1
|
Shum MHH, Lee Y, Tam L, Xia H, Chung OLW, Guo Z, Lam TTY. Binding affinity between coronavirus spike protein and human ACE2 receptor. Comput Struct Biotechnol J 2024; 23:759-770. [PMID: 38304547 PMCID: PMC10831124 DOI: 10.1016/j.csbj.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Coronaviruses (CoVs) pose a major risk to global public health due to their ability to infect diverse animal species and potential for emergence in humans. The CoV spike protein mediates viral entry into the cell and plays a crucial role in determining the binding affinity to host cell receptors. With particular emphasis on α- and β-coronaviruses that infect humans and domestic animals, current research on CoV receptor use suggests that the exploitation of the angiotensin-converting enzyme 2 (ACE2) receptor poses a significant threat for viral emergence with pandemic potential. This review summarizes the approaches used to study binding interactions between CoV spike proteins and the human ACE2 (hACE2) receptor. Solid-phase enzyme immunoassays and cell binding assays allow qualitative assessment of binding but lack quantitative evaluation of affinity. Surface plasmon resonance, Bio-layer interferometry, and Microscale Thermophoresis on the other hand, provide accurate affinity measurement through equilibrium dissociation constants (KD). In silico modeling predicts affinity through binding structure modeling, protein-protein docking simulations, and binding energy calculations but reveals inconsistent results due to the lack of a standardized approach. Machine learning and deep learning models utilize simulated and experimental protein-protein interaction data to elucidate the critical residues associated with CoV binding affinity to hACE2. Further optimization and standardization of existing approaches for studying binding affinity could aid pandemic preparedness. Specifically, prioritizing surveillance of CoVs that can bind to human receptors stands to mitigate the risk of zoonotic spillover.
Collapse
Affiliation(s)
- Marcus Ho-Hin Shum
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Yang Lee
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leighton Tam
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
| | - Hui Xia
- Department of Chemistry, South University of Science and Technology of China, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Oscar Lung-Wa Chung
- Department of Chemistry, South University of Science and Technology of China, China
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
2
|
Han Y, Kim S, Park T, Hwang H, Park S, Kim J, Pyun JC, Lee M. Reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infection by blocking the epidermal growth factor receptor (EGFR) pathway. Microbiol Spectr 2024; 12:e0158324. [PMID: 39291996 PMCID: PMC11537080 DOI: 10.1128/spectrum.01583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants presents challenges in global efforts to transition from the pandemic to an endemic stage. The spike protein of the SARS-CoV-2 virus, which is pivotal for cell entry, exhibits significant mutations in its variants, potentially affecting infectivity and therapeutic efficacy. Recent findings indicate upregulation of the epidermal growth factor receptor (EGFR) pathway, a key target in cancer therapy, by the spike protein of SARS-CoV-2. This study aimed to investigate the activity of the EGFR pathway against SARS-CoV-2 variants and to assess the inhibitory effects of EGFR inhibitors using SARS-CoV variant pseudoviral particles to guide future therapeutic strategies. Omicron variant SARS-CoV pseudoviral particles exhibited heightened infectivity in human angiotensin-converting enzyme 2 (hACE2)-expressing HEK293 and A549 lung cancer cells accompanied by increased EGFR pathway activation in infected cells. Using the EGFR tyrosine kinase inhibitor, osimertinib, we observed a reduction in viral infection rates in hACE2-HEK293 and A549 cells infected with the SARS-CoV-2 variant pseudoviral particles. We conducted further experiments to confirm that the reduction in infection efficacy with osimertinib treatment was not associated to a decrease in cell viability. Furthermore, this inhibitory effect of osimertinib in cell lines was corroborated in a spheroid cell culture model derived from hACE2-A549 cells. These findings suggest the potential application of EGFR-targeted antiviral therapy against highly infectious SARS-CoV-2 variants.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is concerning as vaccines designed for one variant need not essentially protect against other novel variants. Therefore, there is an urgent need to identify therapies that can act against multiple novel variants that have heightened virulence compared with the wild type. It has been reported that the spike protein of the SARS-CoV-2 virus elicits an increased expression of the epidermal growth factor receptor (EGFR) pathway. We used this information and examined whether treatment with an EGFR inhibitor, osimertinib, which is already approved for clinical use in cancer therapy, can reduce the infection caused by SARS-CoV-2, wild type, and Omicron and Delta variants, in two cell lines and one spheroid model. The results showed that osimertinib treatment successfully reduced infection efficacy, particularly in variants, and that this effect was not related to a reduction in cell viability, making this a promising strategy for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jae-chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
3
|
Lin CH, Yang XR, Lin MW, Chang HJ, Lee CH, Lin CS. Engineering a NanoBiT biosensor for detecting angiotensin-converting enzyme-2 (hACE2) interaction with SARS-CoV-2 spike protein and screening the inhibitors to block hACE2 and spike interaction. Biosens Bioelectron 2024; 263:116630. [PMID: 39102773 DOI: 10.1016/j.bios.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Xin-Rui Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ho-Ju Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Che-Hsiung Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
4
|
Thimmiraju SR, Villar MJ, Kimata JT, Strych U, Bottazzi ME, Hotez PJ, Pollet J. Optimization of Cellular Transduction by the HIV-Based Pseudovirus Platform with Pan-Coronavirus Spike Proteins. Viruses 2024; 16:1492. [PMID: 39339968 PMCID: PMC11437443 DOI: 10.3390/v16091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past three years, new SARS-CoV-2 variants have continuously emerged, evolving to a point where an immune response against the original vaccine no longer provided optimal protection against these new strains. During this time, high-throughput neutralization assays based on pseudoviruses have become a valuable tool for assessing the efficacy of new vaccines, screening updated vaccine candidates against emerging variants, and testing the efficacy of new therapeutics such as monoclonal antibodies. Lentiviral vectors derived from HIV-1 are popular for developing pseudo and chimeric viruses due to their ease of use, stability, and long-term transgene expression. However, the HIV-based platform has lower transduction rates for pseudotyping coronavirus spike proteins than other pseudovirus platforms, necessitating more optimized methods. As the SARS-CoV-2 virus evolved, we produced over 18 variants of the spike protein for pseudotyping with an HIV-based vector, optimizing experimental parameters for their production and transduction. In this article, we present key parameters that were assessed to improve such technology, including (a) the timing and method of collection of pseudovirus supernatant; (b) the timing of host cell transduction; (c) cell culture media replenishment after pseudovirus adsorption; and (d) the centrifugation (spinoculation) parameters of the host cell+ pseudovirus mix, towards improved transduction. Additionally, we found that, for some pseudoviruses, the addition of a cationic polymer (polybrene) to the culture medium improved the transduction process. These findings were applicable across variant spike pseudoviruses that include not only SARS-CoV-2 variants, but also SARS, MERS, Alpha Coronavirus (NL-63), and bat-like coronaviruses. In summary, we present improvements in transduction efficiency, which can broaden the dynamic range of the pseudovirus titration and neutralization assays.
Collapse
Affiliation(s)
- Syamala Rani Thimmiraju
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Jose Villar
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeroen Pollet
- Texas Children’s Hospital Center for Vaccine Development, Houston, TX 77030, USA; (S.R.T.); (M.J.V.); (U.S.); (M.E.B.); (P.J.H.)
