1
|
Lv Y, Zhang L. IRF7 Activates LCN2 Transcription to Enhance LPS-Induced Acute Lung Injury by Inducing Macrophage Ferroptosis and M1 Polarization. Cell Biochem Biophys 2024:10.1007/s12013-024-01651-9. [PMID: 39738844 DOI: 10.1007/s12013-024-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Acute lung injury (ALI), a severe pulmonary disorder that poses a significant threat to life, is closely associated with macrophage ferroptosis and polarization. Lipocalin 2 (LCN2) has been previously reported to be implicated in the pathogenesis of ALI. However, the specific role of LCN2 in macrophage ferroptosis and polarization remains undetermined. Lipopolysaccharide (LPS) was used to establish a mouse model of ALI and also to stimulate mouse RAW264.7 cells. H&E staining was used for histopathologic evaluation, and immunohistochemistry analysis was used to determine the 4-HNE-positive cells. The secretion levels of TNF-α, IL-6, and IL-1β were assessed by ELISA. Gene and protein expression assays were performed using quantitative PCR and immunoblotting. The levels of MDA, GSH, ROS, and lipid ROS were detected to evaluate the alteration in ferroptosis. CD86+ and CD206+ cells were quantified by flow cytometry. The relationship between LCN2 and interferon regulatory factor 7 (IRF7) was confirmed by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. LCN2 expression was upregulated in the lungs of LPS-induced ALI mice and LPS-stimulated RAW264.7 cells. In LPS-induced ALI mice, the depletion of LCN2 alleviated lung injury and ferroptosis, and also inhibited inflammation and macrophage M1 polarization. In LPS-stimulated RAW264.7 cells, the depletion of LCN2 suppressed ferroptosis, inflammation, and M1 polarization. Mechanistically, IRF7 enhanced LCN2 transcription in RAW264.7 cells by binding to its promoter region. More importantly, the silencing of IRF7 inhibited ferroptosis and M1 polarization in LPS-stimulated RAW264.7 cells by downregulating LCN2. Taken together, the IRF7/LCN2 cascade enhances the ferroptosis and M1 polarization of LPS-stimulated macrophages, thereby exacerbating ALI. Anti-IRF7 and anti-LCN2 therapies might potentially be exploited for the prevention and treatment in ALI.
Collapse
Affiliation(s)
- Yali Lv
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
- Emergency Intensive Care Unit (ICU), Jinyun County Second People's Hospital, Lishui, China
| | - Lefeng Zhang
- Department of Respiratory and Critical Care Medicine, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
2
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
3
|
Lin Q, Huang E, Fan K, Zhang Z, Shangguan H, Zhang W, Fang W, Ou Q, Liu X. Cerebrospinal Fluid Neutrophil Gelatinase-Associated Lipocalin as a Novel Biomarker for Postneurosurgical Bacterial Meningitis: A Prospective Observational Cohort Study. Neurosurgery 2024; 95:1418-1428. [PMID: 38856216 DOI: 10.1227/neu.0000000000003021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Postneurosurgical bacterial meningitis (PNBM) was a significant clinical challenge, as early identification remains difficult. This study aimed to explore the potential of neutrophil gelatinase-associated lipocalin (NGAL) as a novel biomarker for the early diagnosis of PNBM in patients who have undergone neurosurgery. METHODS A total of 436 postneurosurgical adult patients were enrolled in this study. Clinical information, cerebrospinal fluid (CSF), and blood samples were collected. After the screening, the remaining 267 patients were divided into the PNBM and non-PNBM groups, and measured CSF and serum NGAL levels to determine the diagnostic utility of PNBM. Subsequently, patients with PNBM were categorized into gram-positive and gram-negative bacterial infection groups to assess the effectiveness of CSF NGAL in differentiating between these types of infections. We analyzed the changes in CSF NGAL expression before and after anti-infection treatment in PNBM. Finally, an additional 60 patients were included as an independent validation cohort to further validate the diagnostic performance of CSF NGAL. RESULTS Compared with the non-PNBM group, CSF NGAL was significantly higher in the PNBM group (305.1 [151.6-596.5] vs 58.5 [30.7-105.8] ng/mL; P < .0001). The area under the curve of CSF NGAL for diagnosing PNBM was 0.928 (95% CI: 0.897-0.960), at a threshold of 119.7 ng/mL. However, there was no significant difference in serum NGAL between the 2 groups (142.5 [105.0-248.6] vs 161.9 [126.6-246.6] ng/mL, P = .201). Furthermore, CSF NGAL levels were significantly higher in patients with gram-negative bacterial infections than those with gram-positive bacteria ( P = .023). In addition, CSF NGAL levels decrease after treatment compared with the initial stage of infection ( P < .0001). Finally, in this validation cohort, the threshold of 119.7 ng/mL CSF NGAL shows good diagnostic performance with a sensitivity and specificity of 90% and 80%, respectively. CONCLUSION CSF NGAL holds promise as a potential biomarker for the diagnosis, early drug selection, and efficacy monitoring of PNBM.
