1
|
Liao CC, Lee CI, Liao KR, Li JM. Association between Serum Glycated Hemoglobin Levels and Female Infertility: A Cross-Sectional Survey and Genetic Approach. Int J Mol Sci 2024; 25:9668. [PMID: 39273615 PMCID: PMC11394857 DOI: 10.3390/ijms25179668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Female infertility affects a significant portion of the population, and recent studies suggest a potential link between glycemic control and reproductive health. This study investigates the association between serum glycated hemoglobin (HbA1c) levels and female infertility, utilizing data from the NHANES 2017-2020 and Mendelian randomization (MR) analysis. A cross-sectional study was conducted with 1578 women aged 20-45 who attempted pregnancy for at least one year. Serum HbA1c levels were analyzed in relation to infertility status, with multivariable logistic regression models adjusting for covariates such as age, body mass index, race/ethnicity, education, marital status, hypertension, and hyperlipidemia. Higher HbA1c levels were significantly associated with increased infertility risk. Each 1% increase in HbA1c was linked to higher odds of infertility (adjusted OR: 1.40, 95% CI: 1.15-1.69, p = 0.003). HbA1c levels ≥ 6.5% showed the strongest association. MR analysis employed single-nucleotide polymorphisms as instrumental variables to assess the causal relationship between HbA1c and infertility, confirming a causal relationship between higher genetically predicted HbA1c levels and infertility (OR: 1.82, 95% CI: 1.33-2.49, p = 0.00018). Sensitivity analyses supported the robustness of these findings. Elevated HbA1c levels are associated with an increased risk of female infertility, suggesting the importance of glycemic control in reproductive health management.
Collapse
Affiliation(s)
- Chung-Chih Liao
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
- Chuyuan Chinese Medicine Clinic, Taichung 40455, Taiwan
| | - Chun-I Lee
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Infertility, Lee Women’s Hospital, Taichung 40652, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ke-Ru Liao
- Department of Neurology, Yuanlin Christian Hospital, Changhua 51052, Taiwan;
| | - Jung-Miao Li
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
2
|
Kunnath AN, Parker SK, Crasta DN, Kunhiraman JP, Madhvacharya VV, Kumari S, Nayak G, Vani Lakshmi R, Modi PK, Keshava Prasad TS, Kumar A, Khandelwal A, Ghani NK, Kabekkodu SP, Adiga SK, Kalthur G. Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study. Toxicol Appl Pharmacol 2024; 490:117039. [PMID: 39019093 DOI: 10.1016/j.taap.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
Collapse
Affiliation(s)
- Amrutha Nedumbrakkad Kunnath
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shravani Kanakadas Parker
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Prashanth Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, University Road, Mangalore 575018, India
| | | | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allasandra, Yelahanka, Bangalore 560065, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nadeem Khan Ghani
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
3
|
Xu G, Huang M, Hu J, Liu S, Yang M. Bisphenol A and its structural analogues exhibit differential potential to induce mitochondrial dysfunction and apoptosis in human granulosa cells. Food Chem Toxicol 2024; 188:114713. [PMID: 38702036 DOI: 10.1016/j.fct.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.
Collapse
Affiliation(s)
- Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Hu
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Gynaecology), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Nasta TZ, Tabandeh MR, Amini K, Abbasi A, Dayer D, Jalili C. The influence of indole propionic acid on molecular markers of steroidogenesis, ER stress, and apoptosis in rat granulosa cells exposed to high glucose conditions. J Steroid Biochem Mol Biol 2024; 240:106509. [PMID: 38508473 DOI: 10.1016/j.jsbmb.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3βHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1β, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3βHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3βHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1β and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1β and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.
Collapse
Affiliation(s)
- Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Komail Amini
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Adamowski M, Sharma Y, Molcan T, Wołodko K, Kelsey G, Galvão AM. Leptin signalling regulates transcriptional differences in granulosa cells from genetically obese mice but not the activation of NLRP3 inflammasome. Sci Rep 2024; 14:8070. [PMID: 38580672 PMCID: PMC10997671 DOI: 10.1038/s41598-024-58181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Yashaswi Sharma
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
6
|
Bi J, Zhou W, Tang Z. Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomed Pharmacother 2024; 172:116202. [PMID: 38330707 DOI: 10.1016/j.biopha.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Hypoxia is a common feature of diabetic tissues, which highly correlates to the progression of diabetes. The formation of hypoxic context is induced by disrupted oxygen homeostasis that is predominantly driven by vascular remodeling in diabetes. While different types of vascular impairments have been reported, the specific features and underlying mechanisms are yet to be fully understood. Under hypoxic condition, cells upregulate hypoxia-inducible factor-1α (HIF-1α), an oxygen sensor that coordinates oxygen concentration and cell metabolism under hypoxic conditions. However, diabetic context exploits this machinery for pathogenic functions. Although HIF-1α protects cells from diabetic insult in multiple tissues, it also jeopardizes cell function in the retina. To gain a deeper understanding of hypoxia in diabetic complications, we focus on the formation of tissue hypoxia and the outcomes of HIF-1α dysregulation under diabetic context. Hopefully, this review can provide a better understanding on hypoxia biology in diabetes.
Collapse
Affiliation(s)
- Jingjing Bi
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China
| | - Wenhao Zhou
- Yucebio Technology Co., Ltd., Shenzhen, China
| | - Zonghao Tang
- Basic Medicine Research Innovation Center for cardiometabolic diseases, Ministry of Education,Southwest Medical University, Ministry of Education, Southwest Medical University, Luzhou, China; Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, TX, USA.