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Wang Y, Wang Q, Chen X, Li B, Zhang Z, Yao L, Liu X, Zhang R. A Natural Bioactive Peptide from Pinctada fucata Pearls Can Be Used as a Potential Inhibitor of the Interaction between SARS-CoV-2 and ACE2 against COVID-19. Int J Mol Sci 2024; 25:7902. [PMID: 39063143 PMCID: PMC11277083 DOI: 10.3390/ijms25147902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The frequent occurrence of viral infections poses a serious threat to human life. Identifying effective antiviral components is urgent. In China, pearls have been important traditional medicinal ingredients since ancient times, exhibiting various therapeutic properties, including detoxification properties. In this study, a peptide, KKCH, which acts against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was derived from Pinctada fucata pearls. Molecular docking showed that it bound to the same pocket of the SARS-CoV-2 S protein and cell surface target angiotensin-converting enzyme II (ACE2). The function of KKCH was analyzed through surface plasmon resonance (SPR), Enzyme-Linked Immunosorbent Assays, immunofluorescence, and simulation methods using the SARS-CoV-2 pseudovirus and live virus. The results showed that KKCH had a good affinity for ACE2 (KD = 6.24 × 10-7 M) and could inhibit the binding of the S1 protein to ACE2 via competitive binding. As a natural peptide, KKCH inhibited the binding of the SARS-CoV-2 S1 protein to the surface of human BEAS-2B and HEK293T cells. Moreover, viral experiments confirmed the antiviral activity of KKCH against both the SARS-CoV-2 spike pseudovirus and SARS-CoV-2 live virus, with half-maximal inhibitory concentration (IC50) values of 398.1 μM and 462.4 μM, respectively. This study provides new insights and potential avenues for the prevention and treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Liping Yao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (Y.W.); (Q.W.); (X.C.); (B.L.); (Z.Z.); (L.Y.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Kitano M, Ohnishi H, Makino A, Miyamoto T, Hayashi Y, Mizuno K, Kaba S, Kawai Y, Kojima T, Kishimoto Y, Yamamoto N, Tomonaga K, Omori K. An Infection Model for SARS-CoV-2 Using Rat Transplanted with hiPSC-Airway Epithelial Cells. Tissue Eng Part A 2024. [PMID: 38832872 DOI: 10.1089/ten.tea.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Investigating the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the airway epithelium and developing effective defense strategies against infection are important. To achieve this, establishing appropriate infection models is crucial. Therefore, various in vitro models, such as cell lines and primary cultures, and in vivo models involving animals that exhibit SARS-CoV-2 infection and genetically humanized animals have been used as animal models. However, no animal model has been established that allows infection experiments with human cells under the physiological environment of airway epithelia. Therefore, we aimed to establish a novel animal model that enables infection experiments using human cells. Human induced pluripotent stem cell-derived airway epithelial cell-transplanted nude rats (hiPSC-AEC rats) were used, and infection studies were performed by spraying lentiviral pseudoviruses containing SARS-CoV-2 spike protein and the GFP gene on the tracheae. After infection, immunohistochemical analyses revealed the existence of GFP-positive-infected transplanted cells in the epithelial and submucosal layers. In this study, a SARS-CoV-2 infection animal model including human cells was established mimicking infection through respiration, and we demonstrated that the hiPSC-AEC rat could be used as an animal model for basic research and the development of therapeutic methods for human-specific respiratory infectious diseases.
Collapse
Affiliation(s)
- Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Akiko Makino
- Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto City, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Research Institute for Cell Design Medical Science, Graduate School of Medicine, Yamaguchi University, Ube City, Japan
| | - Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Shinji Kaba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Tsuyoshi Kojima
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| | - Norio Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
- Department of Otolaryngology, Kobe City Medical Center General Hospital, Kobe city, Japan
| | - Keizo Tomonaga
- Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto City, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto City, Japan
| |
Collapse
|
7
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens. J Med Chem 2024; 67:10263-10274. [PMID: 38864383 PMCID: PMC11236530 DOI: 10.1021/acs.jmedchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| |
Collapse
|
8
|
Cai Z, Kalkeri R, Wang M, Haner B, Dent D, Osman B, Skonieczny P, Ross J, Feng SL, Cai R, Zhu M, Cloney-Clark S, Plested JS. Validation of a Pseudovirus Neutralization Assay for Severe Acute Respiratory Syndrome Coronavirus 2: A High-Throughput Method for the Evaluation of Vaccine Immunogenicity. Microorganisms 2024; 12:1201. [PMID: 38930583 PMCID: PMC11205394 DOI: 10.3390/microorganisms12061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The evaluation of coronavirus disease 2019 (COVID-19) vaccine immunogenicity remains essential as the severe acute respiratory syncytial virus 2 (SARS-CoV-2) pandemic continues to evolve and as additional variants emerge. Neutralizing antibodies are a known correlate of protection for SARS-CoV-2 vaccines. A pseudovirus neutralization (PNT) assay was developed and validated at Novavax Clinical Immunology Laboratories to allow for the detection of neutralizing antibodies in vaccine clinical trial sera. The PNT assay was precise, accurate, linear, and specific in measuring SARS-CoV-2 neutralization titers in human serum for ancestral strain and the Omicron subvariants BA.5 and XBB.1.5, with an overall geometric coefficient of variation of ≤43.4%, a percent relative bias within the expected range of -60% to 150%, and a linearity value of R2 > 0.98 for all three strains. This pseudovirus assay will be useful for the analysis of vaccine clinical trial samples to assess vaccine immunogenicity. Future work will focus on modifying the assay for emerging variants, including XBB.1.16, EG.5.1, BA.2.86, and any other variants that emerge in the ongoing pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mingzhu Zhu
- Novavax, Inc., Gaithersburg, MD 20878, USA; (Z.C.); (R.K.); (M.W.); (B.H.); (D.D.); (B.O.); (P.S.); (J.R.); (S.-L.F.); (R.C.); (S.C.-C.)
| | | | - Joyce S. Plested
- Novavax, Inc., Gaithersburg, MD 20878, USA; (Z.C.); (R.K.); (M.W.); (B.H.); (D.D.); (B.O.); (P.S.); (J.R.); (S.-L.F.); (R.C.); (S.C.-C.)
| |
Collapse
|
9
|
Agafonova LE, Shumyantseva VV, Ivin YY, Piniaeva AN, Kovpak AA, Ishmukhametov AA, Budnik SV, Churyukin RS, Zhdanov DD, Archakov AI. Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation. BIOMEDITSINSKAIA KHIMIIA 2024; 70:161-167. [PMID: 38940205 DOI: 10.18097/pbmc20247003161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.
Collapse
Affiliation(s)
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia
| | - A N Piniaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia
| | - A A Kovpak
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia
| | | | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Trischitta P, Tamburello MP, Venuti A, Pennisi R. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review. Int J Mol Sci 2024; 25:5188. [PMID: 38791226 PMCID: PMC11121416 DOI: 10.3390/ijms25105188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Collapse
Affiliation(s)
- Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.P.T.)
| |
Collapse
|
11
|
Chen N, Wang R, Zhu W, Hao X, Wang J, Chen G, Qiao C, Li X, Liu C, Shen B, Feng J, Chai L, Yu Z, Xiao H. Development and characterization of an antibody that recognizes influenza virus N1 neuraminidases. PLoS One 2024; 19:e0302865. [PMID: 38723016 PMCID: PMC11081314 DOI: 10.1371/journal.pone.0302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Renxi Wang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Wanlu Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiangjun Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - ChunXia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Zuyin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Duan H, Zhang E, Ren G, Cheng Y, Yang B, Liu L, Jolicoeur N, Hu H, Xu Y, Liu B. Exploring immune evasion of SARS-CoV-2 variants using a pseudotyped system. Heliyon 2024; 10:e29939. [PMID: 38699727 PMCID: PMC11063423 DOI: 10.1016/j.heliyon.2024.e29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.
Collapse
Affiliation(s)
- Haixiao Duan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ershuai Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ge Ren
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yining Cheng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Lirong Liu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | | | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
13
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
14
|
Phiri K, Grill L. Development of a Candidate TMV Epitope Display Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:448. [PMID: 38793699 PMCID: PMC11125883 DOI: 10.3390/vaccines12050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Essential in halting the COVID-19 pandemic caused by SARS-CoV-2, it is crucial to have stable, effective, and easy-to-manufacture vaccines. We developed a potential vaccine using a tobacco mosaic virus (TMV) epitope display model presenting peptides derived from the SARS-CoV-2 spike protein. The TMV-epitope fusions in laboratory tests demonstrated binding to the SARS-CoV-2 polyclonal antibodies. The fusion constructs maintained critical epitopes of the SARS-CoV-2 spike protein, and two in particular spanned regions of the receptor-binding domain that have mutated in the more recent SARS-CoV-2 variants. This would allow for the rapid modification of vaccines in response to changes in circulating variants. The TMV-peptide fusion constructs also remained stable for over 28 days when stored at temperatures between -20 and 37 °C, an ideal property when targeting developing countries. Immunogenicity studies conducted on BALB/c mice elicited robust antibody responses against SARS-CoV-2. A strong IFNγ response was also observed in immunized mice. Three of the six TMV-peptide fusion constructs produced virus-neutralizing titers, as measured with a pseudovirus neutralization assay. These TMV-peptide fusion constructs can be combined to make a multivalent vaccine that could be adapted to meet changing virus variants. These findings demonstrate the development of a stable COVID-19 vaccine candidate by combining SARS-CoV-2 spike protein-derived peptides presented on the surface of a TMV nanoparticle.
