1
|
Dai S, Qiu L, Veeraraghavan VP, Sheu CL, Mony U. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy. Curr Stem Cell Res Ther 2024; 19:809-819. [PMID: 37291782 DOI: 10.2174/1574888x18666230608105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Linhui Qiu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
2
|
Mora P, Chapouly C. Astrogliosis in multiple sclerosis and neuro-inflammation: what role for the notch pathway? Front Immunol 2023; 14:1254586. [PMID: 37936690 PMCID: PMC10627009 DOI: 10.3389/fimmu.2023.1254586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system leading to neurodegeneration. It affects 2.3 million people worldwide, generally younger than 50. There is no known cure for the disease, and current treatment options - mainly immunotherapies to limit disease progression - are few and associated with serious side effects. In multiple sclerosis, disruption of the blood-brain barrier is an early event in the pathogenesis of lesions, predisposing to edema, excito-toxicity and inflammatory infiltration into the central nervous system. Recently, the vision of the blood brain barrier structure and integrity has changed and include contributions from all components of the neurovascular unit, among which astrocytes. During neuro-inflammation, astrocytes become reactive. They undergo morphological and molecular changes named "astrogliosis" driving the conversion from acute inflammatory injury to a chronic neurodegenerative state. Astrogliosis mechanisms are minimally explored despite their significance in regulating the autoimmune response during multiple sclerosis. Therefore, in this review, we take stock of the state of knowledge regarding astrogliosis in neuro-inflammation and highlight the central role of NOTCH signaling in the process of astrocyte reactivity. Indeed, a very detailed nomenclature published in nature neurosciences in 2021, listing all the reactive astrocyte markers fully identified in the literature, doesn't cover the NOTCH signaling. Hence, we discuss evidence supporting NOTCH1 receptor as a central regulator of astrogliosis in the pathophysiology of neuro-inflammation, notably multiple sclerosis, in human and experimental models.
Collapse
Affiliation(s)
- Pierre Mora
- Université de Bordeaux, Institut national de la santé et de la recherche médicale (INSERM), Biology of Cardiovascular Diseases, Pessac, France
| | | |
Collapse
|
3
|
Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, Powers S, Zhang X, Likhite S, Meyer K. In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. BIOLOGY 2023; 12:867. [PMID: 37372153 DOI: 10.3390/biology12060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
Collapse
Affiliation(s)
| | - Shrestha Sinha-Ray
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Meysam Ganjibakhsh
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohini Parvate
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha Powers
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Intellectual disability and abnormal cortical neuron phenotypes in patients with Bloom syndrome. J Hum Genet 2023; 68:321-327. [PMID: 36646944 DOI: 10.1038/s10038-023-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by genomic instability that leads to various complications, including cancer. Given the low prevalence of BS in Japan, we conducted a nationwide survey. We recruited eight patients with BS, three of whom exhibited intellectual disability. The 631delCAA mutation in the BLM gene was detected in 9 out of 16 alleles. To investigate neuronal development in patients with BS, we generated induced pluripotent stem cells derived from one of these patients (BS-iPSCs). We examined the phenotypes of the induced cortical neurons derived from the generated BS-iPSCs using a previously reported protocol; the generated BS-iPSCs showed an approximately 10-times higher frequency of sister-chromatid exchange (SCE) than the control iPSCs. Immunocytochemistry revealed shorter axons and higher proliferative potential in BS-iPSC-derived cortical neurons compared with control iPSCs. To our knowledge, our study is the first to clarify the abnormality of the cortical neuron phenotypes derived from patients with BS. Our findings may help identify the pathogenesis of neuronal differentiation in BS and aid in the development of novel therapeutic agents.
Collapse
|
5
|
Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022; 11:cells11111853. [PMID: 35681550 PMCID: PMC9180434 DOI: 10.3390/cells11111853] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has advanced our understanding of the molecular mechanisms of human disease, drug discovery, and regenerative medicine. As such, the use of iPSCs in drug development and validation has shown a sharp increase in the past 15 years. Furthermore, many labs have been successful in reproducing many disease phenotypes, often difficult or impossible to capture, in commonly used cell lines or animal models. However, there still remain limitations such as the variability between iPSC lines as well as their maturity. Here, we aim to discuss the strategies in generating iPSC-derived cardiomyocytes and neurons for use in disease modeling, drug development and their use in cell therapy.