Collapse
Affiliation(s)
- Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Er Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Huangcheng Shangguan
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Wenhua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| | - Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou , China
| |
Collapse
|
4
|
Li D, Kortekaas RK, Douglas KBI, Douwenga W, Eisel ULM, Melgert BN, Gosens R, Schmidt M. TNF signaling mediates lipopolysaccharide-induced lung epithelial progenitor cell responses in mouse lung organoids. Biomed Pharmacother 2024; 181:117704. [PMID: 39581145 DOI: 10.1016/j.biopha.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Bacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair. Lung epithelial cells (CD31-CD45-Epcam+) from wild-type and tumor necrosis factor (TNF) receptor 1/2 knock-out mice were co-cultured with wild-type fibroblasts. Organoid numbers and size were measured after 14 days of exposure to 100 ng/mL LPS. Immunofluorescence was used to assess differentiation (after 14 days), RNA sequencing analyzed gene expression changes (after 72 hours), and MTS assay assessed proliferative effects of LPS on individual cell types (after 24 hours). LPS treatment increased the number and size of wild-type lung organoids and promoted alveolar differentiation, indicated by more SPC+ organoids. RNA sequencing revealed upregulation of inflammatory and fibrosis-related markers, including Cxcl3, Cxcl5, Ccl20, Mmp13, and Il33, and enrichment of TNF-α signaling and epithelial-mesenchymal transition pathways. TNF receptor 1 deficiency inhibited LPS-induced progenitor cell activation and organoid growth. In conclusion, LPS enhances lung epithelial progenitor cell proliferation and differentiation via TNF receptor 1 signaling, highlighting potential therapeutic targets for bacterial lung injury.
Collapse
MESH Headings
- Animals
- Lipopolysaccharides/pharmacology
- Organoids/drug effects
- Organoids/metabolism
- Lung/pathology
- Lung/drug effects
- Lung/metabolism
- Mice
- Stem Cells/drug effects
- Stem Cells/metabolism
- Signal Transduction/drug effects
- Mice, Knockout
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Cell Differentiation/drug effects
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Epithelial-Mesenchymal Transition/drug effects
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kelly B I Douglas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology and Neuroimmunology, Groningen Institute of Evolutionary Life Science, University of Groningen, Groningen, Netherlands
| | - Barbro N Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
5
|
Abdelrazik RM, Ali MHM, Atef RM, Abdel Fattah IO. Comparative evaluation of the effects of deferiprone and/or resveratrol in alleviating iron overload-induced tongue injury in rats. Tissue Cell 2024; 91:102534. [PMID: 39191050 DOI: 10.1016/j.tice.2024.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Iron overload causes excessive iron deposition in extrahepatic organs, including the tongue. This study aims to compare the deferiprone and/or resveratrol treatments for the alleviation of iron overload-induced tongue injury in rats. Rats were divided into 6 groups: control group, iron-overloaded group, recovery group where rats were left to recover from iron overload, deferiprone-treated group, resveratrol-treated group, and combined deferiprone/resveratrol-treated group. Iron was administered for 4 weeks, while all treatment options were given for the subsequent 4 weeks. After 8 weeks, all rats were sacrificed; the serum iron profile was estimated, and the tongues were assessed by histopathological, tumour necrosis factor alpha (TNF-α) immunohistochemical, histomorphometric, and ultrastructural evaluations. Serum iron parameters were significantly increased in iron-overloaded rats and decreased to control levels only in the combined group. The iron-overloaded tongues demonstrated lost lingual papillae, coarse keratohyalin granules, vacuolated epithelial cells, degenerated muscle fibers, and congested blood vessels. Compared to the control rats, this group revealed a significant decrease in the epithelial layer thickness (550.7 vs. 763.4 µm), papillae height (441.4 vs. 849.7 µm), and myofiber diameter (58.5 vs. 98.6 µm), and increased lamina propria thickness (305.1 vs. 176.8 µm), fibrosis index (33.4 vs. 8.6 %), and TNF-α immunoexpression (1.16 vs. 0.63 optical density). Additionally, the ultrastructure showed hyperkeratinized papillae, wide interpapillary spaces, flat fungiform papillae, and lost gustatory pores. All these parameters were improved in the recovery, deferiprone, and resveratrol groups to different degrees, while the combined deferiprone/resveratrol treatment was the best option.
