1
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. Targeting histidinol-phosphate aminotransferase in Acinetobacter baumannii with salvianolic acid B: A structure-based approach to novel antibacterial strategies. Arch Biochem Biophys 2025; 764:110233. [PMID: 39613285 DOI: 10.1016/j.abb.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Undoubtedly, Acinetobacter baumannii is a major ESKAPE pathogen that poses a significant threat to public health, causing severe nosocomial infections with high mortality rates in healthcare settings. Due to the rapid development of antibiotic resistance, only a limited number of antibiotics remain effective against infections caused by multidrug-resistant (MDR) Acinetobacter baumannii. The discovery of new class of antibiotic molecules still lags behind the rate of growing worldwide burden of antimicrobial resistance (AMR). To expedite the discovery of new therapeutic molecules, we have focused on HisC from A. baumannii (AbHisC), a crucial enzyme involved in the seventh step of histidine biosynthesis. This pathway is absent in humans. We have employed the advanced computational techniques to target this promising drug target. AbHisC was cloned, overexpressed, and purified. Three distinct sets of libraries containing ∼60,000 natural compounds from ZINC database were screened against AbHisC using Schrödinger's glide module software. Based on the docking score and glide energy, top 25 hits were further subjected to induced fit (IF) docking. Top four out of the twenty five compounds from IF docking were subjected to 100ns molecular dynamics simulations, and it was observed that salvianolic acid B (SA-B) (a naturally occurring compound) complex with AbHisC, was found to be extremely stable. The glide energy and docking score of SA-B were -88.59 kcal/mol and -10.4 kcal/mol. SA-B was also found to quench the intrinsic fluorescence of tyrosine indicating its binding to the target. The dissociation constant calculated using Surface Plasmon Resonance was found to be 3.4x10-9 M. Based on these results we can conclude that SA-B can serve as the potential inhibitor of AbHisC that can further form the basis of structure based drug design against this deadly pathogen.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Du K, Yang M, Ma W, Liu T, Sun H, Huang T, Li J, Chang Y. Advanced Bionic Technology Combining Online Electrochemistry-Mass Spectrometry and Offline Electrochemistry-Liquid Chromatography-Mass Spectrometry for Simulating and Characterizing Metabolic Processes of Bioactive phenolic acids in Natural Products. J Sep Sci 2024; 47:e70006. [PMID: 39520080 DOI: 10.1002/jssc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
The metabolism research of bioactive phenolic acids widely found in natural products is of great significance for elucidating pharmacologic mechanisms and screening lead compounds. However, it is time-consuming and vulnerable to interference to conduct the traditional metabolism approach by applying organisms or biomaterials. Herein, a bionic technology was established by combining online electrochemistry-mass spectrometry (EC-MS) with offline electrochemistry-liquid chromatography-mass spectrometry (EC-LC-MS) to investigate the oxidative transformation and metabolic processes of the active phenolic acids (including salvianolic acid A, caffeic acid, 3, 5-O-dicaffeoylquinic acid, ferulic acid, salvianic acid A, and protocatechuic acid). Phase I metabolism of the phenolic acids were simulated by applying a three-electrode controlled potential electrochemical reactor with a boron-doped diamond electrode, with glutathione mixed into the oxidative products simultaneously for obtaining the phase II metabolites. Finally, structural characterization of the simulated metabolites of the phenolic acids was achieved successfully, including hydroxylation, methylation, demethylation, decarboxylation, etc. It was revealed that the simulated metabolism process based on an electrochemical system was effective in yielding a wide variety of metabolites for these compounds, which was also compared with the metabolism results applying rat liver microsomes. Consequently, this bionic technology is expected to be a powerful tool to investigate the material basis for the efficacy of active ingredients of natural products.
Collapse
Affiliation(s)
- Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentao Ma
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianyu Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huihui Sun
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tengteng Huang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhu J, Guo J, Liu Z, Liu J, Yuan A, Chen H, Qiu J, Dou X, Lu D, Le Y. Salvianolic acid A attenuates non-alcoholic fatty liver disease by regulating the AMPK-IGFBP1 pathway. Chem Biol Interact 2024; 400:111162. [PMID: 39047806 DOI: 10.1016/j.cbi.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects approximately a quarter of the population and, to date, there is no approved drug therapy for this condition. Individuals with type 2 diabetes mellitus (T2DM) are at a significantly elevated risk of developing NAFLD, underscoring the urgency of identifying effective NAFLD treatments for T2DM patients. Salvianolic acid A (SAA) is a naturally occurring phenolic acid that is an important component of the water-soluble constituents isolated from the roots of Salvia miltiorrhiza Bunge. SAA has been demonstrated to possess anti-inflammatory and antioxidant stress properties. Nevertheless, its potential in ameliorating diabetes-associated NAFLD has not yet been fully elucidated. In this study, diabetic ApoE-/- mice were employed to establish a NAFLD model via a Western diet. Following this, they were treated with different doses of SAA (10 mg/kg, 20 mg/kg) via gavage. The study demonstrated a marked improvement in liver injury, lipid accumulation, inflammation, and the pro-fibrotic phenotype after the administration of SAA. Additionally, RNA-seq analysis indicated that the primary pathway by which SAA alleviates diabetes-induced NAFLD involves the cascade pathways of lipid metabolism. Furthermore, SAA was found to be effective in the inhibition of lipid accumulation, mitochondrial dysfunction and ferroptosis. A functional enrichment analysis of RNA-seq data revealed that SAA treatment modulates the AMPK pathway and IGFBP-1. Further experimental results demonstrated that SAA is capable of inhibiting lipid accumulation through the activation of the AMPK pathway and IGFBP-1.
Collapse
Affiliation(s)
- Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, 330106, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Aini Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Lipid Metabolism Institute (Molecular Medicine Institute), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Wang T, Wang J, Xu H, Yan H, Liu Y, Zhang N, Zhang Y, Zhang J, Xu J, Zhang L, Ge X, Meng M, Liu P, Yang Q, Qin D, Li S, He B. Salvianolic acid B alleviates autoimmunity in Treg-deficient mice via inhibiting IL2-STAT5 signaling. Phytother Res 2024; 38:3825-3836. [PMID: 38887974 DOI: 10.1002/ptr.8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Regulatory T cell (Treg) deficiency leads to immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which is a CD4+ T cell-driven autoimmune disease in both humans and mice. Despite understanding the molecular and cellular characteristics of IPEX syndrome, new treatment options have remained elusive. Here, we hypothesized that salvianolic acid B (Sal B), one of the main active ingredients of Salvia miltiorrhiza, can protect against immune disorders induced by Treg deficiency. To examine whether Sal B can inhibit Treg deficiency-induced autoimmunity, Treg-deficient scurfy (SF) mice with a mutation in forkhead box protein 3 were treated with different doses of Sal B. Immune cells, inflammatory cell infiltration, and cytokines were evaluated by flow cytometry, hematoxylin and eosin staining and enzyme-linked immunosorbent assay Kits, respectively. Moreover, RNA sequencing, western blot, and real-time PCR were adopted to investigate the molecular mechanisms of action of Sal B. Sal B prolonged lifespan and reduced inflammation in the liver and lung of SF mice. Moreover, Sal B decreased plasma levels of several inflammatory cytokines, such as IL-2, IFN-γ, IL-4, TNF-α, and IL-6, in SF mice. By analyzing the transcriptomics of livers, we determined the signaling pathways, especially the IL-2-signal transducer and activator of transcription 5 (STAT5) signaling pathway, which were associated with Treg deficiency-induced autoimmunity. Remarkably, Sal B reversed the expression of gene signatures related to the IL-2-STAT5 signaling pathway in vitro and in vivo. Sal B prolongs survival and inhibits lethal inflammation in SF mice through the IL-2-STAT5 axis. Our findings may inspire novel drug discovery efforts aimed at treating IPEX syndrome.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Huan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Han Yan
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ying Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Yawen Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingmin Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingxuan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Lei Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Ge
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjing Meng
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Peiman Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Qiaozhi Yang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Daogang Qin
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Sen Li
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Baokun He
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Yang Y, Huang L, Gao J, Qian B. Salvianolic acid B inhibits the growth and metastasis of A549 lung cancer cells through the NDRG2/PTEN pathway by inducing oxidative stress. Med Oncol 2024; 41:170. [PMID: 38847902 DOI: 10.1007/s12032-024-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024]
Abstract
Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.
