1
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Amorim VMDF, Soares EP, Ferrari ASDA, Merighi DGS, de Souza RF, Guzzo CR, de Souza AS. 3-Chymotrypsin-like Protease (3CLpro) of SARS-CoV-2: Validation as a Molecular Target, Proposal of a Novel Catalytic Mechanism, and Inhibitors in Preclinical and Clinical Trials. Viruses 2024; 16:844. [PMID: 38932137 PMCID: PMC11209289 DOI: 10.3390/v16060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| |
Collapse
|
3
|
McColl ER, Croyle MA, Zamboni WC, Honer WG, Heise M, Piquette-Miller M, Goralski KB. COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metab Dispos 2023; 51:130-141. [PMID: 36273826 PMCID: PMC11022893 DOI: 10.1124/dmd.122.000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
This article reports on an American Society of Pharmacology and Therapeutics, Division of Drug Metabolism and Disposition symposium held at Experimental Biology on April 2, 2022, in Philadelphia. As of July 2022, over 500 million people have been infected with SARS-CoV-2 (the virus causing COVID-19) and over 12 billion vaccine doses have been administered. Clinically significant interactions between viral infections and hepatic drug metabolism were first recognized over 40 years ago during a cluster of pediatric theophylline toxicity cases attributed to reduced hepatic drug metabolism amid an influenza B outbreak. Today, a substantive body of research supports that the activated innate immune response generally decreases hepatic cytochrome P450 activity. The interactions extend to drug transporters and other organs and have the potential to impact drug absorption, distribution, metabolism, and excretion (ADME). Based on this knowledge, altered ADME is predicted with SARS-CoV-2 infection or vaccination. The report begins with a clinical case exploring the possibility of SARS-CoV-2 vaccination increasing clozapine levels. This is followed by discussions of how SARS-CoV-2 infection or vaccines alter the metabolism and disposition of complex drugs, such as nanoparticles and biologics and small molecule therapies. The review concludes with a discussion of the effects of viral infections on placental amino acid transport and their potential to impact fetal development. The session improved our understanding of the impact of emerging viral infections and vaccine technologies on drug metabolism and disposition, which will help mitigate drug toxicity and improve drug and vaccine safety and effectiveness. SIGNIFICANCE STATEMENT: Altered pharmacokinetics of small molecule and complex molecule drugs and fetal brain distribution of amino acids following SARS-CoV-2 infection or immunization are possible. The proposed mechanisms involve decreased liver cytochrome P450 metabolism of small molecules, enhanced innate immune system metabolism of complex molecules, and altered placental and fetal blood-brain barrier amino acid transport, respectively. Future research is needed to understand the effects of these interactions on adverse drug responses, drug and vaccine safety, and effectiveness and fetal neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Maria A Croyle
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William C Zamboni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William G Honer
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Mark Heise
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Le Carpentier EC, Canet E, Masson D, Martin M, Deslandes G, Gaultier A, Dailly É, Bellouard R, Gregoire M. Impact of Inflammation on Midazolam Metabolism in Severe COVID-19 Patients. Clin Pharmacol Ther 2022; 112:1033-1039. [PMID: 35776074 PMCID: PMC9350233 DOI: 10.1002/cpt.2698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/12/2022] [Indexed: 11/08/2022]
Abstract
Midazolam is a benzodiazepine frequently used for sedation in patients hospitalized in the intensive care unit (ICU) for coronavirus disease 2019 (COVID-19). This drug is primarily metabolized by cytochrome P450 3A (CYP3A) isoenzymes. Several studies have suggested that inflammation, frequently observed in these patients, could modulate CYP3A activity. The objective of this work was to study the impact of inflammation on midazolam pharmacokinetics in patients with COVID-19. Forty-eight patients hospitalized in the ICU for COVID-19 and treated with midazolam administered by continuous infusion were included in this study. Midazolam and α-hydroxymidazolam concentrations were measured and patient data, including the use of CYP3A inhibitors, were collected. Total and unbound concentrations of midazolam and α-hydroxymidazolam were measured in plasma using a validated liquid-chromatography coupled with mass spectrometry method. Inflammatory condition was evaluated by C-reactive protein (CRP) level measurement. Both drug concentrations and CRP measurements were performed on 354 plasma samples. CRP elevation was significantly associated with the α-hydroxymidazolam/midazolam plasma ratio decrease, whether for the unbound fraction or for the total fraction. Conversely, inflammation was not associated with protein binding modifications. Logically, α-hydroxymidazolam/midazolam plasma ratio was significantly reduced when patients were treated with CYP3A inhibitors. In this study, we showed that inflammation probably reduces the metabolism of midazolam by CYP3A. These results suggest that molecules with narrow therapeutic margins and metabolized by CYP3A should be administrated with care in case of massive inflammatory situations.
Collapse
Affiliation(s)
| | - Emmanuel Canet
- Médecine Intensive Réanimation, CHU NantesNantes UniversitéNantesFrance
| | - Damien Masson
- Laboratoire de Biochimie, CHU NantesNantes UniversitéNantesFrance
| | - Maëlle Martin
- Médecine Intensive Réanimation, CHU NantesNantes UniversitéNantesFrance
| | - Guillaume Deslandes
- Laboratoire de Pharmacologie Clinique, CHU NantesNantes UniversitéNantesFrance
| | - Aurélie Gaultier
- Plateforme de Méthodologie et Biostatistique, CHU NantesNantes UniversitéNantesFrance
| | - Éric Dailly
- Laboratoire de Pharmacologie Clinique, CHU NantesNantes UniversitéNantesFrance
- Cibles et Médicaments des Infections et de l'Immunité, IICiMed, CHU NantesNantes UniversitéNantesFrance
| | - Ronan Bellouard
- Laboratoire de Pharmacologie Clinique, CHU NantesNantes UniversitéNantesFrance
- Cibles et Médicaments des Infections et de l'Immunité, IICiMed, CHU NantesNantes UniversitéNantesFrance
| | - Matthieu Gregoire
- Laboratoire de Pharmacologie Clinique, CHU NantesNantes UniversitéNantesFrance
- The Enteric Nervous System in Gut and Brain Disorders, IMAD, INSERM, CHU NantesNantes UniversitéNantesFrance
| |
Collapse
|
5
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
6
|
Mullender C, da Costa KAS, Alrubayyi A, Pett SL, Peppa D. SARS-CoV-2 immunity and vaccine strategies in people with HIV. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac005. [PMID: 36846557 PMCID: PMC9452103 DOI: 10.1093/oxfimm/iqac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, based on the ancestral Wuhan strain, were developed rapidly to meet the needs of a devastating global pandemic. People living with Human Immunodeficiency Virus (PLWH) have been designated as a priority group for SARS-CoV-2 vaccination in most regions and varying primary courses (two- or three-dose schedule) and additional boosters are recommended depending on current CD4+ T cell count and/or detectable HIV viraemia. From the current published data, licensed vaccines are safe for PLWH, and stimulate robust responses to vaccination in those well controlled on antiretroviral therapy and with high CD4+ T cell counts. Data on vaccine efficacy and immunogenicity remain, however, scarce in PLWH, especially in people with advanced disease. A greater concern is a potentially diminished immune response to the primary course and subsequent boosters, as well as an attenuated magnitude and durability of protective immune responses. A detailed understanding of the breadth and durability of humoral and T cell responses to vaccination, and the boosting effects of natural immunity to SARS-CoV-2, in more diverse populations of PLWH with a spectrum of HIV-related immunosuppression is therefore critical. This article summarizes focused studies of humoral and cellular responses to SARS-CoV-2 infection in PLWH and provides a comprehensive review of the emerging literature on SARS-CoV-2 vaccine responses. Emphasis is placed on the potential effect of HIV-related factors and presence of co-morbidities modulating responses to SARS-CoV-2 vaccination, and the remaining challenges informing the optimal vaccination strategy to elicit enduring responses against existing and emerging variants in PLWH.