Collapse
Affiliation(s)
- Kelvin Phiri
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA;
| | | |
Collapse
|
15
|
Rasmussen AL, Gronvall G, Lowen AC, Goodrum F. Reply to Lipsitch et al., "Public role in research oversight". J Virol 2024; 98:e0008424. [PMID: 38477585 PMCID: PMC11019829 DOI: 10.1128/jvi.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Affiliation(s)
- Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Gigi Gronvall
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
16
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
18
|
Ismail S, Unger S, Budylowski P, Poutanen S, Yau Y, Jenkins C, Anwer S, Christie-Holmes N, Kiss A, Mazzulli T, Johnstone J, McGeer A, Whittle W, Parvez B, Gray-Owen SD, Stone D, O'Connor DL. SARS-CoV-2 antibodies and their neutralizing capacity against live virus in human milk after COVID-19 infection and vaccination: prospective cohort studies. Am J Clin Nutr 2024; 119:485-495. [PMID: 38309831 DOI: 10.1016/j.ajcnut.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND There is limited understanding of the impact of coronavirus disease 2019 (COVID-19) infection and vaccination type and interval on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human milk antibodies and their neutralizing capacity. OBJECTIVES These cohort studies aimed to determine the presence of antibodies and live virus neutralizing capacity in milk from females infected with COVID-19, unexposed milk bank donors, and vaccinated females and examine impacts of vaccine interval and type. METHODS Milk was collected from participants infected with COVID-19 during pregnancy or lactation (Cohort-1) and milk bank donors (Cohort-2) from March 2020-July 2021 at 3 sequential 4-wk intervals and COVID-19 vaccinated participants with varying dose intervals (Cohort-3) (January-October 2021). Cohort-1 and Cohort-3 were recruited from Sinai Health (patients) and through social media. Cohort-2 included Ontario Milk Bank donors. Milk was examined for SARS-CoV-2 antibodies and live virus neutralization. RESULTS Of females with COVID-19, 53% (Cohort-1, n = 55) had anti-SARS-CoV-2 IgA antibodies in ≥1 milk sample. IgA+ samples (40%) were more likely neutralizing than IgA- samples (odds ratio [OR]: 2.18; 95% confidence interval [CI]: 1.03, 4.60; P = 0.04); however, 25% of IgA- samples were neutralizing. Both IgA positivity and neutralization decreased ∼6 mo after symptom onset (0-100 compared with 201+ d: IgA OR: 14.30; 95% CI: 1.08, 189.89; P = 0.04; neutralizing OR: 4.30; 95% CI: 1.55, 11.89; P = 0.005). Among milk bank donors (Cohort-2, n = 373), 4.3% had IgA antibodies; 23% of IgA+ samples were neutralizing. Vaccination (Cohort-3, n = 60) with mRNA-1273 and shorter vaccine intervals (3 to <6 wk) resulted in higher IgA and IgG than BNT162b2 (P < 0.04) and longer intervals (6 to <16 wk) (P≤0.02), respectively. Neutralizing capacity increased postvaccination (P = 0.04) but was not associated with antibody positivity. CONCLUSIONS SARS-CoV-2 infection and vaccination (type and interval) impacted milk antibodies; however, antibody presence did not consistently predict live virus neutralization. Although human milk is unequivocally the best way to nourish infants, guidance on protection to infants following maternal infection/vaccination may require more nuanced messaging. This study was registered at clinicaltrials.gov as NCT04453969 and NCT04453982.
Collapse
Affiliation(s)
- Samantha Ismail
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada; Paediatrics, Sinai Health System, Toronto, Canada
| | - Patrick Budylowski
- Combined Containment Level 3 Unit, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Susan Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Yvonne Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; The Hospital for Sick Children Research Institute, Toronto, Canada; Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Carleigh Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada
| | - Shaista Anwer
- Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | | | - Alex Kiss
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Canada; Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada
| | - Tony Mazzulli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Jennie Johnstone
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Microbiology, Sinai Health System/University Health Network, Toronto, Canada
| | - Wendy Whittle
- Obstetrics and Gynecology, Sinai Health System, Toronto, Canada
| | | | - Scott D Gray-Owen
- Combined Containment Level 3 Unit, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Debbie Stone
- Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; Rogers Hixon Ontario Human Milk Bank, Sinai Health System, Toronto, Canada; Paediatrics, Sinai Health System, Toronto, Canada; The Hospital for Sick Children Research Institute, Toronto, Canada.
| |
Collapse
|
19
|
Mei S, Zou Y, Jiang S, Xue L, Wang Y, Jing H, Yang P, Niu MM, Li J, Yuan K, Zhang Y. Highly potent dual-targeting angiotensin-converting enzyme 2 (ACE2) and Neuropilin-1 (NRP1) peptides: A promising broad-spectrum therapeutic strategy against SARS-CoV-2 infection. Eur J Med Chem 2024; 263:115908. [PMID: 37981444 DOI: 10.1016/j.ejmech.2023.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
The efficacy of approved vaccines has been diminishing due to the increasing advent of SARS-CoV-2 variants with diverse mutations that favor sneak entry. Nonetheless, these variants recognize the conservative host receptors angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) for entry, rendering the dual blockade of ACE2 and NRP1 an advantageous pan-inhibition strategy. Here, we identified a highly potent dual-targeting peptide AP-1 using structure-based virtual screening protocol. AP-1 had nanoscale binding affinities for ACE2 (Kd = 6.1 ± 0.2 nM) and NRP1 (Kd = 13.4 ± 1.2 nM) and approximately 102- and 8-fold stronger than positive inhibitors S471-503 and NMTP-5, respectively. Further evidence in pseudovirus cell infection and cytotoxicity assays demonstrated that AP-1 exhibited remarkable entry inhibition of variants of concern (VOCs) of SARS-CoV-2 without impairing host cell viability. Together, our findings suggest that AP-1 with dual-targeting ACE2/NRP1 efficacy could be a promising broad-spectrum agent for treating SARS-CoV-2 emerging VOCs.
Collapse
Affiliation(s)
- Shuang Mei
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Yunting Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Su Jiang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Lu Xue
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Yuting Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Han Jing
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Jindong Li
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yan Zhang
- Department of Pharmacy, Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|
20
|
Thimmiraju SR, Kimata JT, Pollet J. Pseudoviruses, a safer toolbox for vaccine development against enveloped viruses. Expert Rev Vaccines 2024; 23:174-185. [PMID: 38164690 DOI: 10.1080/14760584.2023.2299380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Pseudoviruses are recombinant, replication-incompetent, viral particles designed to mimic the surface characteristics of native enveloped viruses. They are a safer, and cost-effective research alternative to live viruses. With the potential emergence of the next major infectious disease, more vaccine scientists must become familiar with the pseudovirus platform as a vaccine development tool to mitigate future outbreaks. AREAS COVERED This review aims at vaccine developers to provide a basic understanding of pseudoviruses, list their production methods, and discuss their utility to assess vaccine efficacy against enveloped viral pathogens. We further illustrate their usefulness as wet-lab simulators for emerging mutant variants, and new viruses to help prepare for current and future viral outbreaks, minimizing the need for gain-of-function experiments with highly infectious or lethal enveloped viruses. EXPERT OPINION With this platform, researchers can better understand the role of virus-receptor interactions and entry in infections, prepare for dangerous mutations, and develop effective vaccines.
Collapse
Affiliation(s)
- Syamala R Thimmiraju
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Akdeniz M, Al-Shaebi Z, Altunbek M, Bayraktar C, Kayabolen A, Bagci-Onder T, Aydin O. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy. Biotechnol J 2024; 19:e2300191. [PMID: 37750467 DOI: 10.1002/biot.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Non-infectious virus-like particles (VLPs) are excellent structures for development of many biomedical applications such as drug delivery systems, vaccine production platforms, and detection techniques for infectious diseases including SARS-CoV-2 VLPs. The characterization of biochemical and biophysical properties of purified VLPs is crucial for development of detection methods and therapeutics. The presence of spike (S) protein in their structure is especially important since S protein induces immunological response. In this study, development of a rapid, low-cost, and easy-to-use technique for both characterization and detection of S protein in the two VLPs, which are SARS-CoV-2 VLPs and HIV-based VLPs was achieved using surface-enhanced Raman spectroscopy (SERS). To analyze and classify datasets of SERS spectra obtained from the VLP groups, machine learning classification techniques including support vector machine (SVM), k-nearest neighbors (kNN), and random forest (RF) were utilized. Among them, the SVM classification algorithm demonstrated the best classification performance for SARS-CoV-2 VLPs and HIV-based VLPs groups with 87.5% and 92.5% accuracy, respectively. This study could be valuable for the rapid characterization of VLPs for the development of novel therapeutics or detection of structural proteins of viruses leading to a variety of infectious diseases.