Collapse
Affiliation(s)
- Ye Yang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lei Huang
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jie Gao
- Clinical Pharmacology Laboratory, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Bingjun Qian
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Jia Y, Yao D, Bi H, Duan J, Liang W, Jing Z, Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155521. [PMID: 38489891 DOI: 10.1016/j.phymed.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.
Collapse
Affiliation(s)
- Yiyang Jia
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Dandan Yao
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Hui Bi
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Jing Duan
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mei Liu
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
8
|
Siddiquee T, Bhaskaran NA, Nathani K, Sawarkar SP. Empowering lung cancer treatment: Harnessing the potential of natural phytoconstituent-loaded nanoparticles. Phytother Res 2024. [PMID: 38806412 DOI: 10.1002/ptr.8241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Lung cancer, the second leading cause of cancer-related deaths, accounts for a substantial portion, representing 18.4% of all cancer fatalities. Despite advances in treatment modalities such as chemotherapy, surgery, and immunotherapy, significant challenges persist, including chemoresistance, non-specific targeting, and adverse effects. Consequently, there is an urgent need for innovative therapeutic approaches to overcome these limitations. Natural compounds, particularly phytoconstituents, have emerged as promising candidates due to their potent anticancer properties and relatively low incidence of adverse effects compared to conventional treatments. However, inherent challenges such as poor solubility, rapid metabolism, and enzymatic degradation hinder their clinical utility. To address these obstacles, researchers have increasingly turned to nanotechnology-based drug delivery systems (DDS). Nanocarriers offer several advantages, including enhanced drug stability, prolonged circulation time, and targeted delivery to tumor sites, thereby minimizing off-target effects. By encapsulating phytoconstituents within nanocarriers, researchers aim to optimize their bioavailability and therapeutic efficacy while reducing systemic toxicity. Moreover, the integration of nanotechnology with phytoconstituents allows for a nuanced understanding of the intricate molecular pathways involved in lung cancer pathogenesis. This integrated approach holds promise for modulating key cellular processes implicated in tumor growth and progression. Additionally, by leveraging the synergistic effects of phytoconstituents and nanocarriers, researchers seek to develop tailored therapeutic strategies that maximize efficacy while minimizing adverse effects. In conclusion, the integration of phytoconstituents with nanocarriers represents a promising avenue for advancing lung cancer treatment. This synergistic approach has the potential to revolutionize current therapeutic paradigms by offering targeted, efficient, and minimally toxic interventions. Continued research in this field holds the promise of improving patient outcomes and addressing unmet clinical needs in lung cancer management.
Collapse
Affiliation(s)
- Taufique Siddiquee
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| |
Collapse
|
9
|
Tang C, Jiang ST, Li CX, Jia XF, Yang WL. The Effect of Salvianolic Acid A on Tumor-Associated Macrophage Polarization and Its Mechanisms in the Tumor Microenvironment of Triple-Negative Breast Cancer. Molecules 2024; 29:1469. [PMID: 38611749 PMCID: PMC11013304 DOI: 10.3390/molecules29071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1β, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-β1 and p-ERK in a concentration-dependent manner, as well as TGF-β1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.
Collapse
Affiliation(s)
- Chao Tang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (C.T.); (S.-T.J.); (C.-X.L.); (X.-F.J.)
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (C.T.); (S.-T.J.); (C.-X.L.); (X.-F.J.)
| | - Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (C.T.); (S.-T.J.); (C.-X.L.); (X.-F.J.)
| | - Xiao-Fang Jia
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (C.T.); (S.-T.J.); (C.-X.L.); (X.-F.J.)
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (C.T.); (S.-T.J.); (C.-X.L.); (X.-F.J.)
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
10
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
11
|
Jiang Y, Cai Y, Han R, Xu Y, Xia Z, Xia W. Salvianolic acids and its potential for cardio-protection against myocardial ischemic reperfusion injury in diabetes. Front Endocrinol (Lausanne) 2024; 14:1322474. [PMID: 38283744 PMCID: PMC10811029 DOI: 10.3389/fendo.2023.1322474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
The incidence of diabetes and related mortality rate increase yearly in modern cities. Additionally, elevated glucose levels can result in an increase of reactive oxygen species (ROS), ferroptosis, and the disruption of protective pathways in the heart. These factors collectively heighten the vulnerability of diabetic individuals to myocardial ischemia. Reperfusion therapies have been effectively used in clinical practice. There are limitations to the current clinical methods used to treat myocardial ischemia-reperfusion injury. As a result, reducing post-treatment ischemia/reperfusion injury remains a challenge. Therefore, efforts are underway to provide more efficient therapy. Salvia miltiorrhiza Bunge (Danshen) has been used for centuries in ancient China to treat cardiovascular diseases (CVD) with rare side effects. Salvianolic acid is a water-soluble phenolic compound with potent antioxidant properties and has the greatest hydrophilic property in Danshen. It has recently been discovered that salvianolic acids A (SAA) and B (SAB) are capable of inhibiting apoptosis by targeting the JNK/Akt pathway and the NF-κB pathway, respectively. This review delves into the most recent discoveries regarding the therapeutic and cardioprotective benefits of salvianolic acid for individuals with diabetes. Salvianolic acid shows great potential in myocardial protection in diabetes mellitus. A thorough understanding of the protective mechanism of salvianolic acid could expand its potential uses in developing medicines for treating diabetes mellitus related myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ronghui Han
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| | - Weiyi Xia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Doctoral Training Platform for Research and Translation, BoShiWan, GuanChong Village, Shuanghe Town, ZhongXiang City, Hubei, China
| |
Collapse
|
12
|
Yang D, Xia X, Xi S. Salvianolic acid A attenuates arsenic-induced ferroptosis and kidney injury via HIF-2α/DUOX1/GPX4 and iron homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168073. [PMID: 37879473 DOI: 10.1016/j.scitotenv.2023.168073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Arsenic (As) is a prevalent pollutant in the environment and causes a high frequency of kidney disease in areas of high arsenic contamination, but its pathogenic mechanisms have yet to be completely clarified. Ferroptosis is a new form of cell death mainly dependent on lipid peroxidation and iron accumulation. Several reports have suggested that ferroptosis is operative in a spectrum of diseases caused by arsenic exposure, including in the lungs, pancreas, and testis. However, the mechanism and exact role of ferroptosis in arsenic-induced kidney injury is not known. Firstly, by constructing in vivo and in vitro arsenic exposure models, we confirmed the occurrence of ferroptosis based on the identification of the ability of NaASO2 to cause kidney injury. In addition, we found that arsenic exposure could upregulate DUOX1 expression in kidney and HK-2 cells, and after knocking down DUOX1 using siRNA was able to significantly upregulate GPX4 expression and attenuate ferroptosis. Subsequently using bioinformatics, we identified and proved the involvement of HIF-2α in the course of ferroptosis, and further confirmed by dual luciferase assay that HIF-2α promotes DUOX1 transcription to increase its expression. Finally, intervention with the natural ingredient SAA significantly attenuated arsenic-induced ferroptosis and kidney injury. These results showed that arsenic could cause ferroptosis and kidney injury by affecting HIF-2α/DUOX1/GPX4 and iron homeostasis and that SAA was an effective intervention component. This study not only discovered the molecular mechanism of sodium arsenite-induced kidney injury but also explored an active ingredient with intervention potential, providing a scientific basis for the prevention and treatment of sodium arsenite-induced kidney injury.
