1
|
Kunicki M, Rzewuska N, Sopońska P, Pawłosek A, Sowińska I, Kloska A. Novel serum biomarkers for early diagnosis of gestational diabetes mellitus-a review. Gynecol Endocrinol 2025; 41:2455472. [PMID: 39834324 DOI: 10.1080/09513590.2025.2455472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects 9-25% of pregnancies. Undiagnosed or poorly managed GDM is associated with both short- and long-term complications in the fetus and mother. The pathogenesis of GDM is complex and has not yet been fully elucidated. Several biomarkers found in maternal serum have the potential for the early diagnosis of GDM. The aim of this narrative review was to explore novel biomarkers that have not been comprehensively described in previous reviews. We believe these biomarkers may allow for the detection of GDM in the early stages of pregnancy, enabling timely proper treatment and potentially preventing complications for both the mother and the fetus.
Collapse
Affiliation(s)
- Michał Kunicki
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
- INVICTA Fertility and Reproductive Center, Warsaw, Poland
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | | | - Agata Pawłosek
- INVICTA Fertility and Reproductive Center, Wrocław, Poland
| | - Iwona Sowińska
- INVICTA Fertility and Reproductive Center, Gdańsk, Poland
| | - Anna Kloska
- INVICTA Research and Development Center, Sopot, Poland
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
3
|
Ye S, Lin J, Zhang Y, Li J, Wang Y, Liang F, Wu J, Xu Y, Lin L, Zhao Y. RhFGF21 protects the skin from UVB irradiation in diabetic mice through the inhibition of epidermal cell apoptosis and macrophage-mediated inflammation via the SIRT1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167724. [PMID: 40020529 DOI: 10.1016/j.bbadis.2025.167724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Ultraviolet B (UVB) irradiation can damage skin tissue. Diabetes aggravates skin lesions. Fibroblast growth factor 21 (FGF21) is significantly involved in exerting protective effects and facilitating tissue repair. Therefore, this study aimed to investigate the impact of recombinant human FGF21 (rhFGF21) on diabetic skin affected by UVB damage. METHODS UVB irradiation (270 mJ/cm2) was administered to diabetic mice for 5 consecutive days to establish UVB-irradiated skin injury, and rhFGF21 was administered daily after irradiation. Human immortalized keratinocytes (HaCaT) and mouse peritoneal macrophages (MPMs) were cultured under high glucose (HG) conditions for 3 days, followed by treatment with rhFGF21 for 1 h before UVB irradiation or lipopolysaccharide (LPS) stimulation. We analyzed the effects of UVB irradiation on diabetic skin via laser Doppler flowmetry, histopathological staining, TUNEL assays, RT-PCR, Western blotting, MTT assays and Hoechst 33258 staining. RESULTS Our findings indicated that the skin of diabetic mice was more severely damaged by UVB irradiation, and rhFGF21 alleviated this damage. RhFGF21 inhibited apoptosis and inflammatory responses in the skin tissues of diabetic mice. These changes were primarily reflected in increase of the sirtuin 1 (SIRT1) level in epidermal cells and peritoneal macrophages of mice. Moreover, rhFGF21 not only increased the survival rate of HaCaT cells but also decreased the generation of pro-inflammatory cytokines in MPMs. Notably, SIRT1 inhibitor (EX527) was capable of reversing these effects. CONCLUSIONS RhFGF21 attenuates UVB-induced damage to the skin of diabetic mice, predominantly by suppressing epidermal cell apoptosis and macrophage-mediated inflammatory responses via the SIRT signaling pathway.
Collapse
Affiliation(s)
- Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Lin
- Pharmacy department, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, Zhejiang, China
| | - Yujie Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiana Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yichen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Fang M, Lu L, Lou J, Ou J, Yu Q, Tao X, Zhu J, Lin Z. FGF21 Alleviates Hypoxic-Ischemic White Matter Injury in Neonatal Mice by Mediating Inflammation and Oxidative Stress Through PPAR-γ Signaling Pathway. Mol Neurobiol 2025; 62:4743-4768. [PMID: 39485628 DOI: 10.1007/s12035-024-04549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
White matter injury (WMI), the most common type of brain damage in infants born preterm, is characterized by failure in oligodendrocyte progenitor cell maturation and myelination, thereby contributing to long-term neurological impairments. Regrettably, effective therapies for promoting remyelination and improving function are currently lacking for this growing population affected by WMI. Recombinant human fibroblast growth factor (rhFGF) 21 modulated microglial activation and then ameliorated brain damage and improved neurological deficits in several central nervous system diseases. However, the effects of rhFGF21 treatment on WMI in preterm infants remain uncertain. In this study, we established an in vivo mouse model of cerebral hypoxia-ischemia (HI)-induced brain WMI and an in vitro model using oxygen-glucose deprivation (OGD)-treated HMC3 cells to investigate the neuroprotective effects of rhFGF21 against WMI and elucidated the potential mechanism. Our findings demonstrated that administration of rhFGF21 significantly ameliorated the retardation of oligodendrocyte differentiation, promoted myelination, and mitigated axonal deficits, synaptic loss, and GFAP scarring, thereby improving lifelong cognitive and neurobehavioral dysfunction associated with WMI. Moreover, rhFGF21 modulated microglial polarization, promoted a shift from the M1 to the M2 microglial phenotype, and suppressed microglial activation, thus ameliorating inflammatory response and oxidative stress. Additionally, rhFGF21 treatment significantly inhibited the HMGB1/NF-κB pathway linked to inflammation, and activated the NRF2 pathway associated with oxidative stress through the upregulation of PPAR-γ. Importantly, the beneficial effects of rhFGF21 on HI-induced WMI and microglial activation were dramatically inhibited by PPAR-γ antagonist and its siRNA. Our findings provide compelling evidence that rhFGF21 treatment mitigated the inflammatory response and oxidative stress through the modulation of microglial polarization via the PPAR-γ-mediated HMGB1/NF-κB pathway and the NRF2 pathway, respectively, contributes to neuroprotection and the amelioration of WMI in neonatal mice. Thus, rhFGF21 represents a promising therapeutic agent for the treatment of neonatal WMI.
