1
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Guo T, Pei F, Zhang M, Yamada T, Feng J, Jing J, Ho TV, Chai Y. Vascular architecture regulates mesenchymal stromal cell heterogeneity via P53-PDGF signaling in the mouse incisor. Cell Stem Cell 2024; 31:904-920.e6. [PMID: 38703771 PMCID: PMC11162319 DOI: 10.1016/j.stem.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.
Collapse
Affiliation(s)
- Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Kudaibergen G, Mukhlis S, Mukhambetova A, Issabekova A, Sekenova A, Sarsenova M, Temirzhan A, Baidarbekov M, Umbayev B, Ogay V. Repair of Rat Calvarial Critical-Sized Defects Using Heparin-Conjugated Fibrin Hydrogel Containing BMP-2 and Adipose-Derived Pericytes. Bioengineering (Basel) 2024; 11:437. [PMID: 38790304 PMCID: PMC11117777 DOI: 10.3390/bioengineering11050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
The repair of critical-sized calvarial defects is a challenging problem for orthopedic surgery. One of the promising strategies of bone bioengineering to enhance the efficacy of large bone defect regeneration is the combined delivery of stem cells with osteoinductive factors within polymer carriers. The purpose of the research was to study the regenerative effects of heparin-conjugated fibrin (HCF) hydrogel containing bone morphogenetic protein 2 (BMP-2) and adipose-derived pericytes (ADPs) in a rat critical-sized calvarial defect model. In vitro analysis revealed that the HCF hydrogel was able to control the BMP-2 release and induce alkaline phosphatase (ALP) activity in neonatal rat osteoblasts. In addition, it was found that eluted BMP-2 significantly induced the osteogenic differentiation of ADPs. It was characterized by the increased ALP activity, osteocalcin expression and calcium deposits in ADPs. In vivo studies have shown that both HCF hydrogel with BMP-2 and HCF hydrogel with pericytes are able to significantly increase the regeneration of critical-sized calvarial defects in comparison with the control group. Nevertheless, the greatest regenerative effect was found after the co-delivery of ADPs and BMP-2 into a critical-sized calvarial defect. Thus, our findings suggest that the combined delivery of ADPs and BMP-2 in HCF hydrogel holds promise to be applied as an alternative biopolymer for the critical-sized bone defect restoration.
Collapse
Affiliation(s)
- Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Sholpan Mukhlis
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Ainur Mukhambetova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Madina Sarsenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
| | - Abay Temirzhan
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Murat Baidarbekov
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Baurzhan Umbayev
- Laboratory of Bioengineering and Regenerative Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (G.K.); (S.M.); (A.M.); (A.I.); (A.S.); (M.S.)
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| |
Collapse
|
4
|
Zhang C, Shi J, Dai Y, Li X, Leng J. Progress of the study of pericytes and their potential research value in adenomyosis. Sci Prog 2024; 107:368504241257126. [PMID: 38863331 PMCID: PMC11179483 DOI: 10.1177/00368504241257126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoyan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Jinhua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
5
|
Picoli CDC, Birbrair A, Li Z. Pericytes as the Orchestrators of Vasculature and Adipogenesis. Genes (Basel) 2024; 15:126. [PMID: 38275607 PMCID: PMC10815550 DOI: 10.3390/genes15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.
Collapse
Affiliation(s)
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA;
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;
| |
Collapse
|
6
|
Aleynik DY, Bokov AE, Charykova IN, Rubtsova YP, Linkova DD, Farafontova EA, Egorikhina MN. Functionalization of Osteoplastic Material with Human Placental Growth Factor and Assessment of Biocompatibility of the Resulting Material In Vitro. Pharmaceutics 2024; 16:85. [PMID: 38258096 PMCID: PMC10819287 DOI: 10.3390/pharmaceutics16010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This article provides the results of a study of the interaction of placental growth factor with adipose-derived stem cells (ASCs) of various origins, as well as the possibility of generating osteoplastic material based on xenogeneic matrix functionalization with human placental growth factor (PLGF). It is demonstrated that the greatest release of this factor from the functionalized material into the medium occurs during the first 3 h of contact with the model medium, but then the levels of the factor being released fall sharply, although release did continue throughout the 7 days of observation. The modified material was not cytotoxic, and its surface provided good cell adhesion. During 3 days of cultivation, the ASCs proliferated and migrated more actively on the surfaces of the modified material than on the surfaces of the control material. This study can serve as the basis for the development of original methods to functionalize such osteoplastic material by increasing PLGF immobilization by creating stronger bonds in order to regulate both factor dosage and the dynamics of the factor release into the environment. Further studies in experimental animals should facilitate assessment of the effectiveness of the functionalized materials. Such studies will be useful in the development of osteoplastic materials with new properties resulting from the inclusion of growth factors and in research on their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1 Minin and Pozharsky Square, 603005 Nizhny Novgorod, Russia; (D.Y.A.); (A.E.B.); (I.N.C.); (Y.P.R.); (D.D.L.); (E.A.F.)
| |
Collapse
|
7
|
Issabekova A, Kudaibergen G, Sekenova A, Dairov A, Sarsenova M, Mukhlis S, Temirzhan A, Baidarbekov M, Eskendirova S, Ogay V. The Therapeutic Potential of Pericytes in Bone Tissue Regeneration. Biomedicines 2023; 12:21. [PMID: 38275382 PMCID: PMC10813325 DOI: 10.3390/biomedicines12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pericytes, as perivascular cells, are present in all vascularized organs and tissues, and they actively interact with endothelial cells in capillaries and microvessels. Their involvement includes functions like blood pressure regulation, tissue regeneration, and scarring. Studies have confirmed that pericytes play a crucial role in bone tissue regeneration through direct osteodifferentiation processes, paracrine actions, and vascularization. Recent preclinical and clinical experiments have shown that combining perivascular cells with osteogenic factors and tissue-engineered scaffolds can be therapeutically effective in restoring bone defects. This approach holds promise for addressing bone-related medical conditions. In this review, we have emphasized the characteristics of pericytes and their involvement in angiogenesis and osteogenesis. Furthermore, we have explored recent advancements in the use of pericytes in preclinical and clinical investigations, indicating their potential as a therapeutic resource in clinical applications.