Collapse
Affiliation(s)
- Rania Mahmoud Abdelrazik
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona Hassan Mohammed Ali
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham Mohammed Atef
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Islam Omar Abdel Fattah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
6
|
Du Y, Xia Y, Xu T, Hu H, He Y, Zhang M, Li S. Selenoprotein o as a regulator of macrophage metabolism in selenium deficiency-induced lung inflammation. Int J Biol Macromol 2024; 281:136232. [PMID: 39362434 DOI: 10.1016/j.ijbiomac.2024.136232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Selenium (Se) deficiency induces an inflammatory response in the lungs, but the underlying mechanisms are unknown. Selenoprotein O (SelO) is the largest selenoprotein in terms of molecular weight, yet its potential biological functions have yet to be characterized. Our study revealed that Se deficiency leads to an imbalance in the expression of pro-inflammatory "M1" macrophages and anti-inflammatory "M2" macrophages in alveolar macrophages (AMs) and interstitial macrophages (IMs) and contributed to the development of lung inflammation. Through the analysis of differentially expressed selenoproteins, we identified SelO as a potential regulator of the imbalance in pulmonary macrophage polarization caused by Se deficiency. In vitro experiments showed that SelO knockdown enhanced the polarization of M1 macrophages while suppressing that of M2 macrophages. In addition, SelO knockdown reprogrammed macrophage metabolism to glycolysis, disrupting oxidative phosphorylation (OXPHOS). Mechanistically, SelO primarily targets mitochondrial transcription factor A (TFAM), which plays a crucial role in the transcription and replication of mitochondrial DNA (mtDNA) and is essential for mitochondrial biogenesis and energy metabolism. The deficiency of SelO affects TFAM, resulting in its uncontrolled degradation, which compromises mitochondrial function and energy metabolism. In summary, the findings presented here offer significant theoretical insights into the physiological functions of SelO.
Collapse
Affiliation(s)
- Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haojie Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao He
- Kekedala Animal Husbandry and Veterinary Workstation of the Fourth Division of Xinjiang Construction Corps, Kekedala 831304, China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Wang R, Xu J, Wei S, Liu X. Increased Lipocalin 2 detected by RNA sequencing regulates apoptosis and ferroptosis in COPD. BMC Pulm Med 2024; 24:535. [PMID: 39462322 PMCID: PMC11515215 DOI: 10.1186/s12890-024-03357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex respiratory condition influenced by environmental and genetic factors. Using next-generation sequencing, we aimed to identify dysregulated genes and potential therapeutic targets for COPD. METHODS Peripheral blood leukocyte RNA profiles from COPD patients and healthy controls were analyzed using next-generation sequencing. Key genes involved in COPD pathogenesis were identified through protein-protein interaction network analysis. In vitro, bronchial epithelial cells treated with cigarette smoke extract (CSE) were used to study the effects on gene expression, cell viability, apoptosis, and ferroptosis. Additionally, Lipocalin 2 (LCN2) inhibition experiments were conducted to elucidate its role in COPD-related cellular processes. RESULTS Analysis of RNA profiles revealed consistent downregulation of 17 genes and upregulation of 21 genes across all COPD groups. Among these, Cathelicidin Antimicrobial Peptide(CAMP), Defensin Alpha 4(DEFA4), Neutrophil Elastase(ELANE), LCN2 and Lactotransferrin(LTF) were identified as potentially important players in COPD pathogenesis. Particularly, LCN2 exhibited a close association with COPD and was found to be involved in cellular processes. In vitro experiments demonstrated that CSE treatment significantly increased LCN2 expression in bronchial epithelial cells in a concentration-dependent manner. Moreover, CSE-induced apoptosis and ferroptosis were observed, along with alterations in cell viability, Glutathione content, Fe2 + accumulation, ROS: Reactive Oxygen Species and Malondialdehyde levels, Lactate Dehydrogenase(LDH) release and Glutathione Peroxidase 4(GPX4) expression. Inhibition of LCN2 expression partially reversed these effects, indicating the pivotal role of LCN2 in COPD-related cellular processes. CONCLUSION Our study identified six candidate genes: CAMP, DEFA4, ELANE, LCN2, and LTF were upregulated, HSPA1B was downregulated. Notably, LCN2 emerges as a significant biomarker in COPD pathogenesis, exerting its effects by promoting apoptosis and ferroptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Shuang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Jiang Y, Jiang ZT, Zhao G, Cai JW, Song J, Wang J, Zhou Z, Wang Q, Ling QH. LCN2 depletion aggravates sepsis-induced liver injury by regulating PTGS2-dependent ferroptosis. Int J Med Sci 2024; 21:2770-2780. [PMID: 