Collapse
Affiliation(s)
- Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Xu S, Liu Z, Tian T, Zhao W, Wang Z, Liu M, Xu M, Zhang F, Zhang Z, Chen M, Yin Y, Su M, Fang W, Pan W, Liu S, Li MD, Little PJ, Kamato D, Zhang S, Wang D, Offermanns S, Speakman JR, Weng J. The clinical antiprotozoal drug halofuginone promotes weight loss by elevating GDF15 and FGF21. SCIENCE ADVANCES 2025; 11:eadt3142. [PMID: 40138418 PMCID: PMC11939056 DOI: 10.1126/sciadv.adt3142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Obesity is a debilitating global pandemic with a huge cost on health care due to it being a major underlying risk factor for several diseases. Therefore, there is an unmet medical need for pharmacological interventions to curb obesity. Here, we report that halofuginone, a Food and Drug Administration-approved anti-scleroderma and antiprotozoal drug, is a promising anti-obesity agent in preclinical mouse and pig models. Halofuginone suppressed food intake, increased energy expenditure, and resulted in weight loss in diet-induced obese mice while also alleviating insulin resistance and hepatic steatosis. Using molecular and pharmacological tools with transcriptomics, we identified that halofuginone increases fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels via activating integrated stress response. Using Gdf15 and Fgf21 knockout mice, we show that both hormones are necessary to elicit anti-obesity changes. Together, our study reports the beneficial metabolic effects of halofuginone and underscores its utility in treating obesity and its associated metabolic complications, which merits clinical assessment.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei 230001, China
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
- Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei 230001, China
| | - Zhenghong Liu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tian Tian
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenqi Zhao
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhihua Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Monan Liu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Mengyun Xu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Fanshun Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhidan Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Meijie Chen
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanjun Yin
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Meiming Su
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenxiang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenhao Pan
- Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shiyong Liu
- Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min-dian Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, MOE Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Southwest Hospital, Army Medical University, Chongqing, China
| | - Peter J. Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Guangzhou 510520, China
| | - Danielle Kamato
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland 4111, Australia
| | - Songyang Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dongdong Wang
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - John R. Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Jianping Weng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei 230001, China
- Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
6
|
Chen L, Gao M, Ong SB, Gong G. Functions of FGF21 and its role in cardiac hypertrophy. J Adv Res 2025:S2090-1232(25)00148-1. [PMID: 40089060 DOI: 10.1016/j.jare.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND FGF21 is a stress-inducible hormone that operates in the autocrine or paracrine manner. Recent reports have revealed that FGF21 is highly expressed in cardiac hypertrophy to protect against heart injury and dysfunction. FGF21 is used to treat cardiac hypertrophy in mouse models. However, preclinical and clinical trials are restricted. AIM OF REVIEW This review mainly elucidates the diverse functions of FGF21 and explores the relationship between these functions and cardiac hypertrophy. It also discusses challenges and future perspectives in treating cardiac hypertrophy with FGF21. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the functions of FGF21, including energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. We also summarize vital functions and the underlying mechanisms through which FGF21 regulates the initiation and development of cardiac hypertrophy, connecting energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. Finally, we propose that FGF21 may be a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meng Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Dhand R, Okumura K, Wolfe K, Bodin R, Nishida S, Frishman WH, Dhand A. Alcoholic Cardiomyopathy in Patients With Advanced Alcoholic Liver Disease: Single-Center Experience and Review of Literature. Cardiol Rev 2025:00045415-990000000-00429. [PMID: 39992100 DOI: 10.1097/crd.0000000000000880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The impact of excessive alcohol on human health is associated with a lifetime cumulative use of alcohol and is further affected by various factors such as age, gender, nutritional status, concurrent cigarette smoking or drug use, diabetes, obesity, other cardiovascular diseases, and socio-economic status. Alcohol cardiomyopathy (ACM) is a type of acquired dilated cardiomyopathy, which is associated with long-term heavy alcohol consumption with historical rates varying from 3.8% to 47 % among patients with heart failure. Data regarding the prevalence of concurrent ACM in patients with alcoholic liver disease is limited. Among 483 patients with advanced liver disease who underwent liver transplant evaluation at a single transplant center during 2016-2021, based on screening transthoracic echocardiogram and a clear definition, none (0%) of the patients had alcoholic cardiomyopathy (range ejection fraction: 55-80%), 7% had left ventricular dilation (mild dilation: 82%), and 12.4% had diastolic dysfunction. We also review data regarding known risk factors, natural progression, and treatment of ACM, and further explore the evidence regarding the concurrence of alcohol-associated disease in liver with other organs such as heart and pancreas. In persons with excessive alcohol consumption, abstinence from alcohol or moderating its use has been shown to help decrease the progression of heart failure, arrythmias, and hypertension as well as liver dysfunction. Focus on the identification of both genetic markers and modifiable risk factors associated with various organ injuries in conjunction with public health policies for the safe use of alcohol is needed to mitigate the risk of alcohol use disorder.
Collapse
Affiliation(s)
- Roshan Dhand
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Kenji Okumura
- Department of Surgery, Westchester Medical Center, Valhalla, NY
| | - Kevin Wolfe
- Department of Surgery, Westchester Medical Center, Valhalla, NY
| | - Roxana Bodin
- From the Department of Medicine, New York Medical College, Valhalla, NY
| | - Seigo Nishida
- Department of Surgery, Westchester Medical Center, Valhalla, NY
| | | | - Abhay Dhand
- From the Department of Medicine, New York Medical College, Valhalla, NY
- Department of Surgery, Westchester Medical Center, Valhalla, NY
| |
Collapse
|
8
|
Rao Z, Tang Y, Zhu J, Lu Z, Chen Z, Wang J, Bao Y, Mukondiwa AV, Wang C, Wang X, Luo Y, Li X. Enhanced FGF21 Delivery via Neutrophil-Membrane-Coated Nanoparticles Improves Therapeutic Efficacy for Myocardial Ischemia-Reperfusion Injury. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:346. [PMID: 40072149 PMCID: PMC11901824 DOI: 10.3390/nano15050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart. Here, we test the therapeutic efficacy of FGF21 in mice with ischemia-reperfusion (I/R) injury, a model of acute myocardial infarction. We employed the strategic method of coating the FGF21-encapsulating liposomal nanoparticles with a neutrophil membrane designed to camouflage FGF21 from macrophage-mediated efferocytotic clearance and promote its targeted accumulation at I/R foci due to the inherent neutrophilic attraction to the inflammatory site. Our findings revealed that the coated FGF21 nanoparticles markedly accumulated within the lesions with a prolonged half-life, in additional to the liver, leading to substantial improvements in cardiac performance by enhancing mitochondrial energetic function and reducing oxidative stress, inflammation, and cell death. Therefore, our research highlights a viable strategy for the enhanced delivery of therapeutical FGF21 analogs to lesions beyond the liver following myocardial infarction.
Collapse
Affiliation(s)
- Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yuli Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Jiamei Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Zhenzhen Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Zhichao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Jiaojiao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Alan Vengai Mukondiwa
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
- Oujiang Laboratory, Wenzhou 325000, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Z.R.); (Y.T.); (J.Z.); (Z.L.); (Z.C.); (J.W.); (Y.B.); (A.V.M.); (C.W.); (X.W.)
- Oujiang Laboratory, Wenzhou 325000, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
9
|
Wei W, Xu G, Gao J, Wang G, Wang Y, Li C, Zheng J, Lu H, Lu Y, Wang K, Xu H, Wang C, Pan X. Sacubitril/Valsartan partially alleviates myocardial infarction injury by activating the FGF21 signaling pathway via PPARs. Cardiovasc Diabetol 2025; 24:89. [PMID: 39987117 PMCID: PMC11847388 DOI: 10.1186/s12933-025-02627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
The recent discovery of clinically significant data, alongside novel physiological and pathological occurrences surrounding sacubitril/valsartan (Sac/Val) beyond its approved indications, necessitates an urgent reevaluation of its underlying mechanism of action. In the present investigation, we observed a substantial elevation in the serum levels of fibroblast growth factor 21 (FGF21) among patients with acute myocardial infarction (AMI) who were administered Sac/Val, compared to those who were not, utilizing ELISA-based measurements. Furthermore, through the utilization of a mouse model of myocardial infarction induced by ligation of the left anterior descending branch, we confirmed that FGF21 mediates the cardioprotective effect of Sac/Val, employing both loss-of-function and gain-of-function approaches. Molecular docking and SPR experiments validated that Sac/Val can regulate FGF21 via its interaction with PPARs, and verified the role of PPARs in mediating Sac/Val regulation of FGF21 by inhibiting PPARs. In conclusion, we found that Sac/Val can act as an agonist of FGF21, which provides a new idea for the development of FGF21 drugs, and FGF21 as a new target of Sac/Val to ameliorate myocardial infarction, which provides a basis for new indications for Sac/Val.