Collapse
Affiliation(s)
- Assel Issabekova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Gulshakhar Kudaibergen
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Aidar Dairov
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Madina Sarsenova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Sholpan Mukhlis
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Abay Temirzhan
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Murat Baidarbekov
- National Scientific Center of Traumatology and Orthopedics Named after Academician N.D. Batpenov, Astana 010000, Kazakhstan; (A.T.); (M.B.)
| | - Saule Eskendirova
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (A.I.); (G.K.); (A.S.); (A.D.); (M.S.); (S.M.); (S.E.)
| |
Collapse
|
8
|
Li L, Lee J, Cho YD, Kim S, Seol YJ, Lee YM, Koo KT. The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects. J Periodontal Implant Sci 2023; 53:259-268. [PMID: 36468487 PMCID: PMC10465808 DOI: 10.5051/jpis.2203000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Hyaluronic acid (HA) affects angiogenesis and promotes the migration and differentiation of mesenchymal cells, thereby activating the osteogenic ability of osteoblasts. Although studies on the action of HA during bone regeneration are being actively conducted, the optimal dose of HA required for bone regeneration remains unclear. Therefore, the purpose of this study was to elucidate the most effective HA dose for bone formation using a rat critical-size defect model. METHODS Thirty rats were randomly divided into 5 groups, with 6 rats in each group. An absorbable collagen sponge soaked with HA or saline was used to fill an 8-mm defect, which was then covered with a collagen membrane. Different treatments were performed for each group as follows: (1) saline control, (2) 1 mg/mL HA, (3) 25 mg/mL HA, (4) 50 mg/mL HA, or (5) 75 mg/mL HA. After a healing period of 4 weeks, micro-computed tomography and histological analysis were performed. The obtained values were analyzed using analysis of variance and the Tukey test (P<0.05). RESULTS At week 4, the 75 mg/mL HA group had the highest bone volume/total volume ratio, new bone, and bone fill among the 5 groups, and these values were significantly different from those observed in the control group (P<0.01) and 1 mg/mL HA group (P<0.001). More active bone formation was observed in the higher-dose HA groups (25 mg/mL, 50 mg/mL, and 75 mg/mL HA), which included a large amount of woven bone. CONCLUSIONS The 75 mg/mL HA group showed better bone formation than the other groups (1, 25, and 50 mg/mL HA and control).
Collapse
Affiliation(s)
- Ling Li
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Young-Dan Cho
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.
| |
Collapse
|
9
|
Tuersuntuoheti M, Zhang J, Zhou W, Zhang CL, Liu C, Chang Q, Liu S. Exploring the growth trait molecular markers in two sheep breeds based on Genome-wide association analysis. PLoS One 2023; 18:e0283383. [PMID: 36952432 PMCID: PMC10035858 DOI: 10.1371/journal.pone.0283383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Growth traits are quantitative traits controlled by multiple micro-effect genes. we identified molecular markers related to sheep growth traits, which formed the basis of molecular breeding. In this study, we randomly selected 100 Qira Black sheep and 84 German Merino sheep for the blood collection the jugular vein to genotype by using the Illumina Ovine SNP 50K Bead Chip. quality control criteria for statistical analysis were: rejection detection rate < 90% and minimum allele frequency (MAF) < 5%. Then, we performed Genome-wide association studies (GWAS) on sheep body weight, body height, body length, and chest circumference using mixed linear models. After getting 55 SNPs with significant correlation, they were annotated by reference genome of Ovis aries genome (Oar_v4.0) and We obtained a total of 84 candidate genes associated with production traits (BMPR1B, HSD17B3, TMEM63C, etc.). We selected BMPR1B for population validation and found a correlation between the FecB locus and body weight traits. Therefore, this study not only supplements the existing knowledge of molecular markers of sheep growth traits, but also has important theoretical significance and reference value for the mining of functional genes of sheep growth traits.
Collapse
Affiliation(s)
- Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Chunjie Liu
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Qianqian Chang
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, China
- Tarim Science and Technology Key Laboratory of Xinjiang Production and Construction Corps, Alar, China
| |
Collapse
|
10
|
TAZ promotes osteogenic differentiation of mesenchymal stem cells line C3H10T1/2, murine multi-lineage cells lines C2C12, and MEFs induced by BMP9. Cell Death Dis 2022; 8:499. [PMID: 36575168 PMCID: PMC9794779 DOI: 10.1038/s41420-022-01292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic protein 9 (BMP9), also named as growth differentiation factor 2 (GDF-2), is the strongest cytokine that promotes osteogenic differentiation in the BMP family, and has broad clinical application value. Nevertheless, the mechanism of BMP9 promotes osteogenic differentiation remain unclear. TAZ, a transcriptional co-activator, has great effects on cell proliferation, differentiation, and stem cell self-renewal. In this research, we investigated the effects of TAZ in BMP9-induced osteogenic differentiation of mesenchymal stem cell line C3H10T1/2 (MSCs) and murine multi-lineage cell lines C2C12 and MEFs (MMCs) and explored its possible mechanisms. This study has found that BMP9 induces the expression of TAZ and promotes its nuclear translocation. Meanwhile, our study found that Ad-TAZ and TM-25659, a TAZ agonist, can enhance the osteogenic differentiation of MSCs and MMCs induced by BMP9. Conversely, Ad-si-TAZ and verteporfin, an inhibitor of TAZ, have the contradictory effect. Likewise, the promotion of TAZ to the BMP9-induced ectopic bone formation in vivo was confirmed by the subcutaneous transplantation of MSCs in nude mice. Furthermore, we have detected that TAZ might increase the levels of the phosphorylation of Smad1/5/8, p38, ERK1/2, and JNK induced by BMP9. Additionally, we also found that TAZ increased the total protein level of β-catenin induced by BMP9. In summary, our results strongly indicated that TAZ will promote the osteogenic differentiation in MSCs and MMCs induced by BMP9 through multiple signal pathways.
