1
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
2
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
3
|
Neukirchen C, Meiners T, Bendl J, Zimmermann R, Adam T. Automated SEM/EDX imaging for the in-depth characterization of non-exhaust traffic emissions from the Munich subway system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170008. [PMID: 38220016 DOI: 10.1016/j.scitotenv.2024.170008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
A SEM/EDX based automated measurement and classification algorithm was tested as a method for the in-depth analysis of micro-environments in the Munich subway using a custom build mobile measurements system. Sampling was conducted at platform stations, to investigate the personal exposure of commuters to subway particulate matter during platform stays. EDX spectra and morphological features of all analyzed particles were automatically obtained and particles were automatically classified based on pre-defined chemical and morphological boundaries. Source apportionment for individual particles, such as abrasion processes at the wheel-brake interface, was partially possible based on the established particle classes. An average of 98.87 ± 1.06 % of over 200,000 analyzed particles were automatically assigned to the pre-defined classes, with 84.68 ± 16.45 % of particles classified as highly ferruginous. Manual EDX analysis further revealed, that heavy metal rich particles were also present in the ultrafine size range well below 100 nm.
Collapse
Affiliation(s)
- Carsten Neukirchen
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Thorsten Meiners
- Oxford Instruments GmbH, Borsigstraße 15 A, 652025 Wiesbaden, Germany
| | - Jan Bendl
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Department Environmental Health, Helmholtz Munich, Gmunder Str. 37, 81379 München, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, 18059 Rostock, Germany
| | - Thomas Adam
- University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemical and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Department Environmental Health, Helmholtz Munich, Gmunder Str. 37, 81379 München, Germany
| |
Collapse
|
4
|
Shen R, Ardianto C, Celia C, Sidharta VM, Sasmita PK, Satriotomo I, Turana Y. Brain-derived neurotrophic factor interplay with oxidative stress: neuropathology approach in potential biomarker of Alzheimer's disease. Dement Neuropsychol 2023; 17:e20230012. [PMID: 38053647 PMCID: PMC10695442 DOI: 10.1590/1980-5764-dn-2023-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 12/07/2023] Open
Abstract
The aging population poses a serious challenge concerning an increased prevalence of Alzheimer's disease (AD) and its impact on global burden, morbidity, and mortality. Oxidative stress, as a molecular hallmark that causes susceptibility in AD, interplays to other AD-related neuropathology cascades and decreases the expression of central and circulation brain-derived neurotrophic factor (BDNF), an essential neurotrophin that serves as nerve development and survival, and synaptic plasticity in AD. By its significant correlation with the molecular and clinical progression of AD, BDNF can potentially be used as an objectively accurate biomarker for AD diagnosis and progressivity follow-up in future clinical practice. This comprehensive review highlights the oxidative stress interplay with BDNF in AD neuropathology and its potential use as an AD biomarker.
Collapse
Affiliation(s)
- Robert Shen
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Christian Ardianto
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Celia Celia
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Veronika Maria Sidharta
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Poppy Kristina Sasmita
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Irawan Satriotomo
- University of Florida, Gainesville, Department of Neurology, Florida, USA
- Satriotomo Foundation, Indonesia Neuroscience Institute, Jakarta, Indonesia
| | - Yuda Turana
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| |
Collapse
|
5
|
Angeles-Estrada L, Pérez-Soto E, Pérez-Vielma NM, Gómez-López M, Sánchez-Monroy V. Oxidative stress and genotoxicity in oral epithelial cells from subjects undergoing orthodontic treatment with fixed appliances. Clin Oral Investig 2023; 27:4225-4231. [PMID: 37198285 DOI: 10.1007/s00784-023-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVES The objective of this work was to evaluate the impact of fixed orthodontic appliances on oxidative stress (OS) and genotoxicity from oral epithelial cells. MATERIALS AND METHODS Samples of oral epithelial cells were obtained from fifty-one healthy voluntary subjects who had an indication for orthodontic treatment. The samples were obtained before treatment and after 6 and 9 months of treatment. OS was evaluated by quantitating 8-hydroxy-2'deoxyguanosine (8-OHdG) and by performing relative gene expression with antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). DNA degradation and instability were evaluated by multiplex polymerase chain reaction (PCR) and fragment analysis for human identification. RESULTS The quantitation results showed that 8-OHdG increased during treatment, although this increase was not statistically significant. SOD increased by 2.5- and 2.6-fold after 6 and 9 months of treatment, respectively. CAT increased by threefold after 6 months of treatment, while after 9 months of treatment, the expression level decreased to a level similar to that before treatment. DNA degradation was found in 8% and 12% of DNA samples after 6 and 9 months of treatment, respectively, while DNA instability was detected in only 2% and 8% of DNA samples after 6 and 9 months of treatment, respectively. CONCLUSIONS The results showed that OS and genotoxicity slightly changed after treatment with a fixed orthodontic appliance; in addition, a biological adaptation response to the treatment may occur after 6 months. CLINICAL RELEVANCE OS and genotoxicity in the buccal cavity are risk factors for oral and systemic diseases. This risk may be reduced through antioxidant supplementation, by using thermoplastic materials, or by reducing the orthodontic treatment time.
Collapse
Affiliation(s)
- Lucía Angeles-Estrada
- Unidad de Especialidades Odontológicas, Secretaría de la Defensa Nacional, México City, Estado de México, México
| | - Elvia Pérez-Soto
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, México
| | - Nadia Mabel Pérez-Vielma
- Sección de Estudios de Posgrado e Investigación, Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Ciudad de México, México
| | - Modesto Gómez-López
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de san Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CP11340, México
| | - Virginia Sánchez-Monroy
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de san Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, CP11340, México.
| |
Collapse
|
6
|
Ünal N, Kahraman O, Dögen A, Binzet R. Investigation of the Chemical Composition, Antimicrobial, and Antioxidant Activity of Endemic Onosma halophila Boiss. & Heldr. Curr Microbiol 2023; 80:247. [PMID: 37338619 DOI: 10.1007/s00284-023-03363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
The Onosma halophila Boiss. & Heldr. belongs to the Boraginaceae family and it is endemic species from Turkey that distributes in Salt Lake (Tuz Gölü) and the surrounding salty steppes. In this study, the chemical content, antimicrobial, and antioxidant activity of endemic O. halophila were determined for the first time. Thirty-one components were identified by GC-MS analysis in O. halophila. Antimicrobial activity was tested against a total of eight microorganisms, including three Gram-positive, three Gram-negative bacterial strains, and two fungal strains, using the Micro dilution technique. The obtained extracts showed strong antifungal and antibacterial activity. The MIC value of extracts samples against the tested strains ranged from 15.625 to 125 μg/mL. In addition, it was determined that the extracts had different levels of antioxidant activity. The IC50 values were determined 45.20-1760 µg/mL for DPPH radical scavenging assay, 3.125-1016 µg/mL for H2O2 radical scavenging assay, and 147.12-1837 µg/mL for superoxide radical scavenging assay, respectively. As a result, it has been determined that O. halophila has the potential to be used in complementary medicine and various ethnobotanical fields in future due to the important components it contains.
