632/aging.203084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/13/2021] [Indexed: 01/13/2023]
Abstract
Intermittent hypoxia (IH)-associated cognition decline is related to the neuroinflammation of microglia. SUMOylation is a post-translational modification related to multiple human diseases, which can be reversed by SENP1. Studies showed that SENP1 and PPARγ play essential roles in restricting inflammation by blocking NF-κB activation. However, the mechanism remains unclear. Herein, we investigated the precise mechanism underlying SENP1 and PPARγ in cognitive decline after IH insult. Biochemical analysis results revealed that IH triggered the inflammatory response and neuronal apoptosis, increased the SUMOylation of PPARγ, and decreased the level of PPARγ compared to that in the normoxia group. After SENP1 downregulation, the inflammatory response, neuronal apoptosis and the SUMOylation of PPARγ were enhanced, and the level of PPARγ was further decreased in vitro and in vivo. However, the application of PPARγ agonist, GW1929, abolished the enhancement of inflammation and neuronal apoptosis in vitro. The Morris Water Maze results showed that both IH groups mice exhibited longer latency and shorter dwell-time in the goal quadrant than normoxia groups. Notably, SENP1 downregulation aggravated these alterations. Overall, these results showed that SENP1 played an essential role in IH-associated cognitive dysfunction. SENP1 depletion aggravated neuroinflammation and neuronal apoptosis via promoting the SUMOylation of PPARγ, reducing the level of PPARγ, thus exaggerating IH-induced cognitive decline.
Collapse
Affiliation(s)
- Hongwei Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wei Xiong
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sitong Hang
- China Medical University, Shenyang 110122, Liaoning, China
| | - Yanmin Wang
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sisen Zhang
- Affiliated Zhengzhou People's Hospital, The Second School of Clinical Medicine, Southern Medical University, Zhengzhou 450003, Henan, China
| | - Song Liu
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
41
|
Mo H, Zhao J, Wu X, Liu W, Hu K. The combination of intermittent electrical stimulation with acute intermittent hypoxia strengthens genioglossus muscle discharge in chronic intermittent hypoxia-pretreated rats. Respir Physiol Neurobiol 2021; 291:103680. [PMID: 33971311 DOI: 10.1016/j.resp.2021.103680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exploring whether the genioglossus discharge in chronic intermittent hypoxia(CIH) - pretreated rats could be enhanced by intermittent electrical stimulation combined with acute intermittent hypoxia(AIH). METHODS Rats were pretreated with CIH for 4 weeks and then were randomly divided into 6 groups: time control, intermittent electric stimulation, AIH, intermittent electric stimulation + AIH, continuous electric stimulation and continuous hypoxia exposure. The genioglossus discharges were recorded and compared before and after stimulation. Normoxic-treated rats were grouped and treated with the same stimulation protocols. RESULTS Intermittent electrical stimulation or AIH temporarily increased the activity of the genioglossus discharge, in which the degree of the increase was significantly higher in CIH-pretreated rats than in normoxic rats.After intermittent electrical stimulation, AIH evoked a sustained elevation of genioglossus discharge activities in CIH-pretreated rats, in which the degree of the increase was significantly higher than in rats induced by a single intermittent electric stimulation. CONCLUSION Intermittent electrical stimulation combined with AIH strengthens the genioglossus plasticity in CIH-pretreated rats.