Collapse
Affiliation(s)
- Wenjuan Wei
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Guangsen Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Jiaer Gao
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Guiyun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Caiyan Li
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Junwei Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Huiying Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Yunyan Lu
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Kun Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China
| | - Hongtao Xu
- Lishui Central Hospital, The Fifth Hospital Affiliated to Wenzhou Medical University, LiShui, 323000, Zhejiang, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China.
| | - Xuebo Pan
- Department of Clinical Research, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
10
|
Qian Z, Li J. Editorial: Novel insights into liver injury: mechanisms, pathophysiology, and therapeutic strategies. Front Med (Lausanne) 2025; 12:1542598. [PMID: 40041457 PMCID: PMC11876417 DOI: 10.3389/fmed.2025.1542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Affiliation(s)
- Zibing Qian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Hepatology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Yang Y, Yuan H, Jiao Y, Zhao S, Fu Y, Bai X, Lu Z, Gao Y. Establishment of a Direct Competitive ELISA for Camel FGF21 Detection. Vet Sci 2025; 12:170. [PMID: 40005931 PMCID: PMC11861717 DOI: 10.3390/vetsci12020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Camels, with the ability to survive under drought and chronic hunger, developed exceptional efficient lipid reserves and energy substance metabolic characteristics. Fibroblast growth factor (FGF) 21 is a hormone that regulates important metabolic pathways and energy homeostasis. However, the absence of a specific detection method for camel FGF21 impacts research on camels' metabolic regulation. This study established a direct competition ELISA assay for detecting camel FGF21. Camel FGF21 antigen was expressed and purified through prokaryotic expression system. Polyclonal antibody was produced and purified via immunizing guinea pigs and affinity chromatography assay. Biotin-labeled FGF21 was synthesized artificially as the competitive antigen. After the determination of optimal conditions, including the working concentrations of the antibody and antigen, blocking solution, dilution buffer, and the competition reaction time, the standard curve with a typical "S" shape was generated using GraphPad Prism. The regression equation was Y = 0.1111 + (X-0.7894) × (2.162 - 0.1111)/(X-0.7894 + 15.76-0.7894), with the IC50 15.59 ng/mL, the limit of detection (LOD) 0.024 ng/mL, the limit of quantification (LOQ) 1.861 ng/mL, and the linear range IC20~IC80 2.0~119.22 ng/mL. The verification test showed that the recovery rate ranged from 91.34% to 98.9%, and the coefficients of variation for the intra- and inter-plate both were less than 10%, indicating that the ELISA method had high accuracy, good repeatability, and high stability. In addition, this ELISA method had the potential to detect FGF21 secretion levels in other species such as mouse, human, and pig. This study provided a rapid quantitative tool for conducting research on the FGF21 factor in camels.
Collapse
Affiliation(s)
- Yuxuan Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hong Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yunjuan Jiao
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanfang Fu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xingwen Bai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zengjun Lu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Moharamzadeh S, Kashef M, Salehpour M, Torabi M, Vesali S, Samsonchi Z, Hajizadeh-Saffar E. Effects of exercise intensity and diet on cardiac tissue structure and FGF21/β-Klotho signaling in type 2 diabetic mice: a comparative study of HFD and HFD + STZ induced type 2 diabetes models in mice. Diabetol Metab Syndr 2025; 17:4. [PMID: 39757236 DOI: 10.1186/s13098-024-01541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Structural heart disease is one of the leading causes of death in people with type 2 diabetes (T2D), which is not known to have an effect on exercise training. The aim of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart tissue structure, the serum level of FGF21 and the heart tissue level of β-Klotho, an FGF21 coreceptor, in HFD and HFD + STZ-induced diabetic mice. METHODS Thirty-six male C57BL/6J mice were divided into high-fat diet (HFD) and normal chow diet (ND) groups. After 20 weeks of diet, the HFD mice were divided into HFD and HFD + STZ groups, and the latter group was injected with STZ. Then, the mice in the ND, HFD and HFD + STZ groups were divided into three subgroups of control (C), HIIT and MICT, and mice were placed in one of nine groups ND-C, ND-HIIT, ND-MICT, HFD-C, HFD-HIIT, HFD-MICT, HFD + STZ-C, HFD + STZ-HIIT, and HFD + STZ-MICT. The mice in the exercise training (ET) groups were run on a treadmill for eight weeks. Finally, the tissue and serum samples were collected and analyzed by two-way ANOVA. RESULTS Statistical analyses showed that the main effect of diabetes inducing model (DIM) was significant for all variables (p < 0.05), except vascular density (p = 0.055); the main effect of ET type on fasting blood glucose and FGF21 was significant (p < 0.001); and the interaction was significant for fasting blood glucose, heart weight and FGF21 (p < 0.001). Post hoc and subgroup analysis showed a superior effect of MICT over HIIT in decreasing fasting blood glucose and serum level of FGF21 (p < 0.001). Additionally, the results of the myocardial tissue qualitative analyses differed between the diabetic mouse models and the ET groups. CONCLUSIONS In a mouse model, type 2 diabetes can negatively affect heart tissue structure and FGF21 signaling in cardiac tissue, and both HIIT and MICT can prevent this effect. However, MICT likely more effective that HIIT in reducing circulating FGF21.
Collapse
Affiliation(s)
- Sevda Moharamzadeh
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Basic and Population-Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Majid Kashef
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran.
| | - Mojtaba Salehpour
- Department of Exercise Physiology, Faculty of Sport Science, Shahid Rajaei Teacher Training University, Tehran, Iran
| | - Meysam Torabi
- Department of Exercise Physiology, Faculty of Sport Science, Guilan University, Rasht, Iran
- Department of Basic and Population-Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Samira Vesali
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Shan M, Qiu F, Li P, Zhang Y, Shi L. Maternal exercise represses FGF21 via SIRT1 to improve the phenotypic transformation of vascular smooth muscle in hypertensive offspring. Hypertens Res 2025; 48:353-365. [PMID: 39543417 DOI: 10.1038/s41440-024-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Maternal exercise during pregnancy is widely recognized as an effective means of promoting cardiovascular health in offspring. Few studies have explored how maternal exercise impacts vascular function and phenotypic switching in hypertensive offspring, despite the known involvement of vascular structural and functional remodeling in hypertension pathogenesis. Research indicates a significant relationship between elevated blood pressure and fibroblast growth factor 21 (FGF21) levels. It remains unclear whether maternal exercise during pregnancy can improve vascular function in hypertensive offspring by regulating FGF21 and its underlying mechanisms. In this study, pregnant spontaneously hypertensive rats and Wistar-Kyoto rats were randomly assigned to either a sedentary or exercise group. The exercise group underwent weightless swimming exercise from gestation day 1 (GD1) to GD20. The aim was to investigate the epigenetic modifications mediated by histone deacetylase sirtuin 1 (SIRT1) during the fetal period and the phenotypic changes in the mesenteric arteries (MAs) of hypertensive offspring. We found that maternal exercise significantly improved vascular remodeling in hypertensive offspring. Specifically, maternal exercise upregulated SIRT1 expression, which led to decreased H3K9ac (histone H3 lysine 9 acetylation) in the promoter region of the FGF21 gene. This epigenetic modification resulted in the transcriptional downregulation of FGF21 in the MAs of hypertensive fetuses. These results suggest that maternal exercise may lower blood pressure in hypertensive offspring by regulating deacetylation of the FGF21 gene promoter region through SIRT1, thereby reversing phenotypic switching and vascular structural remodeling.