Collapse
Affiliation(s)
- Desheng Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Xinyu Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
13
|
Kumar BH, Manandhar S, Choudhary SS, Priya K, Gujaran TV, Mehta CH, Nayak UY, Pai KSR. Identification of phytochemical as a dual inhibitor of PI3K and mTOR: a structure-based computational approach. Mol Divers 2023; 27:2015-2036. [PMID: 36244040 PMCID: PMC10520133 DOI: 10.1007/s11030-022-10541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Breast cancer is a common form of cancer that affects both men and women. One of the most common types of genomic flaws in cancer is the aberrations in the PI3K/AKT/mTOR pathway. The benefit of dual targeting PI3K as well as mTOR is that the kinase-positive feedback loops are more effectively inhibited. Therefore, in the current study, structure-based models like molecular docking, MM-GBSA, Qikprop, induced fit docking, simulated molecular dynamics (MD), and thermal MM-GBSA were used to identify the phytochemicals from the zinc 15 database, which may inhibit PI3K and mTOR. After docking the phytochemicals with PI3K (PDB 4FA6), ten ligands based on the docking score were selected, among which salvianolic acid C had the highest docking score. Hence, salvianolic acid A was also docked. All the ligands taken showed a binding energy of greater than - 30 kcal/mol. The predicted ADME showed that the ligands have druggable properties. By performing MD of the top five ligands and salvianolic acid A, it was found that ZINC000059728582, ZINC000257545754, ZINC000253532301, and salvianolic acid A form a stable complex with PI3K protein, among which ZINC000014690026 showed interaction with Val 882 for more than 89% of the time. Salvianolic acid A is already proven to suppress tumor growth in acute myeloid leukemia by inhibiting PI3K/AKT pathway, but the exact protein target is unknown. Therefore, the present study identifies new molecules and provides evidence for salvianolic acid A for dual inhibition. Further experiments must be performed both in vitro and in vivo to support the predictions of these computational tools.
Collapse
Affiliation(s)
- B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Sunil Choudhary
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Tanvi V Gujaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
14
|
Knox RN, Eidahl JO, Wallace L, Choudury S, Rashnonejad A, Daman K, Guggenbiller M, Saad N, Hoover ME, Zhang L, Branson OE, Emerson CP, Freitas MA, Harper SQ. Post-Translational Modifications of the DUX4 Protein Impact Toxic Function in FSHD Cell Models. Ann Neurol 2023; 94:398-413. [PMID: 37186119 PMCID: PMC10777487 DOI: 10.1002/ana.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.
Collapse
Affiliation(s)
- Renatta N. Knox
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63108
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lindsay Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sarah Choudury
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Matthew Guggenbiller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nizar Saad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Michael E. Hoover
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Liwen Zhang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen E. Branson
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Charles P. Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Diao HY, Zhu W, Liu J, Yin S, Wang JH, Li CL. Salvianolic Acid A Improves Rat Kidney Injury by Regulating MAPKs and TGF-β1/Smads Signaling Pathways. Molecules 2023; 28:3630. [PMID: 37110864 PMCID: PMC10144349 DOI: 10.3390/molecules28083630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Salvianolic acid A (SAA) is one of the major components in Salvia miltiorrhiza Bge., with various pharmacological activities, and is likely to be a promising agent for the treatment of kidney diseases. The purpose of this study was to explore the protective effect and mechanisms of SAA on kidney disease. In this study, the improvement effects of SAA (10, 20, 40 mg/kg, i.g.) on kidney injury rats were investigated by detecting the levels of KIM-1, NGAL in serum and UP in the urine of AKI model rats established with gentamicin, as well as the levels of SCr and UREA in serum and IL-6, IL-12, MDA and T-SOD in the kidneys of CKD model rats established with 5/6 nephrectomy. HE and Masson staining were used to observe the histopathological changes in the kidney. Network pharmacology and Western blotting were used to explore the mechanism of SAA in improving kidney injury. The results showed that SAA improved kidney function in kidney injury rats by reducing the kidney index and pathological injury by HE and Masson staining, reducing the levels of KIM-1, NGAL and UP in AKI rats and UREA, SCr and UP in CKD rats, as well as exerting anti-inflammatory and anti-oxidative stress effects by inhibiting the release of IL-6 and IL-12, reducing MDA and increasing T-SOD. Western blotting results showed that SAA significantly reduced the phosphorylation levels of ERK1/2, p38, JNK and smad2/3, and the expression of TLR-4 and smad7. In conclusion, SAA plays a significant role in improving kidney injury in rats and the mechanism may be achieved by regulating the MAPKs and TGF-β1/smads signaling pathways.
Collapse
Affiliation(s)
- Hai-Yang Diao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sheng Yin
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Hui Wang
- Department of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
16
|
Abbas AA, Dawood KM. Anticancer therapeutic potential of benzofuran scaffolds. RSC Adv 2023; 13:11096-11120. [PMID: 37056966 PMCID: PMC10086673 DOI: 10.1039/d3ra01383a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Benzofuran moiety is the main component of many biologically active natural and synthetic heterocycles. These heterocycles have unique therapeutic potentials and are involved in various clinical drugs. The reported results confirmed the extraordinary inhibitory potency of such benzofurans against a panel of human cancer cell lines compared with a wide array of reference anticancer drugs. Several publications about the anticancer potencies of benzofuran-based heterocycles were encountered. The recent developments of anticancer activities of both natural and synthetic benzofuran scaffolds during 2019-2022 are thoroughly covered. Many of the described benzofurans are promising candidates for development as anticancer agents based on their outstanding inhibitory potency against a panel of human cancer cells compared with reference anticancer drugs. These findings encourage medicinal chemists to explore new areas to improve human health and reduce suffering.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +20-2-35727556 +20-2-35676602
| |
Collapse
|
17
|
Xie D, Song L, Xiang D, Gao X, Zhao W. Salvianolic acid A alleviates atherosclerosis by inhibiting inflammation through Trc8-mediated 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154694. [PMID: 36804757 DOI: 10.1016/j.phymed.2023.154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Atherosclerosis is the most prevalent cardiovascular disease and remains the major contributor to death and mortality globally. Salvianolic acid A (SalA) is a water-soluble phenolic acid that benefits atherosclerosis. However, the mechanisms of SalA protecting against atherosclerosis remain unclear. PURPOSE We aimed to determine whether SalA prevents atherosclerosis by modulating 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) degradation via the ubiquitin-proteasomal pathway. METHODS The animal and cellular models of atherosclerosis were established by subjecting apolipoprotein E (ApoE) knockout mice to a high-fat diet (HFD) and exposing human umbilical vein endothelial cells (HUVECs) to oxidized low-density lipoprotein (ox-LDL), respectively. RESULTS Our results showed that similar to atorvastatin, SalA suppressed atherosclerotic plaque formation, improved serum lipid accumulation, and reduced cholesterol levels in HFD-fed ApoE-/- mice. Moreover, SalA protected HUVECs from ox-LDL-caused cell viability reduction and lipid accumulation. The mechanism study revealed that SalA reduced the production of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and augmented the generation of the anti-inflammatory cytokine IL-10 in ApoE-/- mice and HUVECs, accompanied by increased HMGCR ubiquitination and degradation via translocation in renal carcinoma on chromosome 8 (Trc8), insulin-induced gene (Insig)1 and Insig2. Furthermore, the knockdown of Trc8 abolished the SalA-induced HMGCR degradation and anti-atherosclerosis activity. CONCLUSION SalA rescues atherosclerosis by inhibiting inflammation through the Trc8-regulated degradation of HMGCR. These findings underscore Trc8 as a potential target of atherosclerosis.
Collapse
Affiliation(s)
- Dan Xie
- Emergency Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, China
| | - Lijun Song
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Dongyang Xiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Xiangyu Gao
- Emergency Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, China.