39512683 PMCID: PMC11539382 DOI: 10.7150/ijms.98246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Sepsis-induced liver injury (SILI) is an independent risk factor for organ dysfunction and mortality in critical care units. Methods: In this study, the roles of lipocalin 2 (LCN2) in SILI were investigated because LCN2 expression was increased in liver tissues of the septic mice induced by caecal ligation and puncture (CLP), as well as in hepatocytes treated with lipopolysaccharide (LPS). To evaluate liver injury in mice, the levels of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were measured in both serum and liver tissues. Oxidative stress was evaluated by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) in serum and liver samples. Additionally, ferroptosis was assessed by examining the expression of prostaglandin endoperoxide synthase 2 (PTGS2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) in liver tissue. Results: The results demonstrated that LCN2 depletion significantly exacerbated SILI, oxidative stress, and ferroptosis. Moreover, in in vitro sepsis model, LCN2 overexpression notably ameliorated LPS-induced cell injury, oxidative stress, and ferroptosis by inhibiting PTGS2 expression. Conclusion: In conclusion, our study provides evidence that LCN2 depletion aggravates SILI by regulating PTGS2-mediated ferroptosis.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Hepatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Tian Jiang
- Department of Outpatient Office, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Zhao
- Department of Outpatient Office, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Wen Cai
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Song
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Zhou
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi-Hua Ling
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Chi F, Cheng C, Zhang M, Su B, Hou Y, Bai G. Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118353. [PMID: 38762209 DOI: 10.1016/j.jep.2024.118353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Polygonum cuspidatum Sieb. et Zucc (PC), known as 'Huzhang' in the Chinese Pharmacopoeia, has been traditionally employed for its anti-inflammatory, antiviral, antimicrobial, and other biological activities. Polydatin (PD) and its aglycone, resveratrol (RES), are key pharmacologically active components responsible for exerting anti-inflammatory and antioxidant effects. However, its specific targets and action mechanisms remain unclear. AIM OF THE STUDY The equilibrium of the KEAP1-NRF2 system serves as the primary protective response to oxidative and electrophilic stresses within the body, particularly in cases of acute lung injury caused by pathogenic microbial infection. In this study, the precise mechanisms by which RES alleviates oxidative stress damage in conjunction with NRF2 activators are discussed. MATERIALS AND METHODS The active components from PC were screened to evaluate their potential to inhibit reactive oxygen species (ROS) and activate antioxidant activity dependent on antioxidant response elements (ARE). RES was evaluated for its potential to alleviate the oxidative stress caused by pathogenic microbial infection. Functional probes were designed to study the RES distribution and identify its targets. A lipopolysaccharide (LPS)-induced oxidative injury model was used to evaluate the effects of RES on the KEAP1-NRF2/ARE pathway in RAW 264.7 cells. The interaction between RES and NRF2 was elucidated using drug-affinity responsive target stability (DARTS), cellular thermal shift assays (CETSA), co-immunoprecipitation (Co-IP), and microscale thermophoresis (MST) techniques. The key binding sites were predicted using molecular docking and validated in NRF2-knockdownand reconstructed cells. Finally, protective effects against pulmonary stress were verified in a mouse model of pathogenic infection. RESULTS The accumulation of RES in lung macrophages disrupted the binding between KEAP1 and NRF2, thereby preventing the ubiquitination degradation of NRF2 through its interaction with Ile28 on the NRF2-DLG motif. The activation of NRF2 resulted in the upregulation of nuclear transcription, enhances the expression of antioxidant genes dependent on ARE, suppresses ROS generation, and ameliorates oxidative damage both in vivo and in vitro. CONCLUSION These findings shed light on the potential of RES to mitigate oxidative stress damage caused by pathogenic microorganism-induced lung infections and facilitate the discovery of novel small molecule modulators targeting the KEAP1-NRF2 DLG motif interaction.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bo Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
10
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
He K, Long X, Jiang H, Qin C. The differential impact of iron on ferroptosis, oxidative stress, and inflammatory reaction in head-kidney macrophages of yellow catfish (Pelteobagrus fulvidraco) with and without ammonia stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105184. [PMID: 38643939 DOI: 10.1016/j.dci.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 μg mL-1 FeSO4), and Fe + AM (20 μg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinran Long