Collapse
|
11
|
Negri S, Wang Y, Li Z, Qin Q, Lee S, Cherief M, Xu J, Hsu GCY, Tower RJ, Presson B, Levin A, McCarthy E, Levi B, James AW. Acetabular Reaming Is a Reliable Model to Produce and Characterize Periarticular Heterotopic Ossification of the Hip. Stem Cells Transl Med 2022; 11:876-888. [PMID: 35758541 PMCID: PMC9397657 DOI: 10.1093/stcltm/szac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) is a pathologic process characterized by the formation of bone tissue in extraskeletal locations. The hip is a common location of HO, especially as a complication of arthroplasty. Here, we devise a first-of-its-kind mouse model of post-surgical hip HO and validate expected cell sources of HO using several HO progenitor cell reporter lines. To induce HO, an anterolateral surgical approach to the hip was used, followed by disclocation and acetabular reaming. Animals were analyzed with high-resolution roentgenograms and micro-computed tomography, conventional histology, immunohistochemistry, and assessments of fluorescent reporter activity. All the treated animals' developed periarticular HO with an anatomical distribution similar to human patients after arthroplasty. Heterotopic bone was found in periosteal, inter/intramuscular, and intracapsular locations. Further, the use of either PDGFRα or scleraxis (Scx) reporter mice demonstrated that both cell types gave rise to periarticular HO in this model. In summary, acetabular reaming reproducibly induces periarticular HO in the mouse reproducing human disease, and with defined mesenchymal cellular contributors similar to other experimental HO models. This protocol may be used in the future for further detailing of the cellular and molecular mediators of post-surgical HO, as well as the screening of new therapies.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert Joel Tower
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Bradley Presson
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, Verona, Italy
| | - Adam Levin
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Aaron W James
- Corresponding author: Aaron W. James, 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, USA. Tel: +1 410 502 4143; Fax: +1 410 955 9777;
| |
Collapse
|
12
|
Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J. Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 2022; 10:30. [PMID: 35296645 PMCID: PMC8927336 DOI: 10.1038/s41413-022-00203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-β, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Samuel Bennett
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Pharmacology Research Centre, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China. .,Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
13
|
Implication of Mesenchymal Stem Cells and Their Derivates for Osteochondral Regeneration. Int J Mol Sci 2022; 23:ijms23052490. [PMID: 35269633 PMCID: PMC8910214 DOI: 10.3390/ijms23052490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Healing of articular cartilage defects presents a challenging issue, due to its regenerative shortcomings. Lacking vascularity and innervation of cartilage and low proliferative potential of chondrocytes are the main reasons for the limited healing potential of articular cartilage. Traditional reparative approaches are limited in their efficiency, hence there is a demand for novel reparative treatments. Mesenchymal stromal cells, preferred for clinical uses, can be readily derived from various sources and have been proven to have a therapeutic effect on cartilage and subchondral bone. Therefore, mesenchymal stromal cells, their derivates, and scaffolds have been utilized in research targeting osteochondral regeneration. The present review aims to comprehensively outline and discuss literature considering this topic published within last 5 years.
Collapse
|
14
|
Le Q, Madhu V, Hart JM, Farber CR, Zunder ER, Dighe AS, Cui Q. Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World J Stem Cells 2021; 13:1248-1277. [PMID: 34630861 PMCID: PMC8474721 DOI: 10.4252/wjsc.v13.i9.1248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.
Collapse
Affiliation(s)
- Quang Le
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Vedavathi Madhu
- Orthopaedic Surgery Research, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Joseph M Hart
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
- Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, United States
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Abhijit S Dighe
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
15
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2021. [DOI: 10.1002/stem.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Gaihre B, Bharadwaz A, Unagolla JM, Jayasuriya AC. Evaluation of the optimal dosage of BMP-9 through the comparison of bone regeneration induced by BMP-9 versus BMP-2 using an injectable microparticle embedded thermosensitive polymeric carrier in a rat cranial defect model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112252. [PMID: 34225891 PMCID: PMC8260961 DOI: 10.1016/j.msec.2021.112252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) are well known as enhancers and facilitators of osteogenesis during bone regeneration. The use of recombinant BMP-2 (rhBMP-2) in bone defect healing has drawbacks, which has driven the scouting for alternatives, such as recombinant BMP-9 (rhBMP-9), to provide comparable new bone formation. However, the dosage of rhBMP-9 is quintessential for the facilitation of adequate bone defect healing. Therefore, this study has been designed to evaluate the optimal dosage of BMP-9 by comparing the bone defect healing induced by rhBMP-9 over rhBMP-2. The chitosan (CS) microparticles (MPs), coated with BMPs, were embedded in a thermoresponsive methylcellulose (MC) and calcium alginate (Alg) based injectable delivery system containing a dosage of either 0.5 μg or 1.5 μg of the respective rhBMP per bone defect. A 5 mm critical-sized cranial defect rat model has been used in this study, and bone tissues were harvested at eight weeks post-surgery. The standard tools for comparing the new bone regeneration included micro computerized tomography (micro-CT) and histological analysis. A novel perspective of analyzing the new bone quality and crystallinity was employed by using Raman spectroscopy, along with its elastic modulus quantified through Atomic Force Microscopy (AFM). Results showed that the rhBMP-9 administered at a dosage of 1.5 μg per bone defect, using this delivery system, can adequately facilitate the bone void filling with ample new bone mineralization and crystallinity as compared to rhBMP-2, thus approving the hypothesis for a viable rhBMP-2 alternative.
Collapse
Affiliation(s)
- Bipin Gaihre
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43607, USA
| | - Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43607, USA
| | - Janitha M Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43607, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH 43607, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
17
|
Sternal Bone Marrow Harvesting and Culturing Techniques from Patients Undergoing Cardiac Surgery. MICROMACHINES 2021; 12:mi12080897. [PMID: 34442518 PMCID: PMC8397946 DOI: 10.3390/mi12080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Background: Mesenchymal stromal cells (MSCs) are the most prominent cell type used in clinical regenerative medicine and stem cell research. MSCs are commonly harvested from bone marrow that has been aspirated from patients’ iliac crest. However, the ethical challenges of finding consenting patients and obtaining fresh autologous cells via invasive extraction methods remain to be barriers to MSC research. Methods: Techniques of harvesting sternal bone marrow, isolating and culturing MSCs, MSC surface phenotyping, and MSC differentiation are described. Samples from 50 patients undergoing a sternotomy were collected, and the time taken to reach 80% confluency and cell count at the second splitting of MSC were measured. Results: MSC isolated from the sternal bone marrow of patients undergoing cardiac surgery demonstrated successful MSC surface phenotyping and MSC differentiation. The mean cell count at the time of the second split was 1,628,025, and the mean time taken to reach the second split was 24.8 days. Conclusion: Herein, we describe the first reported technique of harvesting sternal bone marrow from patients already undergoing open-chest cardiac surgery to reduce the invasiveness of bone marrow harvesting, as well as the methods of isolating, culturing, and identifying MSCs for the clinical application of constructing autologous MSC-derived biomaterials.