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
18
|
Wang R, Li S, Chen P, Yue X, Wang S, Gu Y, Yuan Y. Salvianolic acid B suppresses hepatic stellate cell activation and liver fibrosis by inhibiting the NF-κB signaling pathway via miR-6499-3p/LncRNA-ROR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154435. [PMID: 36155216 DOI: 10.1016/j.phymed.2022.154435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNAs) have been reported to play an important role in liver fibrosis and are closely associated with hepatic stellate cell (HSC) activation. We previously found that salvianolic acid B (Sal B) improves liver fibrosis by regulating the NF-κB signaling pathway. However, whether the LncRNA, regulator of reprogramming (LncRNA-ROR) plays a role in Sal B-mediated anti-fibrosis effects via the NF-κB signaling pathway remain unclear. PURPOSE This study aimed to evaluate the effects of Sal B on HSC activation and liver fibrosis and investigate its mechanism from the perspective of LncRNA-ROR-mediated NF-κB signaling pathways. METHODS LX-2 and T6 cell lines were cultured. Animal models of liver fibrosis were established using CCl4 in male BALB/c mice. Primary HSCs were isolated from mice and cultured. Serum biochemical and liver histological analyses were performed to evaluate the effects of Sal B on liver fibrosis. The index of HSC activation and the expression of LncRNA-ROR, microRNAs (miRNAs), and inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) or immunofluorescence staining. Cell proliferation was measured by a Cell Counting Kit-8 (CCK-8). NF-κB signaling-associated protein levels were assessed using western blotting or immunofluorescence staining. A luciferase reporter assay was used to detect transcription activity. RESULTS In this study, a lower level of LncRNA-ROR was found during Sal B attenuating HSC activation in HSCs. Mechanistically, Sal B impeded the NF-κB signaling pathway to inhibit HSC proliferation and activation by downregulating LncRNA-ROR. Additionally, Sal B upregulated miR-6499-3p to target LncRNA-ROR for degradation. Functionally, Sal B treatment ameliorated CCl4-induced liver fibrosis in mice by inhibiting HSC activation. CONCLUSION Sal B suppresses HSC activation and liver fibrosis via regulation of miR-6499-3p/LncRNA-ROR-mediated NF-κB signaling pathway. These results reveal a new molecular mechanism of Sal B on liver fibrosis from the insight of LncRNAs.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
19
|
Zhu L, Ma SJ, Liu MJ, Li KL, E S, Wang ZM, Li SN, Zhang SL, Cai W. Screening and characterization estrogen receptor ligands from Arnebia euchroma (Royle) Johnst. via affinity ultrafiltration LC-MS and molecular docking. FRONTIERS IN PLANT SCIENCE 2022; 13:1012553. [PMID: 36420029 PMCID: PMC9676231 DOI: 10.3389/fpls.2022.1012553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Arnebiae Radix (dried root of Arnebia euchroma (Royle) Johnst.) is a traditional Chinese medicine (TCM) used to treat macular eruptions, measles, sore throat, carbuncles, burns, skin ulcers, and inflammations. The Arnebiae Radix extract can exert anti-breast cancer effects through various mechanisms of action. This study aimed to rapidly screen potential estrogen receptor (estrogen receptor α and estrogen receptor β) ligands from the Arnebiae Radix extract. In this study, an analytical method based on affinity ultrafiltration coupled with UHPLC-Q-Exactive Orbitrap mass spectrometry was established for rapidly screening and identifying estrogen receptor ligands. Then, bindings of the components to the active site of estrogen receptor (estrogen receptor α and estrogen receptor β) were investigated via molecular docking. Moreover, surface plasmon resonance (SPR) experiments with six compounds were performed to verify the affinity. As a result, a total of 21 ligands were screened from Arnebiae Radix using affinity ultrafiltration. Among them, 14 and 10 compounds from Arnebiae Radix showed affinity with estrogen receptor α and estrogen receptor β, respectively. All of those ligands could have a good affinity for the multiple amino acid residues of the estrogen receptor based on molecular docking. In addition, six compounds display the great affinity by SPR. The method established in the study could be used to rapidly screen estrogen receptor ligands in Traditional Chinese medicine. The results demonstrated that the affinity ultrafiltration-UHPLC-Q-Exactive Orbitrap mass spectrometry method not only aids in the interpretation of the potential bioactive components and possible mechanisms of action of Arnebiae Radix but also provides a further effective basis for the quality control of this valuable herb medicine.
Collapse
Affiliation(s)
- Lian Zhu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sheng-jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Ming-juan Liu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Kai-lin Li
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Shuai E
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Zi-ming Wang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sha-ni Li
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Sheng-lan Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
20
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Li Q, Zuo Z, Pan Y, Zhang Q, Xu L, Jiang B. Salvianolic Acid B Alleviates Myocardial Ischemia Injury by Suppressing NLRP3 Inflammasome Activation via SIRT1-AMPK-PGC-1α Signaling Pathway. Cardiovasc Toxicol 2022; 22:842-857. [PMID: 35809215 DOI: 10.1007/s12012-022-09760-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Salvianolic acid B (SalB) has been extensively investigated in our laboratory for myocardial ischemia (MI) disease. This study mainly aimed to illustrate the relationship between SIRT1 and the therapeutic effect of SalB on MI in rats and hypoxia damage in H9c2 cells. Furthermore, whether the antagonism of NLRP3 by SalB in the injuries mentioned above is related to SIRT1-AMPK-PGC-1α pathway-mediated mitochondrial biogenesis was further investigated. In vivo, 24 h after MI surgery, we found that SalB effectively reduced ST-segment elevation, myocardial infarct size enlargement, cardiac injury markers, myocardial structural abnormalities, and myocardial apoptotic cells in MI injury rats. In vitro, after 4 h of hypoxia exposure, SalB alleviated cell injury, inhibited the production of ROS and IL-1β, and prevented the loss of mitochondrial membrane potential (MMP). Besides, SalB downregulated the critical components of the NLRP3 inflammasome and upregulated the SIRT1-AMPK-PGC-1α signaling pathway-related molecules in myocardial tissues and H9c2 cells. However, all the above protective effects of SalB on MI could be offset by EX527. Taken together, our findings indicated that SalB could attenuate MI injury by targeting NLRP3, which is at least partially dependent on the SIRT1/AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Qingju Li
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.,Department of Central Laboratory, Lianshui County People's Hospital, Kangda College of Nanjing Medical University, Huaian, 223400, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, 210029, China
| | - Yunzheng Pan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qi Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Li Xu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Baoping Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol Res 2022; 182:106333. [PMID: 35779815 DOI: 10.1016/j.phrs.2022.106333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment (TME) through limiting immune cell infiltration into tumors. The defective vascular perfusion in tumors also impairs the delivery and efficacy of chemotherapeutic agents. Targeting abnormal tumor blood vessels has emerged as an effective therapeutic strategy to improve the outcome of chemotherapy and immunotherapy. In this study, we demonstrated that Salvianolic acid B (SalB), one of the major ingredients of Salvia miltiorriza elicited vascular normalization in the mouse models of breast cancer, contributing to improved delivery and response of chemotherapeutic agent cisplatin as well as attenuated metastasis. Moreover, SalB in combination with anti-PD-L1 blockade retarded tumor growth, which was mainly due to elevated infiltration of immune effector cells and boosted delivery of anti-PD-L1 into tumors. Mechanistically, tumor cell enhancer of zeste homolog 2 (Ezh2)-driven cytokines disrupted the endothelial junctions with diminished VE-cadherin expression, which could be rescued in the presence of SalB. The restored vascular integrity by SalB via modulating the interactions between tumor cells and endothelial cells (ECs) offered a principal route for achieving vascular normalization. Taken together, our data elucidated that SalB enhanced sensitivity of tumor cells to chemotherapy and immunotherapy through triggering tumor vascular normalization, providing a potential therapeutic strategy of combining SalB and chemotherapy or immunotherapy for patients with breast cancer.
Collapse
|
23
|
Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int J Pharm 2022; 623:121953. [PMID: 35753535 DOI: 10.1016/j.ijpharm.2022.121953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
As the key stromal cells that mediate the desmoplastic reaction, tumor-associated fibroblasts (TAFs) play a critical role in the limited nanoparticle penetration and suppressive immune tumor microenvironment. Herein, we found that salvianolic acid B-loaded PEGylated liposomes (PEG-SAB-Lip) can interfere with the activation of TAFs by inhibiting the secretion of TGF-β1. After inhibiting the activation of TAFs, collagen deposition in tumors was reduced, and the penetration of nanoparticles in tumors was enhanced. The results of RT-qPCR and immunofluorescence staining showed the high expression of Th1 cytokines and chemokines (CXCL9 and CXCL10) and the recruitment of CD4+, CD8+ T cells, and M1 macrophages in the tumor area. At the same time, the low expression of Th2 cytokine and chemokine CXCL13, as well as the decrease of MDSCs, Tregs, and M2 macrophages were also observed in the tumor area. These results were related to the inactivation of TAFs. The combined treatment of PEG-SAB-Lip and docetaxel-loaded PEG-modified liposomes (PEG-DTX-Lip) can significantly inhibit tumor growth. Moreover, PEG-SAB-Lip further inhibited tumor metastasis to the lung. Therefore, our results showed that PEG-SAB-Lip can remodel the tumor microenvironment and improve the efficacy of nanoparticles.