Collapse
Affiliation(s)
- Meiling Shan
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
- School of Physical Education, Hubei University, 430062, Wuhan, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Peng Li
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing University, Beijing, 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, 100084, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China.
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing University, Beijing, 100084, China.
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, 100084, Beijing, China.
| |
Collapse
|
15
|
Xu W, Gao X, Luo H, Chen Y. FGF21 attenuates salt-sensitive hypertension via regulating HNF4α/ACE2 axis in the hypothalamic paraventricular nucleus of mice. Clin Exp Hypertens 2024; 46:2361671. [PMID: 38841901 DOI: 10.1080/10641963.2024.2361671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) has a protective effect against cardiovascular disease. However, the role of FGF21 in hypertension remains elusive. METHODS Ten-week-old male C57BL/6 mice were randomly divided into normal-salt (NS) group, NS+FGF21 group, deoxycorticosterone acetate-salt (DOCA) group and DOCA+FGF21 group. The mice in NS group underwent uninephrectomy without receiving DOCA and 1% NaCl and the mice in DOCA group were subjected to uninephrectomy and DOCA-salt (DOCA and 1% NaCl) treatment for 6 weeks. At the same time, the mice were infused with vehicle (artificial cerebrospinal fluid, aCSF) or FGF21 (1 mg/kg) into the bilateral paraventricular nucleus (PVN) of mice. RESULTS Here, we showed that FGF21 treatment lowered DOCA salt-induced inflammation and oxidative stress in the PVN, which reduced sympathetic nerve activity and hypertension. Mechanistically, FGF21 treatment decreased the expression of HNF4α and inhibited the binding activity of HNF4α to the promoter region of ACE2 in the PVN of DOCA salt-treated mice, which further up-regulated ACE2/Ang (1-7) signals in the PVN. In addition, ACE2 deficiency abolished the protective effect of FGF21 in DOCA salt-treated mice, suggesting that FGF21-mediated antihypertensive effect was dependent on ACE2. CONCLUSIONS The results demonstrate that FGF21 protects against salt-sensitive hypertension via regulating HNF4α/ACE2/Ang (1-7) axis in the PVN of DOCA salt-treated mice via multi-organ crosstalk between liver, brain and blood vessels.
Collapse
Affiliation(s)
- Wei Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xia Gao
- Department of Geriatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yingmei Chen
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
17
|
Xiang L, Wang G, Zhuang Y, Luo L, Yan J, Zhang H, Li X, Xie C, He Q, Peng Y, Chen H, Li Q, Li X, Guo L, Lv G, Ding Y. Safety and efficacy of GLP-1/FGF21 dual agonist HEC88473 in MASLD and T2DM: A randomized, double-blind, placebo-controlled study. J Hepatol 2024:S0168-8278(24)02758-2. [PMID: 39709140 DOI: 10.1016/j.jhep.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS Glucagon-like peptide-1 (GLP-1) and fibroblast growth factor 21 (FGF21) are key regulators of glucose and lipid metabolism. In the present study, we assessed the safety and efficacy of a novel GLP-1/FGF21 dual agonist HEC88473 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) combined with type 2 diabetes mellitus (T2DM). METHODS This was a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase Ib/IIa trial. Sixty patients with MASLD and T2DM were randomized (10:2) to receive HEC88473 (5.1, 15.3, 30.6, 45.9, or 68.0 mg) or placebo via weekly subcutaneous injection for 5 weeks. RESULTS After 5 weeks of treatment with HEC88473, MRI-proton density fat fraction (MRI-PDFF) was reduced in a dose-proportional manner. The largest relative mean change reached -47.21% (p = 0.0143) in the 30.6 mg cohort, compared with -15.05% in the placebo group, with a higher proportion of >30% relative reductions in patients with baseline PDFF >8%. The 5-week treatment with HEC88473 significantly reduced levels of HbA1c (glycated hemoglobin), as well as fasting and postprandial glucose levels. The largest mean change in HbA1c was -1.10% in the 68.0 mg cohort, compared with -0.31% in the placebo group. Improvement was also observed in participants' lipid profiles. Most adverse events were mild to moderate in severity. The most frequently reported adverse events were gastrointestinal disorders (n = 29, 48.3%). CONCLUSIONS Herein, we report the clinical safety and proof-of-concept data for the GLP-1/FGF21 dual agonist HEC88473. A 5-week treatment with HEC88473 was generally safe and well tolerated, with multiple positive effects observed, including reduced liver fat, and improved glycemic control, insulin resistance and lipid metabolism, together indicating comprehensive improvement in metabolic syndrome. IMPACT AND IMPLICATIONS In this randomized, double-blind, placebo-controlled phase Ib/IIa study, we assessed clinical safety, pharmacodynamic and pharmacokinetic data of the GLP-1/FGF21 dual agonist HEC88473 in patients with MASLD (metabolic dysfunction-associated steatotic liver disease) and T2DM (type 2 diabetes mellitus). HEC88473 was generally safe and well tolerated. The GLP-1/FGF21 dual agonist significantly reduced the hepatic fat fraction assessed using MRI-proton density fat fraction, and improved glycemic control and lipid profiles with only 5 weeks' treatment, leading to comprehensive improvement in metabolic syndrome. The present results suggest that HEC88473 could be a promising treatment option in this patient population. CLINICAL TRIAL NUMBER Chinese Drug Trial Identifier (http://www.chinadrugtrials.org.cn/index.html): CTR20211088. CLINICALTRIALS GOV: NCT05943886.
Collapse
Affiliation(s)
- Lin Xiang
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yulei Zhuang
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Lin Luo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Jiangyu Yan
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Hong Zhang
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Can Xie
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Qingwei He
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Yuyu Peng
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Hong Chen
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qianqian Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaoping Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Yanhua Ding
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
18
|
Pinheiro F, Lail H, Neves JS, Negrão R, Wanders D. Sulfur Amino Acid Restriction Mitigates High-Fat Diet-Induced Molecular Alterations in Cardiac Remodeling Primarily via FGF21-Independent Mechanisms. Nutrients 2024; 16:4347. [PMID: 39770968 PMCID: PMC11677450 DOI: 10.3390/nu16244347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21. Methods: Male C57BL/6J wild-type and FGF21 knockout mice were randomized into four dietary regimens, including normal fat and high-fat diets (HFDs) with and without SAAR, over five weeks. Results: SAAR significantly reduced body weight and visceral adiposity while increasing serum FGF21 levels. In the heart, SAAR-induced molecular metabolic alterations are indicative of enhanced lipid utilization, glucose uptake, and mitochondrial biogenesis. SAAR also elicited opposing effects on the cardiac gene expression of FGF21 and adiponectin. Regarding cellular stress responses, SAAR mitigated the HFD-induced increase in the cardiac expression of genes involved in oxidative stress, inflammation, and apoptosis, while upregulating antioxidative genes. Structurally, SAAR did not induce alterations indicative of cardiac hypertrophy and it counteracted HFD-induced fibrotic gene expression. Overall, most alterations induced by SAAR were FGF21-independent, except for those related to lipid utilization and glucose uptake. Conclusions: Altogether, SAAR promotes cardiac alterations indicative of physiological rather than pathological remodeling, primarily through FGF21-independent mechanisms.