Collapse
|
6
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
7
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Inagaki S, Kawase K, Funato M, Seki J, Kawase C, Ohuchi K, Kameyama T, Ando S, Sato A, Morozumi W, Nakamura S, Shimazawa M, Iejima D, Iwata T, Yamamoto T, Kaneko H, Hara H. Effect of Timolol on Optineurin Aggregation in Transformed Induced Pluripotent Stem Cells Derived From Patient With Familial Glaucoma. ACTA ACUST UNITED AC 2020; 59:2293-2304. [DOI: 10.1167/iovs.17-22975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuhide Kawase
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Tsubasa Kameyama
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Arisu Sato
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Wataru Morozumi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Iejima
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
9
|
Ando S, Tanaka M, Chinen N, Nakamura S, Shimazawa M, Hara H. SMN Protein Contributes to Skeletal Muscle Cell Maturation Via Caspase-3 and Akt Activation. In Vivo 2020; 34:3247-3254. [PMID: 33144430 DOI: 10.21873/invivo.12161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM In spinal muscular atrophy (SMA), systemic deficiency of survival motor neurons (SMN) caused by loss or mutation of SMN1 leads to SMA symptoms. SMA was, for a long time, considered as a selective motor-neuron disease. However, accumulated evidence suggests that skeletal muscle cells are affected by low levels of SMN protein. The purpose of this study was to elucidate the function of SMN protein in skeletal cell differentiation and maturation. MATERIALS AND METHODS In SMNΔ7 mice, which exhibit a systemic reduction of SMN protein, muscle atrophy was evaluated. To direct the effect of SMN against muscle cells, SMN functions were examined by knockdown of SMN in mouse myoblasts cell line C2C12 using siRNA. RESULTS SMNΔ7 mice showed muscle atrophy accompanied by decreased both expression of a myogenesis marker and a proliferating marker. In SMN-knockdown myoblasts, early expression of myosin heavy chain and reduced multinuclear myotube formation were found. Decreased caspase-3 activity and reduced phosphorylation of Akt were observed at an early stage of differentiation in SMN-knockdown myoblasts. CONCLUSION A critical role of SMN protein in muscle cell differentiation via caspase-3 and Akt activation was shown.
Collapse
Affiliation(s)
- Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Miruto Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Chinen
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
Adami R, Bottai D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev Rep 2020; 15:795-813. [PMID: 31863335 DOI: 10.1007/s12015-019-09910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease characterized by specific and predominantly lower motor neuron (MN) loss. SMA is the main reason for infant death, while about one in 40 children born is a healthy carrier. SMA is caused by decreased levels of production of a ubiquitously expressed gene: the survival motor neuron (SMN). All SMA patients present mutations of the telomeric SMN1 gene, but many copies of a centromeric, partially functional paralog gene, SMN2, can somewhat compensate for the SMN1 deficiency, scaling inversely with phenotypic harshness. Because the study of neural tissue in and from patients presents too many challenges and is very often not feasible; the use of animal models, such as the mouse, had a pivotal impact in our understanding of SMA pathology but could not portray totally satisfactorily the elaborate regulatory mechanisms that are present in higher animals, particularly in humans. And while recent therapeutic achievements have been substantial, especially for very young infants, some issues should be considered for the treatment of older patients. An alternative way to study SMA, and other neurological pathologies, is the use of induced pluripotent stem cells (iPSCs) derived from patients. In this work, we will present a wide analysis of the uses of iPSCs in SMA pathology, starting from basic science to their possible roles as therapeutic tools.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
11
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
12
|
Pernia C, Tobe BTD, O'Donnell R, Snyder EY. The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells Dev 2020; 29:1131-1141. [PMID: 32024446 DOI: 10.1089/scd.2019.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human neurological disorders are among the most challenging areas of translational research. The difficulty of acquiring human neural samples or specific representative animal models has necessitated a multifaceted approach to understanding disease pathology and drug discovery. The dedifferentiation of somatic cells to human induced pluripotent stem cells (hiPSCs) for the generation of neural derivatives has broadened the capability of biomedical research to study human cell types in neurological disorders. The initial zeal for the potential of hiPSCs for immediate biomedical breakthroughs has evolved to more reasonable expectations. Over the past decade, hiPSC technology has demonstrated the capacity to successfully establish "disease in a dish" models of complex neurological disorders and to identify possible novel therapeutics. However, as hiPSCs are used more broadly, an increased understanding of the limitations of hiPSC studies is becoming more evident. In this study, we review the challenges of studying neurological disorders, the current limitations of stem cell-based disease modeling, and the degrees to which hiPSC studies to date have demonstrated the capacity to fill essential gaps in neurological research.