Collapse
Affiliation(s)
- Neva Ünal
- Natural Sciences Institute, Mersin Üniversity, 33343, Mersin, Turkey
| | - Oskay Kahraman
- Natural Sciences Institute, Mersin Üniversity, 33343, Mersin, Turkey
| | - Aylin Dögen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Riza Binzet
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
7
|
Liu J, Hu Y, Li X, Xiao C, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. High-efficient degradation of chloroquine phosphate by oxygen doping MoS 2 co-catalytic Fenton reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131894. [PMID: 37352777 DOI: 10.1016/j.jhazmat.2023.131894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
To degrade the antiviral and antimalarial drug chloroquine phosphate (CQP), an oxygen doping MoS2 nanoflower (O-MoS2-230) co-catalyst was prepared by a hydrothermal method to construct an O-MoS2-230 co-catalytic Fenton system (O-MoS2-230/Fenton) without pH adjustment (initial pH 5.4). Remarkable CQP degradation efficiency (99.5 %) could be achieved in 10 min under suitable conditions ([co-catalyst] = 0.2 g L-1, [Fe2+]0 = 70 μM, [H2O2]0 = 0.4 mM) with a reaction rate constant of 0.24 min-1, which was 4.8 times that of MoS2 co-catalytic Fenton system (MoS2/Fenton). Compared to MoS2/Fenton, the system had 1.5 times more Fe2+ (28.4 μM) and showed a 24.0 % increase in H2O2 activation efficiency, reaching 50.0 %. The electron paramagnetic resonance (EPR) determinations and active species trapping experimental data revealed that •OH and 1O2 were responsible for CQP degradation. The combination of experiments and density functional theory (DFT) calculation demonstrates that O doping in MoS2 modifies the surface charge distribution, leading to an increase in its conductivity, thus accelerating the Fe3+/Fe2+ cycle and promoting reactive oxygen species (ROS) generation. Furthermore, O-MoS2-230/Fenton system exhibited excellent stability. This work reveals the degradation mechanism of accelerated Fe3+/Fe2+ cycle and abundant ROS in the O-MoS2-230/Fenton system and provides a promising technology for antibiotic pollutant degradation.
Collapse
Affiliation(s)
- Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, PR China
| |
Collapse
|
8
|
Kahraman O, Turunc E, Dogen A, Binzet R. Synthesis of Graphene Quantum Dot Magnesium Hydroxide Nanocomposites and Investigation of Their Antioxidant and Antimicrobial Activities. Curr Microbiol 2023; 80:181. [PMID: 37046124 DOI: 10.1007/s00284-023-03286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
In this paper, we synthesized graphene quantum dots magnesium hydroxide nanocomposites (GQDs/Mg(OH)2). The synthesized nanocomposites were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Malvern Zetasizer. The antimicrobial and antioxidant properties of the obtained GQDs/Mg(OH)2 nanocomposites were investigated. GQDs/Mg(OH)2 nanocomposites have MIC values of 15.625 μg/mL against fungi (C. metapsilosis and C. parapsilosis) and 62.5 μg/mL against Gram (+) (S. pneumonia and E. faecalis) and Gram (-) (E. coli). The synthesized GQDs/Mg(OH)2 nanocomposites showed moderate antioxidant activity. The results showed that at 100-µg/mL GQDs/Mg(OH)2 nanocomposite concentration, the H2O2 scavenging activity was 62.18%.
Collapse
Affiliation(s)
- Oskay Kahraman
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey
| | - Ersan Turunc
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, 33160, Mersin, Turkey
| | - Riza Binzet
- Department of Biology, Faculty of Science, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
9
|
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2023; 25:43. [PMID: 36875184 PMCID: PMC9970140 DOI: 10.1007/s11051-023-05690-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC Canada
| | - Ghazal Shineh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| |
Collapse
|
10
|
Das TK, Ganesh BP. Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer's disease progression. Gut Microbes 2023; 15:2206504. [PMID: 37127846 PMCID: PMC10153019 DOI: 10.1080/19490976.2023.2206504] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The microbiota-gut-brain axis is an important pathway of communication and may dynamically contribute to Alzheimer's disease (AD) pathogenesis. Pathological commensal gut microbiota alterations, termed as dysbiosis, can influence intestinal permeability and break the blood-brain barrier which may trigger AD pathogenesis via redox signaling, neuronal, immune, and metabolic pathways. Dysbiosis increases the oxidative stress. Oxidants affect the innate immune system through recognizing microbial-derived pathogens by Toll-like receptors and initiating the inflammatory process. Most of the gut microbiome research work highlights the relationship between the gut microbiota and AD, but the contributory connection between precise bacteria and brain dysfunction in AD pathology cannot be fully demonstrated. Here, we summarize the current information of the fundamental connections between oxidative stress, inflammation, and gut dysbiosis in AD. This review emphasizes on the involvement of gut microbiota in the regulation of oxidative stress, inflammation, immune responses including central and peripheral cross-talk. It provides insights for novel preventative and therapeutic approaches in AD.
Collapse
Affiliation(s)
- Tushar K Das
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Xiao R, Liang R, Cai YH, Dong J, Zhang L. Computational screening for new neuroprotective ingredients against Alzheimer's disease from bilberry by cheminformatics approaches. Front Nutr 2022; 9:1061552. [PMID: 36570129 PMCID: PMC9780678 DOI: 10.3389/fnut.2022.1061552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Bioactive ingredients from natural products have always been an important resource for the discovery of drugs for Alzheimer's disease (AD). Senile plaques, which are formed with amyloid-beta (Aβ) peptides and excess metal ions, are found in AD brains and have been suggested to play an important role in AD pathogenesis. Here, we attempted to design an effective and smart screening method based on cheminformatics approaches to find new ingredients against AD from Vaccinium myrtillus (bilberry) and verified the bioactivity of expected ingredients through experiments. This method integrated advanced artificial intelligence models and target prediction methods to realize the stepwise analysis and filtering of all ingredients. Finally, we obtained the expected new compound malvidin-3-O-galactoside (Ma-3-gal-Cl). The in vitro experiments showed that Ma-3-gal-Cl could reduce the OH· generation and intracellular ROS from the Aβ/Cu2+/AA mixture and maintain the mitochondrial membrane potential of SH-SY5Y cells. Molecular docking and Western blot results indicated that Ma-3-gal-Cl could reduce the amount of activated caspase-3 via binding with unactivated caspase-3 and reduce the expression of phosphorylated p38 via binding with mitogen-activated protein kinase kinases-6 (MKK6). Moreover, Ma-3-gal-Cl could inhibit the Aβ aggregation via binding with Aβ monomer and fibers. Thus, Ma-3-gal-Cl showed significant effects on protecting SH-SY5Y cells from Aβ/Cu2+/AA induced damage via antioxidation effect and inhibition effect to the Aβ aggregation.
Collapse
Affiliation(s)
- Ran Xiao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,Sinocare Inc., Changsha, China
| | - Rui Liang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yun-hui Cai
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Lin Zhang
| |
Collapse
|
12
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
14
|
Dietary Intervention with Blackcurrant Pomace Protects Rats from Testicular Oxidative Stress Induced by Exposition to Biodiesel Exhaust. Antioxidants (Basel) 2022; 11:antiox11081562. [PMID: 36009280 PMCID: PMC9404818 DOI: 10.3390/antiox11081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.
Collapse
|
15
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Sun W, Yu N, Chen J, Gu Z, Wei J, Yao Y. Heterogeneous Ti/PbO 2-electro-Fenton degradation of aromatic methane dyes using industrial pyrite waste slag as catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50218-50236. [PMID: 35226267 DOI: 10.1007/s11356-022-19372-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
It is imperative to search the eco-friendly and cost-effective technologies for degrading contaminants. Coupling the effect of Ti/PbO2 at the anode with heterogeneous electro-Fenton was an efficient method. Industrial pyrite waste slag characterized by a variety of methods had catalytic performance and stable performance to activate hydrogen peroxide (H2O2) into hydroxyl radical (∙OH). Meanwhile, the processing conditions, the malachite green wastewater concentration, the current density, the pH range, and the dosage of industrial pyrite waste slag were emphatically optimized. Herein, the total organic carbon (TOC) removal efficiency reached 97.70%, the mineralization current efficiency (MCE) was 0.392%, and the energy consumption (EC) was 1.942 kWh/m3 after 240 min. Heterogeneous Ti/PbO2-electro-Fenton using industrial pyrite waste slag as catalyst was an environmentally friendly technology and provided a recycling method with traditional wastes. Finally, catalytic mechanisms and possible pathways were represented according to the results of quantum chemistry calculations and gas chromatography-mass spectrometry (GCMS).
Collapse
Affiliation(s)
- Wenhui Sun
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, 8, People's Republic of China
- Hebei University Of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, People's Republic of China
| | - Naichuan Yu
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, 8, People's Republic of China.