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China; College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, 310058, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641112, China
| |
Collapse
|
12
|
Zhang X, Nickerson R, Burton L, Stueck A, Holbein B, Cheng Z, Zhou J, Lehmann C. The Hydroxypyridinone Iron Chelator DIBI Reduces Bacterial Load and Inflammation in Experimental Lung Infection. Biomedicines 2024; 12:1452. [PMID: 39062025 PMCID: PMC11274704 DOI: 10.3390/biomedicines12071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Iron plays a critical role in lung infections due to its function in the inflammatory immune response but also as an important factor for bacterial growth. Iron chelation represents a potential therapeutic approach to inhibit bacterial growth and pathologically increased pro-inflammatory mediator production. The present study was designed to investigate the impact of the iron chelator DIBI in murine lung infection induced by intratracheal Pseudomonas aeruginosa (strain PA14) administration. DIBI is a polymer with a polyvinylpyrrolidone backbone containing nine 3-hydroxy-1-(methacrylamidoethyl)-2-methyl-4(1H) pyridinone (MAHMP) residues per molecule and was given by intraperitoneal injection either as a single dose (80 mg/kg) immediately after PA14 administration or a double dose (second dose 4 h after PA14 administration). The results showed that lung NF-κBp65 levels, as well as levels of various inflammatory cytokines (TNFα, IL-1β, IL-6) both in lung tissue and bronchoalveolar lavage fluid (BALF), were significantly increased 24 h after PA14 administration. Single-dose DIBI did not affect the bacterial load or inflammatory response in the lungs or BALF. However, two doses of DIBI significantly decreased bacterial load, attenuated NF-κBp65 upregulation, reduced inflammatory cytokines production, and relieved lung tissue damage. Our findings support the conclusion that the iron chelator, DIBI, can reduce lung injury induced by P. aeruginosa, via its anti-bacterial and anti-inflammatory effects.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Guangzhou 510515, China
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Rhea Nickerson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Lauren Burton
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Ashley Stueck
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Bruce Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (R.N.); (L.B.); (B.H.); (Z.C.)
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
14
|
Shi H, Xie X, Zheng S, Chen H, Liu C, Li S, Lu M. Endotoxin tolerance ameliorates lipopolysaccharide/D-galactosamine-induced acute liver failure by negative regulation of the NF-κB/NLRP3 and activation of Nrf2/HO-1 via Sitr1. Int Immunopharmacol 2024; 132:111994. [PMID: 38581992 DOI: 10.1016/j.intimp.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.
Collapse
Affiliation(s)
- Huifang Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueting Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Santilli A, Shapiro D, Han Y, Sangwan N, Cresci GAM. Tributyrin Supplementation Rescues Chronic-Binge Ethanol-Induced Oxidative Stress in the Gut-Lung Axis in Mice. Antioxidants (Basel) 2024; 13:472. [PMID: 38671919 PMCID: PMC11047693 DOI: 10.3390/antiox13040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Excessive alcohol consumption increases the severity and worsens outcomes of pulmonary infections, often due to oxidative stress and tissue damage. While the mechanism behind this relationship is multifaceted, recent evidence suggests ethanol-induced changes to the gut microbiome impact the gut-lung axis. To assess this, a chronic-binge ethanol feeding mouse model was used to determine how ethanol altered the gut microbiome, small intestinal epithelial barrier, and immune responses, as well as neutrophil abundance and oxidative stress in the lungs, and how supporting gut health with tributyrin supplementation during chronic-binge ethanol exposure affected these responses. We found that ethanol consumption altered gut bacterial taxa and metabolic processes, distorted small intestinal immune responses, and induced both bacteria and endotoxin translocation into the lymphatic and circulatory systems. These changes were associated with increased neutrophil (Ly6G) presence and markers of oxidative stress, lipocalin-2 and myeloperoxidase, in the lungs. Importantly, tributyrin supplementation during ethanol exposure rescued gut bacterial function (p < 0.05), small intestinal barrier integrity, and immune responses, as well as reducing both Ly6G mRNA (p < 0.05) and lipocalin-2 mRNA (p < 0.01) in the lungs. These data suggest ethanol-associated disruption of gut homeostasis influenced the health of the lungs, and that therapeutics supporting gut health may also support lung health.