| |
Collapse
|
7
|
Paula VG, Sinzato YK, Gallego FQ, Cruz LL, Aquino AMD, Scarano WR, Corrente JE, Volpato GT, Damasceno DC. Intergenerational Hyperglycemia Impairs Mitochondrial Function and Follicular Development and Causes Oxidative Stress in Rat Ovaries Independent of the Consumption of a High-Fat Diet. Nutrients 2023; 15:4407. [PMID: 37892483 PMCID: PMC10609718 DOI: 10.3390/nu15204407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
We analyzed the influence of maternal hyperglycemia and the post-weaning consumption of a high-fat diet on the mitochondrial function and ovarian development of the adult pups of diabetic rats. Female rats received citrate buffer (Control-C) or Streptozotocin (for diabetes induction-D) on postnatal day 5. These adult rats were mated to obtain female pups (O) from control dams (OC) or from diabetic dams (OD), and they received a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood and were distributed into OC/SD, OC/HFD, OD/SD, and OD/HFD. In adulthood, the OGTT and AUC were performed. These rats were anesthetized and euthanized for sample collection. A high percentage of diabetic rats were found to be in the OD/HFD group (OD/HFD 40% vs. OC/SD 0% p < 0.05). Progesterone concentrations were lower in the experimental groups (OC/HFD 0.40 ± 0.04; OD/SD 0.30 ± 0.03; OD/HFD 0.24 ± 0.04 vs. OC/SD 0.45 ± 0.03 p < 0.0001). There was a lower expression of MFF (OD/SD 0.34 ± 0.33; OD/HFD 0.29 ± 0.2 vs. OC/SD 1.0 ± 0.41 p = 0.0015) and MFN2 in the OD/SD and OD/HFD groups (OD/SD 0.41 ± 0.21; OD/HFD 0.77 ± 0.18 vs. OC/SD 1.0 ± 0.45 p = 0.0037). The number of follicles was lower in the OD/SD and OD/HFD groups. A lower staining intensity for SOD and Catalase and higher staining intensity for MDA were found in ovarian cells in the OC/HFD, OD/SD, and OD/HFD groups. Fetal programming was responsible for mitochondrial dysfunction, ovarian reserve loss, and oxidative stress; the association of maternal diabetes with an HFD was responsible for the higher occurrence of diabetes in female adult pups.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Larissa Lopes Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças 78600-000, MG, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
8
|
Velazquez C, Herrero Y, Bianchi MS, Cohen DJ, Cuasnicu P, Prost K, Marinoni R, Pascuali N, Parborell F, Abramovich D. Beneficial effects of metformin on mice female fertility after a high-fat diet intake. Mol Cell Endocrinol 2023; 575:111995. [PMID: 37364632 DOI: 10.1016/j.mce.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.
Collapse
Affiliation(s)
- Candela Velazquez
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Yamila Herrero
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora Juana Cohen
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Cuasnicu
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Katherine Prost
- Hospital Interzonal General de Agudos Pedro Fiorito, sector de Endocrinología, Av. Manuel Belgrano 827, B1870 Avellaneda, Provincia de Buenos Aires, Argentina
| | - Rocío Marinoni
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina; Department of Pathology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, United States
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
Jabarpour M, Aleyasin A, Nashtaei MS, Lotfi S, Amidi F. Astaxanthin treatment ameliorates ER stress in polycystic ovary syndrome patients: a randomized clinical trial. Sci Rep 2023; 13:3376. [PMID: 36854788 PMCID: PMC9974957 DOI: 10.1038/s41598-023-28956-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Astaxanthin (ASX), as a natural carotenoid compound, exists in various types of seafood and microorganisms. It has several possible beneficial therapeutic effects for patients with polycystic ovary syndrome (PCOS). Patients with PCOS also suffer from endoplasmic reticulum (ER) stress. In the present work, it was hypothesized that ER stress could be improved by ASX in PCOS patients. Granulosa cells (GCs) were obtained from 58 PCOS patients. The patients were classified into ASX treatment (receiving 12 mg/day for 60 days) and placebo groups. The expression levels of ER stress pathway genes and proteins were explored using Western blotting and quantitative polymerase chain reaction. To assess oxidative stress markers, follicular fluid (FF) was gained from all patients. The Student's t test was used to perform statistical analysis. After the intervention, ASX led to a considerable reduction in the expression levels of 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and X-box-binding protein 1 compared to the placebo group, though the reduction in the messenger RNA (mRNA) expression level of activating transcription factor 6 was not statistically significant. However, ASX significantly increased the ATF4 expression level. GRP78 and CHOP protein levels represented a considerable decrease in the treatment group after the intervention. In addition, a statistically significant increase was found in the FF level of total antioxidant capacity in the treatment group. Based on clinical outcomes, no significant differences were found between the groups in terms of the oocyte number, fertilization rate, and fertility rate, but the ASX group had higher rates of high-quality oocytes, high-quality embryo, and oocyte maturity compared to the placebo group. Our findings demonstrated that ER stress in the GCs of PCOS patients could be modulated by ASX by changing the expression of genes and proteins included in the unfolding protein response.Trial registration This study was retrospectively registered on the Iranian Registry of Clinical Trials website ( www.irct.ir ; IRCT-ID: IRCT20201029049183N, 2020-11-27).
Collapse
Affiliation(s)
- Masoome Jabarpour
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Ashraf Aleyasin
- grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran ,grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Lotfi
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran. .,Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Beneficial effects of curcumin in the diabetic rat ovary: a stereological and biochemical study. Histochem Cell Biol 2022; 159:401-430. [PMID: 36534194 DOI: 10.1007/s00418-022-02171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effects of curcumin treatment on ovaries at different periods of the diabetes disease. Fifty-six female Wistar albino rats (250-300 g) aged 12 weeks were divided into seven groups. No treatment was applied to the control group. The sham group was given 5 mL/kg of corn oil, and the curcumin group 30 mg/kg curcumin. In the diabetes mellitus (DM) groups, diabetes was induced by a single intraperitoneal dose of 50 mg/kg streptozotocin (STZ). The DM-treated groups received 30 mg/kg curcumin after either 7 days (DC1 group) or 21 days (DC2 group), or simultaneously with STZ injection (DC3 group). Number of follicles in the ovaries was estimated using stereological method. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and superoxide dismutase (SOD) levels and catalase (CAT) activity were measured in serum specimens. We found that follicle number and volume of corpus luteum, blood vessel, and cortex, gonadosomatic index, and FSH and SOD levels all decreased significantly in diabetic ovaries, while relative weight loss, connective tissue volume, and CAT activity increased (p < 0.01). Curcumin treatment had a protective effect on the number of primordial follicles in the DC2 group and on antral follicle numbers in the DC3 group. Curcumin also exhibited positive effects on CAT activity and SOD levels, blood glucose levels, and corpus luteum, connective tissue, and blood vessel volumes in the DC2 and DC3 groups. Curcumin also ameliorated FSH levels in the DC1 and DC3 groups (p < 0.01). These findings suggest that curcumin exhibits protective effects on ovarian structures and folliculogenesis, especially when used concurrently with the development of diabetes or in later stages of the disease.