- Hebei University Of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, People's Republic of China.
| | - Jianxin Chen
- Hebei University Of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, People's Republic of China
| | - Zhensheng Gu
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, 8, People's Republic of China
| | - Jingyu Wei
- Tianjin Vocational Institute, School of Biological and Environmental Engineering, Tianjin, 300410, 8, People's Republic of China
| | - Yingwu Yao
- Hebei University Of Technology, School of Chemical Engineering and Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
17
|
Zou W, Li J, Wang R, Ma J, Chen Z, Duan L, Mi H, Chen H. Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO 4 battery. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128590. [PMID: 35247735 DOI: 10.1016/j.jhazmat.2022.128590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Herein, we converted spent LiFePO4 battery to the sea urchin-like material (SULM) with a highly efficient and environment-friendly method, which can contribute to building a zero-waste city. With SULM as a Fenton-like catalyst, a highly-efficient degradation process was realized for organic pollutants with interface and solution synergistic effect. In our SULM+NH2OH+H2O2 Fenton-like system, NH2OH can effectively promote the interface iron (Fe(Ⅲ)/Fe(Ⅱ)) and solution iron (Fe(Ⅲ)/Fe(Ⅱ)) redox cycle, thus promoting the generation of reactive oxygen species (ROS). However, the ROS generation process and organic pollutants degradation pathway with the presence of NH2OH remains a puzzle. Here the detailed ROS generation mechanism and pollutants degradation pathway have been illustrated carefully based on experimental exploration and characterization. Therein, hydroxyl radicals (·OH) and singlet oxygen (1O2) are the main ROS for oxidizing and degrading organic pollutants. Notably, 1O2 can be converted from superoxide radicals (·O2) in SULM+NH2OH+H2O2 system. This study not only demonstrates the strategy of "trash-to-treasure" and "waste-to-control-waste" to simultaneously reduce the hazardous release from industrial solid waste and organic wastewater, it also provides new mechanistic insights for NH2OH mediated Fenton-like redox system.
Collapse
Affiliation(s)
- Wensong Zou
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jing Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jingyi Ma
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhijie Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hongwei Mi
- School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
18
|
Jacob LI, Pauer W, Schroeter B. Influence of redox initiator component ratios on the emulsion copolymerisation of vinyl acetate and neodecanoic acid vinyl ester. RSC Adv 2022; 12:14197-14208. [PMID: 35558856 PMCID: PMC9092359 DOI: 10.1039/d2ra01811j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Redox initiated emulsion polymerisation of vinyl acetate and neodecanoic acid vinyl ester was investigated at temperatures ranging from -1 °C to 87 °C (initiation temperature between -1 °C and 60 °C), using varying molar ratios of the following redox components: l-ascorbic acid, tert-butyl hydroperoxide and ammonium iron(iii) sulfate dodecahydrate as a catalyst. The high flexibility of redox initiators enables product properties, as well as space-time-yield, to be adjusted as required. Polymers being products by process, it was presumed that modifying the conversion rate would lead to a different product. However, it was shown that the reaction rate is adjustable by varying the catalyst amount without changing the product properties, such as molecular weight, particle size, glass transition temperature and polymer structure, while reducing the overall process time by 40-86% (at equimolar ratios of reducing and oxidising agent). In contrast, variation of the tert-butyl hydroperoxide content resulted in changes of the molecular weight. The influence of the initiation temperature and of the redox system on the reaction rate was determined, enabling control over the reaction rate in the whole temperature range. Meanwhile, overall process times of approximately 2-240 min and high conversions of 90-99% could be achieved. Statistical modelling confirmed the results and facilitated predictions, enabling the conversion rate to be adjusted to the desired properties. The possibility of being able to adjust the conversion rate and product properties independently of each other creates additional degrees of freedom in process design.
Collapse
Affiliation(s)
- Laurence Isabelle Jacob
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 20146 Hamburg Germany
| | - Werner Pauer
- Institute for Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 20146 Hamburg Germany
| | - Baldur Schroeter
- Institute of Thermal Separation Processes, Hamburg University of Technology Eißendorfer Straße 38 21073 Hamburg Germany +49 40 42878 3962
| |
Collapse
|
19
|
Roth TL, Philpott M, Wojtusik J. Rhinoceros serum labile plasma iron and associated redox potential: interspecific variation, sex bias and iron overload disorder disconnect. CONSERVATION PHYSIOLOGY 2022; 10:coac025. [PMID: 37155459 PMCID: PMC9040876 DOI: 10.1093/conphys/coac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 03/28/2022] [Indexed: 05/10/2023]
Abstract
A consequence of the poaching crisis is that managed rhinoceros populations are increasingly important for species conservation. However, black rhinoceroses (BR; Diceros bicornis) and Sumatran rhinoceroses (SR; Dicerorhinus Sumatrensis) in human care often store excessive iron in organ tissues, a condition termed iron overload disorder (IOD). IOD research is impeded by the challenge of accurately monitoring body iron load in living rhinoceroses. The goals of this study were to (i) determine if labile plasma iron (LPI) is an accurate IOD biomarker and (ii) identify factors associated with iron-independent serum oxidative reduction potential (ORP). Serum (106 samples) from SRs (n = 8), BRs (n = 28), white rhinoceros (n = 24) and greater one-horned rhinoceros (GOH; n = 16) was analysed for LPI. Samples from all four species tested positive for LPI, and a higher proportion of GOH rhinoceros samples were LPI positive compared with those of the other three species (P < 0.05). In SRs, the only LPI-positive samples were those from individuals clinically ill with IOD, but samples from outwardly healthy individuals of the other three species were LPI positive. Serum ORP was lower in SRs compared with that in the other three species (P < 0.001), and iron chelation only reduced ORP in the GOH species (P < 0.01; ~5%). Serum ORP sex bias was revealed in three species with males exhibiting higher ORP than females (P < 0.001), the exception being the SR in which ORP was low for both sexes. ORP was not associated with age or serum iron concentrations (P ≥ 0.05), but was positively correlated with ferritin (P < 0.01). The disconnect between LPI and IOD was unanticipated, and LPI cannot be recommended as a biomarker of advanced rhino IOD. However, data provide valuable insight into the complex puzzle of rhinoceros IOD.
Collapse
Affiliation(s)
- Terri L Roth
- Corresponding author: Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA. Tel: 513-569-8220.
| | - Megan Philpott
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220 USA
| | - Jessye Wojtusik
- Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220 USA
| |
Collapse
|
20
|
Ogidigo JO, Anosike CA, Joshua PE, Ibeji CU, Nwanguma BC, Nwodo OFC. Neuroprotective effect of Bryophyllum pinnatum flavonoids against aluminum chloride-induced neurotoxicity in rats. Toxicol Mech Methods 2021; 32:243-258. [PMID: 34663170 DOI: 10.1080/15376516.2021.1995557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Toxic metals such as aluminum accumulation in the brain have been associated with the pathophysiology of several neurodegenerative disorders. Bryophyllum pinnatum leaves contain a vast array of polyphenols, particularly flavonoids, that may play a role in the prevention of toxic and degenerative effects in the brain. This study assessed the neuro-restorative potential of leaves of B. pinnatum enriched flavonoid fraction (BPFRF) in aluminum-induced neurotoxicity in rats. Neurotoxicity was induced in male Wistar rats by oral administration of 150 mg/kg body weight of aluminum chloride (AlCl3) for 21 days. Rats were grouped into five (n = 6); Control (untreated), Rivastigmine group, AlCl3 group and BPFRF group (50 and 100 mg/kg b.wt.) for 21 days. Neuronal changes in the hippocampus and cortex were biochemically and histologically evaluated. Expression patterns of acetylcholinesterase (AChE) mRNA were assessed using semi-quantitative reverse-transcription-polymerase chain reaction protocols. Molecular interactions of BPFRF compounds were investigated in silico. The results revealed that oral administration of BPFRF ameliorated oxidative imbalance by augmenting antioxidant systems and decreasing lipid peroxidation caused by AlCl3. BPFRF administration also contributed to the down-regulation of AChE mRNA transcripts and improved histological features in the hippocampus and cortex. Molecular docking studies revealed strong molecular interactions between BPFRF compounds, catalase, superoxide dismutase and glutathione peroxidase Overall, these findings suggest the neuroprotective effect of Bryophyllum pinnatum against aluminum-induced neurotoxicity.