Collapse
Affiliation(s)
- Munevver Akdeniz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Zakarya Al-Shaebi
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Chen J, Chen J, Lei Z, Zhang F, Zeng LH, Wu X, Li S, Tan J. Amyloid precursor protein facilitates SARS-CoV-2 virus entry into cells and enhances amyloid-β-associated pathology in APP/PS1 mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:396. [PMID: 38104129 PMCID: PMC10725492 DOI: 10.1038/s41398-023-02692-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023] Open
Abstract
Although there are indications of a trend towards less severe acute respiratory symptoms and a decline in overall lethality from the novel Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), more and more attention has been paid to the long COVID, including the increased risk of Alzheimer's disease (AD) in COVID-19 patients. In this study, we aim to investigate the involvement of N-terminal amyloid precursor protein (APP) in SARS-CoV-2-induced amyloid-β (Aβ) pathology. Utilizing both in vitro and in vivo methodologies, we first investigated the interaction between the spike protein of SARS-CoV-2 and N-terminal APP via LSPR and CoIP assays. The in vitro impacts of APP overexpression on virus infection were further evaluated in HEK293T/ACE2 cells, SH-SY5Y cells, and Vero cells. We also analyzed the pseudovirus infection in vivo in a mouse model overexpressing human wild-type APP. Finally, we evaluated the impact of APP on pseudovirus infection within human brain organoids and assessed the chronic effects of pseudovirus infection on Aβ levels. We reported here for the first time that APP, the precursor of the Aβ of AD, interacts with the Spike protein of SARS-CoV-2. Moreover, both in vivo and in vitro data further indicated that APP promotes the cellular entry of the virus, and exacerbates Aβ-associated pathology in the APP/PS1 mouse model of AD, which can be ameliorated by N-terminal APP blockage. Our findings provide experimental evidence to interpret APP-related mechanisms underlying AD-like neuropathology in COVID-19 patients and may pave the way to help inform risk management and therapeutic strategies against diseases accordingly.
Collapse
Grants
- This study was supported by the High-level Talent Foundation of Guizhou Medical University (YJ19017, HY2020, J.T.), Anyu Biopharmaceutics, Inc., Hangzhou (06202010204, J.T.), and Zhejiang Provincial Natural Science foundation (LY19HH090013, ZW),
- Scientific Research Project of higher education Institutions in Guizhou Province [192(2022), J.C.], Science and Technology Program of Guizhou Province [ZK(2023), General 301, J.C.].
Collapse
Affiliation(s)
- Jiang Chen
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Junsheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, 116021, Dalian, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 310015, Hangzhou, Zhejiang, China.
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, 550025, Guiyang, Guizhou, China.
| |
Collapse
|
23
|
Hu W, Meng L, Wang C, Lu W, Tong X, Lin R, Xu T, Chen L, Cui A, Xu X, Li A, Tang J, Gao H, Pei Z, Zhang R, Wang Y, Wang Y, Han W, Jiang N, Xiong C, Feng Y, Lee K, Chen M. Spatiotemporal observations of host-pathogen interactions in mucosa during SARS-CoV-2 infection indicate a protective role of ILC2s. Microbiol Spectr 2023; 11:e0087823. [PMID: 37937994 PMCID: PMC10714800 DOI: 10.1128/spectrum.00878-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Our study revealed the spatial interaction between humanized ACE2 and pseudovirus expressing Spike, emphasizing the role of type 2 innate lymphoid cells during the initial phase of viral infection. These findings provide a foundation for the development of mucosal vaccines and other treatment approaches for both pre- and post-infection management of coronavirus disease 2019.
Collapse
Affiliation(s)
- Wei Hu
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhan Lu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Rui Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - An Cui
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Xu
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Anni Li
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Tang
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongru Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenle Pei
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ruonan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yicong Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Shanghai Medical College Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Chenglong Xiong
- Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Kuinyu Lee
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mingquan Chen
- Department of Emergency Medicine, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
25
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
26
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal aggregation confounds cell-based Covid-19 antiviral screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564435. [PMID: 37961552 PMCID: PMC10634915 DOI: 10.1101/2023.10.27.564435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
27
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Sung JCC, Wu PL, So EYM, Wu KC, Chan SMN, Kwong KWY, Sze ETP. Assessment of novel antiviral filter using pseudo-type SARS-CoV-2 virus in fast air velocity vertical-type wind tunnel. Sci Rep 2023; 13:13947. [PMID: 37626166 PMCID: PMC10457382 DOI: 10.1038/s41598-023-41245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Current evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can remain suspended spread in aerosols for longer period of time under poorly ventilated indoor setting. To minimize spreading, application of antiviral filter to capture infectious aerosols and to inactivate SARS-CoV-2 can be a promising solution. This study aimed to develop a method to assess simultaneously the filtration and removal efficiency of aerosolized pseudo-type SARS-CoV-2 using a vertical-type wind tunnel with relatively high face velocity (1.3 m/s). Comparing with the untreated spunlace non-woven filter, the C-POLAR™ treated filter increased the filtration efficiency from 74.2 ± 11.5% to 97.2 ± 1.7%, with the removal efficiency of 99.4 ± 0.051%. The results provided not only solid evidence to support the effectiveness of the cationic polymeric coated filter in fighting against the SARS-CoV-2 pandemic, but also a method to test viral filtration and removal efficiency under relative fast air velocity and with a safer environment to the operators.
Collapse
Affiliation(s)
| | - Pak-Long Wu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Ellis Yung-Mau So
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China.
| |
Collapse
|
29
|
Dong T, Zhang X, Yuan J, Lin Z, Yin P, Yu H, Wang M, Liu A. Sensitive Lateral Flow Immunoassay Based on Specific Peptide and Superior Oxidase Mimics with a Universal Dual-Mode Significant Signal Amplification. Anal Chem 2023; 95:12532-12540. [PMID: 37553756 DOI: 10.1021/acs.analchem.3c02821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Rapid and sensitive antigen detection using a lateral flow immunoassay (LFIA) is crucial for diagnosing infectious diseases due to its simplicity, speed, and user-friendly features. However, it remains a critical issue to explore specific biorecognition elements and powerful signal amplification. In this study, taking SARS-CoV-2 as a proof of concept, a specific peptide, WFLNDSELIML, binding to the SARS-CoV-2 spike (S) antigen was identified by a nonamplified biopanning method, which exhibited high affinity to the target, with a dissociation constant of 9.29 ± 1.55 nM. Molecular docking analysis reveals that this peptide binds to the N-terminal domain of the SARS-CoV-2 S antigen. Then, using this peptide as a capture probe and angiotensin-converting enzyme 2 as a detection probe, a peptide-based lateral flow immunoassay (pLFIA) for the sensitive detection of the SARS-CoV-2 S antigen without any antibody was developed, for which a polydopamine nanosphere (PDA)@MnO2 nanocomposite with excellent oxidase-like activity was used as a colorimetric label, exhibiting dual-mode remarkable signal amplification of natural melanin and on-demand nanozyme catalytic enhancement. The PDA@MnO2-based pLFIA is capable of detecting the SARS-CoV-2 S antigen with a limit of detection of 8.01 pg/mL, which is 18.7 times lower than that of a conventional pLFIA tagged with gold nanoparticles. Additionally, the as-proposed PDA@MnO2-based pLFIA can detect up to 150 transduction units/mL SARS-CoV-2 pseudoviruses spiked in saliva samples. Given the outstanding analytical performance, the proposed PDA@MnO2-based pLFIA may offer a reliable option for the rapid diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xin Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jinlong Yuan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ziting Lin
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Qingdao Hightop Biotech Co., Ltd., 369 Hedong Road, Hi-tech Industrial Development Zone, Qingdao 266112, China
| | - Pengxue Yin
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
30
|
McColman S, Shkalla K, Sidhu P, Liang J, Osman S, Kovacs N, Bokhari Z, Forjaz Marques AC, Li Y, Lin Q, Zhang H, Cramb DT. SARS-CoV-2 virus-like-particles via liposomal reconstitution of spike glycoproteins. NANOSCALE ADVANCES 2023; 5:4167-4181. [PMID: 37560413 PMCID: PMC10408587 DOI: 10.1039/d3na00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The SARS-CoV-2 virus, implicated in the COVID-19 pandemic, recognizes and binds host cells using its spike glycoprotein through an angiotensin converting enzyme 2 (ACE-2) receptor-mediated pathway. Recent research suggests that spatial distributions of the spike protein may influence viral interactions with target cells and immune systems. The goal of this study has been to develop a liposome-based virus-like particle (VLP) by reconstituting the SARS-CoV-2 spike glycoprotein within a synthetic nanoparticle membrane, aiming to eventually establish tunability in spike protein presentation on the nanoparticle surface. Here we report on first steps to this goal, wherein liposomal SARS-CoV-2 VLPs were successfully produced via detergent mediated spike protein reconstitution. The resultant VLPs are shown to successfully co-localize in vitro with the ACE-2 receptor on lung epithelial cell surfaces, followed by internalization into these cells. These VLPs are the first step toward the overall goal of this research which is to form an understanding of the relationship between spike protein surface density and cell-level immune response, eventually toward creating better vaccines and anti-viral therapeutics.