Collapse
Affiliation(s)
- Cameron Pernia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian T D Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, California, USA
| | - Ryan O'Donnell
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
13
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
14
|
Abstract
Survival motor neuron (SMN) deficiency indicates that various cellular processes are impaired in spinal muscular atrophy (SMA). Previous reports have shown that SMN deficiency causes motor neuron degeneration, whereas the numbers of astrocytes and microglia are significantly increased or activated in SMA model systems. Only a few groups have studied the role of oligodendrocyte (OL) lineages such as OL precursor cell and nerve/glial antigen 2 (NG2)-glia in SMA pathology. Our aim in this study was to investigate whether OL lineages are impaired in SMA model systems. We investigated the expression of myelin basic protein (MBP) and NG2, which are OL lineage markers, using SMNΔ7 mice (mSmn, SMN2, SMNΔ7) and cell cultures derived from induced pluripotent stem cells generated from SMA patients. We showed for the first time that the OL lineages, including NG2-positive OL precursor cells and MBP-positive myelinating OLs were impaired in SMNΔ7 mice and induced pluripotent stem cells derived from SMA patients. Notch was involved in the decline of NG2 expression in the spinal cord of SMNΔ7 mice. In addition, pharmacological Notch inhibition promoted MBP-positive OL differentiation in SMNΔ7 mice. These findings indicate that OL differentiation was impaired in SMA, which might be involved in the Notch dysregulation.
Collapse
|
15
|
Ando S, Funato M, Ohuchi K, Inagaki S, Sato A, Seki J, Kawase C, Saito T, Nishio H, Nakamura S, Shimazawa M, Kaneko H, Hara H. The Protective Effects of Levetiracetam on a Human iPSCs-Derived Spinal Muscular Atrophy Model. Neurochem Res 2019; 44:1773-1779. [PMID: 31102025 DOI: 10.1007/s11064-019-02814-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022]
Abstract
Spinal muscular atrophy (SMA) is an inherited disease characterized by progressive motor neuron death and subsequent muscle weakness and is caused by deletion or mutation of survival motor neuron (SMN) 1 gene. Protecting spinal motor neuron is an effective clinical strategy for SMA. The purpose of this study was to investigate the potential effect of an anti-epileptic drug levetiracetam on SMA. In the present study, we used differentiated spinal motor neurons (MNs) from SMA patient-derived induced pluripotent stem cells (SMA-iPSCs) to investigate the effect of levetiracetam. Levetiracetam promoted neurite elongation in SMA-iPSCs-MNs. TUNEL-positive spinal motor neurons were significantly reduced by levetiracetam in SMA-iPSCs-MNs. In addition, the expression level of cleaved-caspase 3 was decreased by levetiracetam in SMA-iPSCs-MNs. Furthermore, levetiracetam improved impaired mitochondrial function in SMA-iPSCs-MNs. On the other hand, levetiracetam did not affect the expression level of SMN protein in SMA-iPSCs-MNs. These findings indicate that levetiracetam has a neuroprotective effect for SMA.
Collapse
Affiliation(s)
- Shiori Ando
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Satoshi Inagaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Arisu Sato
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Junko Seki
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Chizuru Kawase
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Toshio Saito
- Division of Child Neurology, Department of Neurology, National Hospital Organization, Toneyama National Hospital, Toyonaka, Osaka, Japan
| | - Hisahide Nishio
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Hyogo, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
16
|
Wang Y, Xu C, Ma L, Mou Y, Zhang B, Zhou S, Tian Y, Trinh J, Zhang X, Li XJ. Drug screening with human SMN2 reporter identifies SMN protein stabilizers to correct SMA pathology. Life Sci Alliance 2019; 2:2/2/e201800268. [PMID: 30910806 PMCID: PMC6435041 DOI: 10.26508/lsa.201800268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is caused by reduced levels of functional survival motor neuron (SMN) protein. To identify therapeutic agents for SMA, we established a versatile SMN2-GFP reporter line by targeting the human SMN2 gene. We then screened a compound library and identified Z-FA-FMK as a potent candidate. Z-FA-FMK, a cysteine protease inhibitor, increased functional SMN through inhibiting the protease-mediated degradation of both full-length and exon 7-deleted forms of SMN. Further studies reveal that CAPN1, CAPN7, CTSB, and CTSL mediate the degradation of SMN proteins, providing novel targets for SMA. Notably, Z-FA-FMK mitigated mitochondriopathy and neuropathy in SMA patient-derived motor neurons and showed protective effects in SMA animal model after intracerebroventricular injection. E64d, another cysteine protease inhibitor which can pass through the blood-brain barrier, showed even more potent therapeutic effects after subcutaneous delivery to SMA mice. Taken together, we have successfully established a human SMN2 reporter for future drug discovery and identified the potential therapeutic value of cysteine protease inhibitors in treating SMA via stabilizing SMN proteins.