Collapse
Affiliation(s)
- Claire Mullender
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London Institute for Global Health, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah L Pett
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London Institute for Global Health, London, UK
- Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
7
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|
8
|
Karolyi M, Pawelka E, Omid S, Koenig F, Kauer V, Rumpf B, Hoepler W, Kuran A, Laferl H, Seitz T, Traugott M, Rathkolb V, Mueller M, Abrahamowicz A, Schoergenhofer C, Hecking M, Assinger A, Wenisch C, Zeitlinger M, Jilma B, Zoufaly A. Camostat Mesylate Versus Lopinavir/Ritonavir in Hospitalized Patients With COVID-19-Results From a Randomized, Controlled, Open Label, Platform Trial (ACOVACT). Front Pharmacol 2022; 13:870493. [PMID: 35935856 PMCID: PMC9354138 DOI: 10.3389/fphar.2022.870493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To date, no oral antiviral drug has proven to be beneficial in hospitalized patients with COVID-19. Methods: In this randomized, controlled, open-label, platform trial, we randomly assigned patients ≥18 years hospitalized with COVID-19 pneumonia to receive either camostat mesylate (CM) (considered standard-of-care) or lopinavir/ritonavir (LPV/RTV). The primary endpoint was time to sustained clinical improvement (≥48 h) of at least one point on the 7-category WHO scale. Secondary endpoints included length of stay (LOS), need for mechanical ventilation (MV) or death, and 29-day mortality. Results: 201 patients were included in the study (101 CM and 100 LPV/RTV) between 20 April 2020 and 14 May 2021. Mean age was 58.7 years, and 67% were male. The median time from symptom onset to randomization was 7 days (IQR 5-9). Patients in the CM group had a significantly shorter time to sustained clinical improvement (HR = 0.67, 95%-CI 0.49-0.90; 9 vs. 11 days, p = 0.008) and demonstrated less progression to MV or death [6/101 (5.9%) vs. 15/100 (15%), p = 0.036] and a shorter LOS (12 vs. 14 days, p = 0.023). A statistically nonsignificant trend toward a lower 29-day mortality in the CM group than the LPV/RTV group [2/101 (2%) vs. 7/100 (7%), p = 0.089] was observed. Conclusion: In patients hospitalized for COVID-19, the use of CM was associated with shorter time to clinical improvement, reduced need for MV or death, and shorter LOS than the use of LPV/RTV. Furthermore, research is needed to confirm the efficacy of CM in larger placebo-controlled trials. Systematic Review Registration: [https://clinicaltrials.gov/ct2/show/NCT04351724, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001302-30/AT], identifier [NCT04351724, EUDRACT-NR: 2020-001302-30].
Collapse
Affiliation(s)
- M. Karolyi
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - E. Pawelka
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - S. Omid
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - F. Koenig
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - V. Kauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - B. Rumpf
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - W. Hoepler
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - A. Kuran
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - H. Laferl
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - T. Seitz
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - M. Traugott
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - V. Rathkolb
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - M. Mueller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A. Abrahamowicz
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - C. Schoergenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - M. Hecking
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - A. Assinger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - C. Wenisch
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - M. Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - B. Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A. Zoufaly
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
9
|
Bandaru R, Rout SR, Kamble OS, Samal SK, Gorain B, Sahebkar A, Ahmed FJ, Kesharwani P, Dandela R. Clinical progress of therapeutics and vaccines: Rising hope against COVID-19 treatment. Process Biochem 2022; 118:154-170. [PMID: 35437418 PMCID: PMC9008982 DOI: 10.1016/j.procbio.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023]
Abstract
Cases of deaths due to COVID-19 (COrona VIrus Disease-19) infection are increasing gradually worldwide. Immense research is ongoing to control this pandemic condition. Continual research outcomes are indicating that therapeutic and prophylactic agents are the possible hope to prevent the pandemic from spreading and to combat this increasing death count. Experience gained from previous coronavirus infections (eg., SARS (Severe Acute Respiratory Syndrome), MERS (Middle Ease Respiratory Syndrome), accumulated clinical knowledge during this pandemic, and research helped to identify a few therapeutic agents for emergency treatment of COVID-19. Thereby, monoclonal antibodies, antivirals, broad-spectrum antimicrobials, immunomodulators, and supplements are being suggested for treatment depending on the stage of the disease. These recommended treatments are authorized under medical supervision in emergency conditions only. Urgent need to control the pandemic condition had resulted in various approaches of repurposing the existing drugs, However, poorly designed clinical trials and associated outcomes do not provide enough evidence to fully approve treatments against COVID-19. So far, World Health Organization (WHO) authorized three vaccines as prophylactic against SARS-CoV-2. Here, we discussed about various therapeutic agents, their clinical trials, and limitations of trials for the management of COVID-19. Further, we have also spotlighted different vaccines in research in combating COVID-19.