Collapse
|
11
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
12
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
13
|
Predheepan D, Daddangadi A, Uppangala S, Laxminarayana SLK, Raval K, Kalthur G, Kovačič B, Adiga SK. Experimentally Induced Hyperglycemia in Prepubertal Phase Impairs Oocyte Quality and Functionality in Adult Mice. Endocrinology 2022; 163:6653492. [PMID: 35917567 DOI: 10.1210/endocr/bqac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/19/2022]
Abstract
Reproductive abnormalities in women with a history of childhood diabetes are believed to be partially attributed to hyperglycemia. Prolonged hyperglycemia can negatively affect ovarian function and fertility during reproductive life. To address this in an experimental setting, the present study used streptozotocin-induced hyperglycemic prepubertal mouse model. The impact of prolonged hyperglycemic exposure during prepubertal life on ovarian function, oocyte quality, and functional competence was assessed in adult mice. The ovarian reserve was not significantly altered; however, the in vitro maturation potential (P < 0.001), mitochondrial integrity (P < 0.01), and meiotic spindle assembly (P < 0.05-0.001) in oocytes were significantly affected in hyperglycemic animals in comparison to control groups. The results from the study suggest that prepubertal hyperglycemia can have adverse effects on the oocyte functional competence and spindle integrity during the reproductive phase of life. Because these changes can have a significant impact on the genetic integrity and developmental potential of the embryos and fetus, the observation warrants further research both in experimental and clinical settings.
Collapse
Affiliation(s)
- Dhakshanya Predheepan
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Akshatha Daddangadi
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Keyur Raval
- D epartment of Chemical Engineering, National Institute of Technology Karnataka Surathkal 575025, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Borut Kovačič
- Laboratory of Reproductive Biology, Department of Reproductive Medicine and Endocrinology, University Medical Centre, Maribor 2000, Slovenia
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
14
|
Li H, Hou Y, Chen J, Wu H, Huang L, Hu J, Zhang Z, Lu Y, Liu X. Dietary naringin supplementation on laying performance and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2022; 101:102023. [PMID: 35901650 PMCID: PMC9334325 DOI: 10.1016/j.psj.2022.102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, the effects of 3 graded dietary levels (0.1%, 0.2%, and 0.4%) of naringin were studied in Three-Yellow breeder hens during the late laying period (55-62 wk). A total of 480 Three-Yellow breeder hens (54-wk-old) were randomly divided into 4 groups (6 replicates of 20 hens): basal diet group (C), and basal diets supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplementation with 0.1%, 0.2%, and 0.4% of naringin for 8 wk increased the laying rate and egg mass, enhanced egg yolk color, and decreased the feed egg ratio (P < 0.05). Meanwhile, compared with hens in C group, there were more preovulatory follicles and higher ovarian index as well as an enhanced ovarian somatic cell proliferation in hens of N2 and N3 groups (P < 0.05). With 0.2% and 0.4% naringin, glutathione concentration, the activity of catalase and total superoxide dismutase, and the total antioxidant capacity of ovarian tissues and serum increased (P < 0.05), while the contents of malondialdehyde and hydrogen peroxide decreased (P < 0.05). Moreover, compared to C group, the transcription levels of antioxidant genes in ovarian tissues increased in hens from N2 and N3 groups (P < 0.05). In conclusion, supplementation with 0.2% and 0.4% naringin both could improve the laying rate, ovarian and serum antioxidant capacity of Three-Yellow breeder hens during the late laying period.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiming Chen
- Guangxi Shenhuang Breeding Group Co. Ltd., Yulin, 537000, China
| | - Hanxiao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zongyao Zhang
- Guangxi Shenhuang Breeding Group Co. Ltd., Yulin, 537000, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
A Systematic Review of the Effects of High-Fat Diet Exposure on Oocyte and Follicular Quality: A Molecular Point of View. Int J Mol Sci 2022; 23:ijms23168890. [PMID: 36012154 PMCID: PMC9408717 DOI: 10.3390/ijms23168890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Worldwide, infertility affects between 10 and 15% of reproductive-aged couples. Female infertility represents an increasing health issue, principally in developing countries, as the current inclinations of delaying pregnancy beyond 35 years of age significantly decrease fertility rates. Female infertility, commonly imputable to ovulation disorders, can be influenced by several factors, including congenital malformations, hormonal dysfunction, and individual lifestyle choices, such as smoking cigarettes, stress, drug use and physical activity. Moreover, diet-related elements play an important role in the regulation of ovulation. Modern types of diet that encourage a high fat intake exert a particularly negative effect on ovulation, affecting the safety of gametes and the implantation of a healthy embryo. Identifying and understanding the cellular and molecular mechanisms responsible for diet-associated infertility might help clarify the confounding multifaceted elements of infertility and uncover novel, potentially curative treatments. In this view, this systematic revision of literature will summarize the current body of knowledge of the potential effect of high-fat diet (HFD) exposure on oocyte and follicular quality and consequent female reproductive function, with particular reference to molecular mechanisms and pathways. Inflammation, oxidative stress, gene expression and epigenetics represent the main mechanisms associated with mammal folliculogenesis and oogenesis.
Collapse
|
16
|
Huang YM, Chien WC, Cheng CG, Chang YH, Chung CH, Cheng CA. Females with Diabetes Mellitus Increased the Incidence of Premenstrual Syndrome. Life (Basel) 2022; 12:life12060777. [PMID: 35743808 PMCID: PMC9224876 DOI: 10.3390/life12060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Premenstrual syndrome (PMS) is a multifactorial disorder caused by hormone and autonomic imbalance. In our study, hyperglycemia-induced insulin secretion increased progesterone secretion and progressive autonomic imbalance. The young patients with diabetes mellitus (DM) revealed hypo-parasympathetic function and hypersympathetic function compared with nondiabetic controls. Young female patients with DM with higher blood sugar and autonomic malfunction may be associated with PMS. However, there is a lack of evidence about DM in females related to PMS. We evaluated female patients with DM who subsequently followed PMS in a retrospective cohort study. Methods: We retrieved data from the National Health Insurance Research Database in Taiwan. Female patients with DM between 20 and 50 years old were assessed by the International Classification of Disease, 9 Revision, Clinical Modification (ICD-9-CM) disease code of 250. Patients who were DM-free females were fourfold matched to the control group by age and disease index date. The ICD-9-CM disease code of 625.4 identified the incidence of PMS followed by the index date as events. The possible risk factors associated with PMS were detected with a Cox proportional regression. Results: DM was a significant risk factor for PMS incidence with an adjusted hazard ratio of 1.683 (95% confidence interval: 1.104−2.124, p < 0.001) in females after adjusting for age, other comorbidities, season, urbanization status of patients and the hospital status of visiting. Conclusions: This study noted an association between DM and PMS in female patients. Healthcare providers and female patients with DM must be aware of possible complications of PMS, aggressive glycemic control, decreased hyperglycemia and autonomic dysfunction to prevent this bothersome disorder.
Collapse
Affiliation(s)
- Yao-Ming Huang
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan 32549, Taiwan; (Y.-M.H.); (C.-G.C.)
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (W.-C.C.); (C.-H.C.)
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chun-Gu Cheng
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan 32549, Taiwan; (Y.-M.H.); (C.-G.C.)
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Han Chang
- Department of Psychology, National Taiwan University, Taipei 10621, Taiwan;
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (W.-C.C.); (C.-H.C.)