Collapse
Affiliation(s)
- Yiran Wang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chongchong Xu
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Ma
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University, School of Medicine, Shanghai, China
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Bowen Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Zhou
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Tian
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jessica Trinh
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Xiaoqing Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China .,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University, School of Medicine, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Notch Signaling Mediates Astrocyte Abnormality in Spinal Muscular Atrophy Model Systems. Sci Rep 2019; 9:3701. [PMID: 30842449 PMCID: PMC6403369 DOI: 10.1038/s41598-019-39788-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons and muscle atrophy. The disease is mainly caused by low level of the survival motor neuron (SMN) protein, which is coded by two genes, namely SMN1 and SMN2, but leads to selective spinal motor neuron degeneration when SMN1 gene is deleted or mutated. Previous reports have shown that SMN-protein-deficient astrocytes are abnormally abundant in the spinal cords of SMA model mice. However, the mechanism of the SMN- deficient astrocyte abnormality remains unclear. The purpose of this study is to identify the cellular signaling pathways associated with the SMN-deficient astrocyte abnormality and propose a candidate therapy tool that modulates signaling. In the present study, we found that the astrocyte density was increased around the central canal of the spinal cord in a mouse SMA model and we identified the dysregulation of Notch signaling which is a known mechanism that regulates astrocyte differentiation and proliferation, in the spinal cord in both early and late stages of SMA pathogenesis. Moreover, pharmacological inhibition of Notch signaling improved the motor functional deficits in SMA model mice. These findings indicate that dysregulated Notch signaling may be an underlying cause of SMA pathology.
Collapse
|
18
|
Son YS, Choi K, Lee H, Kwon O, Jung KB, Cho S, Baek J, Son B, Kang SM, Kang M, Yoon J, Shen H, Lee S, Oh JH, Lee HA, Lee MO, Cho HS, Jung CR, Kim J, Cho S, Son MY. A SMN2 Splicing Modifier Rescues the Disease Phenotypes in an In Vitro Human Spinal Muscular Atrophy Model. Stem Cells Dev 2019; 28:438-453. [PMID: 30667343 DOI: 10.1089/scd.2018.0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Only ∼10% of the products of SMN2, a paralogue of SMN1, are functional full-length SMN (SMN-FL) proteins, whereas SMN2 primarily produces alternatively spliced transcripts lacking exon 7. Reduced SMN protein levels in SMA patients lead to progressive degeneration of spinal motor neurons (MNs). In this study, we report an advanced platform based on an SMN2 splicing-targeting approach for SMA drug screening and validation using an SMN2 splicing reporter cell line and an in vitro human SMA model through induced pluripotent stem cell (iPSC) technology. Through drug screening using a robust cell-based luciferase assay to quantitatively measure SMN2 splicing, the small-molecule candidate compound rigosertib was identified as an SMN2 splicing modulator that led to enhanced SMN protein expression. The therapeutic potential of the candidate compound was validated in MN progenitors differentiated from SMA patient-derived iPSCs (SMA iPSC-pMNs) as an in vitro human SMA model, which recapitulated the biochemical and molecular phenotypes of SMA, including lower levels of SMN-FL transcripts and protein, enhanced cell death, and reduced neurite length. The candidate compound exerted strong splicing correction activity for SMN2 and potently alleviated the disease-related phenotypes of SMA iPSC-pMNs by modulating various cellular and molecular abnormalities. Our combined screening platform representing a pMN model of human SMA provides an efficient and reliable drug screening system and is a promising resource for drug evaluation and the exploration of drug modes of action.