Collapse
|
18
|
Scioli MG, Storti G, Bielli A, Sanchez M, Scimeca M, Gimble JM, Cervelli V, Orlandi A. CD146 expression regulates osteochondrogenic differentiation of human adipose-derived stem cells. J Cell Physiol 2021; 237:589-602. [PMID: 34287857 DOI: 10.1002/jcp.30506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Sanchez
- Major Equipments and Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey M Gimble
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
19
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Murali VP, Holmes CA. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone Rep 2021; 14:101093. [PMID: 34095360 PMCID: PMC8166743 DOI: 10.1016/j.bonr.2021.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To analyze preclinical bone regeneration studies employing mesenchymal stromal cell (MSC)- derived extracellular vesicles (EVs) and highlight any commonalities in EV biomarker expression, miRNA cargo(s) or pathway activation that will aid in understanding the underlying therapeutic mechanisms. Methods Articles employing EVs derived from either MSCs or MSC-like osteogenic stromal cells in preclinical bone regeneration studies are included in this review. Results EVs derived from a variety of MSC types were able to successfully induce bone formation in preclinical models. Many studies failed to perform in-depth EV characterization. The studies with detailed EV characterization data report very different miRNA cargos, even in EVs isolated from the same species and cell types. Few preclinical studies have analyzed the underlying mechanisms of MSC-EV therapeutic action. Conclusion There is a critical need for mechanistic preclinical studies with thorough EV characterization to determine the best therapeutic MSC-EV source for bone regeneration therapies. Issues including controlled EV delivery, large scale production, and proper storage also need to be addressed before EV-based bone regeneration therapies can be translated for clinical bone repair. EVs from different MSC sources successfully regenerate bone in preclinical models. Studies were reviewed to find commonalities in EV cargo(s)/pathways activated in MSC-EV-based bone regeneration therapies. Issues that need to be overcome to enable clinical translation of EV-based therapies were addressed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| |
Collapse
|
21
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
22
|
Atala A. STEM CELLS Translational Medicine: A Decade of Evolution to a Vibrant Stem Cell and Regenerative Medicine Global Community. Stem Cells Transl Med 2021; 10:157-159. [PMID: 33522151 PMCID: PMC7848306 DOI: 10.1002/sctm.21-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
|
23
|
Abstract
Human pericytes are a perivascular cell population with mesenchymal stem cell properties, present in all vascularized tissues. Human pericytes have a distinct immunoprofile, which may be leveraged for purposes of cell purification. Adipose tissue is the most commonly used cell source for human pericyte derivation. Pericytes can be isolated by FACS (fluorescence-activated cell sorting), most commonly procured from liposuction aspirates. Pericytes have clonal multilineage differentiation potential, and their potential utility for bone regeneration has been described across multiple animal models. The following review will discuss in vivo methods for assessing the bone-forming potential of purified pericytes. Potential models include (1) mouse intramuscular implantation, (2) mouse calvarial defect implantation, and (3) rat spinal fusion models. In addition, the presented surgical protocols may be used for the in vivo analysis of other osteoprogenitor cell types.
Collapse
|
24
|
Negri S, Wang Y, Sono T, Qin Q, Hsu GCY, Cherief M, Xu J, Lee S, Tower RJ, Yu V, Piplani A, Meyers CA, Broderick K, Lee M, James AW. Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Transl Med 2020; 10:610-622. [PMID: 33377628 PMCID: PMC7980212 DOI: 10.1002/sctm.20-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Progenitor cells from adipose tissue are able to induce bone repair; however, inconsistent or unreliable efficacy has been reported across preclinical and clinical studies. Soluble inhibitory factors, such as the secreted Wnt signaling antagonists Dickkopf-1 (DKK1), are expressed to variable degrees in human adipose-derived stem cells (ASCs), and may represent a targetable "molecular brake" on ASC mediated bone repair. Here, anti-DKK1 neutralizing antibodies were observed to increase the osteogenic differentiation of human ASCs in vitro, accompanied by increased canonical Wnt signaling. Human ASCs were next engrafted into a femoral segmental bone defect in NOD-Scid mice, with animals subsequently treated with systemic anti-DKK1 or isotype control during the repair process. Human ASCs alone induced significant but modest bone repair. However, systemic anti-DKK1 induced an increase in human ASC engraftment and survival, an increase in vascular ingrowth, and ultimately improved bone repair outcomes. In summary, anti-DKK1 can be used as a method to augment cell-mediated bone regeneration, and could be particularly valuable in the contexts of impaired bone healing such as osteoporotic bone repair.
Collapse
Affiliation(s)
- Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert J Tower
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Yu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abhi Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min Lee
- School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Negri S, Wang Y, Sono T, Lee S, Hsu GC, Xu J, Meyers CA, Qin Q, Broderick K, Witwer KW, Peault B, James AW. Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Transl Med 2020; 9:1617-1630. [PMID: 32697440 PMCID: PMC7695633 DOI: 10.1002/sctm.20-0152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
The vascular wall stores mesenchymal progenitor cells which are able to induce bone regeneration, via direct and paracrine mechanisms. Although much is known regarding perivascular cell regulation of osteoblasts, their regulation of osteoclasts, and by extension utility in states of high bone resorption, is not known. Here, human perivascular stem cells (PSCs) were used as a means to prevent autograft resorption in a gonadectomy-induced osteoporotic spine fusion model. Furthermore, the paracrine regulation by PSCs of osteoclast formation was evaluated, using coculture, conditioned medium, and purified extracellular vesicles. Results showed that PSCs when mixed with autograft bone induce an increase in osteoblast:osteoclast ratio, promote bone matrix formation, and prevent bone graft resorption. The confluence of these factors resulted in high rates of fusion in an ovariectomized rat lumbar spine fusion model. Application of PSCs was superior across metrics to either the use of unpurified, culture-defined adipose-derived stromal cells or autograft bone alone. Under coculture conditions, PSCs negatively regulated osteoclast formation and did so via secreted, nonvesicular paracrine factors. Total RNA sequencing identified secreted factors overexpressed by PSCs which may explain their negative regulation of graft resorption. In summary, PSCs reduce osteoclast formation and prevent bone graft resorption in high turnover states such as gonadectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Stefano Negri
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, DentistryPaediatrics and Gynaecology of the University of VeronaVeronaItaly
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Takashi Sono
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Seungyong Lee
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Qizhi Qin
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kristen Broderick
- Department of Plastic SurgeryJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and NeurologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesCaliforniaUSA
- Center for Cardiovascular Science and MRC Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Aaron W. James
- Department of PathologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
26
|
Xu J, Wang Y, Hsu CY, Negri S, Tower RJ, Gao Y, Tian Y, Sono T, Meyers CA, Hardy WR, Chang L, Hu S, Kahn N, Broderick K, Péault B, James AW. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. eLife 2020; 9:e58990. [PMID: 33044169 PMCID: PMC7550188 DOI: 10.7554/elife.58990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces. Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation, osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic bone formation after intramuscular transplantation in mice, and induced spine fusion in rats, whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow cells are precursors of CD107ahigh cells. These results document the molecular and functional diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal protein marks the transition from osteo- to adipogenic potential in native human MSCs, a population of substantial therapeutic interest.