Collapse
Affiliation(s)
- Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - JingJing Zhao
- Department of Respiratory and Critical Care Medicine, Zhumadian Central Hospital, Zhumadian 463000, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
42
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
43
|
Fitzpatrick SF, King AD, O'Donnell C, Roche HM, Ryan S. Mechanisms of intermittent hypoxia-mediated macrophage activation - potential therapeutic targets for obstructive sleep apnoea. J Sleep Res 2020; 30:e13202. [PMID: 32996666 DOI: 10.1111/jsr.13202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 01/24/2023]
Abstract
Intermittent hypoxia (IH) plays a key role in the pathogenesis of insulin resistance (IR) in obstructive sleep apnoea (OSA). IH induces a pro-inflammatory phenotype of the adipose tissue with M1 macrophage polarisation, subsequently impeding adipocyte insulin signalling, and these changes are in striking similarity to those seen in obesity. However, the detailed molecular mechanisms of IH-induced macrophage polarisation are unknown and identification of same should lead to the identification of novel therapeutic targets. In the present study, we tested the hypothesis that IH acts through similar mechanisms as obesity, activating Toll-like-receptor (TLR)4/nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) signalling pathways leading to the upregulation and secretion of the key cytokines interleukin (IL)-1β and IL-6. Bone-marrow derived macrophages (BMDMs) from lean and obese C57BL/6 male mice were exposed to a state-of-the-art in vitro model of IH. Independent of obesity, IH led to a pro-inflammatory M1 phenotype characterised by increased inducible nitric oxide synthase and IL-6 mRNA expression, robust increase in NF-κB DNA-binding activity and IL-6 secretion. Furthermore, IH significantly increased pro-IL-1β mRNA and protein expression and mature IL-1β secretion compared to control treatment. Providing mechanistic insight, pre-treatment with the TLR4 specific inhibitor, TAK-242, prevented IH-induced M1 polarisation and upregulation of IL-1β mRNA and pro-IL-1β protein expression. Moreover, IH-induced increase in IL-1β secretion was prevented in BMDMs isolated from NLRP3 knockout mice. Thus, targeting TLR4/NF-κB and NLRP3 signalling pathways may provide novel therapeutic options for metabolic complications in OSA.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ailbhe D King
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Cliona O'Donnell
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Silke Ryan
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
44
|
Heras-Garvin A, Danninger C, Eschlböck S, Holton JL, Wenning GK, Stefanova N. Signs of Chronic Hypoxia Suggest a Novel Pathophysiological Event in α-Synucleinopathies. Mov Disord 2020; 35:2333-2338. [PMID: 32881058 PMCID: PMC7818169 DOI: 10.1002/mds.28229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 01/13/2023] Open
Abstract
Background Multiple system atrophy (MSA) and Parkinson's disease (PD) patients develop respiratory and cardiovascular disturbances including obstructive sleep apnea, orthostatic hypotension, and nocturnal stridor. We hypothesized that, associated with these respiratory and cardiovascular disturbances, hypoxic events may occur in MSA and PD brains that may play a role in disease progression. The objective of this study was to evaluate the presence of hypoxia in nonneurological controls and PD and MSA patients. Methods Molecular levels of hypoxia markers were measured in postmortem brain tissue from controls and PD and MSA cases. Results MSA brain showed signs of chronic hypoxia characterized by the significant accumulation of the hypoxic marker HIF2α as compared to PD patients and controls. We detected no differences between MSA subtypes. Signs of hypoxia were also observed in PD patients with a clinical presentation similar to the MSA cases. Conclusions The results obtained from this study suggest a new alternative pathway associated with α‐synucleinopathies that may contribute to the pathogenesis of these disorders. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Danninger
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Eschlböck
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janice L Holton
- Division of Neuropathology, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Badran M, Khalyfa A, Ericsson A, Gozal D. Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naïve mice. Exp Neurol 2020; 334:113439. [PMID: 32835671 DOI: 10.1016/j.expneurol.2020.113439] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea (OSA) is a chronic prevalent condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). Evidence suggests that OSA can alter the gut microbiome (GM) diversity and composition that may then promote the occurrence of some of the OSA-associated morbidities. However, it is unclear whether perturbations in the GM caused by IH can elicit sleep disturbances that underlie the increased sleep propensity that occurs in IH-exposed mice. To evaluate this issue, we exposed C57Bl/6 J mice to IH or room air (RA) for 6 weeks, and fecal matter was collected and frozen. C57Bl/6 J naïve mice were then randomly assigned to a fecal microbiota transfer (FMT) protocol for 3 weeks with either IH or RA fecal slur, and their GM was then analyzed using 16 s rRNA sequencing. In addition, FMT recipients underwent sleep recordings using piezoelectric approaches for 3 consecutive days. As anticipated, FMT-IH and FMT-RA mice showed different taxonomic profiles that corresponded to previous effects of IH on GM. Furthermore, FMT-IH mice exhibited increased sleep duration and the frequency of longer sleep bouts during the dark cycle, suggesting increased sleepiness (p < 0.0001 vs. FMT-RA mice). Thus, alterations of GM diversity induced by IH exposures can elicit sleep disturbances in the absence of concurrent IH, suggesting that sleep disturbances can be mediated, at least in part, by IH-induced alterations in GM.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States; University of Missouri, Metagenomics Center, Columbia, MO, United States
| | - David Gozal
- Department of Child Health and Child Health Research Institute, Faculty of Medicine, University of Missouri, Columbia, MO 65201, United States.