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chun-An Cheng
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-87927173
| |
Collapse
|
17
|
Armandeh M, Bameri B, Haghi-Aminjan H, Foroumadi R, Ataei M, Hassani S, Samadi M, Shayesteh MRH, Abdollahi M. A systematic review on the role of melatonin and its mechanisms on diabetes-related reproductive impairment in non-clinical studies. Front Endocrinol (Lausanne) 2022; 13:1022989. [PMID: 36303864 PMCID: PMC9592976 DOI: 10.3389/fendo.2022.1022989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diabetes-induced reproductive complications can lead to subfertility and infertility, raising the need to protect reproductive organs. There are limited medications used to improve reproductive health in diabetic patients. Melatonin, mainly produced by the pineal gland, may improve diabetes-associated reproductive complications through various mechanisms and may be a preferred candidate to protect the reproductive system. The present review aims to elucidate the underlying mechanisms of melatonin's effect on the reproductive system adversely affected by diabetes mellitus (DM). METHODS A comprehensive systematic literature electronic search was done using the PRISMA guidelines. Web of Science, PubMed, Embase, and Scopus were searched for publications up to June 2022. Search terms were selected based on the study purpose and were explored in titles and abstracts. After screening, out of a total of 169 articles, 14 pertinent articles were included based on our inclusion and exclusion criteria. RESULTS The results of studies using rats and mice suggest that DM adversely affects reproductive tissues, including testes and epididymis, prostate, corpus cavernosum, and ovary leading to alterations in histological and biochemical parameters compared to the normal groups. Treatment with melatonin improves oxidative stress, blocks apoptosis induced by endoplasmic reticulum stress and caspase activation, reduces pro-inflammation cytokines, and enhances steroidogenesis. CONCLUSION Melatonin exerted a protective action on the impaired reproductive system in in-vivo and in-vitro models of DM. The topic has to be followed up in human pregnancy cases that will need more time to be collected and approved.
Collapse
Affiliation(s)
- Maryam Armandeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Ataei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology & Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hamed Haghi-Aminjan, ; Mohammad Abdollahi, ;
| |
Collapse
|
18
|
Olaniyi KS, Amusa OA, Ajadi IO, Alabi BY, Agunbiade TB, Ajadi MB. Repression of HDAC5 by acetate restores hypothalamic-pituitary-ovarian function in type 2 diabetes mellitus. Reprod Toxicol 2021; 106:69-81. [PMID: 34656705 DOI: 10.1016/j.reprotox.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes mellitus (T2DM) accounts for 90-95 % of worldwide diabetes cases and is primarily characterized by insulin resistance. Its progression as a chronic metabolic disease has been largely associated with female reproductive abnormalities, including ovarian dysfunction with consequent infertility. Epigenetic modifications have been suggested as a possible link to metabolic comorbidities. We therefore hypothesized that short chain fatty acids, acetate (ACA), a potential histone deacetylase inhibitor (HDAC) ameliorates hypothalamic-pituitary-ovarian (HPO) dysfunction in T2DM. Female Wistar rats weighing 160-190 g were allotted into three groups (n = 6/group): Control (vehicle; po), T2D and T2D + ACA (200 mg/kg; po). T2DM was induced by fructose administration (10 %; w/v) for 6 weeks and single dose of streptozotocin (35 mg/kg; ip). The present data showed that in addition to insulin resistance, increased fasting blood glucose and insulin, T2DM induced elevated plasma, hypothalamic and ovarian triglyceride, lipid peroxidation, TNF-α and glutathione depletion. Aside, T2DM also led to increased plasma lactate production and γ-Glutamyl transferase as well as decreased gonadotropins/17β-estradiol. Histologically, hypothalamus, pituitary and ovaries revealed disrupted neuronal cells/moderate hemorrhage, altered morphology/vascular congestions, and degenerated antral follicle/graafian follicle with mild fibrosis and infiltrated inflammatory cells respectively in T2D animals. Interestingly, these alterations were accompanied by elevated plasma/hypothalamic HDAC5 and attenuated when treated with acetate. The present results demonstrate that T2DM induces HPO dysfunction, which is accompanied by elevated circulating/hypothalamic HDAC5. The results in addition suggest that acetate restores HPO function in T2DM by suppression of HDAC5 and enhancement of insulin sensitivity.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria; School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa.
| | - Oluwatobi A Amusa
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaac O Ajadi
- School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| | - Bolanle Y Alabi
- Department of Hematology and Virology, University of Medical Sciences Teaching Hospital Complex, Akure, Nigeria
| | - Toluwani B Agunbiade
- Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 36010, Nigeria
| | - Mary B Ajadi
- Department of Chemical Pathology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Department of Medical Biochemistry, School of Laboratory Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| |
Collapse
|
19
|
Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y, Ren P, Liu L, Fan HY, Zhang Y, Zhang S. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod 2021; 35:1145-1158. [PMID: 32372097 PMCID: PMC7259369 DOI: 10.1093/humrep/deaa077] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does metformin inhibit excessive androgen-induced endoplasmic reticulum (ER) stress in mouse granulosa cells (GCs) in vivo and in vitro? SUMMARY ANSWER Metformin inhibits testosterone-induced ER stress and unfolded protein response (UPR) activation by suppressing p38 MAPK phosphorylation in ovarian GCs. WHAT IS KNOWN ALREADY Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism. Excessive testosterone induces ER stress and UPR activation in human cumulus cells, leading to cell apoptosis. Metformin has potential inhibitory effects on ER stress and UPR activation, as demonstrated in human pancreatic beta cells and obese mice. STUDY DESIGN, SIZE, DURATION Cumulus cells and follicular fluid were collected from 25 women with PCOS and 25 controls at our IVF centre. A dihydrotestosterone (DHT)-induced PCOS mouse model was constructed and treated with or without metformin. Primary mouse GCs and cumulus-oocyte complexes (COCs) were cultured with testosterone, metformin, a p38 MAPK inhibitor, or p38 MAPK small interfering RNA. PARTICIPANTS/MATERIALS, SETTING, METHODS The levels of UPR sensor proteins and UPR-related genes were measured in cumulus cells from PCOS and control patients by real-time quantitative PCR (qPCR) and western blot. The ovaries, oocytes, GCs and COCs were collected from PCOS mice treated with metformin and controls. The expressions of ER stress markers and p38 MAPK phosphorylation were assessed by qPCR, western blot and immunofluorescence. A subsequent in vitro analysis with primary cultured GCs and COCs was used to confirm the influence of metformin on ER stress activation by qPCR and western blot. Finally, the effects of ER stress activation on GCs and COCs in relation to LH responsiveness were examined by qPCR and COC expansion. MAIN RESULTS AND THE ROLE