Collapse
Affiliation(s)
- Jiajia Xu
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Stefano Negri
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert J Tower
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- Departments of Orthopaedics, Johns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ye Tian
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical UniversityShenyangChina
| | - Takashi Sono
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carolyn A Meyers
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Winters R Hardy
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Leslie Chang
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
| | - Shuaishuai Hu
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Nusrat Kahn
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| | - Kristen Broderick
- Departments of Plastic Surgery, Johns Hopkins UniversityBaltimoreUnited States
| | - Bruno Péault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
- Center For Cardiovascular Science and Center for Regenerative Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Aaron W James
- Departments of Pathology, Johns Hopkins UniversityBaltimoreUnited States
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research CenterLos AngelesUnited States
| |
Collapse
|
27
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
28
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Wang Y, Negri S, Li Z, Xu J, Hsu CY, Peault B, Broderick K, James AW. Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Dev 2020; 29:1007-1015. [PMID: 32460636 DOI: 10.1089/scd.2020.0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of DKK1 peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Stefano Negri
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhao Li
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Ching-Yun Hsu
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aaron W James
- Department of Pathology and Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
31
|
Perivascular Stem Cell-Derived Cyclophilin A Improves Uterine Environment with Asherman's Syndrome via HIF1α-Dependent Angiogenesis. Mol Ther 2020; 28:1818-1832. [PMID: 32534604 DOI: 10.1016/j.ymthe.2020.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Asherman's syndrome (AS) is characterized by intrauterine adhesions or fibrosis resulting from scarring inside the endometrium. AS is associated with infertility, recurrent miscarriage, and placental abnormalities. Although mesenchymal stem cells show therapeutic promise for the treatment of AS, the molecular mechanisms underlying its pathophysiology remain unclear. We ascertained that mice with AS, like human patients with AS, suffer from extensive fibrosis, oligo/amenorrhea, and infertility. Human perivascular stem cells (hPVSCs) from umbilical cords repaired uterine damage in mice with AS, regardless of their delivery routes. In mice with AS, embryo implantation is aberrantly deferred, which leads to intrauterine growth restriction followed by no delivery at term. hPVSC administration significantly improved implantation defects and subsequent poor pregnancy outcomes via hypoxia inducible factor 1α (HIF1α)-dependent angiogenesis in a dose-dependent manner. Pharmacologic inhibition of HIF1α activity hindered hPVSC actions on pregnancy outcomes, whereas stabilization of HIF1α activity facilitated such actions. Furthermore, therapeutic effects of hPVSCs were not observed in uterine-specific HIF1α-knockout mice with AS. Secretome analyses of hPVSCs identified cyclophilin-A as the major paracrine factor for hPVSC therapy via HIF1α-dependent angiogenesis. Collectively, we demonstrate that hPVSCs-derived cyclophilin-A facilitates HIF1α-dependent angiogenesis to ameliorate compromised uterine environments in mice with AS, representing the major pathophysiologic features of humans with AS.
Collapse
|
32
|
Bowles AC, Kouroupis D, Willman MA, Perucca Orfei C, Agarwal A, Correa D. Signature quality attributes of CD146 + mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells 2020; 38:1034-1049. [PMID: 32379908 DOI: 10.1002/stem.3196] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
Abstract
CD146+ bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) play key roles in the perivascular niche, skeletogenesis, and hematopoietic support; however, comprehensive evaluation of therapeutic potency has yet to be determined. In this study, in vitro inflammatory priming to crude human BM-MSCs (n = 8) captured a baseline of signature responses, including enriched CD146+ with coexpression of CD107aHigh , CXCR4High , and LepRHigh , transcriptional profile, enhanced secretory capacity, and robust immunomodulatory secretome and function, including immunopotency assays (IPAs) with stimulated immune cells. These signatures were significantly more pronounced in CD146+ (POS)-sorted subpopulation than in the CD146- (NEG). Mechanistically, POS BM-MSCs showed a markedly higher secretory capacity with significantly greater immunomodulatory and anti-inflammatory protein production upon inflammatory priming compared with the NEG BM-MSCs. Moreover, IPAs with stimulated peripheral blood mononuclear cells and T lymphocytes demonstrated robust immunosuppression mediated by POS BM-MSC while inducing significant frequencies of regulatory T cells. in vivo evidence showed that POS BM-MSC treatment promoted pronounced M1-to-M2 macrophage polarization, ameliorating inflammation/fibrosis of knee synovium and fat pad, unlike treatment with NEG BM-MSCs. These data correlate the expression of CD146 with innately higher immunomodulatory and secretory capacity, and thus therapeutic potency. This high-content, reproducible evidence suggests that the CD146+ (POS) MSC subpopulation are the mediators of the beneficial effects achieved using crude BM-MSCs, leading to translational implications for improving cell therapy and manufacturing.
Collapse
Affiliation(s)
- Annie C Bowles
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melissa A Willman
- Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ashutosh Agarwal
- Department of Biomedical Engineering College of Engineering, University of Miami, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA.,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, Florida, USA.,DJTMF Biomedical Nanotechnology Institute at the University of Miami, Miami, Florida, USA
| |
Collapse
|
33
|
Ehlert M, Radtke A, Jędrzejewski T, Roszek K, Bartmański M, Piszczek P. In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells. MATERIALS 2020; 13:ma13071574. [PMID: 32235354 PMCID: PMC7177883 DOI: 10.3390/ma13071574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
In vitro biological research on a group of amorphous titania coatings of different nanoarchitectures (nanoporous, nanotubular, and nanosponge-like) produced on the surface of Ti6Al4V alloy samples have been carried out, aimed at assessing their ability to interact with adipose-derived mesenchymal stem cells (ADSCs) and affect their activity. The attention has been drawn to the influence of surface coating architecture and its physicochemical properties on the ADSCs proliferation. Moreover, in vitro co-cultures: (1) fibroblasts cell line L929/ADSCs and (2) osteoblasts cell line MG-63/ADSCs on nanoporous, nanotubular and nanosponge-like TiO2 coatings have been studied. This allowed for evaluating the impact of the surface properties, especially roughness and wettability, on the creation of the beneficial microenvironment for co-cultures and/or enhancing differentiation potential of stem cells. Obtained results showed that the nanoporous surface is favorable for ADSCs, has great biointegrative properties, and supports the growth of co-cultures with MG-63 osteoblasts and L929 fibroblasts. Additionally, the number of osteoblasts seeded and cultured with ADSCs on TNT5 surface raised after 72-h culture almost twice when compared with the unmodified scaffold and by 30% when compared with MG-63 cells growing alone. The alkaline phosphatase activity of MG-63 osteoblasts co-cultured with ADSCs increased, that indirectly confirmed our assumptions that TNT-modified scaffolds create the osteogenic niche and enhance osteogenic potential of ADSCs.