Collapse
Affiliation(s)
- Ye Seul Son
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwangman Choi
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Hana Lee
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ohman Kwon
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang Bo Jung
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sunwha Cho
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jiyeon Baek
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Bora Son
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Min Kang
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Mingu Kang
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea.,4 Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Republic of Korea
| | - Jihee Yoon
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Haihong Shen
- 5 School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sangku Lee
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea
| | - Jung-Hwa Oh
- 6 Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Hyang-Ae Lee
- 6 Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Mi-Ok Lee
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Cho-Rok Jung
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Janghwan Kim
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sungchan Cho
- 3 Natural Medicine Research Center, KRIBB, Cheongju, Chungbuk, Republic of Korea.,4 Department of Biomolecular Science, KRIBB School of Bioscience, UST, Daejeon, Republic of Korea
| | - Mi-Young Son
- 1 Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
19
|
Takeuchi H, Inagaki S, Morozumi W, Nakano Y, Inoue Y, Kuse Y, Mizoguchi T, Nakamura S, Funato M, Kaneko H, Hara H, Shimazawa M. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush. Sci Rep 2018; 8:16443. [PMID: 30401804 PMCID: PMC6219571 DOI: 10.1038/s41598-018-34585-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
VGF nerve growth factor inducible (VGF) is a polypeptide that is induced by neurotrophic factors and is involved in neurite growth and neuroprotection. The mRNA of the Vgf gene has been detected in the adult rat retina, however the roles played by VGF in the retina are still undetermined. Thus, the purpose of this study was to determine the effects of VGF on the retinal ganglion cells (RGCs) of mice in the optic nerve crush (ONC) model, rat-derived primary cultured RGCs and human induced pluripotent stem cells (iPSCs)-derived RGCs. The mRNA and protein of Vgf were upregulated after the ONC. Immunostaining showed that the VGF was located in glial cells including Müller glia and astrocytes but not in the retinal neurons and their axons. AQEE-30, a VGF peptide, suppressed the loss of RGCs induced by the ONC, and it increased survival rat-derived RGCs and promoted the outgrowth of neurites of rat and human iPSCs derived RGCs in vitro. These findings indicate that VGF plays important roles in neuronal degeneration and has protective effects against the ONC on RGCs. Thus, VGF should be considered as a treatment of RGCs degeneration.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Inagaki
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.,Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Wataru Morozumi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yukimichi Nakano
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshiki Kuse
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiro Mizoguchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Michinori Funato
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideo Kaneko
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
20
|
Matsumaru N, Hattori R, Ichinomiya T, Tsukamoto K, Kato Z. New quantitative method for evaluation of motor functions applicable to spinal muscular atrophy. Brain Dev 2018; 40:172-180. [PMID: 29395660 DOI: 10.1016/j.braindev.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of this study was to develop and introduce new method to quantify motor functions of the upper extremity. METHODS The movement was recorded using a three-dimensional motion capture system, and the movement trajectory was analyzed using newly developed two indices, which measure precise repeatability and directional smoothness. Our target task was shoulder flexion repeated ten times. We applied our method to a healthy adult without and with a weight, simulating muscle impairment. We also applied our method to assess the efficacy of a drug therapy for amelioration of motor functions in a non-ambulatory patient with spinal muscular atrophy. Movement trajectories before and after thyrotropin-releasing hormone therapy were analyzed. RESULTS In the healthy adult, we found the values of both indices increased significantly when holding a weight so that the weight-induced deterioration in motor function was successfully detected. From the efficacy assessment of drug therapy in the patient, the directional smoothness index successfully detected improvements in motor function, which were also clinically observed by the patient's doctors. CONCLUSION We have developed a new quantitative evaluation method of motor functions of the upper extremity. Clinical usability of this method is also greatly enhanced by reducing the required number of body-attached markers to only one. This simple but universal approach to quantify motor functions will provide additional insights into the clinical phenotypes of various neuromuscular diseases and developmental disorders.
Collapse
Affiliation(s)
- Naoki Matsumaru
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Global Regulatory Science, Gifu Pharmaceutical University, Japan.
| | - Ryo Hattori
- Division of Rehabilitation, Gifu University Hospital, Japan
| | - Takashi Ichinomiya
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Department of Biomedical Informatics, Graduate School of Medicine, Gifu University, Japan
| | | | - Zenichiro Kato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Japan
| |
Collapse
|
21
|
Ishida Y, Kawakami H, Kitajima H, Nishiyama A, Sasai Y, Inoue H, Muguruma K. Vulnerability of Purkinje Cells Generated from Spinocerebellar Ataxia Type 6 Patient-Derived iPSCs. Cell Rep 2017; 17:1482-1490. [PMID: 27806289 DOI: 10.1016/j.celrep.2016.10.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/15/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by loss of Purkinje cells in the cerebellum. SCA6 is caused by CAG trinucleotide repeat expansion in CACNA1A, which encodes Cav2.1, α1A subunit of P/Q-type calcium channel. However, the pathogenic mechanism and effective therapeutic treatments are still unknown. Here, we have succeeded in generating differentiated Purkinje cells that carry patient genes by combining disease-specific iPSCs and self-organizing culture technologies. Patient-derived Purkinje cells exhibit increased levels of full-length Cav2.1 protein but decreased levels of its C-terminal fragment and downregulation of the transcriptional targets TAF1 and BTG1. We further demonstrate that SCA6 Purkinje cells exhibit thyroid hormone depletion-dependent degeneration, which can be suppressed by two compounds, thyroid releasing hormone and Riluzole. Thus, we have constructed an in vitro disease model recapitulating both ontogenesis and pathogenesis. This model may be useful for pathogenic investigation and drug screening.