Collapse
Affiliation(s)
- Joyce Oloaigbe Ogidigo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.,Bio-resources Centre Abuja, National Biotechnology Development Agency, Abuja, Nigeria
| | - Chioma Assumpta Anosike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Collins U Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Bennett C Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Okwesili Fred Chiletugo Nwodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, Mkar University, Benue State, Nigeria
| |
Collapse
|
21
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
22
|
Wilczyńska-Michalik W, Różańska A, Bulanda M, Chmielarczyk A, Pietras B, Michalik M. Physicochemical and microbiological characteristics of urban aerosols in Krakow (Poland) and their potential health impact. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4601-4626. [PMID: 33913083 PMCID: PMC8528768 DOI: 10.1007/s10653-021-00950-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles' properties (size, morphology and chemical composition analyzed using a scanning electron microscope fitted with an energy-dispersive spectrometer) and microbiological characteristics. The content of particles of different chemical compositions larger than 2.5 μm was low. Considering the number of the particles, submicron particles strongly dominated with a high content of ultrafine particles (nanoparticles). Tar ball-type particles were relatively common in the studied samples, while soot was the dominant component. Soot was present as small agglomerates composed of few particles, but also as bigger agglomerates. Metal-containing particles of various chemical characteristics were abundant, with transition metals commonly occurring in these particles. The physicochemical characteristics of aerosols indicate that despite a relatively low mass concentration, their adverse health impact could be very strong because of the high content of nanoparticles, the abundance of soot and other fuel combustion-related particles, and the high incidence of transition metal-rich particles. Microbiological analysis was based on cultures on both solid and liquid agar. The MALDI-TOF method was used for species identification-for bacteria and fungi. Twelve different species of bacteria were isolated from the collected samples of aerosols. The most frequently isolated species was Gram-positive sporulating Bacillus licheniformis. The isolated mold fungi were of the genus Aspergillus.
Collapse
Affiliation(s)
| | - Anna Różańska
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Małgorzata Bulanda
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Agnieszka Chmielarczyk
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Bartłomiej Pietras
- Institute of Geography, Pedagogical University in Kraków, ul. Podchorążych 2, Kraków, Poland
| | - Marek Michalik
- Institute of Geological Sciences, Jagiellonian University, Ul. Gronostajowa 3a, 30-387 Kraków, Poland
| |
Collapse
|
23
|
Preclinical and Clinical Antioxidant Effects of Natural Compounds against Oxidative Stress-Induced Epigenetic Instability in Tumor Cells. Antioxidants (Basel) 2021; 10:antiox10101553. [PMID: 34679688 PMCID: PMC8533336 DOI: 10.3390/antiox10101553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.
Collapse
|
24
|
Khan N, Halcrow PW, Lakpa LK, Rehan M, Chen X, Geiger JD. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J Neurovirol 2021; 27:755-773. [PMID: 34550543 DOI: 10.1007/s13365-021-01016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Leo K Lakpa
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
25
|
Primožič J, Poljšak B, Jamnik P, Kovač V, Čanadi Jurešić G, Spalj S. Risk Assessment of Oxidative Stress Induced by Metal Ions Released from Fixed Orthodontic Appliances during Treatment and Indications for Supportive Antioxidant Therapy: A Narrative Review. Antioxidants (Basel) 2021; 10:1359. [PMID: 34572993 PMCID: PMC8471328 DOI: 10.3390/antiox10091359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment with fixed orthodontic appliances could have an important role in the induction of oxidative stress and associated negative consequences. Because of the simultaneous effects of corrosion, deformation, friction, and mechanical stress on fixed orthodontic appliances during treatment, degradation of orthodontic brackets and archwires occurs, causing higher concentrations of metal ions in the oral cavity. Corroded appliances cause the release of metal ions, which may lead to the increased values of reactive oxygen species (ROS) due to metal-catalyzed free radical reactions. Chromium, iron, nickel, cobalt, titanium, and molybdenum all belong to the group of transition metals that can be subjected to redox reactions to form ROS. The estimation of health risk due to the amount of heavy metals released and the level of selected parameters of oxidative stress generated for the time of treatment with fixed orthodontic appliances is presented. Approaches to avoid oxidative stress and recommendations for the preventive use of topical or systemic antioxidants during orthodontic treatment are discussed.
Collapse
Affiliation(s)
- Jasmina Primožič
- Department of Orthodontics and Jaw Orthopedics, Medical Faculty, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Stjepan Spalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
26
|
Kador PF, Salvi R. Multifunctional Redox Modulators Protect Auditory, Visual, and Cognitive Function. Antioxid Redox Signal 2021; 36:1136-1157. [PMID: 34162214 PMCID: PMC9221172 DOI: 10.1089/ars.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Significance: Oxidative stress contributes to vision, hearing and neurodegenerative disorders. Currently, no treatments prevent these disorders; therefore, there is an urgent need for redox modulators that can prevent these disorders. Recent Advances: Oxidative stress is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species, metal dyshomeostasis, and mitochondrial dysfunction. Here, we discuss the role that oxidative stress and metal dyshomeostasis play in hearing loss, visual impairments, and neurodegeneration and discuss the benefits of a new class of multifunctional redox modulators (MFRMs) that suppress sensory and neural degeneration. MFRMs not only reduce free radicals but also independently bind transition metals associated with the generation of hydroxyl radicals. The MFRMs redistribute zinc from neurotoxic amyloid beta zinc (Aβ:Zn) complexes to the cytoplasm, facilitating the degradation of Aβ plaques by matrix metalloprotease-2 (MMP-2). Although MFRMs bind copper (Cu1+, Cu2+), iron (Fe2+, Fe3+), zinc (Zn2+), and manganese (Mn2+), they do not deplete free cytoplasmic Zn+2 and they protect mitochondria from Mn+2-induced dysfunction. Oral administration of MFRMs reduce ROS-induced cataracts, protect the retina from light-induced degeneration, reduce neurotoxic Aβ:Zn plaque formation, and protect auditory hair cells from noise-induced hearing loss. Critical Issues: Regulation of redox balance is essential for clinical efficacy in maintaining sensory functions. Future Directions: Future use of these MFRMs requires additional pharmacokinetic, pharmacodynamics, and toxicological data to bring them into widespread clinical use. Additional animal studies are also needed to determine whether MFRMs can prevent neurodegeneration, dementia, and other forms of vision and hearing loss.
Collapse
Affiliation(s)
- Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
27
|
Tariba Lovaković B, Barbir R, Pem B, Goessler W, Ćurlin M, Micek V, Debeljak Ž, Božičević L, Ilić K, Pavičić I, Gorup D, Vinković Vrček I. Sex-related response in mice after sub-acute intraperitoneal exposure to silver nanoparticles. NANOIMPACT 2021; 23:100340. [PMID: 35559841 DOI: 10.1016/j.impact.2021.100340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (AgNPs) are among the most commercialized nanomaterials in biomedicine due to their antimicrobial and anti-inflammatory properties. Nevertheless, possible health hazards of exposure to AgNPs are yet to be understood and therefore raise public concern in regards of their safety. In this study, sex-related differences, role of steroidal hormones and influence of two different surface stabilizing agents (polymer vs. protein) on distribution and adverse effects of AgNPs were investigated in vivo. Intact and gonadectomised male and female mice were treated with seven AgNPs doses administered intraperitoneally during 21 days. After treatment, steroid hormone levels in serum, accumulation of Ag levels and oxidative stress biomarkers in liver, kidneys, brain and lungs were determined. Sex-related differences were observed in almost all tissues. Concentration of Ag was significantly higher in the liver of females compared to males. No significant difference was found for AgNP accumulation in lungs between females and males, while the lungs of intact males showed significantly higher Ag accumulation compared to gonadectomised group. Effect of surface coating was also observed, as Ag accumulation was significantly higher in kidneys and liver of intact females, as well as in kidneys and brain of intact males treated with protein-coated AgNPs compared to polymeric AgNPs. Oxidative stress response to AgNPs was the most pronounced in kidneys where protein-coated AgNPs induced stronger effects compared to polymeric AgNPs. Interestingly, protein-coated AgNPs reduced generation of reactive oxygen species in brains of females and gonadectomised males. Although there were no significant differences in levels of hormones in the AgNP-exposed animals compared to controls, sex-related differences in oxidative stress parameters were observed in all organs. Results of this study highlight the importance of including the sex-related differences and effects of protein corona in biosafety evaluation of AgNPs exposure.