OF CHANCE The expression of the ER stress markers GRP78, CHOP and XBP1s in the cumulus cells was higher in PCOS patients than in control patients, as were the levels of the UPR sensor proteins p-IRE1α, p-EIF2α and GRP78. Compared to those of control mice, the ovaries, GCs and COCs of DHT-treated PCOS mice showed increased levels of ER stress marker genes and proteins. Hyperandrogenism in PCOS mouse ovaries also induced p38 MAPK phosphorylation in COCs and GCs. Metformin inhibited ER stress activation was associated with decreased p-p38 MAPK levels. In vitro experiments, testosterone-induced ER stress was mitigated by metformin or p38 MAPK inhibition in primary cultured GCs and COCs. COCs expanded rapidly in the presence of testosterone during LH administration, and ovulation-related genes, namely, Areg, Ereg, Ptgs2, Sult1e1, Ptx3 and Tnfaip6, were strongly expressed in the COCs and GCs. These effects were reversed by treatment with metformin, an ER stress inhibitor or by knockdown of p38 MAPK. LIMITATIONS, REASONS FOR CAUTION The number of PCOS patients in this study was small. WIDER IMPLICATIONS OF THE FINDINGS This study provides further evidence for metformin as a PCOS treatment. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Key Research and Developmental Program of China (2018YFC1004800), the Key Research and Development Program of Zhejiang Province (2017C03022), the Zhejiang Province Medical Science and Technology Plan Project (2017KY085, 2018KY457), the National Natural Science Foundation of China (31701260, 81401264, 81701514), and the Special Funds for Clinical Medical Research of the Chinese Medical Association (16020320648). The authors report no conflict of interest in this work and have nothing to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Heng-Yu Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China.,Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| |
Collapse
|
20
|
Majidi FZ, Rezaei N, Zare Z, Dashti A, Shafaroudi MM, Abediankenari S. The Protective Effects of L-Carnitine and Zinc Oxide Nanoparticles Against Diabetic Injury on Sex Steroid Hormones Levels, Oxidative Stress, and Ovarian Histopathological Changes in Rat. Reprod Sci 2021; 28:888-896. [PMID: 32989633 DOI: 10.1007/s43032-020-00317-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a common chronic metabolic disorder. This study aimed to investigate the effects of co-treatment with L-carnitine (LC) and zinc oxide nanoparticles (ZnONPs) on serum levels of sex hormones, oxidative stress, and ovarian histopathology in streptozotocin (STZ)-induced diabetic rats. Female Wistar rats (n = 56, 180-220 g) received a single intraperitoneal (IP) injection of STZ (65 mg/kg). They were randomly assigned into the following groups: diabetic group (Dia), Dia+Met group (100 mg metformin/kg/day), Dia+LC group (200 mg/kg/day), Dia+ZnONPs group (10 mg/kg/day), and Dia+LC+ZnONPs group (200 mg LC/kg/day and 10 mg ZnONPs/kg/day). Control group (Ctl) received the same volume of STZ solvent. After 21 days of treatment, blood serum was centrifuged for sex hormone assays. The right ovary was used for biochemical analysis, and the left ovary was fixed in 10% neutral buffered formalin for histological assessment. The levels of estradiol, progesterone, FSH, and LH significantly increased in the Dia+ZnONPs+LC group (P < 0.001) compared with the Dia group. Co-treatment with LC and ZnONPs reduced malondialdehyde and carbonyl protein and increased glutathione, catalase, and superoxide dismutase activities in ovarian tissue compared with the Dia group (P < 0.05). Moreover, the number of all ovarian follicles significantly increased in this group compared with the Dia group (P < 0.05). The results of this study indicated that co-treatment with LC and ZnONPs could preserve ovarian function by increasing sex hormones levels and antioxidant activity and decreasing lipid peroxidation in diabetic rats. Therefore, this compound supplementation may improve ovulation and fertility in people with diabetes mellitus.
Collapse
Affiliation(s)
- Fatemeh Zahra Majidi
- Immunogenetic Research Center (IRC), Mazandaran University of Medical Sciences, P.O. Box 48175-1665, Sari, Iran
| | - Nourollah Rezaei
- Immunogenetic Research Center (IRC), Mazandaran University of Medical Sciences, P.O. Box 48175-1665, Sari, Iran.
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Zohreh Zare
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, I.R., Iran
| | - Majid Malekzadeh Shafaroudi
- Immunogenetic Research Center (IRC), Mazandaran University of Medical Sciences, P.O. Box 48175-1665, Sari, Iran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Abediankenari
- Immunogenetic Research Center (IRC), Mazandaran University of Medical Sciences, P.O. Box 48175-1665, Sari, Iran
- Immunogenetic Research Center (IRC), Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
21
|
Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod 2021; 27:gaaa088. [PMID: 33543293 DOI: 10.1093/molehr/gaaa088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary, activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contributes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development of small molecules that target the UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Jerilee Mk Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| |
Collapse
|
22
|
Mantawy EM, Said RS, Kassem DH, Abdel-Aziz AK, Badr AM. Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against ϒ-radiation-induced premature ovarian failure in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111190. [PMID: 32871518 DOI: 10.1016/j.ecoenv.2020.111190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Radiotherapy represents a critical component in cancer treatment. However, premature ovarian failure (POF) is a major hurdle of deleterious off-target effects in young females, which, therefore, call for an effective radioprotective agent. The present study aimed to explore the molecular mechanism underlying the protective effects of N-acetyl-L-cysteine (NAC) against γ-radiation-provoked POF. Immature female Sprague-Dawley rats were orally-administered NAC (50 mg/kg) and were exposed to a single whole-body dose of 3.2 Gy ϒ-radiation. NAC administration remarkably reversed abnormal serum estradiol and anti-Müllerian hormone levels by 73% and 40%, respectively while ameliorating the histopathological and ultrastructural alterations-triggered by γ-radiation. Mechanistically, NAC alleviated radiation-induced oxidative damage through significantly increased glutathione peroxidase activity by 102% alongside with decreasing NADPH oxidase subunits (p22 and NOX4) gene expressions by 48% and 38%, respectively compared to the irradiated untreated group. Moreover, NAC administration achieved its therapeutic effect by inhibiting ovarian apoptosis-induced by radiation through downregulating p53 and Bax levels by 33% and 16%, respectively while increasing the Bcl-2 mRNA expression by 135%. Hence, the Bax/Bcl2 ratio and cytochrome c expression were subsequently reduced leading to decreased caspase 3 activity by 43%. Importantly, the anti-apoptotic property of NAC could be attributed to inactivation of MAPK signaling molecules; p38 and JNK, and enhancement of the ovarian vascular endothelial growth factor (VEGF) expression. Taken together, our results suggest that NAC can inhibit radiotherapy-induced POF while preserving ovarian function and structure through upregulating VEGF expression and suppressing NOX4/MAPK/p53 apoptotic signaling.