Collapse
Affiliation(s)
- Anthony Santilli
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - David Shapiro
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - Yingchun Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR) Facility, Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland, OH 44195, USA;
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gail A. M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Li XY, Qiu CM, Yang FY, Li XC, Fang YQ, Yang YJ. Protective effects of Prussian blue nanozyme against sepsis-induced acute lung injury by activating HO-1. Eur J Pharmacol 2024; 968:176354. [PMID: 38316248 DOI: 10.1016/j.ejphar.2024.176354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Sepsis is a life-threatening condition involving dysfunctional organ responses stemming from dysregulated host immune reactions to various infections. The lungs are most prone to failure during sepsis, resulting in acute lung injury (ALI). ALI is associated with oxidative stress and inflammation, and current therapeutic strategies are limited. To develop a more specific treatment, this study aimed to synthesise Prussian blue nanozyme (PBzyme), which can reduce oxidative stress and inflammation, to alleviate ALI. PBzyme with good biosafety was synthesised using a modified hydrothermal method. PBzyme was revealed to be an activator of haem oxygenase-1 (HO-1), improving survival rate and ameliorating lung injury in mice. Zinc protoporphyrin, an inhibitor of HO-1, inhibited the prophylactic therapeutic efficacy of PBzyme on ALI, and affected the nuclear factor-κB signaling pathway and activity of HO-1. This study demonstrates that PBzyme can alleviate oxidative stress and inflammation through HO-1 and has a prophylactic therapeutic effect on ALI. This provides a new strategy and direction for the clinical treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Xing-Yue Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Chen-Ming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Feng-Yuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Xiu-Chuan Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China
| | - Yu-Qiang Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Yong-Jian Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, P.R. China; Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
17
|
Lee EH, Lee JH, Kim DY, Lee YS, Jo Y, Dao T, Kim KE, Song DK, Seo JH, Seo YK, Seong JK, Moon C, Han E, Kim MK, Ryu S, Shin M, Roh GS, Jung HR, Osborne TF, Ryu D, Jeon TI, Im SS. Loss of SREBP-1c ameliorates iron-induced liver fibrosis by decreasing lipocalin-2. Exp Mol Med 2024; 56:1001-1012. [PMID: 38622198 PMCID: PMC11058876 DOI: 10.1038/s12276-024-01213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Eun-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Do-Young Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Young-Seung Lee
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, 16419, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Kyo Seo
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eugene Han
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Seungwan Ryu
- Department of Surgery, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 42601, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL, 33701, USA
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea.
| |
Collapse
|
18
|
Wang Z, Zhou X, Hu X, Zheng C. Quercetin ameliorates Helicobacter pylori-induced gastric epithelial cell injury by regulating specificity protein 1/lipocalin 2 axis in gastritis. J Appl Toxicol 2024; 44:641-650. [PMID: 38056887 DOI: 10.1002/jat.4566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Helicobacter pylori (HP) infection is the main cause of most cases of gastritis. Quercetin has been shown to have anti-inflammatory, anti-bacterial, and antiviral activities and has been demonstrated to be involved in HP-induced gastric mucosa injury. Moreover, the secretory protein lipocalin-2 (LCN2) was elevated in HP-infected gastric mucosa. Thus, this work aimed to study the interaction between quercetin and LCN2 in HP-triggered gastric injury during gastritis. Human gastric epithelial cell line GES-1 cells were exposed to HP for functional experiments. Cell viability, apoptosis, and inflammation were evaluated by cell counting kit-8, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Levels of genes and proteins were tested using quantitative reverse transcription polymerase chain reaction and western blotting analyses. The interaction between LCN2 and specificity protein 1 (SP1) was validated using chromatin immunoprecipitation assay and dual-luciferase reporter assay. Thereafter, we found quercetin treatment suppressed HP-induced GES-1 cell apoptotic and inflammatory injury and macrophage M1 polarization. LCN2 was highly expressed in HP-infected gastritis patients and HP-infected GES-1 cells, while quercetin reduced LCN2 expression in HP-infected GES-1 cells; moreover, LCN2 knockdown reversed HP-induced GES-1 cell injury and macrophage M1 polarization, and forced expression of LCN2 abolished the protective effects of quercetin on GES-1 cells under HP infection. Mechanistically, SP1 bound to LCN2 promoter and promoted its transcription. Also, SP1 overexpression counteracted the functions of quercetin on HP-stimulated GES-1 cells. In all, quercetin ameliorated HP-induced gastric epithelial cell apoptotic and inflammatory injuries, and macrophage M1 polarization via the SP1/LCN2 axis.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Hu