Collapse
Affiliation(s)
- Blanka Tariba Lovaković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia.
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1/1, 8 010 Graz, Austria
| | - Marija Ćurlin
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Željko Debeljak
- Department for Clinical Laboratory Diagnostics, Clinical Hospital Osijek, Josipa Huttlera 4, 31 000 Osijek, Croatia; Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31 000 Osijek, Croatia
| | - Lucija Božičević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Dunja Gorup
- School of Medicine, University of Zagreb, Šalata 2, 10 000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia.
| |
Collapse
|
28
|
Jîtcă G, Ősz BE, Tero-Vescan A, Vari CE. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants (Basel) 2021; 10:381. [PMID: 33806320 PMCID: PMC8000782 DOI: 10.3390/antiox10030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, more and more young people want to experience illegal, psychoactive substances, without knowing the risks of exposure. Besides affecting social life, psychoactive substances also have an important effect on consumer health. We summarized and analyzed the published literature data with reference to the mechanism of free radical generation and the link between chemical structure and oxidative stress related to dopaminergic neurotransmission. This review presents data on the physicochemical properties, on the ability to cross the blood brain barrier, the chemical structure activity relationship (SAR), and possible mechanisms by which neuronal injuries occur due to oxidative stress as a result of drug abuse such as "bath salts", amphetamines, or cocaine. The mechanisms of action of ingested compounds or their metabolites involve intermediate steps in which free radicals are generated. The brain is strongly affected by the consumption of such substances, facilitating the induction of neurodegenerative diseases. It can be concluded that neurotoxicity is associated with drug abuse. Dependence and oxidative stress are linked to inhibition of neurogenesis and the onset of neuronal death. Understanding the pathological mechanisms following oxidative attack can be a starting point in the development of new therapeutic targets.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
29
|
Kovač V, Poljšak B, Primožič J, Jamnik P. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model? Int J Mol Sci 2020; 21:ijms21217993. [PMID: 33121155 PMCID: PMC7662645 DOI: 10.3390/ijms21217993] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Compositions of stainless steel, nickel-titanium, cobalt-chromium and β-titanium orthodontic alloys were simulated with mixtures of Fe, Ni, Cr, Co, Ti and Mo metal ions as potential oxidative stress-triggering agents. Wild-type yeast Saccharomyces cerevisiae and two mutants ΔSod1 and ΔCtt1 were used as model organisms to assess the cytotoxicity and oxidative stress occurrence. Metal mixtures at concentrations of 1, 10, 100 and 1000 µM were prepared out of metal chlorides and used to treat yeast cells for 24 h. Every simulated orthodontic alloy at 1000 µM was cytotoxic, and, in the case of cobalt-chromium alloy, even 100 µM was cytotoxic. Reactive oxygen species and oxidative damage were detected for stainless steel and both cobalt-chromium alloys at 1000 µM in wild-type yeast and 100 µM in the ΔSod1 and ΔCtt1 mutants. Simulated nickel-titanium and β-titanium alloy did not induce oxidative stress in any of the tested strains.
Collapse
Affiliation(s)
- Vito Kovač
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; (V.K.); (B.P.)
| | - Jasmina Primožič
- Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-3203-729
| |
Collapse
|
30
|
Ramli NZ, Yahaya MF, Tooyama I, Damanhuri HA. A Mechanistic Evaluation of Antioxidant Nutraceuticals on Their Potential against Age-Associated Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1019. [PMID: 33092139 PMCID: PMC7588884 DOI: 10.3390/antiox9101019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals have been extensively studied worldwide due to its neuroprotective effects in in vivo and in vitro studies, attributed by the antioxidative properties. Alzheimer (AD) and Parkinson disease (PD) are the two main neurodegenerative disorders that are discussed in this review. Both AD and PD share the similar involvement of oxidative stress in their pathophysiology. Nutraceuticals exert their antioxidative effects via direct scavenging of free radicals, prevent damage to biomolecules, indirectly stimulate the endogenous antioxidative enzymes and gene expressions, inhibit activation of pro-oxidant enzymes, and chelate metals. In addition, nutraceuticals can act as modulators of pro-survival, pro-apoptotic, and inflammatory signaling pathways. They have been shown to be effective particularly in preclinical stages, due to their multiple mechanisms of action in attenuating oxidative stress underlying AD and PD. Natural antioxidants from food sources and natural products such as resveratrol, curcumin, green tea polyphenols, and vitamin E are promising therapeutic agents in oxidative stress-mediated neurodegenerative disease as they have fewer adverse effects, more tolerable, cheaper, and sustainable for long term consumption.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Molecular Neuroscience Research Centre, Shiga University of Medical Sciences, Seta Tsukinowacho, Otsu 520-2192, Shiga, Japan;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
31
|
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020; 13:572308. [PMID: 33071757 PMCID: PMC7533614 DOI: 10.3389/fnmol.2020.572308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
All tauopathies, including Alzheimer's disease (AD), are characterized by the intracellular accumulation of abnormal forms of tau protein in neurons and glial cells, which negatively affect microtubule stability. Under physiological conditions, tubulin-associated unit (Tau) protein is intrinsically disordered, almost without secondary structure, and is not prone to aggregation. In AD, it assembles, and forms paired helical filaments (PHFs) that further build-up neurofibrillary tangles (NFTs). Aggregates are composed of hyperphosphorylated tau protein that is more prone to aggregation. The pathology of AD is also linked to disturbed copper homeostasis, which promotes oxidative stress (OS). Copper imbalance is widely observed in AD patients. Deregulated copper ions may initiate and exacerbate tau hyperphosphorylation and formation of β-sheet-rich tau fibrils that ultimately contribute to synaptic failure, neuronal death, and cognitive decline observed in AD patients. The present review summarizes factors affecting the process of tau aggregation, conformational changes of small peptide sequences in the microtubule-binding domain required for these motifs to act as seeding sites in aggregation, and the role of copper in OS induction, tau hyperphosphorylation and tau assembly. A better understanding of the various factors that affect tau aggregation under OS conditions may reveal new targets and novel pharmacological approaches for the therapy of AD.
Collapse
Affiliation(s)
- Klara Zubčić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Psychology, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
32
|
Marzban A, Seyedalipour B, Mianabady M, Taravati A, Hoseini SM. Biochemical, Toxicological, and Histopathological outcome in rat brain following treatment with NiO and NiO nanoparticles. Biol Trace Elem Res 2020; 196:528-536. [PMID: 31902099 DOI: 10.1007/s12011-019-01941-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
Nickel oxide nanoparticle (NiO NPs) has been widely used in various fields such as catalysts, radiotherapy, and nanomedicine. The aim of this study was to compare the effects of nickel oxide (NiO) and NiO NPs on oxidative stress biomarkers and histopathological changes in brain tissue of rats. In this study, 49 male rats were randomly divided into one control group and 6 experimental groups (n = 7). The control group received normal saline and the treatment groups received NiO and NiO NPs at doses of 10, 25, and 50 mg/kg intraperitoneally for 8 days. After 8 days, animal was sacrificed, brain excised, homogenized, centrifuged, and then supernatant was collected for antioxidant assays. The results showed that activity of GST in NiO NPs groups with doses of 10, 25, and 50 mg/kg (79.42 ± 4.24, p = 0.035; 78.77 ± 8.49, p = 0.041; 81.38 ± 12.39, p = 0.042 to 47.26 ± 7.17) and catalase in NiO NPs groups with concentrations of 25 and 50 mg/kg (69.95 ± 8.65 to 39.75 ± 5.11, p = 0.02) and (68.80 ± 4.18 to 39.75 ± 5.11 p = 0.027) were significantly increased compared with the control, respectively. Total antioxidant capacity in NiONPs group with doses of 50 mg/kg was significantly decreased (345.00 ± 23.62, p = 0.015 to 496.66 ± 25.77) compared with control. The GSH level in all doses NiO and NiONPs was significantly decreased compared with the control (p = 0.002). MDA level in NiONPs and NiO groups with doses of 50 mg/kg was significantly increased (13.03 ± 1.29, p = < 0.01; 15.61 ± 1.08, p = < 0.001 to 7.32 ± 0.51) compared with the control, respectively. Our results revealed a range of histopathological changes, including necrosis, hyperemia, gliosis, and spongy changes in brain tissue. Thus, increasing level of MDA, GST, and CAT enzymes and decreasing GSH and TAC and also histopathological changes confirmed NiONPs and NiO toxicity.