Collapse
Affiliation(s)
- Ravi Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Sangram K Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, Indian Council of Medical Research-Regional Medical Research Center, Bhubaneswar 751023, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan J Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard 110062, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| |
Collapse
|
10
|
Chavda VP, Kapadia C, Soni S, Prajapati R, Chauhan SC, Yallapu MM, Apostolopoulos V. A global picture: therapeutic perspectives for COVID-19. Immunotherapy 2022; 14:351-371. [PMID: 35187954 PMCID: PMC8884157 DOI: 10.2217/imt-2021-0168] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Carron Kapadia
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Subhash C Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|
11
|
Chavda VP, Kapadia C, Soni S, Prajapati R, Chauhan SC, Yallapu MM, Apostolopoulos V. A global picture: therapeutic perspectives for COVID-19. Immunotherapy 2022. [PMID: 35187954 DOI: 10.2217/imt-2021-0168.10.2217/imt-2021-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Department of Pharmaceutics, K B Institute of Pharmaceutical Education & Research, Kadi Sarva Vishwavidhyalaya, Gandhinagar, Gujarat, 382023, India
| | - Carron Kapadia
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Shailvi Soni
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Riddhi Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Subhash C Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Murali M Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78503, USA
| | - Vasso Apostolopoulos
- Institute for Health & Sport, Victoria University, Melbourne, VIC, 3030, Australia
| |
Collapse
|
12
|
Evaluation of the effects of COVID-19 on pregnancy, fetus and newborn, and treatment management. North Clin Istanb 2022; 9:30-34. [PMID: 35340311 PMCID: PMC8889216 DOI: 10.14744/nci.2021.45577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: During pregnancy, changes occur in many systems, including the immune system. In line with our experience in the previous years, COVID-19 infections have negative effects on pregnancy. In our study, it was aimed to evaluate the effects of COVID-19 on pregnancy, fetus and newborn, and treatment management. Methods: In our study, 63 patients followed up between April 1, 2020 and April 1, 2021, were evaluated. Demographic data, symptoms, laboratory data, treatments, clinical course and delivery characteristics of the patients, as well as pathologies in the fetus and newborn were investigated retrospectively. The obtained data were statistically analyzed with Statistical Package for the Social Sciences. Results: In this study, 63 pregnant COVID-19 patients aged 19–37 years were included in the study. Fifty of the patients had symptoms of COVID-19 at the time of admission. At the time of admission, 13 patients required oxygen, and ten of these patients had severe radiological involvement. Seven patients were admitted to the intensive care unit, and three of them required invasive mechanical ventilation and deceased afterward. All newborns were found negative for the COVID-19 polymerase chain reaction test. Low birth weight has been detected in eight newborns and low Apgar score in 2 of them. Respiratory distress was observed in four newborns and they were discharged from intensive. Conclusion: Pregnant women have more disadvantages in the course of COVID-19 and have worse maternal outcomes. In addition, treatments such as Lopinavir/Ritonavir and hydroxychloroquine did not have any effect. These patients should be carefully evaluated and followed up.
Collapse
|
13
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
MacGowan A, Hamilton F, Bayliss M, Read L, Attwood M, Noel A, Albur M, Grier S, Morley A, Arnold D, Maskell N. Pharmacokinetics of Lopinavir/Ritonavir in Hospitalized Patients with COVID-19 Not Requiring Critical Care. Microb Drug Resist 2022; 28:611-612. [DOI: 10.1089/mdr.2021.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alasdair MacGowan
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Mark Bayliss
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Liam Read
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Marie Attwood
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Alan Noel
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Maha Albur
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Sally Grier
- Department of Infection Sciences, Bristol Centre for Antimicrobial Research and Evaluation, Southmead Hospital, Bristol, United Kingdom
| | - Anna Morley
- Academic Respiratory Unit, Southmead Hospital, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Southmead Hospital, Bristol, United Kingdom
| | - Nicholas Maskell
- Academic Respiratory Unit, Southmead Hospital, Bristol, United Kingdom
| |
Collapse
|
15
|
Alikhani A, Ghazaiean M, Ghasemian R, Khademloo M. Atazanavir versus lopinavir on Covid-19 infection: A retrospective protease inhibitors comparative study 2020. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:173-179. [PMID: 35872684 PMCID: PMC9272962 DOI: 10.22088/cjim.13.0.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Background Evaluation of protease inhibitors (PIs) is important in terms of prescribing an effective regimen for reducing mortality and hospitalization in Covid-19. Therefore, follow-up of patients better determines the characteristics of existing regimens. Methods We retrospectively evaluated the demographic, co-morbidities, gastrointestinal (GI) and liver complications of patients at two teaching hospitals from the first of March to the end of July 2020. All patients received one of two recommended regimens including hydroxychloroquine (HCQ) (400 mg BD on the first day and then 200 mg BD) plus atazanavir/ritonavir (ATV) (300/100 mg daily) or HCQ with the same dose plus lopinavir/ritonavir (Kaletra) (400/100 mg BD) for 5-7 days. Results We chose 170 cases that received 2 different regimens. In group one, 85(57.6% males) patients received Kaletra and HCQ and group two, 85 (55.3% males) patients received ATV and HCQ. The study of hospitalization in both groups showed no difference in more or less than 5 days hospitalization. (P=0.757) Comparison of mortality rates has not shown a significant difference including 19 (22.4%) deaths in group 1 and 15(17.6%) deaths in group 2 (P=0.443). Nausea followed by diarrhea was the most common side effects in group 1. But no side effects were reported in group 2 (P=0.000). Abnormal liver function tests (LFTs) were seen in both groups. Conclusion Comparison of hospitalization and mortality were not statistically significant. It seems that a respect to similar effect on mortality and hospitalization. ATV regimen is superior to Kaletra especially for better GI tolerance and less daily pills.
Collapse
Affiliation(s)
- Ahmad Alikhani
- Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Ghazaiean
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roya Ghasemian
- Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence: Roya Ghasemian, Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran. E-mail: , Tel: 0098 1133378840, Fax: 0098 1133378840
| | - Mohammad Khademloo
- Department of Community Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Gatti M, Pea F. The Cytokine Release Syndrome and/or the Proinflammatory Cytokines as Underlying Mechanisms of Downregulation of Drug Metabolism and Drug Transport: A Systematic Review of the Clinical Pharmacokinetics of Victim Drugs of this Drug-Disease Interaction Under Different Clinical Conditions. Clin Pharmacokinet 2022; 61:1519-1544. [PMID: 36059001 PMCID: PMC9441320 DOI: 10.1007/s40262-022-01173-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND OBJECTIVE An ever-growing body of evidence supports the impact of cytokine modulation on the patient's phenotypic drug response. The aim of this systematic review was to analyze the clinical studies that assessed the pharmacokinetics of victim drugs of this drug-disease interaction in the presence of different scenarios of cytokine modulation in comparison with baseline conditions. METHODS We conducted a systematic review by searching the PubMed-MEDLINE database from inception until February 2022 to retrieve prospective and/or retrospective observational studies, population pharmacokinetic studies, phase I studies, and/or case series/reports that investigated the impact of cytokine modulation on the pharmacokinetic behavior of victim drugs. Only studies providing quantitative pharmacokinetic data of victim drugs by comparing normal status versus clinical conditions with documented cytokine modulation or by assessing the influence of anti-inflammatory biological agents on metabolism and/or transport of victim drugs were included. RESULTS Overall, 26 studies were included. Rheumatoid arthritis (6/26; 23.1%) and sepsis (5/26; 19.2%) were the two most frequently investigated pro-inflammatory clinical scenarios. The victim drug most frequently assessed was midazolam (14/26; 53.8%; as a probe for cytochrome P450 [CYP] 3A4). Cytokine modulation showed a moderate inhibitory effect on CYP3A4-mediated metabolism (area under the concentration-time curve increase and/or clearance decrease between 1.98-fold and 2.59-fold) and a weak-to-moderate inhibitory effect on CYP1A2, CYP2C9, and CYP2C19-mediated metabolism (in the area under the concentration-time curve increase or clearance decrease between 1.29-fold and 1.97-fold). Anti-interleukin-6 agents showed remarkable activity in counteracting downregulation of CYP3A4-mediated activity (increase in the area under the concentration-time curve between 1.75-fold and 2.56-fold). CONCLUSIONS Cytokine modulation may cause moderate or weak-to-moderate downregulation of metabolism/transport of victim drugs, and this may theoretically have relevant clinical consequences.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy ,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