Collapse
Affiliation(s)
- Sarah McColman
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Klaidi Shkalla
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Pavleen Sidhu
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
| | - Selena Osman
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Norbert Kovacs
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Zainab Bokhari
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
| | - Ana Carolina Forjaz Marques
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Faculdade de Ciências Farmacêuticas, Seção Técnica de Graduação, Universidade Estadual Paulista Araraquara SP Brazil
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Qiwen Lin
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Physiology, University of Toronto Toronto ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
- Departments of Anaesthesia and Physiology, Interdepartmental Division of Critical Care Medicine, University of Toronto Toronto ON Canada
| | - David T Cramb
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan University Toronto ON Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Department of Chemistry, Faculty of Science, University of Calgary Calgary AB Canada
| |
Collapse
|
31
|
Izac JR, Kwee EJ, Tian L, Elsheikh E, Gaigalas AK, Elliott JT, Wang L. Development of a Cell-Based SARS-CoV-2 Pseudovirus Neutralization Assay Using Imaging and Flow Cytometry Analysis. Int J Mol Sci 2023; 24:12332. [PMID: 37569707 PMCID: PMC10418775 DOI: 10.3390/ijms241512332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
COVID-19 is an ongoing, global pandemic caused by the novel, highly infectious SARS-CoV-2 virus. Efforts to mitigate the effects of SARS-CoV-2, such as mass vaccination and development of monoclonal therapeutics, require precise measurements of correlative, functional neutralizing antibodies that block virus infection. The development of rapid, safe, and easy-to-use neutralization assays is essential for faster diagnosis and treatment. Here, we developed a vesicular stomatitis virus (VSV)-based neutralization assay with two readout methods, imaging and flow cytometry, that were capable of quantifying varying degrees of neutralization in patient serum samples. We tested two different spike-pseudoviruses and conducted a time-course assay at multiple multiplicities of infection (MOIs) to optimize the assay workflow. The results of this assay correlate with the results of previously developed serology and surrogate neutralization assays. The two pseudovirus readout methods produced similar values of 50% neutralization titer values. Harvest-free in situ readouts for live-cell imaging and high-throughput analysis results for flow cytometry can provide unique capabilities for fast evaluation of neutralization, which is critical for the mitigation of future pandemics.
Collapse
Affiliation(s)
- Jerilyn R. Izac
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.E.); (A.K.G.); (J.T.E.); (L.W.)
| | - Edward J. Kwee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.E.); (A.K.G.); (J.T.E.); (L.W.)
| | | | | | | | | | | |
Collapse
|
32
|
Zhu J, Yan H, Shi M, Zhang M, Lu J, Wang J, Chen L, Wang Y, Li L, Miao L, Zhang H. Luteolin inhibits spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binding to angiotensin-converting enzyme 2. Phytother Res 2023; 37:3508-3521. [PMID: 37166054 DOI: 10.1002/ptr.7826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that poses a serious threat to global public health. In an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike (S) protein to engage with angiotensin-converting enzyme 2 (ACE2) in host cells. Chinese herbal medicines and their active components exhibit antiviral activity, with luteolin being a flavonoid that can significantly inhibit SARS-CoV infection. However, whether it can block the interaction between the S-protein RBD of SARS-CoV-2 and ACE2 has not yet been elucidated. Here, we investigated the effects of luteolin on the binding of the S-protein RBD to ACE2. By employing a competitive binding assay in vitro, we found that luteolin significantly blocked the binding of S-protein RBD to ACE2 with IC50 values of 0.61 mM, which was confirmed by the neutralized infection with SARS-CoV-2 pseudovirus in vivo. A surface plasmon resonance-based competition assay revealed that luteolin significantly affects the binding of the S-protein RBD to the ACE2 receptor. Molecular docking was performed to predict the binding sites of luteolin to the S-protein RBD-ACE2 complex. The active binding sites were defined based on published literature, and we found that luteolin might interfere with the mixture at residues including LYS353, ASP30, and TYR83 in the cellular ACE2 receptor and GLY496, GLN498, TYR505, LEU455, GLN493, and GLU484 in the S-protein RBD. These residues may together form attractive charges and destroy the stable interaction of S-protein RBD-ACE2. Luteolin also inhibits SARS-CoV-2 spike protein-induced platelet spreading, thereby inhibiting the binding of the spike protein to ACE2. Our results are the first to provide evidence that luteolin is an anti-SARS-CoV-2 agent associated with interference between viral S-protein RBD-ACE2 interactions.
Collapse
Affiliation(s)
- Junjie Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiabao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Knyazev EN, Kalinin RS, Abrikosova VA, Mokrushina YA, Tonevitskaya SA. KDM5 Family Demethylase Inhibitor KDOAM-25 Reduces Entry of SARS-CoV-2 Pseudotyped Viral Particles into Cells. Bull Exp Biol Med 2023:10.1007/s10517-023-05827-w. [PMID: 37336812 DOI: 10.1007/s10517-023-05827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/21/2023]
Abstract
We studied the effect of KDM5 family demethylase inhibitors (JIB-04, PBIT, and KDOAM-25) on the penetration of SARS-CoV-2 pseudotyped viruses into differentiated Caco-2 cells and HEK293T cells with ACE2 hyperexpression. The above drugs were not cytotoxic. Only KDOAM-25 significantly reduced virus entry into the cells. The expression of ACE2 mRNA in Caco-2 significantly increased, while TMPRSS2 expression did not significantly change under these conditions. In differentiated Caco-2 cells, KDOAM-25 did not affect the expression of BRCA1, CDH1, TP53, SNAI1, VIM, and UGCG genes, for which an association with knockdown or overexpression of KDM5 demethylases or with the action of demethylase inhibitors had previously been shown. In undifferentiated Caco-2 cells, the expression of BRCA1, SNAI1, VIM, and CDH1 was significantly increased under the action of KDOAM-25.