Collapse
Affiliation(s)
- Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amira Mohamed Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Bolouki A, Zal F, Bordbar H. Ameliorative effects of quercetin on folliculogenesis in diabetic mice: a stereological study. Gynecol Endocrinol 2020; 36:864-868. [PMID: 31889455 DOI: 10.1080/09513590.2019.1707796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A high risk of reproductive disorders can be seen in diabetic pregnancy. Reproductive disorders associated with diabetes may result from alterations in the function of the ovary. In this study, we investigated the ameliorative effects of quercetin as a phytoestrogen and antidiabetic agent on the folliculogenesis in diabetic mice. Streptozotocin-induced diabetic mice were treated with 30 mg/kg/day quercetin for four weeks. The volume of ovary, follicles, and corpus luteum were significantly decreased in the diabetic mice. The number of growing follicles (secondary, antral, and Graafian follicles) and corpus luteum was significantly decreased in the diabetic mice. Also, the volume of oocytes was significantly decreased in antral and Graafian follicles. Our results indicated that the administration of quercetin in diabetic mice increased the volume of the ovary and growing follicles, the number of growing follicles and corpus luteum. It also significantly decreased the number of atretic follicles. As a result, it may be concluded that the impaired follicular growth and development caused by hyperglycemia in diabetic mice can be alleviated by quercetin treatment.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Department of Anatomy, Medical School, Shiraz University of Medical Sciences, Shiraz Iran
| |
Collapse
|
24
|
Samie KA, Tabandeh MR, Afrough M. Betaine ameliorates impaired steroidogenesis and apoptosis in mice granulosa cells induced by high glucose concentration. Syst Biol Reprod Med 2020; 66:400-409. [PMID: 32981384 DOI: 10.1080/19396368.2020.1811423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Betaine is a bioactive peptide whose beneficial effects on diabetes complications have been considered, previously. The present study aimed to investigate the possible protective effects of betaine against hyperglycemia-induced steroidogenesis impairment and apoptosis in mice granulosa cells. Ovarian granulosa cells were isolated from C57/BL6 mice and cultured in steroidogenesis medium (SM) containing 30 ng/ml FSH and 0.5 µM testosterone. The cells were cultured in SM containing low (5 mM) or high (30 mM) glucose concentrations for 24 h in the presence or absence of betaine (5 mM). At the end of the experiment, estradiol and progesterone were measured by ELISA in the culture medium. Expression of apoptosis and steroidogenesis associated genes and caspase-3 activity were determined by qRT-PCR and colorimetric assays, respectively. Exposure of mice granulosa cells to high glucose concentration inhibited the steroidogenesis by decreasing estradiol and progesterone secretion and downregulation of steroidogenesis-related genes including 3βHSD, Cyp11a1, Cyp19a1, and StAR. Betaine treatment could ameliorate the steroidogenesis impairment at molecular and biochemical levels. High glucose concentration also enhanced apoptosis in mice granulosa cells that were characterized by elevation of caspase-3 activity, upregulation of bax gene and downregulation of bcl2 gene. Betaine treatment could attenuate the apoptotic-related changes induced by high glucose concentration in granulosa cells. According to the results of the present study, betaine could ameliorate the adverse effects of hyperglycemia on the physiological function of ovarian granulosa cells. The results highlight the potential role of betaine for the intervention of ovarian dysfunction in diabetic patients. Abbreviations: AABA: Betaine-α-aminobutyric acid; AGEs: Advanced glycation end products; bax: bcl2 Associated X; bcl2: B-cell lymphoma 2; AMPK: AMP-activated protein kinase; BHMT: Betaine homocysteine methyltransferase; C/EBP: CCAAT-enhancer-binding proteins; Cyp11a1: Cholesterol side-chain cleavage cytochrome P450; Cyp19a1: Cytochrome P450 aromatase; DM: Diabetes mellitus; E2: Estradiol; ERS: Endoplasmic reticulum stress; GCs: Granulosa cells; GLUT: Glucose transporter; FSH: Follicle-stimulating hormone; 3βHSD: 3β-hydroxysteroid dehydrogenase; IL-1β: interleukin-1ß; LH: Luteinizing hormone; MDCK: Madin-Darby Canine Kidney cell; MT: Methionine synthase, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NLRP3: NLR Family Pyrin Domain Containing 3; NF-κB: Nuclear factor κB; P4: Progesterone; ROS: Reactive oxygen species; SGLT: Sodium dependent glucose transporter; SLC7A6: Solute Carrier Family 7 Member 6; StAR: Steroidogenic acute regulatory protein; STZ: Streptozotocin; Tumor necrosis factor α: TNF-α; TXNIP: Thioredoxin interacting protein.
Collapse
Affiliation(s)
- Kosar Abbasi Samie
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz, Iran
| | - Mahsa Afrough
- Reproductive Biology Research Group, Infertility Research and Treatment Center of Khuzestan, ACECR , Ahvaz, Iran
| |
Collapse
|
25
|
Mehrabianfar P, Dehghani F, Karbalaei N, Mesbah F. The effects of metformin on stereological and ultrastructural features of the ovary in streptozotocin -induced diabetes adult rats: An experimental study. Int J Reprod Biomed 2020; 18:651-666. [PMID: 32923931 PMCID: PMC7457152 DOI: 10.18502/ijrm.v13i8.7506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 12/18/2019] [Accepted: 04/12/2020] [Indexed: 11/29/2022] Open
Abstract
Background Diabetes is a chronic disease that can affect almost all of the body organs, including male and female reproductive systems. Objective This study was designed to investigate the preventive effects of metformin on stereological and ultrastructure characteristics of the ovary in the streptozotocin-induced diabetes adult female rats. Materials and Methods Seventy adult (8-10 wk) female Sprague-Dawley rats (180-200 gr) were equally divided, as follows: (n = 10/each) control; STZ-induced diabetes (single dose of 65 mg/kg STZ, IP); metformin-treated (50 mg/100 gr of body weight, orally); diabetic-metformin-treated; sham 1, (single dose of sodium citrate); sham 2, (0.5 ml of daily oral distilled water); and sham 3, (sodium citrate + distilled water treated). The body mass index, ovarian weight, blood sugar level, cholesterol, and triglyceride were measured. The stereological and ultrastructural features of ovary were assessed. Results The blood sugar of induced-diabetic rats was increased (p < 0.01). The BMI (p < 0.01), number of granulosa cells (p = 0.04), primordial, primary and secondary follicles (p = 0.03), total volume of ovary (p < 0.01) and cortex, nucleus diameter ratio to the ooplasm were decreased. The number of atretic follicles in the diabetic and diabetic + metformin-treated rats were increased (p < 0.01). The ultrastructural characteristics of ovary were more damaged in diabetic rats. Conclusion Diabetes has destructive effects on ovarian follicles and causes follicular atresia. Also, the size of oocytes, numbers of granulosa cells and ooplasmic organelles, which are involved in the folliculogenesis are affected by diabetes and metformin has no preventive effects.