Collapse
Affiliation(s)
- Aidin Marzban
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Golestan, Gorgan, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Manigheh Mianabady
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Golestan, Gorgan, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Seyed Mohammad Hoseini
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Babol branch, Babol, Iran
| |
Collapse
|
33
|
Rupa EJ, Arunkumar L, Han Y, Kang JP, Ahn JC, Jung SK, Kim M, Kim JY, Yang DC, Lee GJ. Dendropanax Morbifera Extract-Mediated ZnO Nanoparticles Loaded with Indole-3-Carbinol for Enhancement of Anticancer Efficacy in the A549 Human Lung Carcinoma Cell Line. MATERIALS 2020; 13:ma13143197. [PMID: 32709058 PMCID: PMC7412136 DOI: 10.3390/ma13143197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Abstract
Dendropanax morbifera is a versatile plant that has been used as a herbal medicine due to its various useful medicinal effects. To protect its active component from biological stress and increase its drug efficacy as well as drug bioavailability, nanoemulsion was prepared. Dendropanax morbifera zinc oxide nanoparticles (DM-ZnO NPs) were synthesized using the plant extract via the co-precipitation method and loaded with active indole-3-carbinol for nanoemulsion formulation using the ultrasonication process. Field emission transmission electron microscope revealed the flower shape of the Dendropanax morbifera indole-3-carbinol zinc oxide nanoemulsion (DM-ZnO-I3C-NE). In contrast, DM-ZnO NPs showed a spheroid shape that coincides agreeably with field emission electron scanning microscope. The hydrodynamic sizes by dynamic light scattering are about 65 ± 3 nm and 239.6 ± 6 nm and the crystallite sizes from X-ray diffraction are 11.52 nm and 16.07 nm for DM-ZnO NPs and DM-ZnO-I3C-NE, respectively. In vitro analysis revealed the cytotoxicity of DM-ZnO-I3C-NE against a human lung cancer cell line (A549) at 12.5 µg/mL as well as reactive oxygen species (ROS) production. The DM-ZnO-I3C-NE-induced ROS generation level was higher than that of DM-ZnO NPs and free indole-3-carbinol. The synergistic effect of DM-ZnO and indole-3-carbinol indicates DM-ZnO-I3C-NE as a potential candidate for future lung cancer drug and could be scope for functional food.
Collapse
Affiliation(s)
- Esrat Jahan Rupa
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea; (E.J.R.); (L.A.); (Y.H.); (S.-K.J.)
| | - Lakshminarayanan Arunkumar
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea; (E.J.R.); (L.A.); (Y.H.); (S.-K.J.)
| | - Yaxi Han
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea; (E.J.R.); (L.A.); (Y.H.); (S.-K.J.)
| | - Jong Pyo Kang
- Department of Cardiovascular and Neurologic Diseases, College of Korean Medicine, Kyung Hee University, Seoul 100011, Korea; (J.P.K.); (J.C.A.); (M.K.)
| | - Jong Chan Ahn
- Department of Cardiovascular and Neurologic Diseases, College of Korean Medicine, Kyung Hee University, Seoul 100011, Korea; (J.P.K.); (J.C.A.); (M.K.)
| | - Seok-Kyu Jung
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea; (E.J.R.); (L.A.); (Y.H.); (S.-K.J.)
| | - Mia Kim
- Department of Cardiovascular and Neurologic Diseases, College of Korean Medicine, Kyung Hee University, Seoul 100011, Korea; (J.P.K.); (J.C.A.); (M.K.)
| | - Jong Yun Kim
- Saerom Hanbang R&D Center, 76, Cheonseok-gil, Geumcheon-myeon, Naju-si 520010, Jeollanam-do, Korea;
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea; (E.J.R.); (L.A.); (Y.H.); (S.-K.J.)
- Department of Cardiovascular and Neurologic Diseases, College of Korean Medicine, Kyung Hee University, Seoul 100011, Korea; (J.P.K.); (J.C.A.); (M.K.)
- Correspondence: (D.-C.Y.); (G.J.L.)
| | - Gyong Jai Lee
- SD Leo R&D Center, 9-16, Yeonmujang 5-gil, Seongdong-gu, Seoul 100011, Korea
- Correspondence: (D.-C.Y.); (G.J.L.)
| |
Collapse
|
34
|
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. β-amyloid and Oxidative Stress: Perspectives in Drug Development. Curr Pharm Des 2020; 25:4771-4781. [PMID: 31814548 DOI: 10.2174/1381612825666191209115431] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
Abstract
Alzheimer's Disease (AD) is a slow-developing neurodegenerative disorder in which the main pathogenic role has been assigned to β-amyloid protein (Aβ) that accumulates in extracellular plaques. The mechanism of action of Aβ has been deeply analyzed and several membrane structures have been identified as potential mediators of its effect. The ability of Aβ to modify neuronal activity, receptor expression, signaling pathways, mitochondrial function, and involvement of glial cells have been analyzed. In addition, extensive literature deals with the involvement of oxidative stress in Aβ effects. Herein we focus more specifically on the reciprocal regulation of Aβ, that causes oxidative stress, that favors Aβ aggregation and toxicity and negatively affects the peptide clearance. Analysis of this strict interaction may offer novel opportunities for therapeutic intervention. Both common and new molecules endowed with antioxidant properties deserve attention in this regard.
Collapse
Affiliation(s)
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018 Troina, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
35
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
36
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Parodi A, Rudzinska M, Leporatti S, Anissimov Y, Zamyatnin AA. Smart Nanotheranostics Responsive to Pathological Stimuli. Front Bioeng Biotechnol 2020; 8:503. [PMID: 32523946 PMCID: PMC7261906 DOI: 10.3389/fbioe.2020.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
The development of nanotheranostics represents one of the most dynamic technological frontiers in the treatment of different pathological conditions. With the goal in mind to generate nanocarriers with both therapeutic and diagnostic properties, current research aims at implementing these technologies with multiple functions, including targeting, multimodal imaging, and synergistic therapies. The working mechanism of some nanotheranostics relies on physical, chemical, and biological triggers allowing for the activation of the therapeutic and/or the diagnostic properties only at the diseased site. In this review, we explored new advances in the development of smart nanotheranostics responsive to pathological stimuli, including altered pH, oxidative stress, enzymatic expression, and reactive biological molecules with a deep focus on the material used in the field to generate the particles in the context of the analyzed disease.
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Magdalena Rudzinska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Leporatti
- CNR NANOTEC - Istituto di Nanotecnologia, Polo di Nanotecnologia, Lecce, Italy
| | - Yuri Anissimov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- School of Environment and Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
38
|
Kozlov AM, Lone A, Betts DH, Cumming RC. Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep 2020; 10:8388. [PMID: 32433492 PMCID: PMC7239882 DOI: 10.1038/s41598-020-65193-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has emerged that cancer cells can use various metabolites as fuel sources. Restricting cultured cancer cells to sole metabolite fuel sources can promote metabolic changes leading to enhanced glycolysis or mitochondrial OXPHOS. However, the effect of metabolite-restriction on non-transformed cells remains largely unexplored. Here we examined the effect of restricting media fuel sources, including glucose, pyruvate or lactate, on the metabolic state of cultured human dermal fibroblasts. Fibroblasts cultured in lactate-only medium exhibited reduced PDH phosphorylation, indicative of OXPHOS, and a concurrent elevation of ROS. Lactate exposure primed fibroblasts to switch to glycolysis by increasing transcript abundance of genes encoding glycolytic enzymes and, upon exposure to glucose, increasing glycolytic enzyme levels. Furthermore, lactate treatment stabilized HIF-1α, a master regulator of glycolysis, in a manner attenuated by antioxidant exposure. Our findings indicate that lactate preconditioning primes fibroblasts to switch from OXPHOS to glycolysis metabolism, in part, through ROS-mediated HIF-1α stabilization. Interestingly, we found that lactate preconditioning results in increased transcript abundance of MYC and SNAI1, key facilitators of early somatic cell reprogramming. Defined metabolite treatment may represent a novel approach to increasing somatic cell reprogramming efficiency by amplifying a critical metabolic switch that occurs during iPSC generation.