Collapse
Affiliation(s)
- Michalina Ehlert
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Michał Bartmański
- Faculty of Mechanical Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-implant Ltd. Gagarina 5/102, 87-100 Toruń, Poland
- Correspondence: (A.R.); (P.P.); Tel.: +48-600321294 (A.R.); Tel.: +48-607883357 (P.P.)
| |
Collapse
|
34
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A, Maleki A, Hamblin MR. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110267. [PMID: 31761248 PMCID: PMC6907012 DOI: 10.1016/j.msec.2019.110267] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Silica nanomaterials (SNMs) and their composites have recently been investigated as scaffolds for bone tissue engineering. SNM scaffolds possess the ability to encourage bone cell growth and also allow the simultaneous delivery of biologically active biomolecules that are encapsulated in the mesopores. Their high mechanical strength, low cytotoxicity, ability to stimulate both the proliferation and osteogenic differentiation of progenitor cells make the SNMs appropriate scaffolds. Their physiochemical properties facilitate the cell spreading process, allow easy access to nutrients and help the cell-cell communication process during bone tissue engineering. The ability to deliver small biomolecules, such as dexamethasone, different growth factors, vitamins and mineral ions depends on the morphology, porosity, and crystallinity of SNMs and their composites with other polymeric materials. In this review, the abilities of SNMs to perform as suitable scaffolds for bone tissue engineering are comprehensively discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Jafar Mosafer
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
36
|
Leong NL, Kator JL, Clemens TL, James A, Enamoto-Iwamoto M, Jiang J. Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. J Orthop Res 2020; 38:7-12. [PMID: 31529731 PMCID: PMC7307866 DOI: 10.1002/jor.24475] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
Ligament and tendon injuries are common problems in orthopedics. There is a need for treatments that can expedite nonoperative healing or improve the efficacy of surgical repair or reconstruction of ligaments and tendons. Successful biologically-based attempts at repair and reconstruction would require a thorough understanding of normal tendon and ligament healing. The inflammatory, proliferative, and remodeling phases, and the cells involved in tendon and ligament healing will be reviewed. Then, current research efforts focusing on biologically-based treatments of ligament and tendon injuries will be summarized, with a focus on stem cells endogenous to tendons and ligaments. Statement of clinical significance: This paper details mechanisms of ligament and tendon healing, as well as attempts to apply stem cells to ligament and tendon healing. Understanding of these topics could lead to more efficacious therapies to treat ligament and tendon injuries. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:7-12, 2020.
Collapse
Affiliation(s)
- Natalie L Leong
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Surgery, Baltimore VA Medical Center, Baltimore, Maryland
| | - Jamie L Kator
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Aaron James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Motomi Enamoto-Iwamoto
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| | - Jie Jiang
- Department of Orthopaedic Surgery, University of Maryland, 10 N. Greene St., Baltimore, Maryland, 21201
| |
Collapse
|
37
|
Mantripragada VP, Bova WA, Piuzzi NS, Boehm C, Obuchowski NA, Midura RJ, Muschler GF. Native-Osteoarthritic Joint Resident Stem and Progenitor Cells for Cartilage Cell-Based Therapies: A Quantitative Comparison With Respect to Concentration and Biological Performance. Am J Sports Med 2019; 47:3521-3530. [PMID: 31671273 DOI: 10.1177/0363546519880905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cell-based therapy for cartilage repair is a promising approach and is becoming an established technique. Yet, there is no consensus on the optimal cell source. PURPOSE To provide a donor-matched quantitative comparison of the connective tissue progenitors (CTPs) derived from cartilage (Outerbridge grade 1-3 [G1-2-3]), bone marrow aspirate concentrate (BMC), infrapatellar fat pad (IPFP), synovium, and periosteum with respect to (1) cell concentration ([Cell], cells/mL), (2) CTP prevalence (PCTP, colonies per million cells), and (3) biological performance based on in vitro proliferation potential (cells per colony) colony density, and differentiation potential (expression of negatively charged extracellular matrix: glycosaminoglycan-rich extra cellular matrix [GAG-ECM]). STUDY DESIGN Descriptive laboratory study. METHODS Tissues were obtained from 10 patients undergoing total knee arthroplasty (mean age, 59 years; women, n = 6). Automated quantitative colony-forming unit analysis was used to compare [Cell], PCTP, and CTP biological performance across tissue sources. RESULTS [Cell] was highest in grade 3 cartilage (P = .002) and BMC (P = .001). Median PCTP was highest in IPFP (P = .001), synovium (P = .003), and G1-2 cartilage (P = .02). Proliferation was highest in synovium-derived CTPs (P < .001). Median colony density was highest in G1-2-3 (P < .001). Median GAG-ECM was highest in G1-2-3 (P < .001). Within each patient, CTPs derived from all tissues were highly heterogeneous in biological performance as determined by cells per colony, density, and GAG-ECM. CONCLUSION Tissue sources differ in [Cell], PCTP, and biological attributes. The data presented in this study suggest that cartilage (G1-2-3) is the preferred tissue source for cartilage repair based on PCTP and GAG-ECM, followed by synovium, IPFP, BMC, and periosteum. However, due to the heterogeneous mixture of CTPs within each tissue source, there exists a subset of CTPs with biological performance similar to G1-2-3 cartilage, particularly in synovium and IPFP. Performance-based clonal selection and expansion of preferred CTPs and their progeny will potentially lead to improved cell population with predictive future. CLINICAL RELEVANCE Optimal tissue regeneration strategies will require informed decisions regarding which of the available tissue sources to use. Optimizing cell sourcing in any tissue may require separation of CTPs with preferred attributes from those with less desirable attributes. The heterogeneity manifest in the early stage of colony formation represents an opportunity for performance-based clone selection for clinical cell processing and manufacturing.