Collapse
|
24
|
Ye T, Chen R, Zhou Y, Zhang J, Zhang Z, Wei H, Xu Y, Wang Y, Zhang Y. Salvianolic acid A (Sal A) suppresses malignant progression of glioma and enhances temozolomide (TMZ) sensitivity via repressing transgelin-2 (TAGLN2) mediated phosphatidylinositol-3-kinase (PI3K) / protein kinase B (Akt) pathway. Bioengineered 2022; 13:11646-11655. [PMID: 35505656 PMCID: PMC9276020 DOI: 10.1080/21655979.2022.2070963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioma originated from excessively proliferative and highly invaded glial cells is a common intracranial malignant tumor with poor prognosis. Resistance to temozolomide (TMZ) is a clinical challenge in glioma treatment due to the fact that chemoresistance remains a main obstacle in the improvement of drug efficacy. Salvianolic acid A (Sal A), originated from traditional Chinese herbal medicine Salvia miltiorrhiza, possesses anti-tumor effects and could facilitate the delivery of drugs to brain tumor tissues. In the present work, effects of Sal A on the viability, proliferation, migration, invasion and apoptosis of human glioma cell line U87 cells as well as influence of Sal A on TMZ resistance were measured, so as to identify the biological function of Sal A in the malignant behaviors and chemoresistance of glioma cells. Additionally, activation of TAGLN2/PI3K/Akt pathway in glioma cells was also detected to investigate whether Sal A could regulate TAGLN2/PI3K/Akt to manipulate the progression of glioma and TMZ resistance. Results discovered that Sal A treatment reduced the viability, repressed the proliferation, migration and invasion of glioma cells as well as promoted the apoptosis of glioma cells. Besides, Sal A treatment suppressed TAGLN2/PI3K/Akt pathway in glioma cells. Sal A treatment strengthened the suppressing effect of TMZ on glioma cell proliferation and reinforced the promoting effect of TMZ on glioma cell apoptosis, which were abolished by upregulation of TAGLN2. To conclude, Sal A treatment could suppress the malignant behaviors of glioma cells and improve TMZ sensitivity through inactivating TAGLN2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Rongrong Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Juan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Zhongqin Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Hui Wei
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yan Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yulan Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yinlan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| |
Collapse
|
25
|
Han G, Wang Y, Liu T, Gao J, Duan F, Chen M, Yang Y, Wu C. Salvianolic acid B acts against non‑small cell lung cancer A549 cells via inactivation of the MAPK and Smad2/3 signaling pathways. Mol Med Rep 2022; 25:184. [PMID: 35348194 PMCID: PMC8985201 DOI: 10.3892/mmr.2022.12700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/06/2022] Open
Abstract
Salvianolic acid B (Sal B) is a potential cytotoxic polyphenol against cancer. In the present study the effect of Sal B and its molecular mechanism were investigated in the non‑small cell lung cancer (NSCLC) A549 cell line. The TGF‑β/MAPK/Smad signaling axis was explored. A549 cells were co‑cultured with and without different concentrations of Sal B (25, 50 and 100 µM respectively) and TGF‑β1 (9 pM) for 24 h. Cell epithelial‑mesenchymal transition (EMT), cell migration, cell cycle distribution, autophagy and apoptosis were assessed by western blotting (WB), wound healing assay and flow cytometry, respectively. Moreover, activation of MAPK, Smad2/3 and the downstream target, plasminogen activator inhibitor 1 (PAI‑1), were assessed by WB. The results demonstrated that Sal B inhibited TGF‑β1‑induced EMT and migration of A549 cells, hampered cell cycle progression and induced cell autophagy and apoptosis. Furthermore, Sal B inactivated MAPK signaling pathways and the phosphorylation of Smad2/3, especially the phosphorylation of Smad3 at the linker region, which resulted in decreased protein expression levels of PAI‑1 in TGF‑β1‑stimulated A549 cells. Overall, these results demonstrated that Sal B may have a potential therapeutic effect against NSCLC in vitro. The results of the present study indicated that the underlying active mechanism of Sal B in NSCLC may be closely related to the impeded activation of the MAPK and Smad2/3 signaling pathways. Therefore, Sal B may be a potential candidate NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Guanglei Han
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yongzhong Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Tong Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Fengyi Duan
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ming Chen
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Chinese Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Yan Yang
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti‑inflammatory and Immunopharmacology, Chinese Ministry of Education, Hefei, Anhui 230032, P.R. China
| | - Chao Wu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
26
|
Leng X, Kan H, Wu Q, Li C, Zheng Y, Peng G. Inhibitory Effect of Salvia miltiorrhiza Extract and Its Active Components on Cervical Intraepithelial Neoplastic Cells. Molecules 2022; 27:1582. [PMID: 35268683 PMCID: PMC8911905 DOI: 10.3390/molecules27051582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 μM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (X.L.); (H.K.); (Q.W.); (C.L.); (Y.Z.)
| |
Collapse
|
27
|
Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y, Li R, Jiang H, Yang Z, Chung SK, Liu L, Wong VKW. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol Res 2021; 172:105820. [PMID: 34403732 PMCID: PMC8364251 DOI: 10.1016/j.phrs.2021.105820] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 μM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.
Collapse
Affiliation(s)
- Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Sami Hamdoun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Kio Ip
- School of Life & Medical Sciences, University College London, London, UK
| | - Yuanqing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Runfeng Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; KingMed Virology Diagnostic & Translational Center, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou, China.
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
28
|
Natural Products of Pharmacology and Mechanisms in Nucleus Pulposus Cells and Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9963677. [PMID: 34394398 PMCID: PMC8357477 DOI: 10.1155/2021/9963677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain (LBP), which severely reduces the quality of life and imposes a heavy financial burden on the families of affected individuals. Current research suggests that IDD is a complex cell-mediated process. Inflammation, oxidative stress, mitochondrial dysfunction, abnormal mechanical load, telomere shortening, DNA damage, and nutrient deprivation contribute to intervertebral disc cell senescence and changes in matrix metabolism, ultimately causing IDD. Natural products are widespread, structurally diverse, afford unique advantages, and exhibit great potential in terms of IDD treatment. In recent years, increasing numbers of natural ingredients have been shown to inhibit the degeneration of nucleus pulposus cells through various modes of action. Here, we review the pharmacological effects of natural products on nucleus pulposus cells and the mechanisms involved. An improved understanding of how natural products target signalling pathways will aid the development of anti-IDD drugs. This review focuses on potential IDD drugs.
Collapse
|
29
|
Untargeted GC-TOFMS Analysis Reveals Metabolomic Changes in Salvia miltiorrhiza Bunge Leaf and Root in Response to Long-Term Drought Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salvia miltiorrhiza Bunge (Danshen) is an important traditional Chinese medicine herb. This study aimed to investigate the drought-responsive metabolic profiling in S. miltiorrhiza using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) analysis. Fifty day-old S. miltiorrhiza seedlings were treated with two (moderate drought, MD) and four weeks (high drought, HD) of withholding water. The S. miltiorrhiza leaf and root samples were prepared for the GC-TOFMS analysis. Differential metabolites with substantial changes in content in S. miltiorrhiza leaf and root were identified using multivariate and univariate statistics. A total of 178 and 157 annotated metabolites were detected in S. miltiorrhiza leaf and root, respectively. Multivariate analysis showed that significantly discriminant metabolites in S. miltiorrhiza leaf by drought were associated with “galactose metabolism” and “citrate cycle”. In addition, the significantly discriminant metabolites in S. miltiorrhiza root were associated with “starch and sucrose metabolism”. Univariate statistics showed that the content of succinic acid, d-glucose, and oxoglutaric acid in S. miltiorrhiza leaf was increased by drought (fold change, FC > 1.5). Allose, d-xylose, melibiose, mannose, sorbitol, quinic acid, sinigrin, and taurine in S. miltiorrhiza root were decreased by drought (FC < 0.67). There were different metabolic profiles between S. miltiorrhiza leaf and root. However, the influence of drought stress on the pharmacological value and accumulation of bioactive constituents in S. miltiorrhiza should be further investigated.