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congru Zheng
- Department of Digestive Endoscopy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Schröder SK, Krizanac M, Kim P, Kessel JC, Weiskirchen R. Ovaries of estrogen receptor 1-deficient mice show iron overload and signs of aging. Front Endocrinol (Lausanne) 2024; 15:1325386. [PMID: 38464972 PMCID: PMC10920212 DOI: 10.3389/fendo.2024.1325386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Estrogens are crucial regulators of ovarian function, mediating their signaling through binding to estrogen receptors. The disruption of the estrogen receptor 1 (Esr1) provokes infertility associated with a hemorrhagic, cystic phenotype similar to that seen in diseased or aged ovaries. Our previous study indicated the possibility of altered iron metabolism in Esr1-deficient ovaries showing massive expression of lipocalin 2, a regulator of iron homeostasis. Methods Therefore, we examined the consequences of depleting Esr1 in mouse ovaries, focusing on iron metabolism. For that reason, we compared ovaries of adult Esr1-deficient animals and age-matched wild type littermates. Results and discussion We found increased iron accumulation in Esr1-deficient animals by using laser ablation inductively coupled plasma mass spectrometry. Western blot analysis and RT-qPCR confirmed that iron overload alters iron transport, storage and regulation. In addition, trivalent iron deposits in form of hemosiderin were detected in Esr1-deficient ovarian stroma. The depletion of Esr1 was further associated with an aberrant immune cell landscape characterized by the appearance of macrophage-derived multinucleated giant cells (MNGCs) and increased quantities of macrophages, particularly M2-like macrophages. Similar to reproductively aged animals, MNGCs in Esr1-deficient ovaries were characterized by iron accumulation and strong autofluorescence. Finally, deletion of Esr1 led to a significant increase in ovarian mast cells, involved in iron-mediated foam cell formation. Given that these findings are characteristics of ovarian aging, our data suggest that Esr1 deficiency triggers mechanisms similar to those associated with aging.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | | | | | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| |
Collapse
|
20
|
Pries R, Kosyna FK, Depping R, Plötze-Martin K, Lange C, Meyhöfer S, Meyhöfer SM, Marquardt JU, Bruchhage KL, Steffen A. Distinguishing the impact of distinct obstructive sleep apnea syndrome (OSAS) and obesity related factors on human monocyte subsets. Sci Rep 2024; 14:340. [PMID: 38172514 PMCID: PMC10764945 DOI: 10.1038/s41598-023-49921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) and obesity go hand in hand in the majority of patients and both are associated with a systemic inflammation, immune disturbance and comorbidities such as cardiovascular disease. However, the unambiguous impact of OSAS and obesity on the individual inflammatory microenvironment and the immunological consequences of human monocytes has not been distinguished yet. Therefore, aim of this study was to investigate the impact of OSAS and obesity related factors on the inflammatory microenvironment by performing flow cytometric whole blood measurements of CD14/CD16 monocyte subsets in normal weight OSAS patients, patients with obesity but without OSAS, and patients with OSAS and obesity, compared to healthy donors. Moreover, explicitly OSAS and obesity related plasma levels of inflammatory mediators adiponectin, leptin, lipocalin and metalloproteinase-9 were determined and the influence of different OSAS and obesity related factors on cytokine secretion and expression of different adhesion molecules by THP-1 monocytes was analysed. Our data revealed a significant redistribution of circulating classical and intermediate monocytes in all three patient cohorts, but differential effects in terms of monocytic adhesion molecules CD11a, CD11b, CD11c, CX3CR1, CD29, CD49d, and plasma cytokine levels. These data were reflected by differential effects of OSAS and obesity related factors leptin, TNFα and hypoxia on THP-1 cytokine secretion patterns and expression of adhesion molecules CD11b and CD49d. In summary, our data revealed differential effects of OSAS and obesity, which underlines the need for a customized therapeutic regimen with respect to the individual weighting of these overlapping diseases.