| |
Collapse
|
46
|
Liu X, Ma Y, Ouyang R, Zeng Z, Zhan Z, Lu H, Cui Y, Dai Z, Luo L, He C, Li H, Zong D, Chen Y. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J Neuroinflammation 2020; 17:229. [PMID: 32738920 PMCID: PMC7395983 DOI: 10.1186/s12974-020-01905-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS), a state of sleep disorder, is characterized by repetitive apnea, chronic hypoxia, oxygen desaturation, and hypercapnia. Previous studies have revealed that intermittent hypoxia (IH) conditions in OSAS patients elicited neuron injury (especially in the hippocampus and cortex), leading to cognitive dysfunction, a significant and extraordinary complication of OSAS patients. The repeated courses of airway collapse and obstruction in OSAS patients resulted in apnea and arousal during sleep, leading to IH and excessive daytime sleepiness (EDS) and subsequently contributing to the development of inflammation. IH-mediated inflammation could further trigger various types of cognitive dysfunction. Many researchers have found that, besides continuous positive airway pressure (CPAP) treatment and surgery, anti-inflammatory substances might alleviate IH-induced neurocognitive dysfunction. Clarifying the role of inflammation in IH-mediated cognitive impairment is crucial for potentially valuable therapies and future research in the related domain. The objective of this article was to critically review the relationship between inflammation and cognitive deficits in OSAS.
Collapse
Affiliation(s)
- Xiangming Liu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yiming Ma
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zijie Zhan
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Huanhuan Lu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Yanan Cui
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Zhongshang Dai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Lijuan Luo
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Chenjie He
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Dandan Zong
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Ganesh BP, Nelson JW, Eskew JR, Ganesan A, Ajami NJ, Petrosino JF, Bryan RM, Durgan DJ. Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension 2019; 72:1141-1150. [PMID: 30354816 DOI: 10.1161/hypertensionaha.118.11695] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disruption of the gut microbiota, termed gut dysbiosis, has been described in animal models of hypertension and hypertensive patients. We have shown that gut dysbiosis plays a causal role in the development of hypertension in a rat model of obstructive sleep apnea (OSA). Functional analysis of the dysbiotic microbiota in OSA demonstrates a loss of short chain fatty acid-producing bacteria. However, measurements of short chain fatty acid concentrations and testing of their role in blood pressure regulation are lacking. We hypothesized that reduced short chain fatty acids in the gut are responsible for OSA-induced hypertension. OSA significantly increased systolic blood pressure at 7 and 14 days ( P<0.05), an effect that was abolished by the probiotic Clostridium butyricum or the prebiotic Hylon VII. The 16S rRNA analysis identified several short chain fatty acid-producing bacteria that were significantly increased by Cbutyricum and Hylon treatment. Acetate concentration in the cecum was decreased by 48% after OSA ( P<0.05), an effect that was prevented by Cbutyricum and Hylon. Cbutyricum and Hylon reduced OSA-induced dysbiosis, epithelial goblet cell loss, mucus barrier thinning, and activation of brain microglia ( P<0.05 for each). To examine the role of acetate in OSA-induced hypertension, we chronically infused acetate into the cecum during 2 weeks of sham or OSA. Restoring cecal acetate concentration prevented OSA-induced gut inflammation and hypertension ( P<0.05). These studies identify acetate as a key player in OSA-induced hypertension. We demonstrate that various methods to increase cecal acetate concentrations are protective from the adverse effects of OSA on the microbiota, gut, brain, and blood pressure.