Collapse
Affiliation(s)
- Alexandra M Kozlov
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Dean H Betts
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine and Density, The University of Western Ontario, London, Ontario, N6A 5C1, Canada. .,Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 5W9, Canada.
| | - Robert C Cumming
- Department of Biology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
39
|
Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, Grela ER, Szwajgier D, Kwiatkowska K, Kiczorowska B. The Role of Dietary Antioxidants in the Pathogenesis of Neurodegenerative Diseases and Their Impact on Cerebral Oxidoreductive Balance. Nutrients 2020; 12:nu12020435. [PMID: 32046360 PMCID: PMC7071337 DOI: 10.3390/nu12020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive diseases of the nervous system that lead to neuron loss or functional disorders. Neurodegenerative diseases require long-term, sometimes life-long pharmacological treatment, which increases the risk of adverse effects and a negative impact of pharmaceuticals on the patients’ general condition. One of the main problems related to the treatment of this type of condition is the limited ability to deliver drugs to the brain due to their poor solubility, low bioavailability, and the effects of the blood-brain barrier. Given the above, one of the main objectives of contemporary scientific research focuses on the prevention of neurodegenerative diseases. As disorders related to the competence of the antioxidative system are a marker in all diseases of this type, the primary prophylactics should entail the use of exogenous antioxidants, particularly ones that can be used over extended periods, regardless of the patient’s age, and that are easily available, e.g., as part of a diet or as diet supplements. The paper analyzes the significance of the oxidoreductive balance in the pathogenesis of neurodegenerative diseases. Based on information published globally in the last 10 years, an analysis is also provided with regard to the impact of exogenous antioxidants on brain functions with respect to the prevention of this type of diseases.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
- Correspondence: ; Tel.: +48-81-445-67-44; Fax: +48-81-53-335-49
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Małgorzata Kwiecień
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Eugeniusz R. Grela
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Katarzyna Kwiatkowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Bożena Kiczorowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| |
Collapse
|
40
|
Yi Q, Ji J, Shen B, Dong C, Liu J, Zhang J, Xing M. Singlet Oxygen Triggered by Superoxide Radicals in a Molybdenum Cocatalytic Fenton Reaction with Enhanced REDOX Activity in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9725-9733. [PMID: 31331171 DOI: 10.1021/acs.est.9b01676] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an important reactive oxygen species (ROS) with selective oxidation, singlet oxygen (1O2) has wide application prospects in biology and the environment. However, the mechanism of 1O2 formation, especially the conversion of superoxide radicals (·O2-) to 1O2, has been a great controversy. This process is often disturbed by hydroxyl radicals (·OH). Here, we develop a molybdenum cocatalytic Fenton system, which can realize the transformation from ·O2- to 1O2 on the premise of minimizing ·OH. The Mo0 exposed on the surface of molybdenum powder can significantly improve the Fe3+/Fe2+ cycling efficiency and weaken the production of ·OH, leading to the generation of ·O2-. Meanwhile, the exposed Mo6+ can realize the transformation of ·O2- to 1O2. The molybdenum cocatalytic effect makes the conventional Fenton reaction have high oxidation activity for the remediation of organic pollutants and prompts the inactivation of Staphylococcus aureus, as well as the adsorption and reduction of heavy metal ions (Cu2+, Ni2+, and Cr6+). Compared with iron powder, molybdenum powder is more likely to promote the conversion from Fe3+ to Fe2+ during the Fenton reaction, resulting in a higher Fe2+/Fe3+ ratio and better activity regarding the remediation of organics. Our findings clarify the transformation mechanism from ·O2- to 1O2 during the Fenton-like reaction and provide a promising REDOX Fenton-like system for water treatment.
Collapse
Affiliation(s)
- Qiuying Yi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Jiahui Ji
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Bin Shen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Jun Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China
| |
Collapse
|
41
|
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11:E1030. [PMID: 31336648 PMCID: PMC6678366 DOI: 10.3390/cancers11071030] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Mahmuda Akter
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
42
|
Schroeter B, Bettermann S, Semken H, Melchin T, Weitzel HP, Pauer W. Kinetic Description of Ascorbic Acid Decomposition in Redox Initiator Systems for Polymerization Processes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Baldur Schroeter
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Sven Bettermann
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Henning Semken
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Timo Melchin
- Wacker Chemie AG, Johannes-Hess-Strasse 24, 84489 Burghausen, Germany
| | | | - Werner Pauer
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
43
|
SIRT1 Modulators in Experimentally Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8765954. [PMID: 31281594 PMCID: PMC6589266 DOI: 10.1155/2019/8765954] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
This article is directed at highlighting the involvement of the endogenous stress sensor SIRT1 (silent information regulator T1) as a possible factor involved in hepatoprotection. The selective SIRT1 modulators whether activators (STACs) or inhibitors are being tried experimentally and clinically. We discuss the modulation of SIRT1 on cytoprotection or even cytotoxicity in the liver chemically injured by hepatotoxic agents in rats, to shed light on the crosstalk between SIRT1 and its modulators. A combination of D-galactosamine and lipopolysaccharide (D-GalN/LPS) downregulated SIRT1 expression, while SIRT1 activators, SRT1720, resveratrol, and quercetin, upregulated SIRT1 and alleviated D-GalN/LPS-induced acute hepatotoxicity. Liver injury markers exhibited an inverse relationship with SIRT1 expression. However, under subchronic hepatotoxicity, quercetin decreased the significant increase in SIRT1 expression to lower levels which are still higher than normal ones and mitigated the liver-damaging effects of carbon tetrachloride. Each of these STACs was hepatoprotective and returned the conventional antioxidant enzymes to the baseline. Polyphenols tend to fine-tune SIRT1 expression towards normal in the liver of intoxicated rats in both acute and subchronic studies. Together, all these events give an impression that the cytoprotective effects of SIRT1 are exhibited within a definite range of expression. The catalytic activity of SIRT1 is important in the hepatoprotective effects of polyphenols where SIRT1 inhibitors block and the allosteric SIRT1 activators mimic the hepatoprotective effects of polyphenols. Our findings indicate that the pharmacologic modulation of SIRT1 could represent both an important move in alleviating hepatic insults and a future major step in the treatment of xenobiotic-induced hepatotoxicity.
Collapse
|
44
|
Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17499-17511. [PMID: 31016588 DOI: 10.1007/s11356-019-05130-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The toxic impacts of CuO nanoparticles (NPs) on the marine phytoplankton Nannochloropsis oculata were evaluated by measuring a number of biological parameters. Exposure to different concentrations of CuO-NPs (5-200 mg/L) significantly decreased the growth and content of chlorophyll a of N. oculata. The results showed that CuO-NPs were toxic to this microalga with a half maximal effective concentration (EC50) of 116.981 mg/L. Exposure to CuO-NPs increased the hydrogen peroxide (H2O2) content and induced the membrane damages. Moreover, the concentration of phenolic compounds was increased, while the levels of carotenoids were markedly decreased in comparison to the control sample. The activity of catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and lactate dehydrogenase (LDH) enzymes significantly was increased in response to CuO-NPs treatments. These results indicated that CuO-NPs stimulated the antioxidant defense system in N. oculata to protect the cells against the oxidative damages. The Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main functional groups (C=O and C-O-C) interacted with CuO-NPs. The images of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the cell membrane damage and the change of cell wall structure which may be contributed to the nanotoxicity. These findings may provide additional insights into the mechanisms of cytotoxicity induced by CuO-NPs.