Collapse
Affiliation(s)
- Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | - Friederike Katharina Kosyna
- Institute of Physiology, Working Group Hypoxia, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Reinhard Depping
- Institute of Physiology, Working Group Hypoxia, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Kirstin Plötze-Martin
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Christian Lange
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Svenja Meyhöfer
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Lübeck, Germany
- Institute for Endocrinology & Diabetes, University Hospital of Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology & Diabetes, University Hospital of Schleswig-Holstein, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jens U Marquardt
- Department of Medicine 1, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Armin Steffen
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| |
Collapse
|
21
|
Galaris A, Fanidis D, Tsitoura E, Kanellopoulou P, Barbayianni I, Ntatsoulis K, Touloumi K, Gramenoudi S, Karampitsakos T, Tzouvelekis A, Antoniou K, Aidinis V. Increased lipocalin-2 expression in pulmonary inflammation and fibrosis. Front Med (Lausanne) 2023; 10:1195501. [PMID: 37746070 PMCID: PMC10513431 DOI: 10.3389/fmed.2023.1195501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease with dismal prognosis. The underlying pathogenic mechanisms are poorly understood, resulting in a lack of effective treatments. However, recurrent epithelial damage is considered critical for disease initiation and perpetuation, via the secretion of soluble factors that amplify inflammation and lead to fibroblast activation and exuberant deposition of ECM components. Lipocalin-2 (LCN2) is a neutrophil gelatinase-associated lipocalin (NGAL) that has been suggested as a biomarker of kidney damage. LCN2 has been reported to modulate innate immunity, including the recruitment of neutrophils, and to protect against bacterial infections by sequestering iron. Methods In silico analysis of publicly available transcriptomic datasets; ELISAs on human IPF patients' bronchoalveolar lavage fluids (BALFs); bleomycin (BLM)-induced pulmonary inflammation and fibrosis and LPS-induced acute lung injury (ALI) in mice: pulmonary function tests, histology, Q-RT-PCR, western blot, and FACS analysis. Results and discussion Increased LCN2 mRNA expression was detected in the lung tissue of IPF patients negatively correlating with respiratory functions, as also shown for BALF LCN2 protein levels in a cohort of IPF patients. Increased Lcn2 expression was also detected upon BLM-induced pulmonary inflammation and fibrosis, especially at the acute phase correlating with neutrophilic infiltration, as well as upon LPS-induced ALI, an animal model characterized by neutrophilic infiltration. Surprisingly, and non withstanding the limitations of the study and the observed trends, Lcn2-/- mice were found to still develop BLM- or LPS-induced pulmonary inflammation and fibrosis, thus questioning a major pathogenic role for Lcn2 in mice. However, LCN2 qualifies as a surrogate biomarker of pulmonary inflammation and a possible indicator of compromised pulmonary functions, urging for larger studies.
Collapse
Affiliation(s)
- Apostolos Galaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Eliza Tsitoura
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Kanellopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ilianna Barbayianni
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Konstantinos Ntatsoulis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Katerina Touloumi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Gramenoudi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Theodoros Karampitsakos
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Katerina Antoniou
- Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
22
|
Zhang J, Zhang R, Li W, Ma XC, Qiu F, Sun CP. IκB kinase β (IKKβ): Structure, transduction mechanism, biological function, and discovery of its inhibitors. Int J Biol Sci 2023; 19:4181-4203. [PMID: 37705738 PMCID: PMC10496512 DOI: 10.7150/ijbs.85158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
The effective approach to discover innovative drugs will ask natural products for answers because of their complex and changeable structures and multiple biological activities. Inhibitory kappa B kinase beta (IKKβ), known as IKK2, is a key regulatory kinase responsible for the activation of NF-κB through its phosphorylation at Ser177 and Ser181 to promote the phosphorylation of inhibitors of kappa B (IκBs), triggering their ubiquitination and degradation to active the nuclear factor kappa-B (NF-κB) cascade. Chemical inhibition of IKKβ or its genetic knockout has become an effective method to block NF-κB-mediated proliferation and migration of tumor cells and inflammatory response. In this review, we summarized the structural feature and transduction mechanism of IKKβ and the discovery of inhibitors from natural resources (e.g. sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, and alkaloids) and chemical synthesis (e.g. pyrimidines, pyridines, pyrazines, quinoxalines, thiophenes, and thiazolidines). In addition, the biosynthetic pathway of novel natural IKKβ inhibitors and their biological potentials were discussed. This review will provide inspiration for the structural modification of IKKβ inhibitors based on the skeleton of natural products or chemical synthesis and further phytochemistry investigations.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518061, China
| | - Rui Zhang
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Li
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Xiao-Chi Ma
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cheng-Peng Sun
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Pharmacy, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
23
|
Zhang X, Zhou J, Holbein BE, Lehmann C. Iron Chelation as a Potential Therapeutic Approach in Acute Lung Injury. Life (Basel) 2023; 13:1659. [PMID: 37629516 PMCID: PMC10455621 DOI: 10.3390/life13081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lung injury (ALI) has been challenging health care systems since before the COVID-19 pandemic due to its morbidity, mortality, and length of hospital stay. In view of the complex pathogenesis of ALI, effective strategies for its prevention and treatment are still lacking. A growing body of evidence suggests that iron dysregulation is a common characteristic in many subtypes of ALI. On the one hand, iron is needed to produce reactive oxygen species (ROS) as part of the immune response to an infection; on the other hand, iron can accelerate the occurrence of ferroptosis and extend host cell damage. Iron chelation represents a novel therapeutic strategy for alleviating lung injury and improving the survival of patients with ALI. This article reviews the current knowledge of iron homeostasis, the role of iron in ALI development, and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Bruce E. Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|