Collapse
Affiliation(s)
- Bhanu P Ganesh
- From the Department of Neurology, University of Texas Health Sciences Center, Houston (B.P.G.)
| | - James W Nelson
- Department of Anesthesiology, Baylor College of Medicine, Houston TX (J.W.N., A.G., R.M.B., D.J.D.)
| | - Joshua R Eskew
- Mercer University School of Medicine, Macon, GA (J.R.E.)
| | - Arunkumar Ganesan
- Department of Anesthesiology, Baylor College of Medicine, Houston TX (J.W.N., A.G., R.M.B., D.J.D.)
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX (N.J.A., J.F.P.)
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX (N.J.A., J.F.P.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston TX (J.W.N., A.G., R.M.B., D.J.D.).,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX (R.M.B., D.J.D.)
| | - David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston TX (J.W.N., A.G., R.M.B., D.J.D.).,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX (R.M.B., D.J.D.)
| |
Collapse
|
48
|
Intermittent Hypoxia Disrupts Adult Neurogenesis and Synaptic Plasticity in the Dentate Gyrus. J Neurosci 2018; 39:1320-1331. [PMID: 30587544 DOI: 10.1523/jneurosci.1359-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023] Open
Abstract
Individuals with sleep apnea often exhibit changes in cognitive behaviors consistent with alterations in the hippocampus. It is hypothesized that adult neurogenesis in the dentate gyrus is an ongoing process that maintains normal hippocampal function in many mammalian species, including humans. However, the impact of chronic intermittent hypoxia (IH), a principal consequence of sleep apnea, on hippocampal adult neurogenesis remains unclear. Using a murine model, we examined the impact of 30 d of IH (IH30) on adult neurogenesis and synaptic plasticity in the dentate gyrus. Although IH30 did not affect paired-pulse facilitation, IH30 suppressed long-term potentiation (LTP). Immunohistochemical experiments also indicate that IH perturbs multiple aspects of adult neurogenesis. IH30 increased the number of proliferating Sox2+ neural progenitor cells in the subgranular zone yet reduced the number of doublecortin-positive neurons. Consistent with these findings, cell lineage tracing revealed that IH30 increased the proportion of radial glial cells in the subgranular zone, yet decreased the proportion of adult-born neurons in the dentate gyrus. While administration of a superoxide anion scavenger during IH did not prevent neural progenitor cell proliferation, it mitigated the IH-dependent suppression of LTP and prevented adult-born neuron loss. These data demonstrate that IH causes both reactive oxygen species-dependent and reactive oxygen species-independent effects on adult neurogenesis and synaptic plasticity in the dentate gyrus. Our findings identify cellular and neurophysiological changes in the hippocampus that may contribute to cognitive and behavioral deficits occurring in sleep apnea.SIGNIFICANCE STATEMENT Individuals with sleep apnea experience periods of intermittent hypoxia (IH) that can negatively impact many aspects of brain function. Neurons are continually generated throughout adulthood to support hippocampal physiology and behavior. This study demonstrates that IH exposure attenuates hippocampal long-term potentiation and reduces adult neurogenesis. Antioxidant treatment mitigates these effects indicating that oxidative signaling caused by IH is a significant factor that impairs synaptic plasticity and reduces adult neurogenesis in the hippocampus.