Collapse
Affiliation(s)
- Venkata P Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wes A Bova
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy A Obuchowski
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ronald J Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Han C, Weng XS. Microfragmented adipose tissue and its initial application in articular disease. Chin Med J (Engl) 2019; 132:2745-2748. [PMID: 31725453 PMCID: PMC6940107 DOI: 10.1097/cm9.0000000000000518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chang Han
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | |
Collapse
|
39
|
Wang Y, Xu J, Meyers CA, Gao Y, Tian Y, Broderick K, Peault B, James AW. PDGFRα marks distinct perivascular populations with different osteogenic potential within adipose tissue. Stem Cells 2019; 38:276-290. [PMID: 31742801 DOI: 10.1002/stem.3108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
The perivascular niche within adipose tissue is known to house multipotent cells, including osteoblast precursors. However, the identity of perivascular subpopulations that may mineralize or ossify most readily is not known. Here, we utilize inducible PDGFRα (platelet-derived growth factor alpha) reporter animals to identify subpopulations of perivascular progenitor cells. Results showed that PDGFRα-expressing cells are present in four histologic niches within inguinal fat, including two perivascular locations. PDGFRα+ cells are most frequent within the tunica adventitia of arteries and veins, where PDGFRα+ cells populate the inner aspects of the adventitial layer. Although both PDGFRα+ and PDGFRα- fractions are multipotent progenitor cells, adipose tissue-derived PDGFRα+ stromal cells proliferate faster and mineralize to a greater degree than their PDGFRα- counterparts. Likewise, PDGFRα+ ectopic implants reconstitute the perivascular niche and ossify to a greater degree than PDGFRα- cell fractions. Adventicytes can be further grouped into three distinct groups based on expression of PDGFRα and/or CD34. When further partitioned, adventicytes co-expressing PDGFRα and CD34 represented a cell fraction with the highest mineralization potential. Long-term tracing studies showed that PDGFRα-expressing adventicytes give rise to adipocytes, but not to other cells within the vessel wall under homeostatic conditions. However, upon bone morphogenetic protein 2 (BMP2)-induced ossicle formation, descendants of PDGFRα+ cells gave rise to osteoblasts, adipocytes, and "pericyte-like" cells within the ossicle. In sum, PDGFRα marks distinct perivascular osteoprogenitor cell subpopulations within adipose tissue. The identification of perivascular osteoprogenitors may contribute to our improved understanding of pathologic mineralization/ossification.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yongxing Gao
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Ye Tian
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
40
|
Ehlert M, Roszek K, Jędrzejewski T, Bartmański M, Radtke A. Titania Nanofiber Scaffolds with Enhanced Biointegration Activity-Preliminary In Vitro Studies. Int J Mol Sci 2019; 20:E5642. [PMID: 31718064 PMCID: PMC6888681 DOI: 10.3390/ijms20225642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The increasing need for novel bone replacement materials has been driving numerous studies on modifying their surface to stimulate osteogenic cells expansion and to accelerate bone tissue regeneration. The goal of the presented study was to optimize the production of titania-based bioactive materials with high porosity and defined nanostructure, which supports the cell viability and growth. We have chosen to our experiments TiO2 nanofibers, produced by chemical oxidation of Ti6Al4V alloy. Fibrous nanocoatings were characterized structurally (X-ray diffraction (XRD)) and morphologically (scanning electron microscopy (SEM)). The wettability of the coatings and their mechanical properties were also evaluated. We have investigated the direct influence of the modified titanium alloy surfaces on the survival and proliferation of mesenchymal stem cells derived from adipose tissue (ADSCs). In parallel, proliferation of bone tissue cells-human osteoblasts MG-63 and connective tissue cells - mouse fibroblasts L929, as well as cell viability in co-cultures (osteoblasts/ADSCs and fibroblasts/ADSCs has been studied. The results of our experiments proved that among all tested nanofibrous coatings, the amorphous titania-based ones were the most optimal scaffolds for the integration and proliferation of ADSCs, fibroblasts, and osteoblasts. Thus, we postulated these scaffolds to have the osteopromotional potential. However, from the co-culture experiments it can be concluded that ADSCs have the ability to functionalize the initially unfavorable surface, and make it suitable for more specialized and demanding cells.
Collapse
Affiliation(s)
- Michalina Ehlert
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-Implant Ltd., Gagarina 5/102, 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (K.R.); (T.J.)
| | - Michał Bartmański
- Faculty of Mechanical Engineering, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
- Nano-Implant Ltd., Gagarina 5/102, 87-100 Toruń, Poland
| |
Collapse
|
41
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
42
|
Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. Stromal Vascular Fraction and its Role in the Management of Alopecia: A Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2019; 12:35-44. [PMID: 32038756 PMCID: PMC6937163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adipose cells organized in small clusters under the reticular dermis closely interact with hair follicular cells and regulate the hair cycle. Intradermal adipocyte progenitor cells are activated toward the end of the telogen phase to proliferate and differentiate into mature adipocytes. These cells, surrounding the hair follicles, secrete signaling molecules that control the progression of the hair cycle. Diseases associated with defects in adipocyte homeostasis, such as lipodystrophy and focal dermal hypoplasia, lead to alopecia. In this review, we discuss the potential influence of stromal vascular fraction from adipose tissue in the management of alopecia as well as its involvement in preclinical and clinical trials.
Collapse
Affiliation(s)
- Athanasios J Stefanis
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Tomas Groh
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Monika Arenbergerova
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Petr Arenberger
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| | - Peter O Bauer
- Drs. Stefanis, Arenbergerova, and Arenberger are with the Department of Dermatology and Venereology, Faculty Hospital Kralovske Vinohrady and Third Medical Faculty of Charles University in Prague, the Czech Republic
- Drs. Groh and Bauer are with Bioinova, Ltd. in Prague, the Czech Republic
| |
Collapse
|
43
|
Sun X, Tung W, Wang W, Xu X, Zou J, Gould OEC, Kratz K, Ma N, Lendlein A. The effect of stiffness variation of electrospun fiber meshes of multiblock copolymers on the osteogenic differentiation of human mesenchymal stem cells. Clin Hemorheol Microcirc 2019; 73:219-228. [PMID: 31561335 DOI: 10.3233/ch-199206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning has attracted significant attention as a method to produce cell culture substrates whose fibrous structure mimics the native extracellular matrix (ECM). In this study, the influence of E-modulus of fibrous substrates on the lineage commitment of human adipose-derived stem cells (hADSCs) was studied using fiber meshes prepared via the electrospinning of a polyetheresterurethane (PEEU) consisting of poly(ρ-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments. The PPDO: PCL weight ratio was varied from 40:60 to 70:30 to adjust the physiochemical properties of the PEEU fibers. The cells attached on stiffer PEEU70 (PPDO:PCL,= 70:30) fiber meshes displayed an elongated morphology compared to those cultured on softer fibers. The nuclear aspect ratio (width vs. length of a nucleus) of hADSCs cultured on softer PEEU40 (PPDO:PCL = 40:60) fibers was lower than on stiffer fibers. The osteogenic differentiation of hADSCs was enhanced by culturing on stiffer fibers. Compared to PEEU40, a 73% increase of osteocalcin expression and a 34% enhancement of alkaline phosphatase (ALP) activity was observed in cells on PEEU70. These results demonstrated that the differentiation commitment of stem cells could be regulated via tailoring the mechanical properties of electrospun fibers.