Collapse
Affiliation(s)
- E N Knyazev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia.
| | - R S Kalinin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V A Abrikosova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu A Mokrushina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S A Tonevitskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
34
|
Passariello M, Esposito S, Manna L, Rapuano Lembo R, Zollo I, Sasso E, Amato F, De Lorenzo C. Comparative Analysis of a Human Neutralizing mAb Specific for SARS-CoV-2 Spike-RBD with Cilgavimab and Tixagevimab for the Efficacy on the Omicron Variant in Neutralizing and Detection Assays. Int J Mol Sci 2023; 24:10053. [PMID: 37373201 DOI: 10.3390/ijms241210053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3's ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Speranza Esposito
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Lorenzo Manna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Rosa Rapuano Lembo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
- European School of Molecular Medicine, University of Milan, 20122 Milan, MI, Italy
| | - Immacolata Zollo
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, NA, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy
| |
Collapse
|
35
|
Wang C, He F, Sun K, Guo K, Lu S, Wu T, Gao X, Fang M. Identification and characterization of 7-azaindole derivatives as inhibitors of the SARS-CoV-2 spike-hACE2 protein interaction. Int J Biol Macromol 2023:125182. [PMID: 37276898 DOI: 10.1016/j.ijbiomac.2023.125182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has become a global public health crisis. The entry of SARS-CoV-2 into host cells is facilitated by the binding of its spike protein (S1-RBD) to the host receptor hACE2. Small molecule compounds targeting S1-RBD-hACE2 interaction could provide an alternative therapeutic strategy sensitive to viral mutations. In this study, we identified G7a as a hit compound that targets the S1-RBD-hACE2 interaction, using high-throughput screening in the SARS2-S pseudovirus model. To enhance the antiviral activity of G7a, we designed and synthesized a series of novel 7-azaindole derivatives that bind to the S1-RBD-hACE2 interface. Surprisingly, ASM-7 showed excellent antiviral activity and low cytotoxicity, as confirmed by pseudovirus and native virus assays. Molecular docking and molecular dynamics simulations revealed that ASM-7 could stably bind to the binding interface of S1-RBD-hACE2, forming strong non-covalent interactions with key residues. Furthermore, the binding of ASM-7 caused alterations in the structural dynamics of both S1-RBD and hACE2, resulting in a decrease in their binding affinity and ultimately impeding the viral invasion of host cells. Our findings demonstrate that ASM-7 is a promising lead compound for developing novel therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Chaojie Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ke Sun
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Kaiqiang Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Sheng Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Tong Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Meijuan Fang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
36
|
He C, Alu A, Lei H, Yang J, Hong W, Song X, Li J, Yang L, Wang W, Shen G, Lu G, Wei X. A recombinant spike-XBB.1.5 protein vaccine induces broad-spectrum immune responses against XBB.1.5-included Omicron variants of SARS-CoV-2. MedComm (Beijing) 2023; 4:e263. [PMID: 37125241 PMCID: PMC10133731 DOI: 10.1002/mco2.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The XBB.1.5 subvariant has drawn great attention owing to its exceptionality in immune evasion and transmissibility. Therefore, it is essential to develop a universally protective coronavirus disease 2019 vaccine against various strains of Omicron, especially XBB.1.5. In this study, we evaluated and compared the immune responses induced by six different spike protein vaccines targeting the ancestral or various Omicron strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. We found that spike-wild-type immunization induced high titers of neutralizing antibodies (NAbs) against ancestral SARS-CoV-2. However, its activity in neutralizing Omicron subvariants decreased sharply as the number of mutations in receptor-binding domain (RBD) of these viruses increased. Spike-BA.5, spike-BF.7, and spike-BQ.1.1 vaccines induced strong NAbs against BA.5, BF.7, BQ.1, and BQ.1.1 viruses but were poor in protecting against XBB and XBB.1.5, which have more RBD mutations. In sharp contrast, spike-XBB.1.5 vaccination can activate strong and broadly protective immune responses against XBB.1.5 and other common subvariants of Omicron. By performing correlation analysis, we found that the NAbs titers were negatively correlated with the number of RBD mutations in the Omicron subvariants. Vaccines with more RBD mutations can effectively overcome the immune resistance caused by the accumulation of RBD mutations, making spike-XBB.1.5 the most promising vaccine candidate against universal Omicron variants.
Collapse
Affiliation(s)
- Cai He
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
37
|
Alboni S, Secco V, Papotti B, Vilella A, Adorni MP, Zimetti F, Schaeffer L, Tascedda F, Zoli M, Leblanc P, Villa E. Hydroxypropyl-β-Cyclodextrin Depletes Membrane Cholesterol and Inhibits SARS-CoV-2 Entry into HEK293T-ACE hi Cells. Pathogens 2023; 12:pathogens12050647. [PMID: 37242317 DOI: 10.3390/pathogens12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination has drastically decreased mortality due to coronavirus disease 19 (COVID-19), but not the rate of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alternative strategies such as inhibition of virus entry by interference with angiotensin-I-converting enzyme 2 (ACE2) receptors could be warranted. Cyclodextrins (CDs) are cyclic oligosaccharides that are able to deplete cholesterol from membrane lipid rafts, causing ACE2 receptors to relocate to areas devoid of lipid rafts. To explore the possibility of reducing SARS-CoV-2 entry, we tested hydroxypropyl-β-cyclodextrin (HPβCD) in a HEK293T-ACE2hi cell line stably overexpressing human ACE2 and Spike-pseudotyped SARS-CoV-2 lentiviral particles. We showed that HPβCD is not toxic to the cells at concentrations up to 5 mM, and that this concentration had no significant effect on cell cycle parameters in any experimental condition tested. Exposure of HEK293T-ACEhi cells to concentrations of HPβCD starting from 2.5 mM to 10 mM showed a concentration-dependent reduction of approximately 50% of the membrane cholesterol content. In addition, incubation of HEK293T-ACEhi cells with HIV-S-CoV-2 pseudotyped particles in the presence of increasing concentrations of HPβCD (from 0.1 to 10 mM) displayed a concentration-dependent effect on SARS-CoV-2 entry efficiency. Significant effects were detected at concentrations at least one order of magnitude lower than the lowest concentration showing toxic effects. These data indicate that HPβCD is a candidate for use as a SARS-CoV-2 prophylactic agent.
Collapse
Affiliation(s)
- Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Antonietta Vilella
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Michele Zoli
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Pascal Leblanc
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Erica Villa
- CHIMOMO Department, University of Modena and Reggio Emilia, and Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
38
|
Zhang Z, King MR. Neutralization of the new coronavirus by extracting their spikes using engineered liposomes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102674. [PMID: 37054806 PMCID: PMC10085972 DOI: 10.1016/j.nano.2023.102674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
The devastating COVID-19 pandemic motivates the development of safe and effective antivirals to reduce morbidity and mortality associated with infection. We developed nanoscale liposomes that are coated with the cell receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Lentiviral particles pseudotyped with the spike protein of SARS-CoV-2 were constructed and used to test the virus neutralization potential of the engineered liposomes. Under TEM, we observed for the first time a dissociation of spike proteins from the pseudovirus surface when the pseudovirus was purified. The liposomes potently inhibit viral entry into host cells by extracting the spike proteins from the pseudovirus surface. As the receptor on the liposome surface can be readily changed to target other viruses, the receptor-coated liposome represents a promising strategy for broad spectrum antiviral development.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
39
|
Ma H, Zong HF, Liu JJ, Yue YL, Ke Y, Liao YJ, Tang HN, Wang L, Wang SS, Yuan YS, Wu MY, Bian YL, Zhang BH, Yin HY, Jiang H, Sun T, Han L, Xie YQ, Zhu JW. Long-term passaging of pseudo-typed SARS-CoV-2 reveals the breadth of monoclonal and bispecific antibody cocktails. Acta Pharmacol Sin 2023:10.1038/s41401-022-01043-w. [PMID: 36707721 PMCID: PMC9880922 DOI: 10.1038/s41401-022-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.