17
|
Berman E, Noyman I, Medvedovsky M, Ekstein D, Eyal S. Not your usual drug-drug interactions: Monoclonal antibody-based therapeutics may interact with antiseizure medications. Epilepsia 2021; 63:271-289. [PMID: 34967010 DOI: 10.1111/epi.17147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have emerged as the fastest growing drug class. As such, mAbs are increasingly being co-prescribed with other drugs, including antiseizure medications (ASMs). Although mAbs do not share direct targets or mechanisms of disposition with small-molecule drugs (SMDs), combining therapeutics of both types can increase the risk of adverse effects and treatment failure. The primary goal of this literature review was identifying mAb-ASM combinations requiring the attention of professionals who are treating patients with epilepsy. Systematic PubMed and Embase searches (1980-2021) were performed for terms relating to mAbs, ASMs, drug interactions, and their combinations. Additional information was obtained from documents from the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Evidence was critically appraised - key issues calling for clinicians' consideration and important knowledge gaps were identified, and practice recommendations were developed by a group of pharmacists and epileptologists. The majority of interactions were attributed to the indirect effects of cytokine-modulating antibodies on drug metabolism. Conversely, strong inhibitors or inducers of drug-metabolizing enzymes or drug transporters could potentially interact with the cytotoxic payload of antibody-drug conjugates, and ASMs could alter mAb biodistribution. In addition, mAbs could potentiate adverse ASM effects. Unfortunately, few studies involved ASMs, requiring the formulation of class-based recommendations. Based on the current literature, most mAb-ASM interactions do not warrant special precautions. However, specific combinations should preferably be avoided, whereas others require monitoring and potentially adjustment of the ASM doses. Reduced drug efficacy or adverse effects could manifest days to weeks after mAb treatment onset or discontinuation, complicating the implication of drug interactions in potentially deleterious outcomes. Prescribers who treat patients with epilepsy should be familiar with mAb pharmacology to better anticipate potential mAb-ASM interactions and avoid toxicity, loss of seizure control, or impaired efficacy of mAb treatment.
Collapse
Affiliation(s)
- Erez Berman
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iris Noyman
- Pediatric Neurology Unit, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Medicine, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center of Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Eyal
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Lenoir C, Rollason V, Desmeules JA, Samer CF. Influence of Inflammation on Cytochromes P450 Activity in Adults: A Systematic Review of the Literature. Front Pharmacol 2021; 12:733935. [PMID: 34867341 PMCID: PMC8637893 DOI: 10.3389/fphar.2021.733935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Available in-vitro and animal studies indicate that inflammation impacts cytochromes P450 (CYP) activity via multiple and complex transcriptional and post-transcriptional mechanisms, depending on the specific CYP isoforms and the nature of inflammation mediators. It is essential to review the current published data on the impact of inflammation on CYP activities in adults to support drug individualization based on comorbidities and diseases in clinical practice. Methods: This systematic review was conducted in PubMed through 7th January 2021 looking for articles that investigated the consequences of inflammation on CYP activities in adults. Information on the source of inflammation, victim drugs (and CYPs involved), effect of disease-drug interaction, number of subjects, and study design were extracted. Results: The search strategy identified 218 studies and case reports that met our inclusion criteria. These articles were divided into fourteen different sources of inflammation (such as infection, autoimmune diseases, cancer, therapies with immunomodulator…). The impact of inflammation on CYP activities appeared to be isoform-specific and dependent on the nature and severity of the underlying disease causing the inflammation. Some of these drug-disease interactions had a significant influence on drug pharmacokinetic parameters and on clinical management. For example, clozapine levels doubled with signs of toxicity during infections and the concentration ratio between clopidogrel's active metabolite and clopidogrel is 48-fold lower in critically ill patients. Infection and CYP3A were the most cited perpetrator of inflammation and the most studied CYP, respectively. Moreover, some data suggest that resolution of inflammation results in a return to baseline CYP activities. Conclusion: Convincing evidence shows that inflammation is a major factor to be taken into account in drug development and in clinical practice to avoid any efficacy or safety issues because inflammation modulates CYP activities and thus drug pharmacokinetics. The impact is different depending on the CYP isoform and the inflammatory disease considered. Moreover, resolution of inflammation appears to result in a normalization of CYP activity. However, some results are still equivocal and further investigations are thus needed.
Collapse
Affiliation(s)
- Camille Lenoir
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jules A Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Caroline F Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Kröker A, Tirzīte M. Repurposed pharmacological agents for the potential treatment of COVID-19: a literature review. Respir Res 2021; 22:304. [PMID: 34838020 PMCID: PMC8626754 DOI: 10.1186/s12931-021-01885-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background The COVID-19 pandemic has affected the world extraordinarily. This disease has a potential to cause a significantly severe course of disease leading to respiratory complications, multiple organ failure and possibly death. In the fight against this pandemic-causing disease, medical professionals around the world are searching for pharmacological agents that could treat and prevent disease progression and mortality. To speed the search of promising treatment options, already existing pharmacological agents are repurposed for the potential treatment of COVID-19 and tested in clinical trials. The aim of this literature review is to investigate the efficacy and safety of repurposed pharmacological agents for the treatment of COVID-19 at different pathophysiologic stages of the disease. For this literature review, online-databases PubMed and Google Scholar were utilised. Keywords “COVID-19”, “SARS-CoV-2”, “pathogenesis”, “drug targets”, “pharmacological treatment”, “cytokine storm”, “coagulopathy” and individual drug names were used. Scientific articles, including reviews, clinical trials, and observational cohorts, were collected and analysed. Furthermore, these articles were examined for references to find more clinical trials testing for the potential treatment of COVID-19. In total, 97 references were used to conduct this research paper. Results The most beneficial pharmacological agent for the treatment of COVID-19 are corticosteroids, especially dexamethasone, for the treatment of mechanically ventilated COVID-19 patients. Other promising agents are remdesivir for the treatment of patients with COVID-19 pneumonia requiring minimal supplemental oxygen therapy, and IL-6 receptor antagonist monoclonal antibodies in severe COVID-19. Lopinavir/ritonavir, as well as chloroquine or hydroxychloroquine with or without azithromycin demonstrate the least efficacy in the treatment of COVID-19. The clinical benefits of the treatment of a COVID-19-specific coagulopathy with increased dosing of anticoagulation need further research and confirmation of randomised controlled trials. Conclusion The search for pharmacological treatment of COVID-19 has elicited great controversy. Whereas drugs like chloroquine, hydroxychloroquine, and lopinavir/ritonavir have not shown proven benefit, the agents remdesivir and dexamethasone are recommended for clinical use for the treatment of COVID-19. Further randomised trials for other pharmacological treatment strategies are awaited.