Collapse
Affiliation(s)
- Parisa Mehrabianfar
- Department of Anatomical Sciences School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Nargess Karbalaei
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Fakhroddin Mesbah
- Department of Anatomical Sciences School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Creţu D, Cernea S, Onea CR, Pop RM. Reproductive health in women with type 2 diabetes mellitus. Hormones (Athens) 2020; 19:291-300. [PMID: 32613536 DOI: 10.1007/s42000-020-00225-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/21/2020] [Indexed: 01/12/2023]
Abstract
As type 2 diabetes mellitus (T2DM) reaches epidemic proportions in the developed world and the age at diagnosis decreases, more women of reproductive age are being affected. In this article, we provide a synoptic view on potential mechanisms and relevant factors underlying menstrual cycle disorders and fertility issues in women with T2DM. The article discusses the function of the hypothalamic-pituitary-ovarian (HPO) axis, the central role of the hypothalamus in the homeostasis of this system, the central modulators of the axis, and the peripheral metabolic signals involved in neuroendocrine control of reproduction. The available literature on the relationship between T2DM and the female reproductive lifespan, menstrual cycle disorders, fertility issues, and gestational health in women with T2DM are also discussed. The data so far indicate that there is a "U-shaped" relationship between menarche, menopause, and T2DM, both early and late menarche/menopause being risk factors for T2DM. Hyperglycemia and its consequences may be responsible for the effects of T2DM on reproductive health in women, but the exact mechanisms are not as yet fully understood; thus, more studies are needed in order to identify factors causing disruption of the HPO axis.
Collapse
Affiliation(s)
- Doina Creţu
- Mureș County Clinical Hospital, 38 Gheorghe Marinescu Street, 540139, Târgu-Mureș, Romania
| | - Simona Cernea
- Department M4/Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu-Mureș, 38 Gheorghe Marinescu Street, 540139, Târgu-Mureș, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 50 Gheorghe Marinescu Street, 540136, Târgu-Mureş, Romania
| | - Corina Roxana Onea
- Emergency County Clinical Hospital, 50 Gheorghe Marinescu Street, 540136, Târgu-Mureş, Romania
| | - Raluca-Monica Pop
- Research Methodology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu-Mureș, 38 Gheorghe Marinescu Street, 540139, Târgu-Mureș, Romania.
- Endocrinology Department, Mureș County Clinical Hospital, 38 Gheorghe Marinescu Street, 540139, Târgu-Mureș, Romania.
| |
Collapse
|
27
|
Rosiglitazone ameliorates palmitic acid-induced endoplasmic reticulum stress and steroidogenic capacity in granulosa cells. Reprod Biol 2020; 20:293-299. [PMID: 32736984 DOI: 10.1016/j.repbio.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023]
Abstract
Granulosa cells play essential roles in follicular development, oocyte maturation and sex hormone secretion. The exposure of granulosa cells to palmitic acid (PA), the main component of dietary saturated fat, inhibits cell viability. However, the mechanism underlying PA-induced cytotoxicity in granulosa cells has not been deeply investigated. Rosiglitazone (RSG) is a member of the thiazolidinedione family and is reported to protect cells from cytotoxicity and endoplasmic reticulum (ER) stress in other cell types, but whether RSG protects granulosa cells remain unknown. In this study, KGN cell line and primary granulosa cells were used as models of granulosa cells to explore the effects of PA and RSG and the underlying mechanisms. The results showed that PA inhibits cell viability and estradiol secretion through inducing ER stress and cAMP/PKA/CREB pathway. CCAAT/enhancer-binding protein homologous protein (CHOP), an ER stress marker, was demonstrated to participate in PA-induced cytotoxicity. RSG treatment rescued granulosa cells from PA-induced cell death and ER stress. Moreover, RSG was identified to ameliorate ER stress induced by tunicamycin in granulosa cells. In addition, RSG treatment rescued granulosa cells from PA-induced decrease of estrogen secretion by cAMP/PKA/CREB pathway. In conclusion, RSG can protect granulosa cells against PA-induced cytotoxicity by inhibiting ER stress, and can recover steroidogenic capacity, indicating a potential use of RSG in the treatment of granulosa cell dysfunction.
Collapse
|
28
|
Ali EMT, Abdallah HI, El-Sayed SM. Histomorphological, VEGF and TGF-β immunoexpression changes in the diabetic rats' ovary and the potential amelioration following treatment with metformin and insulin. J Mol Histol 2020; 51:287-305. [PMID: 32399705 DOI: 10.1007/s10735-020-09880-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) affects the ovary by reducing the number and diameters of ovarian follicles and increasing atretic follicles. Follicular growth and diameters depend on VEGF production. Hyperglycemia causes ovarian stromal and follicular degeneration then fibrosis by activating TGF-β. Insulin and metformin promote development of ovarian follicles and reduce atretic follicles. Therefore, the present study investigates the ovarian VEGF and TGF-β immune-expression and its variations in diabetic, insulin and metformin-treated rats. Forty adult female albino rats were divided equally into four groups: control, diabetic (STZ-induced diabetes), diabetic metformin-treated group (100 mg/kg/day orally/eight weeks) and diabetic insulin-treated group (5 U insulin /day). Ovarian sections were stained with hematoxylin and eosin, Masson's trichrome, immunohistochemistry for VEGF and TGF-β. The diabetic group showed noticeable atrophic and degenerative changes in cortex and medulla as well as increased density and distribution of the collagenous fibers. The number and diameter of primary, secondary and tertiary follicles were decreased. However, the number of atretic follicles and corpus luteum was increased. Significant decrease in the surface area percentage of VEGF immuno-expression and significant increase in TGF-β immuno-expression surface area percentage were detected. By treating animals with metformin and insulin, there was restoration of the ovarian histological structure more or less as in control. DM negatively affects the histological and morphometric parameters of ovaries. Furthermore, insulin showed more beneficial effects than metformin in hindering these complications by modifying the expression of VEGF and TGF-β.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed M El-Sayed
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Li L, Jing Y, Dong MZ, Fan LH, Li QN, Wang ZB, Hou Y, Schatten H, Zhang CL, Sun QY. Type 1 diabetes affects zona pellucida and genome methylation in oocytes and granulosa cells. Mol Cell Endocrinol 2020; 500:110627. [PMID: 31639403 DOI: 10.1016/j.mce.2019.110627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022]
Abstract
Diabetes affects oocyte nuclear and cytoplasmic quality. In this study, we generated a type 1 diabetes (T1D) mouse model by STZ injection to study the effects of T1D on zona pellucida and genomic DNA methylation of oocytes and granulosa cells. T1D mice showed fewer ovulated oocytes, reduced ovarian reserve, disrupted estrus cycle, and significantly ruptured zona pellucida in 2-cell in vivo embryos compared to controls. Notably, diabetic oocytes displayed thinner zona pellucida and treatment of oocytes with high concentration glucose reduced the zona pellucida thickness. Differential methylation genes in oocytes and granulosa cells were analyzed by methylation sequencing. These genes were significantly enriched in GO terms by GO analysis, and these GO terms were involved in multiple aspects of growth and development. Most notably, the abnormal methylation genes in oocytes may be related to oocyte zona pellucida changes in diabetic mice. These findings provide novel basic data for further understanding and elucidating dysgenesis and epigenetic changes in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Jing
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine Center of People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan Province, PR China; Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, PR China.