Collapse
Affiliation(s)
- Hang Ma
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China ,grid.263906.80000 0001 0362 4044School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 China
| | - Hui-fang Zong
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China ,Jecho Institute, Co., Ltd., Shanghai, 200240 China
| | - Jun-jun Liu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ya-li Yue
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yong Ke
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yun-ji Liao
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hao-neng Tang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lei Wang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | | | - Yun-sheng Yuan
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ming-yuan Wu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yan-lin Bian
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Bao-hong Zhang
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hai-yang Yin
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD 21704 USA
| | - Tao Sun
- grid.16821.3c0000 0004 0368 8293School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China ,Shanghai Municipal Veterinary Key Laboratory, Shanghai, 200240 China
| | - Lei Han
- Jecho Institute, Co., Ltd., Shanghai, 200240 China
| | - Yue-qing Xie
- Jecho Laboratories, Inc., Frederick, MD 21704 USA
| | - Jian-wei Zhu
- grid.419897.a0000 0004 0369 313XEngineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, 200240 China ,grid.16821.3c0000 0004 0368 8293School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
40
|
Sejdic A, Frische A, Jørgensen CS, Rasmussen LD, Trebbien R, Dungu A, Holler JG, Ostrowski SR, Eriksson R, Søborg C, Nielsen TL, Fischer TK, Lindegaard B, Franck KT, Harboe ZB. High titers of neutralizing SARS-CoV-2 antibodies six months after symptom onset are associated with increased severity in COVID-19 hospitalized patients. Virol J 2023; 20:14. [PMID: 36698135 PMCID: PMC9875770 DOI: 10.1186/s12985-023-01974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Viral shedding and neutralizing antibody (NAb) dynamics among patients hospitalized with severe coronavirus disease 2019 (COVID-19) and immune correlates of protection have been key questions throughout the pandemic. We investigated the duration of reverse transcriptase-polymerase chain reaction (RT-PCR) positivity, infectious viral shedding and NAb titers as well as the association between NAb titers and disease severity in hospitalized COVID-19 patients in Denmark 2020-2021. MATERIALS AND METHODS Prospective single-center observational cohort study of 47 hospitalized COVID-19 patients. Oropharyngeal swabs were collected at eight time points during the initial 30 days of inclusion. Serum samples were collected after a median time of 7 (IQR 5 - 10), 37 (IQR 35 - 38), 97 (IQR 95 - 100), and 187 (IQR 185 - 190) days after symptom onset. NAb titers were determined by an in-house live virus microneutralization assay. Viral culturing was performed in Vero E6 cells. RESULTS Patients with high disease severity had higher mean log2 NAb titers at day 37 (1.58, 95% CI [0.34 -2.81]), 97 (2.07, 95% CI [0.53-3.62]) and 187 (2.49, 95% CI [0.20- 4.78]) after symptom onset, compared to patients with low disease severity. Peak viral load (0.072, 95% CI [- 0.627 - 0.728]), expressed as log10 SARS-CoV-2 copies/ml, was not associated with disease severity. Virus cultivation attempts were unsuccessful in almost all (60/61) oropharyngeal samples collected shortly after hospital admission. CONCLUSIONS We document an association between high disease severity and high mean NAb titers at days 37, 97 and 187 after symptom onset. However, peak viral load during admission was not associated with disease severity. TRIAL REGISTRATION The study is registered at https://clinicaltrials.gov/ (NCT05274373).
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
- Statens Serum Institut, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | - Arnold Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Jon G Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Robert Eriksson
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| | - Christian Søborg
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thyge L Nielsen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thea K Fischer
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng. J Ginseng Res 2023; 47:123-132. [PMID: 35855181 PMCID: PMC9283196 DOI: 10.1016/j.jgr.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Background Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.
Collapse
|
42
|
Peng S, Li G, Lin Y, Guo X, Xu H, Qiu W, Zhu H, Zheng J, Sun W, Hu X, Zhang G, Li B, Pathak JL, Bi X, Dai J. Stability of SARS-CoV-2 in cold-chain transportation environments and the efficacy of disinfection measures. Front Cell Infect Microbiol 2023; 13:1170505. [PMID: 37153150 PMCID: PMC10154586 DOI: 10.3389/fcimb.2023.1170505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.
Collapse
Affiliation(s)
- Shuyi Peng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guojie Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaolan Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenxi Qiu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huijuan Zhu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaying Zheng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaodong Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| | - Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jianwei Dai, ; Xinhui Bi, ; Janak L. Pathak,
| |
Collapse
|
43
|
Hu L, Tang Y, Mei L, Liang M, Huang J, Wang X, Wu L, Jiang J, Li L, Long F, Xiao J, Tan L, Lu S, Peng T. A new intracellular targeting motif in the cytoplasmic tail of the spike protein may act as a target to inhibit SARS-CoV-2 assembly. Antiviral Res 2023; 209:105509. [PMID: 36572190 PMCID: PMC9788845 DOI: 10.1016/j.antiviral.2022.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Corresponding author
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengdi Liang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinxian Huang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xufei Wang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Guangdong South China Vaccine, Guangzhou, China,Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, China,Corresponding author. State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
44
|
Mendon N, Ganie RA, Kesarwani S, Dileep D, Sasi S, Lama P, Chandra A, Sirajuddin M. Nanobody derived using a peptide epitope from the spike protein receptor-binding motif inhibits entry of SARS-CoV-2 variants. J Biol Chem 2023; 299:102732. [PMID: 36423687 PMCID: PMC9678391 DOI: 10.1016/j.jbc.2022.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of new escape mutants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has escalated its penetration among the human population and has reinstated its status as a global pandemic. Therefore, developing effective antiviral therapy against emerging SARS-CoV variants and other viruses in a short period becomes essential. Blocking SARS-CoV-2 entry into human host cells by disrupting the spike glycoprotein-angiotensin-converting enzyme 2 interaction has already been exploited for vaccine development and monoclonal antibody therapy. Unlike the previous reports, our study used a nine-amino acid peptide from the receptor-binding motif of the spike protein as an epitope. We report the identification of an efficacious nanobody N1.2 that blocks the entry of pseudovirus-containing SARS-CoV-2 spike as the surface glycoprotein. Moreover, using mCherry fluorescence-based reporter assay, we observe a more potent neutralizing effect against both the hCoV19 (Wuhan/WIV04/2019) and the Omicron (BA.1) pseudotyped spike virus with a bivalent version of the N1.2 nanobody. In summary, our study presents a rapid and efficient methodology to use peptide sequences from a protein-receptor interaction interface as epitopes for screening nanobodies against potential pathogenic targets. We propose that this approach can also be widely extended to target other viruses and pathogens in the future.
Collapse
Affiliation(s)
- Nivya Mendon
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rayees A Ganie
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shubham Kesarwani
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India
| | - Drisya Dileep
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Sarika Sasi
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bengaluru, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bengaluru, India.
| |
Collapse
|
45
|
Wang Y, Zhou Z, Wu X, Li T, Wu J, Cai M, Nie J, Wang W, Cui Z. Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:1-27. [PMID: 36920689 DOI: 10.1007/978-981-99-0113-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.
Collapse
Affiliation(s)
- Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| | - Zehua Zhou
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
46
|
Reyes S, Rizzo E, Ting A, Dikici E, Daunert S, Deo SK. Metal organic framework encapsulated tamavidin-Gluc reporter: application in COVID-19 spike antigen bioluminescent immunoassay. SENSORS & DIAGNOSTICS 2022; 1:1198-1208. [PMID: 36561132 PMCID: PMC9662597 DOI: 10.1039/d2sd00145d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Enzyme linked immunosorbent assay (ELISA) is one of the most utilized serological methods to diagnose and identify etiologic agents of many infectious diseases and other physiologically important analytes. ELISA can be used either alone or adjunct to other diagnostic methods such as molecular arrays, and other serological techniques. Most ELISA assays utilize reagents that are proteinaceous in nature, which are not very stable and require cold-chain transport systems. Development of a desirable immunoassay requires stability of reagents used and its ability to be stored at room temperature without sacrificing the activity of the reagents or the protein of interest. Metal organic frameworks (MOFs) are a rapidly emerging and evolving class of porous polymeric materials used in a variety of biosensor applications. In this study, we introduce the use of MOFs to stabilize a universal reporter fusion protein, specifically, avidin-like protein (Tam-avidin2) and the small bioluminescent protein Gaussia luciferase (Gluc) forming the fusion reporter, tamavidin2-Gluc (TA2-Gluc). This fusion protein serves as a universal reporter for any assays that utilize biotin-avidin binding strategy. Using SARS-CoV2 S1 spike antigen as the model target antigen, we demonstrated that encapsulation of TA2-Gluc fusion protein using a nano-porous material, zeolitic imidazolate framework-8 (ZIF-8), allows us to store and preserve this reporter protein at room temperature for over 6 months and use it as a reporter for an ELISA assay. Our optimized assay was validated demonstrating a 0.26 μg mL-1 limit of detection, high reproducibility of assay over days, detection of spiked non-virulent SARS-COV2 pseudovirus in real sample matrix, and detection in real COVID-19 infected individuals. This result can lead to the utilization of our TA2-Gluc fusion protein reporter with other assays and potentially in diagnostic technologies in a point-of-care setting.