Collapse
Affiliation(s)
| | - Madara Tirzīte
- Riga Stradins University, Riga, Latvia.,Riga East University Hospital, Clinical Centre "Gailezers", Riga, Latvia
| |
Collapse
|
20
|
White CM. Inflammation Suppresses Patients' Ability to Metabolize Cytochrome P450 Substrate Drugs. Ann Pharmacother 2021; 56:809-819. [PMID: 34590872 DOI: 10.1177/10600280211047864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To assess the impact of inflammation on cytochrome P450 (CYP) drug metabolism in human subjects. DATA SOURCES A PubMed search was done from 1980 to July 2021 limited to human subjects and English language using a search strategy of (((phase I metabolism) OR (CYP) OR (cytochrome P450)) AND (inflammatory OR inflammation)). STUDY SELECTION AND DATA EXTRACTION Narrative review of human studies assessing the impact of inflammation or inflammatory suppression with biologic drugs on CYP drug metabolism were used. DATA SYNTHESIS Patients with inflammatory conditions ranging from fungal, viral, or bacterial infections to noninfectious causes (critical illness, surgical procedure, cancer, or transplantation of stem cells or organs) have suppressed drug metabolism. Markers of inflammation such as C-reactive protein or α-1-acid glycoprotein are correlated with reduced clearance through CYP3A4, CYP1A2, and CYP2C19. Elevated interleukin-6 concentrations are also associated or correlated with reduced clearance for CYP3A4 and CYP2C-19 isoenzymes. There was insufficient information to properly assess CYP2D6. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Health professionals should appreciate that patients with acute or chronic inflammation from infectious or noninfectious causes could have suppressed drug metabolism through CYP3A4, CYP1A2, and CYP2C19. For narrow therapeutic index drugs, such as many of the drugs assessed in this review, that means more judicious drug monitoring to prevent adverse events. CONCLUSIONS Like other types of drug-drug or drug-disease interactions, inflammation can alter the steady-state concentration of CYP metabolized drugs.
Collapse
Affiliation(s)
- C Michael White
- University of Connecticut School of Pharmacy, Storrs, CT, USA.,Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
21
|
Stader F, Battegay M, Sendi P, Marzolini C. Physiologically Based Pharmacokinetic Modelling to Investigate the Impact of the Cytokine Storm on CYP3A Drug Pharmacokinetics in COVID-19 Patients. Clin Pharmacol Ther 2021; 111:579-584. [PMID: 34496043 PMCID: PMC8652944 DOI: 10.1002/cpt.2402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Patients with coronavirus disease 2019 (COVID‐19) may experience a cytokine storm with elevated interleukin‐6 (IL‐6) levels in response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). IL‐6 suppresses hepatic enzymes, including CYP3A; however, the effect on drug exposure and drug‐drug interaction magnitudes of the cytokine storm and resulting elevated IL‐6 levels have not been characterized in patients with COVID‐19. We used physiologically‐based pharmacokinetic (PBPK) modeling to simulate the effect of inflammation on the pharmacokinetics of CYP3A metabolized drugs. A PBPK model was developed for lopinavir boosted with ritonavir (LPV/r), using clinically observed data from people living with HIV (PLWH). The inhibition of CYPs by IL‐6 was implemented by a semimechanistic suppression model and verified against clinical data from patients with COVID‐19, treated with LPV/r. Subsequently, the verified model was used to simulate the effect of various clinically observed IL‐6 levels on the exposure of LPV/r and midazolam, a CYP3A model drug. Clinically observed LPV/r concentrations in PLWH and patients with COVID‐19 were predicted within the 95% confidence interval of the simulation results, demonstrating its predictive capability. Simulations indicated a twofold higher LPV exposure in patients with COVID‐19 compared with PLWH, whereas ritonavir exposure was predicted to be comparable. Varying IL‐6 levels under COVID‐19 had only a marginal effect on LPV/r pharmacokinetics according to our model. Simulations showed that a cytokine storm increased the exposure of the CYP3A paradigm substrate midazolam by 40%. Our simulations suggest that CYP3A metabolism is altered in patients with COVID‐19 having increased cytokine release. Caution is required when prescribing narrow therapeutic index drugs particularly in the presence of strong CYP3A inhibitors.
Collapse
Affiliation(s)
- Felix Stader
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Manuel Battegay
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Parham Sendi
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catia Marzolini
- Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Lenoir C, Terrier J, Gloor Y, Curtin F, Rollason V, Desmeules JA, Daali Y, Reny JL, Samer CF. Impact of SARS-CoV-2 Infection (COVID-19) on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin Pharmacol Ther 2021; 110:1358-1367. [PMID: 34473836 PMCID: PMC8653122 DOI: 10.1002/cpt.2412] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, is a severe acute respiratory syndrome with an underlying inflammatory state. We have previously demonstrated that acute inflammation modulates cytochromes P450 (CYPs) activity in an isoform‐specific manner. We therefore hypothesized that COVID‐19 might also impact CYP activity, and thus aimed to evaluate the impact of acute inflammation in the context of SARS‐CoV‐2 infection on the six main human CYPs activity. This prospective observational study was conducted in 28 patients hospitalized at the Geneva University Hospitals (Switzerland) with a diagnosis of moderate to severe COVID‐19. They received the Geneva phenotyping cocktail orally during the first 72 hours of hospitalization and after 3 months. Capillary blood samples were collected 2 hours after cocktail administration to assess the metabolic ratios (MRs) of CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. C‐reactive protein (CRP), interleukin 6 (IL‐6), and tumor necrosis factor‐α (TNF‐α) levels were also measured in blood. CYP1A2, CYP2C19, and CYP3A MRs decreased by 52.6% (P = 0.0001), 74.7% (P = 0.0006), and 22.8% (P = 0.045), respectively, in patients with COVID‐19. CYP2B6 and CYP2C9 MRs increased by 101.1% (P = 0.009) and 55.8% (P = 0.0006), respectively. CYP2D6 MR variation did not reach statistical significance (P = 0.072). As expected, COVID‐19 was a good acute inflammation model as mean serum levels of CRP, IL‐6, and TNF‐α were significantly (P < 0.001) higher during SARS‐CoV‐2 infection. CYP activity are modulated in an isoform‐specific manner by SARS‐CoV‐2 infection. The pharmacokinetics of CYP substrates, whether used to treat the disease or as the usual treatment of patients, could be therefore clinically impacted.