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
30
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
31
|
Wang W, Jiang S, Tang X, Cai L, Epstein PN, Cheng Y, Sun W, Xu Z, Tan Y. Sex differences in progression of diabetic nephropathy in OVE26 type 1 diabetic mice. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165589. [PMID: 31678163 DOI: 10.1016/j.bbadis.2019.165589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
AIMS OVE26 mice (FVB background), genetically overexpressing calmodulin in pancreatic beta cells, develop early onset type 1 diabetes, leading to progressive diabetic nephropathy (DN), with features of established human DN. The role of gender in characteristics of renal lesions has remained unexplored. METHODS Male and female OVE26 mice were compared to age and sex matched wild-type, nondiabetic FVB mice at ages of 4, 12, 24 and 36 weeks. Nephropathy was examined by measuring urine albumin-to-creatinine ratio, histopathology, expression of pathological markers and immunochemistry in the same cohort of mice. RESULTS Progression of diabetic kidney disease was evident first in the OVE26 glomerulus, initially as mesangial matrix expansion at 4 weeks followed by loss of podocytes, glomerular volume expansion and severe albuminuria at 12 weeks. Tubule dilation and initiation of interstitial fibrosis did not become significant until 24 weeks. T-lymphocyte infiltration into the renal parenchyma appeared at 36 weeks. OVE26 female mice developed more advanced DN than male OVE26 mice, such as more severe albuminuria, greater podocyte loss, additional fibrosis and significantly more inflammatory cell infiltration. The female OVE26 mice had lowest level of plasma estradiol in all 36 weeks old mice, as well as renal estrogen receptors. CONCLUSIONS This demonstration of the role of gender, combined with the detailed characterization of DN progression illustrates the value of OVE26 mice for understanding gender effects on DN and provides the basis for researchers to better select the age and sex of OVE26 mice in future studies of type 1 DN. RESEARCH IN CONTEXT What is already known about this subject? What is the key question? What are the new findings? How might this impact on clinical practice in the foreseeable future?
Collapse
Affiliation(s)
- Wanning Wang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Saizhi Jiang
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Department, the First affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoqiang Tang
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Cardiology, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Pharmacology and Toxicology and Wendy Novak Diabetes Center, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Paul N Epstein
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Pharmacology and Toxicology and Wendy Novak Diabetes Center, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yanli Cheng
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China
| | - Weixia Sun
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhonggao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Pharmacology and Toxicology and Wendy Novak Diabetes Center, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
32
|
Li H, Zhao W, Wang L, Luo Q, Yin N, Lu X, Hou Y, Cui J, Zhang H. Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int 2019; 43:899-909. [PMID: 31081266 DOI: 10.1002/cbin.11165] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/07/2019] [Indexed: 11/10/2022]
Abstract
Previous studies have shown that the ovarian failure in autoimmune-induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta-derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol-requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress-induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X-box binding protein 1 (XBP1), up-regulated 78 kDa glucose-regulated protein (GRP78) and caspase-12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis-induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation-mediating ovarian function recovery.
Collapse
Affiliation(s)
- Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Yantai, 264100, Shandong, China
| | - Qianqian Luo
- Department of Morphology Laboratory, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Na Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xueyan Lu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Jingjing Cui
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Yantai, 264100, Shandong, China
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, 264003, Shandong, China
| |
Collapse
|
33
|
Li XH, Wang HP, Tan J, Wu YD, Yang M, Mao CZ, Gao SF, Li H, Chen H, Cai WB. Loss of pigment epithelium-derived factor leads to ovarian oxidative damage accompanied by diminished ovarian reserve in mice. Life Sci 2018; 216:129-139. [PMID: 30414426 DOI: 10.1016/j.lfs.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023]
Abstract
AIMS This study aims to investigate the pathophysiological role and mechanism of pigment epithelium-derived factor (PEDF) deletion in ovarian damage. METHODS Female PEDF-knockout mice and their wild-type littermates were used in this study. Relevant tests were performed at 8-10 weeks or 32 weeks of age. KEY FINDINGS Compared to the wild-type mice, the PEDF-knockout mice showed diminished ovarian reserve (DOR), worse ovum quality after injection to induce controlled ovarian stimulation, increased serum follicle stimulating hormone (FSH) level and an follicle stimulating hormone/luteinizing hormone (FSH/LH) ratio. Moreover, severe ovarian oxidative damage was found in ovaries of PEDF-knockout mice that mainly manifested as an accumulation of reactive oxygen species (ROS), NF‑E2-related factor 2 (Nrf2) pathway activation, significantly upregulated expression of ROS-generating genes. Correspondingly, the PEDF-knockout mice exhibited lipid metabolism disorder and insulin resistance, which mainly manifested as obesity, abdominal fat accumulation, adipocyte enlargement, severe ectopic fat deposition, dyslipidemia, changes in adipokine levels, hyperglycemia, hyperinsulinemia, impaired glucose tolerance, impaired insulin tolerance and significantly declined protein kinase B (Akt) phosphorylation levels. SIGNIFICANCE Loss of PEDF leads to ovarian oxidative damage accompanied by DOR in mice, this is related to PEDF deficiency induced severe insulin resistance and lipid metabolism disorder. Therefore, PEDF may be a potential target for the treatment of diseases related to ovarian oxidative damage.
Collapse
Affiliation(s)
- Xing-Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Hai-Ping Wang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Jing Tan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yan-di Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Ming Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Cheng-Zhou Mao
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Sai-Fei Gao
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China.
| | - Wei-Bin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Program in Cardiovascular Disease and Metabolism, the Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; Laboratary Animal Center, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China; The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|