Collapse
Affiliation(s)
- Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - João Sérgio Neves
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal;
- Unit of Cardiovascular Research and Development—Unic@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Negrão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
| |
Collapse
|
19
|
Basir H, Nugrahani ASD, Aman AM, Bakri S, Rasyid H, Umar H, H. P. F, Ichsan AM, Zainuddin AA. The association between fibroblast growth factor 21 with diabetes retinopathy among type 2 diabetes mellitus patients: a systematic review, meta-analysis, and meta-regression. PeerJ 2024; 12:e18308. [PMID: 39687000 PMCID: PMC11648683 DOI: 10.7717/peerj.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/24/2024] [Indexed: 12/18/2024] Open
Abstract
Background Diabetic retinopathy (DR), a leading cause of vision loss worldwide, is a common complication of type 2 diabetes mellitus (T2DM) driven by chronic hyperglycemia and microvascular damage. Fibroblast growth factor 21 (FGF21) is crucial in blood sugar regulation and has been linked to DR incidence and severity. While some studies suggest that FGF21 levels may contribute to the DR incidence, others propose a protective role. This discrepancy necessitates further analysis, prompting this study to evaluate the association between FGF21 levels and DR incidence and severity in T2DM patients. Methods A systematic search was conducted through MEDLINE, Web of Science, Scopus, and Embase up to May 2024 for studies evaluating the association between FGF21 and DR incidence and severity. A random-effect model meta-analysis was performed to calculate the pooled standardized mean difference (SMD) and 95% confidence intervals (CI). A univariate meta-regression was performed to analyze factors influencing pooled size estimates. All statistical analyses were performed using STATA 17 software. Result This systematic review and meta-analysis of 5,852 participants revealed that FGF21 was positively correlated with DR (SMD 3.11; 95% CI [0.92-5.30], p = 0.005) and sight-threatening DR (STDR) incidence (SMD 3.61; 95% CI [0.82-6.41], p = 0.01). There was no significant difference in FGF21 levels in DR vs STDR (p = 0.79). Subgroup analysis revealed a significant difference in DR incidence between LDL groups, with higher DR incidence in the group with low-density lipoprotein (LDL) levels >100 (P < 0.00001). Meta-regression revealed no variables significantly influenced the pooled size estimates. Conclusion A higher level of FGF21 was associated with higher DR and STDR incidence among T2DM patients, highlighting its potential utilization as a biomarker for DR detection and enabling the exploration of FGF21-based treatment strategies. However, variables independently predicting DR among patients with elevated FGF21 levels shall be explored further. PROSPERO ID CRD42024559142.
Collapse
Affiliation(s)
- Herni Basir
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Andi Makbul Aman
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Syakib Bakri
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Haerani Rasyid
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Husaini Umar
- Endocrinology and Metabolism Division, Department of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Faridin H. P.
- Department of Internal Medicine, Faculty of Medicine Hasanuddin University, Makassar, Indonesia
| | - Andi Muhammad Ichsan
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Alfian Zainuddin
- Department of Public Health, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
20
|
Zheng Z, Tan X. Mendelian randomization of plasma lipidome, inflammatory proteome and heart failure. ESC Heart Fail 2024; 11:4209-4221. [PMID: 39145416 PMCID: PMC11631237 DOI: 10.1002/ehf2.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Heart failure (HF) is a global health issue, with lipid metabolism and inflammation critically implicated in its progression. This study harnesses cutting-edge, expanded genetic information for lipid and inflammatory protein profiles, employing Mendelian randomization (MR) to uncover genetic risk factors for HF. METHODS We assessed genetic susceptibility to HF across 179 lipidomes and 91 inflammatory proteins using instrumental variables (IVs) from recent genome-wide association studies (GWASs) and proteome-wide quantitative trait loci (pQTL) studies. GWASs involving 47 309 HF cases and 930 014 controls were obtained from the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) Consortium. Data on 179 lipids from 7174 individuals in a Finnish cohort and 91 inflammatory proteins from a European pQTL study involving 14 824 individuals are available in the HGRI-EBI catalogue. A two-sample MR approach evaluated the associations, and a two-step mediation analysis explored the mediation role of inflammatory proteins in the lipid-HF pathway. Sensitivity analyses, including MR-RAPS (robust adjusted profile score) and MR-Egger, ensured result robustness. RESULTS Genetic IVs for 162 lipids and 74 inflammatory proteins were successfully identified. MR analysis revealed a genetic association between HF and 31 lipids. Among them, 18 lipids, including sterol ester (27:1/18:0), cholesterol, 9 phosphatidylcholines, phosphatidylinositol (16:0_20:4) and 6 triacylglycerols, were identified as HF risk factors [odds ratio (OR) = 1.037-1.368]. Cholesterol exhibited the most significant association with elevated HF risk [OR = 1.368, 95% confidence interval (CI) = 1.044-1.794, P = 0.023]. In the inflammatory proteome, leukaemia inhibitory factor receptor (OR = 0.841, 95% CI = 0.789-0.897, P = 1.08E-07), fibroblast growth factor 19 (OR = 0.905, 95% CI = 0.830-0.988, P = 0.025) and urokinase-type plasminogen activator (OR = 0.938, 95% CI = 0.886-0.994, P = 0.030) were causally negatively correlated with HF, whereas interleukin-20 receptor subunit alpha (OR = 1.333, 95% CI = 1.094-1.625, P = 0.004) was causally positively correlated with HF. Mediation analysis revealed leukaemia inhibitory factor receptor (mediation proportion: 23.5%-25.2%) and urokinase-type plasminogen activator (mediation proportion: 9.5%-10.7%) as intermediaries in the lipid-inflammation-HF pathway. No evidence of directional horizontal pleiotropy was observed (P > 0.05). CONCLUSIONS This study identifies a genetic connection between certain lipids, particularly cholesterol, and HF, highlighting inflammatory proteins that influence HF risk and mediate this relationship, suggesting new therapeutic targets and insights into genetic drivers in HF.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Clinical Research CenterFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Xuerui Tan
- Department of CardiologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Clinical Research CenterFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
21
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
22
|
Hu X, Ding H, Wei Q, Chen R, Zhao W, Jiang L, Wang J, Liu H, Cao J, Liu H, Wang B. Fibroblast growth factor 21 predicts arteriovenous fistula functional patency loss and mortality in patients undergoing maintenance hemodialysis. Ren Fail 2024; 46:2302407. [PMID: 38197433 PMCID: PMC10783836 DOI: 10.1080/0886022x.2024.2302407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) dysfunction is a common complication in patients undergoing maintenance hemodialysis (MHD). Elevated serum levels of fibroblast growth factor 21 (FGF21) are associated with atherosclerosis and cardiovascular mortality. However, its association with vascular access outcomes remains elusive. The present study evaluated the relationship of serum FGF21 levels with AVF dysfunction and all-cause mortality in patients undergoing MHD. METHODS We included patients undergoing MHD using AVF from January 2018 to December 2019. FGF21 concentration was detected using enzyme-linked immunosorbent assay. Patients were followed up to record two clinical outcomes, AVF functional patency loss and all-cause mortality. The follow-up period ended on April 30, 2022. RESULTS Among 147 patients, the mean age was 58.49 ± 14.41 years, and the median serum level of FGF21 was 150.15 (70.57-318.01) pg/mL. During the median follow-up period of 40.83 months, the serum level of FGF21 was an independent risk factor for AVF functional patency loss (per 1 pg/mL increase, HR 1.002 [95% CI: 1.001-1.003, p = 0.003]). Patients with higher serum levels of FGF21 were more likely to suffer from all-cause mortality (per 1 pg/mL increase, HR 1.002 [95% CI: 1.000-1.003, p = 0.014]). The optimal cutoffs for FGF21 to predict AVF functional patency loss and all-cause mortality in patients undergoing MHD were 149.98 pg/mL and 146.43 pg/mL, with AUCs of 0.701 (95% CI: 0.606-0.796, p < 0.001) and 0.677 (95% CI: 0.595-0.752, p = 0.002), respectively. CONCLUSIONS Serum FGF21 levels were an independent risk factor and predictor for AVF functional patency loss and all-cause mortality in patients undergoing MHD.