Collapse
Affiliation(s)
- Yoshihito Ishida
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Kitajima
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Ayaka Nishiyama
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Yoshiki Sasai
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Haruhisa Inoue
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Keiko Muguruma
- Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| |
Collapse
|
22
|
Edaravone is a candidate agent for spinal muscular atrophy: In vitro analysis using a human induced pluripotent stem cells-derived disease model. Eur J Pharmacol 2017; 814:161-168. [PMID: 28826912 DOI: 10.1016/j.ejphar.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
Spinal muscular atrophy (SMA) is an intractable disease characterized by a progressive loss of spinal motor neurons, which leads to skeletal muscle weakness and atrophy. Currently, there are no curative agents for SMA, although it is understood to be caused by reduced levels of survival motor neuron (SMN) protein. Additionally, why reduced SMN protein level results in selective apoptosis in spinal motor neurons is still not understood. Our purpose in this study was to evaluate the therapeutic potential of edaravone, a free radical scavenger, by using induced pluripotent stem cells from an SMA patient (SMA-iPSCs) and to address oxidative stress-induced apoptosis in spinal motor neurons. We first found that edaravone could improve impaired neural development of SMA-iPSCs-derived spinal motor neurons with limited effect on nuclear SMN protein expression. Furthermore, edaravone inhibited the generation of reactive oxygen species and mitochondrial reactive oxygen species upregulated in SMA-iPSCs-derived spinal motor neurons, and reversed oxidative-stress induced apoptosis. In this study, we suggest that oxidative stress might be partly the reason for selective apoptosis in spinal motor neurons in SMA pathology, and that oxidative stress-induced apoptosis might be the therapeutic target of SMA.
Collapse
|
23
|
Narmada BC, Goh YT, Li H, Sinha S, Yu H, Cheung C. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Transl Med 2017; 6:851-863. [PMID: 28297582 PMCID: PMC5442778 DOI: 10.5966/sctm.2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.
Collapse
Affiliation(s)
| | - Yeek Teck Goh
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
| | - Sanjay Sinha
- The Anne McLaren Laboratory of Regenerative Medicine, Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Mechanobiology Institute, Singapore
- Singapore‐MIT Alliance for Research and Technology, BioSyM, Singapore
| | - Christine Cheung
- Institute of Molecular and Cell Biology, Proteos, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Front Mol Neurosci 2016; 9:78. [PMID: 27656126 PMCID: PMC5012159 DOI: 10.3389/fnmol.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders.
Collapse
Affiliation(s)
- Serena Barral
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College London London, UK
| | - Manju A Kurian
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College LondonLondon, UK; Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
25
|
Yao Z, Yang C, Sun G. [Research progress of induced pluripotent stem cells in treatment of muscle atrophy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016; 45:147-51. [PMID: 27273988 PMCID: PMC10396904 DOI: 10.3785/j.issn.1008-9292.2016.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 06/06/2023]
Abstract
Muscle atrophy caused by nerve injury is a common and difficult clinical problem. The development of stem cell researches has opened up a new way for the treatment of nerve injury-induced muscle atrophy. The induced pluripotent stem cells(iPSCs)can differentiate into various types of cells and have more advantages than embryonic stem cells (ESCs). After being transplanted into the damaged area, iPSCs are guided by neurogenic signals to the lesion sites, to repair the damaged nerve, promote generation of axon myelination, rebuild neural circuits and restore physiological function. Meanwhile, iPSCs can also differentiate into muscle cells and promote muscle tissue regeneration. Therefore, it would be possible to attenuate muscle atrophy caused by nerve injury with iPSCs treatment.
Collapse
Affiliation(s)
- Zhongkai Yao
- Department of Trauma Surgery, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Chensong Yang
- Department of Trauma Surgery, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Guixin Sun
- Department of Trauma Surgery, East Hospital Affiliated to Tongji University, Shanghai 200120, China.
| |
Collapse
|