Collapse
Affiliation(s)
- Camille Lenoir
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jean Terrier
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - François Curtin
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Personalized Health and Related Technologies, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Victoria Rollason
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jules Alexandre Desmeules
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Reny
- Division of General Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Caroline Flora Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther 2021; 6:317. [PMID: 34446699 PMCID: PMC8390046 DOI: 10.1038/s41392-021-00733-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to the limitations of the present efforts on drug discovery against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of the understanding of the biological regulation mechanisms underlying COVID-19, alternative or novel therapeutic targets for COVID-19 treatment are still urgently required. SARS-CoV-2 infection and immunity dysfunction are the two main courses driving the pathogenesis of COVID-19. Both the virus and host factors are potential targets for antiviral therapy. Hence, in this study, the current therapeutic strategies of COVID-19 have been classified into "target virus" and "target host" categories. Repurposing drugs, emerging approaches, and promising potential targets are the implementations of the above two strategies. First, a comprehensive review of the highly acclaimed old drugs was performed according to evidence-based medicine to provide recommendations for clinicians. Additionally, their unavailability in the fight against COVID-19 was analyzed. Next, a profound analysis of the emerging approaches was conducted, particularly all licensed vaccines and monoclonal antibodies (mAbs) enrolled in clinical trials against primary SARS-CoV-2 and mutant strains. Furthermore, the pros and cons of the present licensed vaccines were compared from different perspectives. Finally, the most promising potential targets were reviewed, and the update of the progress of treatments has been summarized based on these reviews.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yao Xie
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
24
|
Campesi I, Racagni G, Franconi F. Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile? Pharmaceuticals (Basel) 2021; 14:730. [PMID: 34451827 PMCID: PMC8402096 DOI: 10.3390/ph14080730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Vaccines constitute a strategy to reduce the burden of COVID-19, but the treatment of COVID-19 is still a challenge. The lack of approved drugs for severe COVID-19 makes repurposing or repositioning of approved drugs a relevant approach because it occurs at lower costs and in a shorter time. Most preclinical and clinical tests, including safety and pharmacokinetic profiles, were already performed. However, infective and inflammatory diseases such as COVID-19 are linked with hypoalbuminemia and downregulation of both phase I and phase II drug-metabolizing enzymes and transporters, which can occur in modifications of pharmacokinetics and consequentially of safety profiles. This appears to occur in a sex- and gender-specific way because of the sex and gender differences present in the immune system and inflammation, which, in turn, reflect on pharmacokinetic parameters. Therefore, to make better decisions about drug dosage regimens and to increases the safety profile in patients suffering from infective and inflammatory diseases such as COVID-19, it is urgently needed to study repurposing or repositioning drugs in men and in women paying attention to pharmacokinetics, especially for those drugs that are previously scarcely evaluated in women.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy
- National Laboratory of Pharmacology and Gender Medicine, National Institute of Biostructure and Biosystem, 07100 Sassari, Italy;
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Flavia Franconi
- National Laboratory of Pharmacology and Gender Medicine, National Institute of Biostructure and Biosystem, 07100 Sassari, Italy;
| |
Collapse
|
25
|
Boffito M, Back DJ, Flexner C, Sjö P, Blaschke TF, Horby PW, Cattaneo D, Acosta EP, Anderson P, Owen A. Toward Consensus on Correct Interpretation of Protein Binding in Plasma and Other Biological Matrices for COVID-19 Therapeutic Development. Clin Pharmacol Ther 2021; 110:64-68. [PMID: 33113246 PMCID: PMC8359231 DOI: 10.1002/cpt.2099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The urgent global public health need presented by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has brought scientists from diverse backgrounds together in an unprecedented international effort to rapidly identify interventions. There is a pressing need to apply clinical pharmacology principles and this has already been recognized by several other groups. However, one area that warrants additional specific consideration relates to plasma and tissue protein binding that broadly influences pharmacokinetics and pharmacodynamics. The principles of free drug theory have been forged and applied across drug development but are not currently being routinely applied for SARS-CoV-2 antiviral drugs. Consideration of protein binding is of critical importance to candidate selection but requires correct interpretation, in a drug-specific manner, to avoid either underinterpretation or overinterpretation of its consequences. This paper represents a consensus from international researchers seeking to apply historical knowledge, which has underpinned highly successful antiviral drug development for other viruses, such as HIV and hepatitis C virus for decades.
Collapse
Affiliation(s)
- Marta Boffito
- Chelsea & Westminster HospitalLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - David J. Back
- Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Charles Flexner
- Bloomberg School of Public HealthJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi)GenevaSwitzerland
| | - Terrence F. Blaschke
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Peter W. Horby
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Dario Cattaneo
- Unit of Clinical PharmacologyASST FatebenefratelliSacco University HospitalMilanItaly
| | - Edward P. Acosta
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Peter Anderson
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of ColoradoAuroraColoradoUSA
| | - Andrew Owen
- Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
- Centre of Excellence in Long‐acting Therapeutics (CELT)University of LiverpoolUK
| |
Collapse
|
26
|
Karolyi M, Omid S, Pawelka E, Jilma B, Stimpfl T, Schoergenhofer C, Laferl H, Seitz T, Traugott M, Wenisch C, Zoufaly A. High Dose Lopinavir/Ritonavir Does Not Lead to Sufficient Plasma Levels to Inhibit SARS-CoV-2 in Hospitalized Patients With COVID-19. Front Pharmacol 2021; 12:704767. [PMID: 34276386 PMCID: PMC8282360 DOI: 10.3389/fphar.2021.704767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Despite lopinavir/ritonavir (LPV/RTV) demonstrating in-vitro activity against SARS-CoV-2, large trials failed to show any net clinical benefit. Since SARS-CoV-2 has an EC50 of 16.4 μg/ml for LPV this could be due to inadequate dosing. Methods: COVID-19 positive patients admitted to the hospital who received high dose LPV/RTV were included. High dose (HD) LPV/RTV 200/50 mg was defined as four tablets bid as loading dose, then three tablets bid for up to 10 days. Trough plasma concentrations were measured after the loading dose and on day 5–7 in steady state (SS). Post loading dose (PLD) and SS plasma trough levels were compared with SS trough levels from COVID-19 patients who received normal dose (ND) LPV/RTV (2 tablets bid) at the beginning of the pandemic. Results: Fifty patients (30% female) with a median age of 59 years (interquartile range 49–70.25) received HD LPV/RTV. Median HD-PLD concentration was 24.9 μg/ml (IQR 15.8–30.3) and significantly higher than HD-SS (12.9 μg/ml, IQR 7.2–19.5, p < 0.001) and ND-SS (13.6 μg/ml, IQR 10.1–22.2, p = 0.013). HD-SS and ND-SS plasma levels did not differ significantly (p = 0.507). C-reactive-protein showed a positive correlation with HD-SS (Spearman correlation-coefficient rS = 0.42, p = 0.014) and ND-SS (rS = 0.81, p = 0.015) but not with HD-PLD (rS = 0.123, p = 0.43). Conclusion: HD-PLD plasma trough concentration was significantly higher than HD-SS and ND-SS concentration, but no difference was detected between HD-SS and ND-SS trough levels. Due to the high EC50 of SARS-CoV-2 and the fact that LPV/RTV is highly protein bound, it seems unlikely that LPV/RTV exhibits a relevant antiviral effect against SARS-CoV-2 in vivo.