Collapse
Affiliation(s)
- Xinhui Hu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Hong Ding
- Institute of Nephrology, People’s Hospital of Yangzhong city, Zhenjiang, Jiangsu Province, China
| | - Qing Wei
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Ruoxin Chen
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Weiting Zhao
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Liqiong Jiang
- Institute of Nephrology, the Affiliated Suzhou Hospital of the Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jing Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Haifei Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Jingyuan Cao
- Institute of Nephrology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Chen K, Wang S. New insights into FGF21 alleviates diabetic cardiomyopathy by suppressing ferroptosis: a commentary. Cardiovasc Diabetol 2024; 23:424. [PMID: 39593068 PMCID: PMC11590201 DOI: 10.1186/s12933-024-02519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes characterized by myocardial hypertrophy, fibrosis, and impaired cardiac function. Fibroblast growth factor 21 (FGF21) has emerged as a promising therapeutic target due to its antifibrotic, antioxidant, and anti-inflammatory properties. Our commentary summarizes and affirms the recent study by Wang et al., which demonstrates the significant role of ferroptosis in DCM pathogenesis. FGF21 has shown promise as a therapeutic target for DCM, potentially inhibiting ferroptosis, mitigating oxidative damage, and protecting cardiomyocyte function. Mechanistically, the study identified ATF4 as an upstream regulator of FGF21 in DCM, revealing that FGF21 directly interacts with ferritin and extends its half-life, thus inhibiting ferroptosis in DCM. These findings provide a theoretical basis for understanding the pathogenesis and treatment of DCM. Our commentary suggests that future studies should explore the role of non-cardiomyocyte cell types in DCM, verify findings with clinical samples, and address comprehensive methods for ferroptosis detection. Additionally, we discuss the clinical application and future potential of FGF21-based therapies for DCM. Such efforts may contribute to advancing DCM diagnosis and treatment, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Rastegar-Moghaddam SH, Bigham M, Lombardi G, Mohammadipour A, Malvandi AM. MicroRNA-24 therapeutic potentials in infarction, stroke, and diabetic complications. Mol Biol Rep 2024; 51:1137. [PMID: 39520600 DOI: 10.1007/s11033-024-10089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The prevalence of cardiovascular events, stroke, and diabetes worldwide underscores the urgent need for effective and minimally invasive treatments. With nearly 20 million annual casualties attributed to cardiovascular diseases and an estimated 463 million people living with diabetes in 2022. Identifying promising therapeutic candidates is paramount. MicroRNAs, short nucleic acids involved in regulating gene expression, emerge as potential game-changers. Among these, microRNA-24 (miR-24), a hypoxia-sensitive player in endothelial vessels, has protective roles against diverse vascular complications. Following heart infarction and stroke, elevating miR-24 expression proves beneficial by mitigating oxidative stress, inflammation, and apoptosis while enhancing cell survival. It reduces cardiac fibrosis in heart disease, regulates aberrant angiogenesis in cerebral hemorrhagic strokes, and enhances the functionality of cardiomyocytes and brain neurons. In diabetic conditions, augmenting miR-24 expression mitigates complications. Further, being miR-24 also expressed by the skeletal muscle (i.e., myo-miR) in response to exercise, this miRNA may participate in the complex molecular network that systemically spreads the beneficial effects of physical exercise. This review provides a comprehensive vision of the molecular mechanisms underpinning the miR-24 protective effects, offering new insights into its therapeutic potential and proposing a novel avenue for medical intervention.
Collapse
Affiliation(s)
| | - Maryam Bigham
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milan, Italy.
| |
Collapse
|
25
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Barros DR, Hegele RA. Fibroblast growth factor 21: update on genetics and molecular biology. Curr Opin Lipidol 2024; 36:00041433-990000000-00094. [PMID: 39450972 PMCID: PMC11888835 DOI: 10.1097/mol.0000000000000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
PURPOSE OF REVIEW Since its discovery, most research on fibroblast growth factor 21 (FGF21) has focused on its antihyperglycemia properties. However, attention has recently shifted towards elucidating the ability of FGF21 to lower circulating lipid levels and ameliorate liver inflammation and steatosis. We here discuss the physiology of FGF21 and its role in lipid metabolism, with a focus on genetics, which has up until now not been fully appreciated. RECENT FINDINGS New developments have uncovered associations of common small-effect variants of the FGF21 gene, such as the single nucleotide polymorphisms rs2548957 and rs838133, with numerous physiological, biochemical and behavioural phenotypes linked to energy metabolism and liver function. In addition, rare loss-of-function variants of the cellular receptors for FGF21 have been recently associated with severe endocrine and metabolic phenotypes. These associations corroborate the findings from basic studies and preliminary clinical investigations into the therapeutic potential of FGF21 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) and hypertriglyceridemia. Furthermore, recent breakthrough research has begun to dissect mechanisms of a potential FGF21 brain-adipose axis. Such inter-organ communication would be comparable to that seen with other potent metabolic hormones. A deeper understanding of FGF21 could prove to be further beneficial for drug development. SUMMARY FGF21 is a potent regulator of lipid and energy homeostasis and its physiology is currently at the centre of investigative efforts to develop agents targeting hypertriglyceridemia and MASLD.
Collapse
Affiliation(s)
- Daniel R Barros
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
27
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
28
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Handzlik G, Owczarek AJ, Więcek A, Mossakowska M, Zdrojewski T, Chudek A, Olszanecka-Glinianowicz M, Chudek J. Fibroblast growth factor 21 inversely correlates with survival in elderly population - the results of the Polsenior2 study. Aging (Albany NY) 2024; 16:12673-12684. [PMID: 39302236 PMCID: PMC11501387 DOI: 10.18632/aging.206114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-secreted hormone involved in the regulation of lipid, glucose, and energy metabolism. Its serum concentration increases with age but also is higher in numerous diseases. FGF21 is being investigated for biomarker properties and as a potential therapeutic target. The present study aimed to assess the prognostic value of FGF21 in an older population-based cohort, the PolSenior2 study participants. In the sub-analysis of 3512 individuals, aged 60 and older, stratified according to FGF21 into tertiles, the survival estimate was worse in participants with middle and high levels compared to the lowest tertile. These results were consistent with univariable Cox regression analysis, in which participants in the middle and the high FGF21 tertiles after adjustment for age had 1.43-fold (HR, 1.31; 95% CI, 1.05 - 1.62) and 2.56-fold (HR, 1.94; 95% CI, 1.59 - 2.37) higher risk for mortality, respectively, compared with those in the lowest tertile. In multivariable Cox regression analysis, the highest levels of FGF21 were associated with increased mortality (HR 1.53; 95% CI, 1.22 - 1.92) independently of co-morbidities and blood parameters. These results indicate that higher serum FGF21 concentration is an independent predictor of all-cause mortality in the general population of older adults.