Collapse
Affiliation(s)
- Sherwin Reyes
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami Miami FL 33136 USA
| | - Emily Rizzo
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
| | - Albert Ting
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami Miami FL 33136 USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami Miami FL 33136 USA
- Clinical and Translational Science Institute of University of Miami FL 33136 USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami - Miller School of Medicine Miami FL 33136 USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute of University of Miami Miami FL 33136 USA
| |
Collapse
|
47
|
Yin S, Mei S, Li Z, Xu Z, Wu Y, Chen X, Liu D, Niu MM, Li J. Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75. Front Pharmacol 2022; 13:1037993. [PMID: 36408220 PMCID: PMC9666779 DOI: 10.3389/fphar.2022.1037993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Available vaccine-based immunity may at high risk of being evaded due to substantial mutations in the variant Omicron. The main protease (Mpro) of SARS-CoV-2 and human neuropilin-1 (NRP1), two less mutable proteins, have been reported to be crucial for SARS-CoV-2 replication and entry into host cells, respectively. Their dual blockade may avoid vaccine failure caused by continuous mutations of the SARS-CoV-2 genome and exert synergistic antiviral efficacy. Herein, four cyclic peptides non-covalently targeting both Mpro and NRP1 were identified using virtual screening. Among them, MN-2 showed highly potent affinity to Mpro (Kd = 18.2 ± 1.9 nM) and NRP1 (Kd = 12.3 ± 1.2 nM), which was about 3,478-fold and 74-fold stronger than that of the positive inhibitors Peptide-21 and EG3287. Furthermore, MN-2 exhibited significant inhibitory activity against Mpro and remarkable anti-infective activity against the pseudotyped variant Omicron BA.2.75 without obvious cytotoxicity. These data demonstrated that MN-2, a novel non-covalent cyclic peptide, is a promising agent against Omicron BA.2.75.
Collapse
Affiliation(s)
- Shengnan Yin
- Department of Pharmacy, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
| | - Shuang Mei
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Li
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Zhen Xu
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yuting Wu
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xiujuan Chen
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Dongmei Liu
- Department of Pharmacy, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| | - Jindong Li
- Institute of Clinical Medicine, Department of Pharmacy, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
- *Correspondence: Xiujuan Chen, ; Jindong Li, ; Dongmei Liu, ; Miao-Miao Niu,
| |
Collapse
|
48
|
Cruz-Cardenas JA, Gutierrez M, López-Arredondo A, Castañeda-Delgado JE, Rojas-Martinez A, Nakamura Y, Enciso-Moreno JA, Palomares LA, Brunck MEG. A pseudovirus-based platform to measure neutralizing antibodies in Mexico using SARS-CoV-2 as proof-of-concept. Sci Rep 2022; 12:17966. [PMID: 36289285 PMCID: PMC9606276 DOI: 10.1038/s41598-022-22921-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
The gold-standard method to evaluate a functional antiviral immune response is to titer neutralizing antibodies (NAbs) against a viral pathogen. This is historically performed using an in vitro assay of virus-mediated infection, which requires BSL-3 facilities. As these are insufficient in Latin American countries, including Mexico, scant information is obtained locally about viral pathogens NAb, using a functional assay. An alternative solution to using a BSL-3 assay with live virus is to use a BSL-2-safe assay with a non-replicative pseudovirus. Pseudoviral particles can be engineered to display a selected pathogen's entry protein on their surface, and to deliver a reporter gene into target cells upon transduction. Here we comprehensively describe the first development of a BSL-2 safe NAbs-measuring functional assay in Mexico, based on the production of pseudotyped lentiviral particles. As proof-of-concept, the assay is based on Nanoluc luciferase-mediated luminescence measurements from target cells transduced with SARS-CoV-2 Spike-pseudotyped lentiviral particles. We applied the optimized assay in a BSL-2 facility to measure NAbs in 65 serum samples, which evidenced the assay with 100% sensitivity, 86.6% specificity and 96% accuracy. Overall, this is the first report of a BSL-2 safe pseudovirus-based functional assay developed in Mexico to measure NAbs, and a cornerstone methodology necessary to measure NAbs with a functional assay in limited resources settings.
Collapse
Affiliation(s)
| | - Michelle Gutierrez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | | | | | | | - Yukio Nakamura
- Cell Engineering Division, RIKEN Bioresource Research Center, Tsukuba, Japan
| | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas-IMSS, Zacatecas, México
- Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Laura A Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Marion E G Brunck
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, México.
| |
Collapse
|
49
|
Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:2154. [PMID: 36298709 PMCID: PMC9611092 DOI: 10.3390/v14102154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2023] Open
Abstract
In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.
Collapse
Affiliation(s)
- Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Dmitry S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
50
|
Lin C, Wang W, Li M, Lin Y, Yang Z, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen K, Kuo C, Lin Y, Hsiao H, Lin K, Lin S, Chen Y, Yu M, Su L, Wang S. Boosting the detection performance of severe acute respiratory syndrome coronavirus 2 test through a sensitive optical biosensor with new superior antibody. Bioeng Transl Med 2022; 8:e10410. [PMID: 36248235 PMCID: PMC9538096 DOI: 10.1002/btm2.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in late 2019 leading to the COVID-19 disease pandemic that triggered socioeconomic turmoil worldwide. A precise, prompt, and affordable diagnostic assay is essential for the detection of SARS-CoV-2 as well as its variants. Antibody against SARS-CoV-2 spike (S) protein was reported as a suitable strategy for therapy and diagnosis of COVID-19. We, therefore, developed a quick and precise phase-sensitive surface plasmon resonance (PS-SPR) biosensor integrated with a novel generated anti-S monoclonal antibody (S-mAb). Our results indicated that the newly generated S-mAb could detect the original SARS-CoV-2 strain along with its variants. In addition, a SARS-CoV-2 pseudovirus, which could be processed in BSL-2 facility was generated for evaluation of sensitivity and specificity of the assays including PS-SPR, homemade target-captured ELISA, spike rapid antigen test (SRAT), and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Experimentally, PS-SPR exerted high sensitivity to detect SARS-CoV-2 pseudovirus at 589 copies/ml, with 7-fold and 70-fold increase in sensitivity when compared with the two conventional immunoassays, including homemade target-captured ELISA (4 × 103 copies/ml) and SRAT (4 × 104 copies/ml), using the identical antibody. Moreover, the PS-SPR was applied in the measurement of mimic clinical samples containing the SARS-CoV-2 pseudovirus mixed with nasal mucosa. The detection limit of PS-SPR is calculated to be 1725 copies/ml, which has higher accuracy than homemade target-captured ELISA (4 × 104 copies/ml) and SRAT (4 × 105 copies/ml) and is comparable with qRT-PCR (1250 copies/ml). Finally, the ability of PS-SPR to detect SARS-CoV-2 in real clinical specimens was further demonstrated, and the assay time was less than 10 min. Taken together, our results indicate that this novel S-mAb integrated into PS-SPR biosensor demonstrates high sensitivity and is time-saving in SARS-CoV-2 virus detection. This study suggests that incorporation of a high specific recognizer in SPR biosensor is an alternative strategy that could be applied in developing other emerging or re-emerging pathogenic detection platforms.
Collapse
Affiliation(s)
- Chih‐Yen Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Wen‐Hung Wang
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Meng‐Chi Li
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Optical Sciences CenterNational Central UniversityTaoyuanTaiwan
| | - Yu‐Ting Lin
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Zih‐Syuan Yang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
| | | | | | - Kai‐Ren Chen
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | - Chien‐Cheng Kuo
- Thin Film Technology CenterNational Central UniversityTaoyuanTaiwan
- Department of Optics and PhotonicsNational Central UniversityTaoyuanTaiwan
| | | | - Hui‐Hua Hsiao
- Division of Hematology and Oncology, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Kun‐Der Lin
- Division of Endocrinology and MetabolismKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Shang‐Yi Lin
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of Laboratory MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Yen‐Hsu Chen
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Division of Infection Disease, Department of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Ming‐Lung Yu
- School of Medicine, College of MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Hepatobiliary Section, Department of Internal Medicine, and Hepatitis CenterKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Li‐Chen Su
- General Education CenterMing Chi University of TechnologyNew Taipei CityTaiwan
- Organic Electronics Research CenterMing Chi University of TechnologyNew Taipei CityTaiwan
| | - Sheng‐Fan Wang
- Department of Medical Laboratory Science and BiotechnologyKaohsiung Medical UniversityKaohsiungTaiwan
- Center for Tropical Medicine and Infectious Disease ResearchKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|