Collapse
|
30
|
Ling Y, Jin L, Ma Q, Huang Y, Yang Q, Chen M, Shou Q. Salvianolic acid A alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153569. [PMID: 33985878 DOI: 10.1016/j.phymed.2021.153569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toll-like receptor 2 and Toll-like receptor 4 (TLR2/4) on microglia have been found as important regulators in the inflammatory response during cerebral ischemia/reperfusion (I/R). In China, traditional Chinese medicine Salvia miltiorrhiza (danshen) and its some components are considered to be effective in rescuing cerebral I/R injury through clinical practice. HYPOTHESIS/PURPOSE Here we examined the effect of Salvianolic acid A (SAA), a monomer compound in the water extract of Salvia miltiorrhiza, on TLR2/4 of microglia and its mediated inflammatory injury during cerebral I/R in vivo and in vitro. STUDY DESIGN For exploring the effect of SAA on cerebral I/R and TLR2/4, classic middle cerebral artery occlusion (MCAO) model and oxygen glucose deprivation / reoxygenation (OGD/R) model of co-culture with primary hippocampal neurons and microglia in vitro were used. Signal pathway research and gene knockout have been applied to further explain its mechanism. METHODS The evaluation indexes of I/R injury included infarct size, edema degree and pathology as well as primary hippocampal neurons and microglia culture, ELISA, western, RT-PCR, HE staining, immunofluorescence, flow cytometry, siRNA gene knockout were also employed. RESULTS SAA significantly improved the degree of brain edema and ischemic area in I/R rats accompanied by decreases in levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). Pathological staining revealed that SAA could reduce inflammatory cell infiltration and mcirogila activation after reperfusion. Both protein and gene expression of TLR2 and TLR4 in ischemic hemisphere were obviously inhibited by SAA treatment while changes were not found in the non-ischemic hemisphere. In order to further study its mechanism, OGD/R model was used to mimic inflammatory damage of ischemic tissue by co-culturing primary rat hippocampal neurons and microglial cells. It was found that SAA also inhibited the protein and gene expression of TLR2 and TLR4 after OGD/R injury in microglia. After TLR2/4 knockout, the inhibitory effect of SAA on IL-1β and TNF-α levels in cell supernatant and neuron apoptosis were significantly weakened in each dose group. Moreover, expression levels of myeloid differentiation factor 88 (MyD88), NFκB, IL-1β and IL-6 in TLR2/4 mediated inflammatory pathway were reduced with SAA treatment. CONCLUSION SAA could significantly reduce the inflammatory response and injury in cerebral ischemia-reperfusion in vivo and in vitro, and its mechanism may be through the inhibition of TLR2/4 and its related signal pathway.
Collapse
Affiliation(s)
- Yun Ling
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Lu Jin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Quanxin Ma
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Yu Huang
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Qinqin Yang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, People's Republic of China
| | - Minli Chen
- Animal Experimental Research Center, Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China; Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
31
|
Wu Y, Xiu W, Wu Y. Salvianolic Acid A Protects H9C2 Cardiomyocytes from Doxorubicin-Induced Damage by Inhibiting NFKB1 Expression Thereby Downregulating Long-Noncoding RNA (lncRNA) Plasmacytoma Variant Translocation 1 (PVT1). Med Sci Monit 2021; 27:e929824. [PMID: 34153024 PMCID: PMC8230250 DOI: 10.12659/msm.929824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background A cardioprotective effect of salvianolic acid A (SalA) has been described, but it is unknown whether SalA can protect cardiomyocytes against doxorubicin (Dox)-induced cardiotoxicity. This study aimed to investigate whether SalA could inhibit Dox-induced apoptosis in H9C2 cells and to uncover the potential mechanism. Material/Methods H9C2 cardiomyocytes exposed to Dox were treated with SalA or not, and then cell viability, apoptosis, and the expression of nuclear factor-κB (NF-κB) signaling were detected by Cell Counting Kit-8, TUNEL staining, and western blot assays, respectively. Nuclear factor kappa B subunit 1 (NFKB1) was overexpressed in H9C2 cells, and then alterations in cell viability and apoptosis in H9C2 cells co-treated with Dox and SalA were investigated. Results SalA (2, 10, and 50 μM) had no effect on H9C2 cell viability, while Dox reduced cell viability in a concentration-dependent manner. In addition, SalA rescued Dox-decreased cell viability. Dox also triggered apoptosis as evidenced by an increased ratio of TUNEL-positive cells, enhanced expression of pro-apoptotic proteins, and reduced expression of anti-apoptotic protein BCL-2, which were all partially blocked by SalA co-treatment. The proteins involved in NF-κB signaling including IκBα, IKKα, IKKβ, and p65 were activated by Dox but inactivated by SalA co-treatment. Moreover, Dox increased NFKB1 mRNA and nuclear expression, which was blocked by SalA. NFKB1 could bind to plasmacytoma variant translocation 1 (PVT1) and upregulate PVT1 expression. Mechanistically, the overexpression of NFKB1 blocked the inhibitory effect of SalA on Dox-induced cell viability impairment and apoptosis. Conclusions We demonstrated that SalA may exert a protective effect against Dox-induced H9C2 injury and apoptosis via inhibition of NFKB1 expression, thereby downregulating lncRNA PVT1.
Collapse
Affiliation(s)
- Yumeng Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wei Xiu
- Department of Pharmacy, Heilongjiang Sengong Red Cross General Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yubo Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
32
|
Salvianolic acid B noncovalently interacts with disordered c-Myc: a computational and spectroscopic-based study. Future Med Chem 2021; 13:1341-1352. [PMID: 34114895 DOI: 10.4155/fmc-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims: c-Myc, along with its partner MAX, regulates the expression of several genes, leading to an oncogenic phenotype. The MAX interacting interface of c-Myc is disordered and uncharacterized for small molecule binding. Salvianolic acid B possesses numerous therapeutic properties, including anticancer activity. The current study was designed to elucidate the interaction of the Sal_Ac_B with the disordered bHLH domain of c-Myc using computational and biophysical techniques. Materials & methods: The binding of Sal_Ac_B with Myc was studied using computational and biophysical techniques, including molecular docking and simulation, fluorescence lifetime, circular dichroism and anisotropy. Results & conclusions: The study demonstrated a high binding potential of Sal_Ac_B against the disordered Myc peptide. The binding of the compounds leads to an overall conformational change in Myc. Moreover, an extensive simulation study showed a stable Sal_Ac_B/Myc binding.
Collapse
|
33
|
Lai J, Qian Q, Ding Q, Zhou L, Fu A, Du Z, Wang C, Song Z, Li S, Dou X. Activation of AMP-Activated Protein Kinase-Sirtuin 1 Pathway Contributes to Salvianolic Acid A-Induced Browning of White Adipose Tissue in High-Fat Diet Fed Male Mice. Front Pharmacol 2021; 12:614406. [PMID: 34122060 PMCID: PMC8193940 DOI: 10.3389/fphar.2021.614406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and promising potential of browning of white adipose tissue to combat obesity, recent research has focused on herbal ingredients that may promote browning and increase energy expenditure. Purpose: The present study was designed to investigate the protective antiobesity mechanisms of Sal A, in part through white adipose browning. Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed in this study. Sal A (20 and 40 mg/kg) was administrated to DIO mice by intraperitoneal injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated. Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized thermogenic protein and marker for white adipocyte browning, was significantly induced by Sal A treatment in both white adipose tissues and cultured adipocytes. Further mechanistic investigations revealed that Sal A robustly reversed HFD-decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1 expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK. These findings indicate that AMPK was involved in Sal A-increased SIRT1. Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating and/or preventing obesity.
Collapse
Affiliation(s)
- Jianfei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Li Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Fu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyan Du
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Lu J, Lu Z, Liu L, Li X, Yu W, Lu X. Identification of Crocin as a New hIAPP Amyloid Inhibitor via a Simple Yet Highly Biospecific Screening System. Chem Biodivers 2021; 18:e2100270. [PMID: 33890414 DOI: 10.1002/cbdv.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/07/2022]
Abstract
Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.