Collapse
Affiliation(s)
- Gabriela Handzlik
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J. Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Mossakowska
- Study on Aging and Longevity, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Tomasz Zdrojewski
- Division of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
30
|
Negroiu CE, Riza AL, Streață I, Tudorașcu I, Beznă CM, Ungureanu AI, Dănoiu S. Connecting the Dots: FGF21 as a Potential Link between Obesity and Cardiovascular Health in Acute Coronary Syndrome Patients. Curr Issues Mol Biol 2024; 46:8512-8525. [PMID: 39194718 DOI: 10.3390/cimb46080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone involved in regulating the metabolism, energy balance, and glucose homeostasis, with new studies demonstrating its beneficial effects on the heart. This study investigated the relationship between FGF21 levels and clinical, biochemical, and echocardiographic parameters in patients with acute coronary syndromes (ACSs). This study included 80 patients diagnosed with ACS between May and July 2023, categorized into four groups based on body mass index (BMI): Group 1 (BMI 18.5-24.9 kg/m2), Group 2 (BMI 25-29.9 kg/m2), Group 3 (BMI 30-34.9 kg/m2), and Group 4 (BMI ≥ 35 kg/m2). Serum FGF21 levels were measured by ELISA (Abclonal Catalog NO.: RK00084). Serum FGF21 levels were quantifiable in 55 samples (mean ± SD: 342.42 ± 430.17 pg/mL). Group-specific mean FGF21 levels were 238.98 pg/mL ± SD in Group 1 (n = 14), 296.78 pg/mL ± SD in Group 2 (n = 13), 373.77 pg/mL ± SD in Group 3 (n = 12), and 449.94 pg/mL ± SD in Group 4 (n = 16), with no statistically significant differences between groups (p = 0.47). Based on ACS diagnoses, mean FGF21 levels were 245.72 pg/mL for STEMI (n = 21), 257.89 pg/mL for NSTEMI (n = 9), and 456.28 pg/mL for unstable angina (n = 25), with no significant differences observed between these diagnostic categories. Significant correlations were identified between FGF21 levels and BMI, diastolic blood pressure, and serum chloride. Regression analyses revealed correlations with uric acid, chloride, and creatinine kinase MB. This study highlights the complex interplay between FGF21, BMI, and acute coronary syndromes. While no significant differences were found in FGF21 levels between the different BMI and ACS diagnostic groups, correlations with clinical and biochemical parameters suggest a multifaceted role of FGF21 in cardiovascular health. Further research with a larger sample size is warranted to elucidate these relationships.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| | - Cristina Maria Beznă
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adrian Ionuț Ungureanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| |
Collapse
|
31
|
Zhao J, Liu X, Yue J, Zhang S, Li L, Wei H. PF-05231023 reduces lipid deposition in apolipoprotein E-deficient mice by inhibiting the expression of lipid synthesis genes. Front Vet Sci 2024; 11:1429639. [PMID: 39144082 PMCID: PMC11322577 DOI: 10.3389/fvets.2024.1429639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that is primarily expressed and secreted by the liver. The hormone is crucial for regulation of glucose homeostasis, lipid metabolism, and energy balance. Compared with natural FGF21, FGF21 analogs have become drug candidates for the treatment of cardiovascular and metabolic diseases owing to their long half-life and greater stability in vitro. Apolipoprotein E (Apoe)-knockout (Apoe -/-) mice exhibit progressive disruptions in lipid metabolism in vivo and develop further atherosclerosis pathological features owing to Apoe deletion. Therefore, this study used an Apoe -/- mouse model to investigate the effects of a long-acting FGF21 analog (PF-05231023) on lipid metabolism and related parameters. Eighteen Apoe -/- female mice were fed a Western diet equivalent for 12 weeks, and then randomly assigned to intraperitoneally receive either physiological saline (the control group) or 10 mg/kg PF-05231023 (the treatment group) three times a week for seven consecutive weeks. Body composition, glucose tolerance, blood and liver cholesterol, triglyceride levels, liver vacuolization levels, peri-ovarian white adipocyte hypertrophy, aortic atherosclerotic plaque formation, and the expression of genes related to lipid metabolism in adipose tissue were subsequently assessed before and after treatment. The aortic atherosclerotic plaque area was reduced in mice in the PF-05231023 treatment group compared with that in the saline group. Although the effect of PF-05231023 on the plasma biochemical indexes of mice was small, it significantly reduced lipid levels and lipid droplet accumulation in the liver, and reduced adipocyte hypertrophy in white adipose tissue. Transcriptome analysis of adipose tissue showed that PF-05231023 treatment downregulated the expression of lipid synthesis-related genes and inhibited the sterol regulatory element binding transcription factor 1 gene, thereby improving lipid deposition. PF-05231023 effectively improved the lipid metabolism of Apoe -/- mice, demonstrating an anti-atherosclerotic effect and providing a scientific basis and experimental foundation for the clinical treatment of cardiovascular diseases by using long-acting FGF21 analogs.
Collapse
Affiliation(s)
| | | | | | | | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangdong, China
| |
Collapse
|
32
|
Li S, Song Z, Fan C, Zhang W, Ma T, Li X, Zhang Q, Zhao M, Yu T, Li S. Potential of FGF21 in type 2 diabetes mellitus treatment based on untargeted metabolomics. Biochem Pharmacol 2024; 225:116306. [PMID: 38782076 DOI: 10.1016/j.bcp.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Zilong Song
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Chunxiang Fan
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Weiwei Zhang
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Tianyi Ma
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Xu Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Qi Zhang
- President's Office, Qiqihar University, Qiqihar 161006, China.
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Tianfei Yu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
33
|
Shi R, Liu H, Xia K, Li Y, Chen T, Li X, Yang A, Xiao X. Circulating serum fibroblast growth factor 21 as risk and prognostic biomarker of retinal artery occlusion. Sci Rep 2024; 14:11854. [PMID: 38789571 PMCID: PMC11126651 DOI: 10.1038/s41598-024-62588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
To evaluate the predictive and prognostic value of fibroblast growth factor 21 (FGF21) levels in retinal artery occlusion (RAO) patients. In this case-control study, serum FGF21 levels were detected by using the ELISA method. Multivariable logistic regression analyses were performed to evaluate the significance of FGF21 in assessing the risk of developing RAO and its impact on vision and concurrent ischemic stroke. Compared with control group, serum FGF21 levels were significantly higher (median [IQR] = 230.90[167.40,332.20] pg/ml) in RAO patients. Multivariate logistic regression analysis showed that elevated serum FGF21 levels were associated with a higher risk of RAO occurrence (P = 0.025, OR [95%CI] = 9.672 [2.573, 36.359]) after adjustment for multiple confounding factors. Higher serum FGF21 levels were negatively associated with visual acuity improvement (P = 0.029, OR [95%CI] = 0.466[0.235, 0.925]) and positively correlated with concurrent ischemic stroke (P = 0.04, OR [95% CI] = 1.944[1.029, 3.672]) in RAO patients. Elevated serum FGF21 levels could promote the development of RAO and indicate worse visual prognosis and increase the risk of concurrent ischemic stroke, which might help clinicians early diagnose and treat RAO patients.