Collapse
Affiliation(s)
- Xianlei Sun
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wingtai Tung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Oliver E C Gould
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
44
|
Xu J, Wang Y, Hsu CY, Gao Y, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 2019; 8:e48191. [PMID: 31482845 PMCID: PMC6764819 DOI: 10.7554/elife.48191] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | | | - Leslie Chang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Leititia Zhang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of StomatologyChina Medical UniversityShenyangChina
| | | | - Catherine Ding
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
| | - Bruno Peault
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
- Centre For Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeurologyJohns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|
45
|
Meyers CA, Xu J, Zhang L, Chang L, Wang Y, Asatrian G, Ding C, Yan N, Zou E, Broderick K, Lee M, Peault B, James AW. Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Eng Part A 2019; 25:1658-1666. [PMID: 31020920 DOI: 10.1089/ten.tea.2019.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesenchymal progenitor cell population defined by their perivascular residence. PSC are increasingly studied for their application in skeletal regenerative medicine. PSC from subcutaneous white adipose tissue are most commonly isolated via fluorescence-activated cell sorting (FACS), and defined as a bipartite population of CD146+CD34-CD31-CD45- pericytes and CD34+CD146-CD31-CD45- adventitial cells. FACS poses several challenges for clinical translation, including requirements for facilities, equipment, and personnel. The purpose of this study is to identify if magnetic-activated cell sorting (MACS) is a feasible method to derive PSC, and to determine if MACS-derived PSC are comparable to our previous experience with FACS-derived PSC. In brief, CD146+ pericytes and CD34+ adventitial cells were enriched from human lipoaspirate using a multistep column approach. Next, cell identity and purity were analyzed by flow cytometry. In vitro multilineage differentiation studies were performed with MACS-defined PSC subsets. Finally, in vivo application was performed in nonhealing calvarial bone defects in Scid mice. Results showed that human CD146+ pericytes and CD34+ adventitial cells may be enriched by MACS, with defined purity, anticipated cell surface marker expression, and capacity for multilineage differentiation. In vivo, MACS-derived PSC induce ossification of bone defects. These data document the feasibility of a MACS approach for the enrichment and application of PSC in the field of tissue engineering and regenerative medicine. Impact Statement Our findings suggest that perivascular stem/stromal cells, and in particular adventitial cells, may be isolated by magnetic-activated cell sorting and applied as an uncultured autologous stem cell therapy in a same-day setting for bone defect repair.
Collapse
Affiliation(s)
- Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Leititia Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Greg Asatrian
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Min Lee
- School of Dentistry, University of California, Los Angeles, California
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
46
|
Abstract
Besides seminal functions in angiogenesis and blood pressure regulation, microvascular pericytes possess a latent tissue regenerative potential that can be revealed in culture following transition into mesenchymal stem cells. Endowed with robust osteogenic potential, pericytes and other related perivascular cells extracted from adipose tissue represent a potent and abundant cell source for refined bone tissue engineering and improved cell therapies of fractures and other bone defects. The use of diverse bone formation assays in vivo, which include mouse muscle pocket osteogenesis and calvaria replenishment, rat and dog spine fusion, and rat non-union fracture healing, has confirmed the superiority of purified perivascular cells for skeletal (re)generation. As a surprising observation though, despite strong endogenous bone-forming potential, perivascular cells drive bone regeneration essentially indirectly, via recruitment by secreted factors of local osteo-progenitors.
Collapse
|
47
|
Abstract
Cells have been identified in postnatal tissues that, when isolated from multiple mesenchymal compartments, can be stimulated in vitro to give rise to cells that resemble mature mesenchymal phenotypes, such as odontoblasts, osteoblasts, adipocytes, and myoblasts. This has made these adult cells, collectively called mesenchymal stem cells (MSCs), strong candidates for fields such as tissue engineering and regenerative medicine. Based on evidence from in vivo genetic lineage-tracing studies, pericytes have been identified as a source of MSC precursors in vivo in multiple organs, in response to injury or during homeostasis. Questions of intense debate and interest in the field of tissue engineering and regenerative studies include the following: 1) Are all pericytes, irrespective of tissue of isolation, equal in their differentiation potential? 2) What are the mechanisms that regulate the differentiation of MSCs? To gain a better understanding of the latter, recent work has utilized ChIP-seq (chromatin immunoprecipitation followed by sequencing) to reconstruct histone landscapes. This indicated that for dental pulp pericytes, the odontoblast-specific gene Dspp was found in a transcriptionally permissive state, while in bone marrow pericytes, the osteoblast-specific gene Runx2 was primed for expression. RNA sequencing has also been utilized to further characterize the 2 pericyte populations, and results highlighted that dental pulp pericytes are already precommitted to an odontoblast fate based on enrichment analysis indicating overrepresentation of key odontogenic genes. Furthermore, ChIP-seq analysis of the polycomb repressive complex 1 component RING1B indicated that this complex is likely to be involved in inhibiting inappropriate differentiation, as it localized to a number of loci of key transcription factors that are needed for the induction of adipogenesis, chondrogenesis, or myogenesis. In this review, we highlight recent data elucidating molecular mechanisms that indicate that pericytes can be tissue-specific precommitted MSC precursors in vivo and that this precommitment is a major driving force behind MSC differentiation.
Collapse
Affiliation(s)
- V Yianni
- 1 Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - P T Sharpe
- 1 Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
48
|
Bolte J, Vater C, Culla AC, Ahlfeld T, Nowotny J, Kasten P, Disch AC, Goodman SB, Gelinsky M, Stiehler M, Zwingenberger S. Two-step stem cell therapy improves bone regeneration compared to concentrated bone marrow therapy. J Orthop Res 2019; 37:1318-1328. [PMID: 30628121 DOI: 10.1002/jor.24215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.
Collapse
Affiliation(s)
- Julia Bolte
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Anna Carla Culla
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Jörg Nowotny
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - Alexander C Disch
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Maik Stiehler
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
49
|
James AW, Péault B. Perivascular Mesenchymal Progenitors for Bone Regeneration. J Orthop Res 2019; 37:1221-1228. [PMID: 30908717 PMCID: PMC6546547 DOI: 10.1002/jor.24284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal progenitor cells reside in all assayed vascularized tissues, and are broadly conceptualized to participate in homeostasis/renewal and repair. The application of mesenchymal progenitor cells has been studied for diverse orthopaedic conditions related to skeletal degeneration, regeneration, and tissue fabrication. One common niche for mesenchymal progenitors is the perivascular space, and in both mouse and human tissues, perivascular progenitor cells have been isolated and characterized. Of these "perivascular stem cells" or PSC, pericytes are the most commonly studied cells. Multiple studies have demonstrated the regenerative properties of PSC when applied to bone, including direct osteochondral differentiation, paracrine-induced osteogenesis and vasculogenesis, and immunomodulatory functions. The confluence of these effects have resulted in efficacious bone regeneration across several preclinical models. Yet, key topics of research in perivascular progenitors highlight our lack of knowledge regarding these cell populations. These ongoing areas of study include cellular diversity within the perivascular niche, tissue-specific properties of PSC, and factors that influence PSC-mediated regenerative potential. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1221-1228, 2019.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA 90095, USA
| | - Bruno Péault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA 90095, USA,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
50
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|