Collapse
Affiliation(s)
- Jingxuan Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Zhongxia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Luxin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xinyu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, P. R. China
| | - Xinzhi Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
35
|
Jin L, Chen C, Huang L, Bu L, Zhang L, Yang Q. Salvianolic acid A blocks vasculogenic mimicry formation in human non-small cell lung cancer via PI3K/Akt/mTOR signalling. Clin Exp Pharmacol Physiol 2021; 48:508-514. [PMID: 33529404 DOI: 10.1111/1440-1681.13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022]
Abstract
Vasculogenic mimicry (VM) is associated with aggressive cancer cells. Salvianolic acid A (Sal-A), an antioxidant and anti-inflammatory agent, has bioactive properties from Salvia miltiorrhiza Bunge. Current investigation aspired to explore the activity of Sal-A in the VM formation of non-small cell lung cancer (NSCLC) and the mechanism underling this function. The CCK8, the scratch and boyden chemotaxis assay were presented to describe NSCLC cells viability, migration and invasion capabilities, respectively. The protein expression was verified by western blotting. In this report, Sal-A caused a reduction in viability, metastasis and capillaries structure formation of NSCLC cells. Additionally, Sal-A markedly prevented the key VM related proteins, containing EphA2, VE-cadherin and MMP2. Besides, Sal-A significantly diminished p-PI3K, p-Akt and p-mTOR level in NSCLC cells. More importantly, SC79 pretreatment reversed Sal-A inhibits NSCLC cells viability, metastasis and VM formation. These data exhibit that Sal-A could block VM network formation in NSCLC cells through modulating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Luming Jin
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chaoyang Chen
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Lipeng Huang
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Liang Bu
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiuju Yang
- Operation Center, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
36
|
Hu S, Wang J, Zhang Y, Bai H, Wang C, Wang N, He L. Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2. J Med Virol 2021; 93:3143-3151. [PMID: 33580518 PMCID: PMC8013543 DOI: 10.1002/jmv.26874] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2, 2019-nCoV])-induced disease, COVID-19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti-coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit-8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin-converting enzyme 2) high-expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019-nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor-binding domain (RBD) of the 2019-nCoV with a binding constant (KD ) of (3.82 ± 0.43) e-6 M, (5.15 ± 0.64)e-7 M, and (2.19 ± 0.14)e-6 M; and bind to ACE2 with KD (4.08 ± 0.61)e-7 M, (2.95 ± 0.78)e-7 M, and (7.32 ± 0.42)e-7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019-nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019-nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019-nCoV spike protein and ACE2 protein.
Collapse
Affiliation(s)
- Shiling Hu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jue Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoyun Bai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shannxi, China.,Institute of Vascular Materia Medica, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
38
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
39
|
Riaz A, Rasul A, Kanwal N, Hussain G, Shah MA, Sarfraz I, Ishfaq R, Batool R, Rukhsar F, Adem Ş. Germacrone: A Potent Secondary Metabolite with Therapeutic Potential in Metabolic Diseases, Cancer and Viral Infections. Curr Drug Metab 2020; 21:1079-1090. [PMID: 32723267 DOI: 10.2174/1389200221999200728144801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Natural products, an infinite reserve of bioactive molecules, will continue to serve humans as an important source of therapeutic agents. Germacrone is a bioactive natural compound found in the traditional medicinal plants of family Zingiberaceae. This multifaceted chemical entity has become a point of focus during recent years due to its numerous pharmacological applications, e.g., anticancer, anti-inflammatory, antiviral, antioxidant, anti-adipogenic, anti-androgenic, antimicrobial, insecticidal, and neuroprotective. Germacrone is an effective inducer of cell cycle arrest and apoptosis in various cancers (breast, brain, liver, skin, prostate, gastric, and esophageal) via modulation of different cell signaling molecules and pathways involved in cancer proliferation. This is the first report highlighting the wide spectrum of pharmacological activities exhibited by germacrone. The reported data collected from various shreds of evidences recommend that this multifaceted compound could serve as a potential drug candidate in the near future.
Collapse
Affiliation(s)
- Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nazia Kanwal
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rubab Ishfaq
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rabia Batool
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Şevki Adem
- Department of Chemistry, Faculty of Science, Çankırı Karatekin Üniversitesi Çankırı, 18100, Turkey
| |
Collapse
|
40
|
Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Gupta S, Kumar S. Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Comput Biol Med 2020; 130:104185. [PMID: 33352458 PMCID: PMC7749648 DOI: 10.1016/j.compbiomed.2020.104185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
Coronaviruses are known to infect respiratory tract and intestine. These viruses possess highly conserved viral macro domain A1pp having adenosine diphosphate (ADP)-ribose binding and phosphatase activity sites. A1pp inhibits adenosine diphosphate (ADP)-ribosylation in the host and promotes viral infection and pathogenesis. We performed in silico screening of FDA approved drugs and nucleoside analogue library against the recently reported crystal structure of SARS-CoV-2 A1pp domain. Docking scores and interaction profile analyses exhibited strong binding affinity of eleven FDA approved drugs and five nucleoside analogues NA1 (−13.84), nadide (−13.65), citicholine (−13.54), NA2 (−12.42), and NA3 (−12.27). The lead compound NA1 exhibited significant hydrogen bonding and hydrophobic interaction at the natural substrate binding site. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface (SASA), hydrogen bond formation, principle component analysis, and free energy landscape calculations for NA1 bound protein displayed stable complex formation in 100 ns molecular dynamics simulation, compared to unbound macro domain and natural substrate adenosine-5-diphosphoribose bound macro domain that served as a positive control. The molecular mechanics Poisson–Boltzmann surface area analysis of NA1 demonstrated binding free energy of −175.978 ± 0.401 kJ/mol in comparison to natural substrate which had binding free energy of −133.403 ± 14.103 kJ/mol. In silico analysis by modelling tool ADMET and prediction of biological activity of these compounds further validated them as putative therapeutic molecules against SARS-CoV-2. Taken together, this study offers NA1 as a lead SARS-CoV-2 A1pp domain inhibitor for future testing and development as therapeutics against human coronavirus.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Prem Prakash Kushwaha
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
41
|
Taghouti M, Martins-Gomes C, Félix LM, Schäfer J, Santos JA, Bunzel M, Nunes FM, Silva AM. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem 2020; 331:127362. [PMID: 32590268 DOI: 10.1016/j.foodchem.2020.127362] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
The polyphenol compositions of Thymus × citriodorus and Thymus vulgaris extracts as obtained by exhaustive hydroethanolic (HE) extraction and aqueous decoction (AD) were compared. In addition, their compositions and bioactivities were compared to those of Thymus pulegioides and Thymus mastichina, grown under the same edaphoclimatic conditions, and Thymus carnosus. Rosmarinic acid was the most abundant polyphenol followed by luteolin-hexuronide, salvianolic acids I and K. Cluster analysis suggests a similarity of the polyphenol composition of T. citriodorus and T. vulgaris. A significant antioxidant activity was observed and correlated with their polyphenol levels. The same being observed for the higher anti-proliferative activity/cytotoxicity of HE extracts on Caco-2 and HepG2 cells as compared to AD extracts. Significant association between the total phenolic compounds with the anti-proliferative activity, for both cell lines, was observed. These results support the importance of salvianolic acids levels in Thymus extracts and their in vitro anti-proliferative/cytotoxic activities.