Collapse
Affiliation(s)
- Ruobing Shi
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kaichao Xia
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Anhuai Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
Chui ZSW, Shen Q, Xu A. Current status and future perspectives of FGF21 analogues in clinical trials. Trends Endocrinol Metab 2024; 35:371-384. [PMID: 38423900 DOI: 10.1016/j.tem.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Recent advances in fibroblast growth factor 21 (FGF21) biology and pharmacology have led to the development of several long-acting FGF21 analogues and antibody-based mimetics now in various phases of clinical trials for the treatment of obesity-related metabolic comorbidities. The efficacy of these FGF21 analogues/mimetics on glycaemic control and weight loss is rather mild and inconsistent; nevertheless, several promising therapeutic benefits have been reproducibly observed in most clinical studies, including amelioration of dyslipidaemia (particularly hypertriglyceridaemia) and hepatic steatosis, reduction of biomarkers of liver fibrosis and injury, and resolution of metabolic dysfunction-associated steatohepatitis (MASH). Evidence is emerging that combination therapy with FGF21 analogues and other hormones (such as glucagon-like peptide 1; GLP-1) can synergise their pharmacological benefits, thus maximising the therapeutic efficacy for obesity and its comorbidities.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Qing Shen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
35
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
36
|
Wei S, Wang L, Evans PC, Xu S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today 2024; 29:103910. [PMID: 38301798 DOI: 10.1016/j.drudis.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-β (THRβ) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.
Collapse
Affiliation(s)
- Shulin Wei
- School of Life Sciences, Jilin University, Changchun, China; Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
37
|
Ni Y, Zheng L, Zhang L, Li J, Pan Y, Du H, Wang Z, Fu Z. Spermidine activates adipose tissue thermogenesis through autophagy and fibroblast growth factor 21. J Nutr Biochem 2024; 125:109569. [PMID: 38185346 DOI: 10.1016/j.jnutbio.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and β3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and β3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liqian Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiamin Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haimei Du
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhaorong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
38
|
Wang K, Zhou Z, Huang L, Kan Q, Wang Z, Wu W, Yao C. PINK1 dominated mitochondria associated genes signature predicts abdominal aortic aneurysm with metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166919. [PMID: 38251428 DOI: 10.1016/j.bbadis.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.
Collapse
Affiliation(s)
- Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qinghui Kan
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhecun Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Weibin Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Liu Z, Peng Y, Li S, Lin Y, Huang Y, Chen W, Bao C, Zhou Z, Lin Z, Chen L. Increased circulating FGF21 level predicts the burden of metabolic demands and risk of vascular diseases in adults with type 2 diabetes. BMC Endocr Disord 2023; 23:272. [PMID: 38057786 PMCID: PMC10702049 DOI: 10.1186/s12902-023-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia and metabolic stress, involved in the stepwise development of cardiovascular complications. Fibroblast growth factor 21 (FGF21) is a novel hepatokine involved in regulating glucose and lipid metabolism, and has been linked to the prediction, treatment, and improvement of prognosis in multiple cardiovascular diseases (CVDs). The aim of this study is to explore the relationship between FGF21 levels and vascular diseases (VDs) including carotid atherosclerosis (CAS) and hypertension (HP) in patients with T2DM. METHODS Baseline serum FGF21 was determined in a cross-sectional study of 701 patients with T2DM and 258 healthy control. RESULTS The morbidity of CAS was increased in T2DM patients with HP as compared with those without (p < 0.001). The average serum FGF21 level of healthy was [123.9 (67.2-219.3)]. Baseline FGF21 was significantly higher in those who developed CAS or HP than in those who did not [305.9 (177.2-508.4) vs. 197.2 (129.7-308.3) pg/mL, p < 0.001]. In addition, an elevated serum FGF21 was observed in T2DM patients with HP and CAS than that of T2DM patients with CAS or HP [550.5 (312.6-711.3) vs. 305.9 pg/mL, p < 0.001]. Serum FGF21 levels were positively correlated with body mass index and carotid intima media thicknes (p < 0.05), the association remained significant after adjusting for age and T2DM duration. Furthermore, the multinomial logistic regression showed that serum FGF21 was independently associated with CAS and HP in patients with T2DM after adjustment for demographic and traditional VDs risk factors (p < 0.001). CONCLUSIONS Baseline FGF21 is elevated in VDs during diabetes, changes of serum FGF21 levels were appropriately matched to metabolic stress. FGF21can be used as an independent predictor for diagnosing VDs and predicting prognosis.
Collapse
Affiliation(s)
- Zhen Liu
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Yue Peng
- Department of Cardiology, The 1st affiliated Hospital of Wenzhou Medical Unversity, Wenzhou, China
| | - Supeng Li
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Yusheng Lin
- Department of Cardiology, The 1st affiliated Hospital of Wenzhou Medical Unversity, Wenzhou, China
| | - Yunfeng Huang
- Department of Cardiology, The 1st affiliated Hospital of Wenzhou Medical Unversity, Wenzhou, China
| | - Wenting Chen
- Department of Endocrinology, The 3rd affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital, Wenzhou, China
| | - Chunhua Bao
- Department of Endocrinology, The 3rd affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital, Wenzhou, China
| | - Zengxian Zhou
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China.
- Department of Cardiology, The 1st affiliated Hospital of Wenzhou Medical Unversity, Wenzhou, China.
- Laboratory Animal Center of Wenzhou Medical University, Wenzhou, China.
| | - Liangmiao Chen
- Department of Endocrinology, The 3rd affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital, Wenzhou, China.
| |
Collapse
|
40
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Tucker W, McClelland RL, Allison MA, Szklo M, Rye KA, Ong KL. The association of circulating fibroblast growth factor 21 levels with incident heart failure: The Multi-Ethnic Study of Atherosclerosis. Metabolism 2023; 143:155535. [PMID: 36931558 PMCID: PMC11658068 DOI: 10.1016/j.metabol.2023.155535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) levels are often elevated in heart failure (HF), although this has not been assessed using a longitudinal study design. Therefore, we investigated the association between baseline plasma FGF21 levels and incident HF in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS A total of 5408 participants, free of clinically apparent cardiovascular disease, were included in the analysis, of which 342 developed HF over a median follow-up period of 16.7 years. Multivariable Cox regression analysis was performed and the additive value of FGF21 in the performance of risk prediction over other well-established cardiovascular biomarkers was assessed. RESULTS The mean age of the participants was 62.6 years with 47.6 % male. Regression spline analysis demonstrated a significant association of FGF21 levels with incident HF among participants with FGF21 levels ≥239.0 pg/mL (hazard ratio = 1.84 [95 % confidence interval 1.21, 2.80] per SD increase in ln-transformed levels) after adjustment for traditional cardiovascular risk factors and biomarkers, but not in participants with FGF21 levels <239.0 pg/mL (p for heterogeneity = 0.004). Among participants with FGF21 levels ≥239.0 pg/mL, FGF21 levels were associated with HF with preserved ejection fraction (HR [95 % CI] = 2.57 [1.51, 4.37]), but not HF with reduced ejection fraction. CONCLUSIONS The present study suggests baseline FGF21 levels could predict the development of incident HF with preserved ejection fraction, among participants with elevated FGF21 levels at baseline. This study may suggest a pathophysiological role of FGF21 resistance in HF with preserved ejection fraction.
Collapse
Affiliation(s)
- William Tucker
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Matthew A Allison
- Department of Family Medicine, University of California San Diego, La Jolla, CA, United States
| | - Moyses Szklo
- Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kerry-Anne Rye
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, Shao Y, Xing D. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci 2023; 19:2879-2896. [PMID: 37324939 PMCID: PMC10266072 DOI: 10.7150/ijbs.84994] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Mingzhe Yan
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Chuandong Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Li Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Community Health Promotion, Qingdao Municipal Center for Disease Control & Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, 266033, China
| | - Wenchao Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, 266000, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, 266000, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
43
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|