Collapse
|
49
|
Macheda T, Roberts K, Lyons DN, Higgins E, Ritter KJ, Lin AL, Alilain WJ, Bachstetter AD. Chronic Intermittent Hypoxia Induces Robust Astrogliosis in an Alzheimer's Disease-Relevant Mouse Model. Neuroscience 2018; 398:55-63. [PMID: 30529693 DOI: 10.1016/j.neuroscience.2018.11.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Sleep disturbances are a common early symptom of neurodegenerative diseases, including Alzheimer's disease (AD) and other age-related dementias, and emerging evidence suggests that poor sleep may be an important contributor to development of amyloid pathology. Of the causes of sleep disturbances, it is estimated that 10-20% of adults in the United States have sleep-disordered breathing (SDB) disorder, with obstructive sleep apnea accounting for the majority of the SBD cases. The clinical and epidemiological data clearly support a link between sleep apnea and AD; yet, almost no experimental research is available exploring the mechanisms associated with this correlative link. Therefore, we exposed an AD-relevant mouse model (APP/PS1 KI) to chronic intermittent hypoxia (IH) (an experimental model of sleep apnea) to begin to describe one of the potential mechanisms by which SDB could increase the risk of dementia. Previous studies have found that astrogliosis is a contributor to neuropathology in models of chronic IH and AD; therefore, we hypothesized that a reactive astrocyte response might be a contributing mechanism in the neuroinflammation associated with sleep apnea. To test this hypothesis, 10-11-month-old wild-type (WT) and APP/PS1 KI mice were exposed to 10 hours of IH, daily for four weeks. At the end of four weeks brains were analyzed from amyloid burden and astrogliosis. No effect was found for chronic IH exposure on amyloid-beta levels or plaque load in the APP/PS1 KI mice. A significant increase in GFAP staining was found in the APP/PS1 KI mice following chronic IH exposure, but not in the WT mice. Profiling of genes associated with different phenotypes of astrocyte activation identified GFAP, CXCL10, and Ggta1 as significant responses activated in the APP/PS1 KI mice exposed to chronic IH.
Collapse
Affiliation(s)
- Teresa Macheda
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kelly Roberts
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Danielle N Lyons
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Emma Higgins
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kyle J Ritter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States; Department of Nutrition and Pharmacology, University of Kentucky, Lexington, KY, United States
| | - Warren J Alilain
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
50
|
Moon C, Bendlin BB, Melah KE, Bratzke LC. The association of sleep-disordered breathing and white matter hyperintensities in heart failure patients. Metab Brain Dis 2018; 33:2019-2029. [PMID: 30218440 PMCID: PMC6408271 DOI: 10.1007/s11011-018-0309-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/26/2018] [Indexed: 01/19/2023]
Abstract
Heart failure patients often manifest white matter hyperintensites on brain magnetic resonance imaging (MRI). White matter hyperintnsities have also been linked with cognitive problems in patients with heart failure. Sleep disordered breathing may contribute to structural brain changes in heart failure. The purpose of this study was to test the extent to which the apnea hypopnea index is associated with global and regional white matter hyperintensities, and is a moderating factor in the relationship between age and white matter hyperintensites. A total of 28 HF patients [mean age (SD) = 67.89 (5.8)] underwent T1-weighted and T2FLAIR MRI and a home sleep monitoring study. The apnea hypopnea index cut off of 10 was used to compare between higher and lower risks of sleep disordered breathing. Regression analysis was used to test the association between apnea hypopnea index and both global and regional white matter hyperintensities. The interaction term was entered to identify the moderation effect. Apnea hypopnea index was associated with higher regional white matter hyperintensities but not global white matter hyperintensities. There was a significant interaction between the apnea hypopnea index and age, such that older participants with the apnea hypopnea index ≥10 showed greater regional white matter hyperintensities than those with the apnea hypopnea index <10. The results of this preliminary study indicate that a higher apnea hypopnea index is associated with more white matter hyperintensities. The age-related white matter hyperintensities appear to be exacerbated by apnea hypopnea index in our individuals with heart failure. Future studies are needed to further investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Chooza Moon
- College of Nursing, University of Iowa, 316 CNB, 50 Newton Rd, Iowa City, IA, 52246, USA.
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA.
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, J5/1 Mezzanine CSC, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey E Melah
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA
| | - Lisa C Bratzke
- School of Nursing, University of Wisconsin-Madison, 701 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|