Collapse
Affiliation(s)
- Meriem Taghouti
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Luís M Félix
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - João A Santos
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Physics, School of Sciences and Technology, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Fernando M Nunes
- Food and Wine Chemistry Lab, Chemistry Research Centre Vila Real (CQ-VR), UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Chemistry, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| | - Amélia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001 801 Vila Real, Portugal; Department of Biology and Environment, School of Life Sciences and Environment, UTAD, Quinta de Prados, 5001 801 Vila Real, Portugal.
| |
Collapse
|
42
|
Isacfranklin M, Yuvakkumar R, Ravi G, Kumar P, Saravanakumar B, Velauthapillai D, Alahmadi TA, Alharbi SA. Biomedical application of single anatase phase TiO2 nanoparticles with addition of Rambutan (Nephelium lappaceum L.) fruit peel extract. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01599-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Shahzadi I, Ali Z, Bukhari S, Narula AS, Mirza B, Mohammadinejad R. Possible applications of salvianolic acid B against different cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:218-238. [PMID: 36046777 PMCID: PMC9400738 DOI: 10.37349/etat.2020.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second death causing disease worldwide after cardiovascular abnormalities. The difficulty in treating tumor cells with more precise targeted interventions and recurrence of cancer after treatment may pose great difficulty in developing sustainable therapeutic regimens. These limitations have prompted the need to explore several compounds with ability to cease tumor growth while at the same time induce apoptosis of tumor cells. Several studies have emphasized the use of natural compounds as antitumor agents due to their high efficacy against cancer cells and low toxicity in normal cells. Salvianolic acid B (SAB), a naturally occurring phenolic compound extracted from the radix of Chinese herb Salvia miltiorrhiza can induce apoptosis in different types of tumor cells. It can be used to treat cardiovascular and neurodegenerative disorders, hepatic fibrosis, and cancers. Several studies have shown that SAB can mitigate tumorigenesis by modulating MAPK, PI3K/AKT, and NF-ĸB signaling pathways. It also sensitizes the tumor cells to different anti-cancer agents by reversing the multi-drug resistance mechanisms found in tumor cells. This review summarizes the studies showing antitumor potential of SAB in different types of cancer cell lines, animal models and highlights the possible mechanisms through which SAB can induce apoptosis, inhibit growth and metastasis in tumor cells. Moreover, the possible role of nano-technological approaches to induce targeted delivery of SAB to eradicate tumor cells has been also discussed.
Collapse
Affiliation(s)
- Iram Shahzadi
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Zain Ali
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Sidra Bukhari
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan; Naula Research, Chapel Hill, NC 27516, USA
| | | | - Bushra Mirza
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
44
|
Pharmacological Modulation of Steroid Activity in Hormone-Dependent Breast and Prostate Cancers: Effect of Some Plant Extract Derivatives. Int J Mol Sci 2020; 21:ijms21103690. [PMID: 32456259 PMCID: PMC7279356 DOI: 10.3390/ijms21103690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
The great majority of breast and prostate tumors are hormone-dependent cancers; hence, estrogens and androgens can, respectively, drive their developments, making it possible to use pharmacological therapies in their hormone-dependent phases by targeting the levels of steroid or modulating their physiological activity through their respective nuclear receptors when the tumors relapse. Unfortunately, at some stage, both breast and prostate cancers become resistant to pharmacological treatments that aim to block their receptors, estrogen (ER) or androgen (AR) receptors, respectively. So far, antiestrogens and antiandrogens used in clinics have been designed based on their structural analogies with natural hormones, 17-β estradiol and dihydrotestosterone. Plants are a potential source of drug discovery and the development of new pharmacological compounds. The aim of this review article is to highlight the recent advances in the pharmacological modulation of androgen or estrogen levels, and their activity through their cognate nuclear receptors in prostate or breast cancer and the effects of some plants extracts.
Collapse
|
45
|
Chemical Characterization and Bioactivity of Extracts from Thymus mastichina: A Thymus with a Distinct Salvianolic Acid Composition. Antioxidants (Basel) 2019; 9:antiox9010034. [PMID: 31906063 PMCID: PMC7022745 DOI: 10.3390/antiox9010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/20/2023] Open
Abstract
Thymus mastichina, also called mastic thyme or Spanish marjoram, is endemic to the Iberian Peninsula, where it is widely used in folk medicine especially for treating digestive and respiratory systems disorders, and as a condiment to season olives. This work describes for the first time the detailed phenolic composition of exhaustive hydroethanolic extracts and aqueous decoctions of Thymus mastichina. Unlike other species of the Thymus genera, Thymus mastichina extracts contain high amounts of salvianolic acid derivatives, with salvianolic acid A isomer being the main derivative. This isomer was identified in extracts from Thymus mastichina for the first time. Also, an undescribed salvianolic acid derivative in Thymus mastichina was identified and its structure was tentatively described. Extracts from Thymus mastichina showed significant scavenging activity of 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical cation, hydroxyl, and nitric oxide radicals. The anti-proliferative effect of both T. mastichina extracts were tested against Caco-2 and HepG2 cells; the hydroethanolic extract showed a high anti-proliferative activity against Caco-2 cells compared to HepG2 cells (at 24 h exposure, the concentration that inhibits 50% of proliferation, IC50, was 71.18 ± 1.05 µg/mL and 264.60 ± 11.78 µg/mL for Caco-2 and HepG2, respectively). Thus, these results make this species a promising candidate for further investigation of its anti-tumoral potential. Therefore, Thymus mastichina can be potentially used as a functional food (used as a decoction or herbal tea) or as a source of bioactive ingredients with antioxidant and anti-proliferative properties.
Collapse
|
46
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J, Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2019; 104:575-587. [PMID: 31832711 DOI: 10.1007/s00253-019-10257-8] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promotion of a series of pathological disorders including various tumors. Autophagy also participates in regulating the balance between the tumor and the tumor microenvironment. Natural products have been considered a treasure of new drug discoveries and are of great value to medicine. Mounting evidence has suggested that numerous natural products are targeting PI3K/AKT/mTOR-mediated autophagy, thereby suppressing tumor growth. Furthermore, autophagy plays a "double-edged sword" role in different tumors. Targeting PI3K/AKT/mTOR-mediated autophagy is an important therapeutic strategy for a variety of tumors, and plays important roles in enhancing the chemosensitivity of tumor cells and avoiding drug resistance. Therefore, we summarized the roles of PI3K/AKT/mTOR-mediated autophagy in tumorigenesis, progression, and drug resistance of tumors, which may be utilized to design preferably therapeutic strategies for various tumors.
Collapse
Affiliation(s)
- Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zunxiong Li
- University of South China, Hengyang, Hunan, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| |
Collapse
|
47
|
Salvianolic Acid B Slows the Progression of Breast Cancer Cell Growth via Enhancement of Apoptosis and Reduction of Oxidative Stress, Inflammation, and Angiogenesis. Int J Mol Sci 2019; 20:ijms20225653. [PMID: 31726654 PMCID: PMC6888679 DOI: 10.3390/ijms20225653] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the current leading cause of cancer death in females worldwide. Although current chemotherapeutic drugs effectively reduce the progression of breast cancer, most of these drugs have many unwanted side effects. Salvianolic acid B (Sal-B) is a bioactive compound isolated from the root of Danshen Radix with potent antioxidant and anti-inflammatory properties. Since free radicals play a key role in the initiation and progression of tumor cells growth and enhance their metastatic potential, the current study was designed to investigate the antitumor activity of Sal-B and compare it with the antitumor activity of the traditional anticancer drug, cisplatin. In vitro, Sal-B decreased the human breast cancer adenocarcinoma (MCF-7) cells proliferation in a concentration and time dependent manner. In vivo and similar to cisplatin treatment, Sal-B significantly reduced tumor volume and increased the median survival when compared to tumor positive control mice group injected with Ehrlich solid carcinoma cell line (ESC). Sal-B decreased plasma level of malondialdehyde as a marker of oxidative stress and increased plasma level of reduced glutathione (GSH) as a marker of antioxidant defense when compared to control ESC injected mice. Either Sal-B or cisplatin treatment decreased tumor tissue levels of tumor necrosis factor (TNF-α), matrix metalloproteinase-8 (MMP-8), and Cyclin D1 in ESC treated mice. Contrary to cisplatin treatment, Sal-B did not decrease tumor tissue Ki-67 protein in ESC injected mice. Immunohistochemical analysis revealed that Sal-B or cisplatin treatment increased the expression of the apoptotic markers caspase-3 and P53. Although Sal-B or cisplatin significantly reduced the expression of the angiogenic factor vascular endothelial growth factor (VEGF) in ESC injected mice, only Sal-B reduced expression level of COX-2 in ESC injected mice. Our data suggest that Sal-B exhibits antitumor features against breast cancer cells possibly via enhancing apoptosis and reducing oxidative stress, inflammation, and angiogenesis.
Collapse
|