Collapse
Affiliation(s)
- Mario Karolyi
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Sara Omid
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Erich Pawelka
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Hermann Laferl
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Tamara Seitz
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Marianna Traugott
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Christoph Wenisch
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| | - Alexander Zoufaly
- Department for Infectious Diseases and Tropical Medicine, Klinik Favoriten, Vienna, Austria
| |
Collapse
|
27
|
Smolders EJ, Te Brake LH, Burger DM. SARS-CoV-2 and HIV protease inhibitors: why lopinavir/ritonavir will not work for COVID-19 infection. Antivir Ther 2021; 25:345-347. [PMID: 32589165 DOI: 10.3851/imp3365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Since the beginning of the outbreak of severe acute respiratory syndrome (SARS) coronavirus (CoV) 2, lopinavir/ritonavir was selected for treatment. The recent publication of Cao et al. in the New England Journal of Medicine showed that lopinavir/ritonavir treatment did not accelerate clinical improvement compared with standard of care. This raised the question of whether in retrospect we could have known this. The aim of this paper is to gather all the available evidence and to comprehensively discuss this issue.
Collapse
Affiliation(s)
- Elise J Smolders
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Pharmacy, Isala Hospital, Zwolle, the Netherlands
| | - Lindsey Hm Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
29
|
Comment on "Comparative Population Pharmacokinetics of Darunavir in SARS-CoV-2 Patients vs. HIV Patients: The Role of Interleukin-6". Clin Pharmacokinet 2021; 60:829-831. [PMID: 33864625 PMCID: PMC8052541 DOI: 10.1007/s40262-021-00992-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
|
30
|
Khani E, Khiali S, Entezari‐Maleki T. Potential COVID-19 Therapeutic Agents and Vaccines: An Evidence-Based Review. J Clin Pharmacol 2021; 61:429-460. [PMID: 33511638 PMCID: PMC8014753 DOI: 10.1002/jcph.1822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Since the early days of 2020, the severe acute respiratory syndrome coronavirus 2 pandemic has become a global health concern. Currently, some therapies and vaccines have received US Food and Drug Administration approval or emergency use authorization for the management of coronavirus disease 2019. According to the pathophysiology of the disease, several medications have been evaluated in different clinical conditions of the disease. Evidence-based reviewing and categorizing these medications can guide the clinicians to select the proper medications according to each patient's condition. Therefore, we performed this review to categorize the coronavirus disease 2019 potential therapeutics and vaccines.
Collapse
Affiliation(s)
- Elnaz Khani
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Sajad Khiali
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Taher Entezari‐Maleki
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
31
|
Karolyi M, Pawelka E, Mader T, Omid S, Kelani H, Ely S, Jilma B, Baumgartner S, Laferl H, Ott C, Traugott M, Turner M, Seitz T, Wenisch C, Zoufaly A. Hydroxychloroquine versus lopinavir/ritonavir in severe COVID-19 patients : Results from a real-life patient cohort. Wien Klin Wochenschr 2021; 133:284-291. [PMID: 32776298 PMCID: PMC7416584 DOI: 10.1007/s00508-020-01720-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality. To date no trial comparing hydroxychloroquine (HCQ) and lopinavir/ritonavir (LPV/RTV) has been performed. METHODS Hospitalized patients ≥18 years old with severe coronavirus disease 2019 (COVID-19) were treated with either HCQ or LPV/RTV if they had either respiratory insufficiency (SpO2 ≤ 93% on room air or the need for oxygen insufflation) or bilateral consolidations on chest X‑ray and at least 2 comorbidities associated with poor COVID-19 prognosis. Outcomes investigated included in-hospital mortality, intensive care unit (ICU) admission, length of stay, PCR (polymerase chain reaction) negativity and side effects of treatment. RESULTS Of 156 patients (41% female) with a median age of 72 years (IQR 55.25-81) admitted to our department, 67 patients fulfilled the inclusion criteria (20 received HCQ, 47 LPV/RTV). Groups were comparable regarding most baseline characteristics. Median time from symptom onset to treatment initiation was 8 days and was similar between the groups (p = 0.727). There was no significant difference (HCQ vs. LPV/RTV) in hospital mortality (15% vs. 8.5%, p = 0.418), ICU admission rate (20% vs. 12.8%, p = 0.470) and length of stay (9 days vs. 11 days, p = 0.340). A PCR negativity from nasopharyngeal swabs was observed in approximately two thirds of patients in both groups. Side effects led to treatment discontinuation in 15% of patients in the LPV/RTV group. CONCLUSION No statistically significant differences were observed in outcome parameters in patients treated with HCQ or LPV/RTV but patients in the LPV/RTV group showed a numerically lower hospital mortality rate. Additionally, in comparison to other studies we demonstrated a lower mortality in patients treated with LPV/RTV despite having similar patient groups, perhaps due to early initiation of treatment.
Collapse
Affiliation(s)
- Mario Karolyi
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria.
| | - Erich Pawelka
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Theresa Mader
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Sara Omid
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Hasan Kelani
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Sarah Ely
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Baumgartner
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Hermann Laferl
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Clemens Ott
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Marianna Traugott
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Michael Turner
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Tamara Seitz
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Christoph Wenisch
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| | - Alexander Zoufaly
- Department for Infectious Diseases and Tropical Medicine, Kaiser-Franz-Josef Hospital, Kundratstraße 3, 1100, Vienna, Austria
| |
Collapse
|
32
|
Coopersmith CM, Antonelli M, Bauer SR, Deutschman CS, Evans LE, Ferrer R, Hellman J, Jog S, Kesecioglu J, Kissoon N, Martin-Loeches I, Nunnally ME, Prescott HC, Rhodes A, Talmor D, Tissieres P, De Backer D. The Surviving Sepsis Campaign: Research Priorities for Coronavirus Disease 2019 in Critical Illness. Crit Care Med 2021; 49:598-622. [PMID: 33591008 DOI: 10.1097/ccm.0000000000004895] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To identify research priorities in the management, pathophysiology, and host response of coronavirus disease 2019 in critically ill patients. DESIGN The Surviving Sepsis Research Committee, a multiprofessional group of 17 international experts representing the European Society of Intensive Care Medicine and Society of Critical Care Medicine, was virtually convened during the coronavirus disease 2019 pandemic. The committee iteratively developed the recommendations and subsequent document. METHODS Each committee member submitted a list of what they believed were the most important priorities for coronavirus disease 2019 research. The entire committee voted on 58 submitted questions to determine top priorities for coronavirus disease 2019 research. RESULTS The Surviving Sepsis Research Committee provides 13 priorities for coronavirus disease 2019. Of these, the top six priorities were identified and include the following questions: 1) Should the approach to ventilator management differ from the standard approach in patients with acute hypoxic respiratory failure?, 2) Can the host response be modulated for therapeutic benefit?, 3) What specific cells are directly targeted by severe acute respiratory syndrome coronavirus 2, and how do these cells respond?, 4) Can early data be used to predict outcomes of coronavirus disease 2019 and, by extension, to guide therapies?, 5) What is the role of prone positioning and noninvasive ventilation in nonventilated patients with coronavirus disease?, and 6) Which interventions are best to use for viral load modulation and when should they be given? CONCLUSIONS Although knowledge of both biology and treatment has increased exponentially in the first year of the coronavirus disease 2019 pandemic, significant knowledge gaps remain. The research priorities identified represent a roadmap for investigation in coronavirus disease 2019.