Collapse
Affiliation(s)
- Nasrin Fazelian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Minab Road, Bandar Abbas, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Minab Road, Bandar Abbas, Iran.
| | - Mahsa Rahimzadeh
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
45
|
Argalasova L, Zitnanova I, Vondrova D, Dvorakova M, Laubertova L, Jurkovicova J, Stofko J, Weitzman M, Waczulikova I, Simko M. Self-Reported Exposure to ETS (Environmental Tobacco Smoke), Urinary Cotinine, and Oxidative Stress Parameters in Pregnant Women-The Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091656. [PMID: 31086031 PMCID: PMC6539347 DOI: 10.3390/ijerph16091656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 12/02/2022]
Abstract
Background: Exposure to ETS (environmental tobacco smoke) is one of the most toxic environmental exposures. Objective: To investigate the association of ETS with physiological, biochemical, and psychological indicators, as well as with urine antioxidant capacity (AC) and oxidative damage to lipids in a pilot sample of healthy pregnant women. Methods: Exposure to ETS was investigated via a validated questionnaire, and urine cotinine and the marker of oxidative damage to lipids via 8-isoprostane concentrations using an ELISA kit. Urine AC was determined by the spectrophotometric Trolox-equivalent antioxidant capacity (TEAC) method. From a sample of pregnant women (n = 319, average age 30.84 ± 5.09 years) in 80, the levels of cotinine and oxidative stress markers were analyzed. Results: Among the 80 pregnant women, 5% (7.4% confirmed by cotinine) reported being current smokers and 25% reported passive smoking in the household (18.8% confirmed by cotinine). The Kappa was 0.78 for smokers and 0.22 for ETS-exposed nonsmokers. Pregnant women in the ETS-exposed group had significantly reduced AC compared to both the nonsmoker (ETS−) and the smoker groups (p < 0.05). Nonsmokers had significantly lower levels of 8-isoprostane than smokers (p < 0.01) and ETS-exposed nonsmokers (p < 0.05). Correlations between urine levels of cotinine and AC were positive in ETS-exposed nonsmokers. Conclusion: A harmful association of active and passive smoking and oxidative stress parameters among pregnant women has been indicated.
Collapse
Affiliation(s)
- Lubica Argalasova
- Institute of Hygiene, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Ingrid Zitnanova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Diana Vondrova
- Institute of Hygiene, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Monika Dvorakova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Lucia Laubertova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Jana Jurkovicova
- Institute of Hygiene, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| | - Juraj Stofko
- Institute of Physiotherapy, Balneology and Medical Rehabilitation, University of Ss. Cyril and Methodius in Trnava, 91701 Trnava, Slovakia.
| | - Michael Weitzman
- Department of Pediatrics, New York University, New York, NY 10016, USA.
| | - Iveta Waczulikova
- Division of Biomedical Physics, Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 81499 Bratislava, Slovakia.
| | - Martin Simko
- IInd Gynecology and Obstetrics Clinic, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia.
| |
Collapse
|
46
|
Sadek KM, Lebda MA, Abouzed TK. The possible neuroprotective effects of melatonin in aluminum chloride-induced neurotoxicity via antioxidant pathway and Nrf2 signaling apart from metal chelation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9174-9183. [PMID: 30719664 DOI: 10.1007/s11356-019-04430-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Aluminum (Al) had well-identified adverse influences on the nervous system mainly through the creation of reactive oxygen species (ROS). Melatonin works as an antioxidant through the inhibition of ROS and attenuating peroxidation of lipids. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a pivotal transcription factor which controls the transcription of antioxidant enzymes. This study was conducted to determine the potential neuroprophylactic impacts of melatonin in aluminum chloride (AlCl3)-initiated neurotoxicity including potential mechanism(s) of action and relevant signaling in rats. Thirty-six male rats were distributed into 4 groups: Control; AlCl3 (50 mg/kg bwt, i.p, 3 times weekly for 3 months); melatonin (5 mg/kg bwt, i.p daily for 2 weeks before AlCl3 and sustained for the next 3 months); and melatonin with AlCl3. Neuronal alterations were histopathologically and biochemically evaluated. The neuronal antioxidant-related genes and relevant Nrf2 protein expression were determined by real-time PCR and Western blotting, respectively. The current data showed a substantial increase in brain damage biomarkers, acetylecholinesterase (AchE) activity, and malondialdehyde (MDA) content while the enzymatic antioxidant expression as glutathione-s-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were substantially attenuated in the aluminum-treated group, with cleared histopathological changes as inflammatory cell infiltration with neuronal degeneration. Supplementation of melatonin resulted in an obvious amelioration in all previous abnormal alteration observed in AlCl3-treated rats rather than increased Al burden and/or altered Fe and Cu homeostasis with upregulating both total and phosphorylated Nrf2 expression. Therefore, the study concluded that melatonin has a potential ability to be neuroprophylactic against Al-induced neurotoxic effect and oxidative damage in the rat brain through upregulating and instigating Nrf2 signaling apart from metal chelation.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-sheikh University, Kafr El-sheikh, Egypt
| |
Collapse
|
47
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
48
|
Park SY, Kim W, Park SH, Han J, Lee J, Kang C, Lee MH. An endoplasmic reticulum-selective ratiometric fluorescent probe for imaging a copper pool. Chem Commun (Camb) 2018; 53:4457-4460. [PMID: 28379247 DOI: 10.1039/c7cc01430a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrazide-linked naphthalimides undergo copper ion-selective hydrolysis with concomitant ratiometric fluorescence change. In addition, probe 1 is biocompatible and mainly localized to the endoplasmic reticulum (ER) in live HeLa cells. It thus can be used for imaging copper accumulation in the ER of live cells, as implied in copper-overloaded situations.
Collapse
Affiliation(s)
- Sun Young Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | | | | | | | | | | | | |
Collapse
|
49
|
Bahrami M, Zhang X, Ehsani M, Jahani Y, Laine RM. [PhSiO 1.5] 8,10,12 as nanoreactors for non-enzymatic introduction of ortho, meta or para-hydroxyl groups to aromatic molecules. Dalton Trans 2017; 46:8797-8808. [PMID: 28317962 DOI: 10.1039/c7dt00373k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional electrophilic bromination follows long established "rules": electron-withdrawing substituents cause bromination selective for meta positions, whereas electron-donating substituents favor ortho and para bromination. In contrast, in the [PhSiO1.5]8,10,12 silsesquioxanes, the cages act as bulky, electron withdrawing groups equivalent to CF3; yet bromination under mild conditions, without a catalyst, greatly favors ortho substitution. Surprisingly, ICl iodination without a catalyst favors (>90%) para substitution [p-IC6H4SiO1.5]8,10,12. Finally, nitration and Friedel-Crafts acylation and sulfonylation are highly meta selective, >80%. In principle, the two halogenation formats coupled with the traditional electrophilic reactions provide selective functionalization at each position on the aromatic ring. Furthermore, halogenation serves as a starting point for the synthesis of two structural isomers of practical utility, i.e. in drug prospecting. The o-bromo and p-iodo compounds are easily modified by catalytic cross-coupling to append diverse functional groups. Thereafter, F-/H2O2 treatment cleaves the Si-C bonds replacing Si with OH. This represents a rare opportunity to introduce hydroxyl groups to aromatic rings, a process not easily accomplished using traditional organic synthesis methods. The as-produced phenol provides additional opportunities for modification. Each cage can be considered a nanoreactor generating 8-12 product molecules. Examples given include syntheses of 4,2'-R,OH-stilbenes and 4,4'-R,OH-stilbenes (R = Me, CN). Unoptimized cleavage of the Br/I derivatives yields 55-85% phenol. Unoptimized cleavage of the stilbene derivatives yields 35-40% (3-5 equivalents of phenol) in the preliminary studies presented here. In contrast, meta R-phenol yields are 80% (7-10 mol per cage).
Collapse
Affiliation(s)
- Mozhgan Bahrami
- Macromolecular Science and Engineering, and Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA
| | | | | | | | | |
Collapse
|