Collapse
Affiliation(s)
- Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA
| | - Massimo Antonelli
- Department of Anesthesiology Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Italy
| | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical center, Northwell Health, New Hyde Park, NY
- Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY
| | - Laura E Evans
- Department of Medicine, University of Washington, Seattle, WA
| | - Ricard Ferrer
- Department of Intensive Care, SODIR-VHIR Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sameer Jog
- Department of Intensive Care Medicine, Deenanath Mangeshkar Hospital, Pune, India
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niranjan Kissoon
- Department of Pediatrics and Emergency Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), Department of Intensive Care Medicine, St. James's University Hospital, Trinity Centre for Health Sciences, Dublin, Ireland
- Hospital Clinic, IDIBAPS, Universided de Barcelona, CIBERes, Barcelona, Spain
| | - Mark E Nunnally
- Departments of Anesthesiology, Perioperative Care and Pain Medicine, Neurology, Surgery and Medicine, New York University, New York, NY
| | - Hallie C Prescott
- Department of Medicine, University of Michigan and VA Center for Clinical Management Research, Ann Arbor, MI
| | - Andrew Rhodes
- St George's University Hospitals NHS Foundation Trust and St George's University of London, London, United Kingdom
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Pierre Tissieres
- Pediatric Intensive Care, AP-HP Paris Saclay University, Le Kremlin-Bicetre and Institute of Integrative Biology of the Cell, CNRS, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Stanke-Labesque F, Concordet D, Djerada Z, Bouchet S, Solas C, Mériglier E, Bonnet F, Mourvillier B, Ruiz S, Martin-Blondel G, Epaulard O, Schwebel C, Gautier-Veyret E, Gandia P. Neglecting Plasma Protein Binding in COVID-19 Patients Leads to a Wrong Interpretation of Lopinavir Overexposure. Clin Pharmacol Ther 2021; 109:1030-1033. [PMID: 33547636 PMCID: PMC8013748 DOI: 10.1002/cpt.2196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Boffito et al. recalled the critical importance to correctly interpret protein binding. Changes of lopinavir pharmacokinetics in coronavirus disease 2019 (COVID‐19) are a perfect illustration. Indeed, several studies described that total lopinavir plasma concentrations were considerably higher in patients with severe COVID‐19 than those reported in patients with HIV. These findings have led to a reduction of the dose of lopinavir in some patients, hypothesizing an inhibitory effect of inflammation on lopinavir metabolism. Unfortunately, changes in plasma protein binding were never investigated. We performed a retrospective cohort study. Data were collected from the medical records of patients hospitalized for COVID‐19 treated with lopinavir/ritonavir in intensive care units or infectious disease departments of Toulouse University Hospital (France). Total and unbound concentrations of lopinavir, C reactive protein, albumin, and alpha‐1‐acid glycoprotein (AAG) levels were measured during routine care on the same samples. In patients with COVID‐19, increased total lopinavir concentration is the result of an increased AAG‐bound lopinavir concentration, whereas the unbound concentration remains constant, and insufficient to reduce the severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) viral load. Although international guidelines have recently recommended against using lopinavir/ritonavir to treat severe COVID‐19, the description of lopinavir pharmacokinetics changes in COVID‐19 is a textbook case of the high risk of misinterpretation of a total drug exposure when changes in protein binding are not taken into consideration.
Collapse
Affiliation(s)
- Francoise Stanke-Labesque
- Laboratoire de Pharmacologie-Pharmacogénétique-Toxicologie, University of Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Didier Concordet
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse Cedex 3, France
| | - Zoubir Djerada
- Department de Pharmacologie Médicale, CHU Reims, EA3801, SFR Cap-Santé, Université de Reims, Reims, France
| | - Stéphane Bouchet
- Laboratoire de Pharmacologie et Toxicologie, Service de Pharmacologie Médicale, CHU Pellegrin, Bordeaux, France.,INSERM U1219, Bordeaux Cedex, France
| | - Caroline Solas
- Laboratoire de pharmacocinétique et Toxicologie, CHU Timone, Marseille, France
| | - Etienne Mériglier
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint-André, CHU de Bordeaux, Bordeaux, France
| | - Fabrice Bonnet
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint-André, CHU de Bordeaux, Bordeaux, France
| | - Bruno Mourvillier
- Médecine Intensive Réanimation Polyvalente, CHU Reims, EA 4684 cardiovir, Université de Reims, Reims, France
| | - Stéphanie Ruiz
- Service de Réanimation Rangueil, CHU de Toulouse, Toulouse Cedex 9, France
| | - Guillaume Martin-Blondel
- Service des Maladies Infectieuses et Tropicales, CHU de Toulouse, Toulouse Cedex 9, France.,UMR INSERM/CNRS 1043, Centre de Physiopathologie Toulouse Purpan, Toulouse Cedex 9, France
| | - Olivier Epaulard
- Service des Maladies Infectieuses et Tropicales, 38000 CHU Grenoble Alpes, Grenoble, France.,Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, Grenoble, France.,Institut de Biologie Structurale, UMR UGA-CNRS-CEA, Grenoble, France
| | - Carole Schwebel
- Médecine Intensive Réanimation, 38000 CHU Grenoble Alpes-Inserm U1039 Radiopharmaceutiques Biocliniques Grenoble, Grenoble, France
| | - Elodie Gautier-Veyret
- Laboratoire de Pharmacologie-Pharmacogénétique-Toxicologie, University of Grenoble Alpes, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Peggy Gandia
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse Cedex 3, France.,Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, CHU de Toulouse, Toulouse Cedex 9, France
| |
Collapse
|
34
|
Sorouri F, Emamgholipour Z, Keykhaee M, Najafi A, Firoozpour L, Sabzevari O, Sharifzadeh M, Foroumadi A, Khoobi M. The situation of small molecules targeting key proteins to combat SARS-CoV-2: Synthesis, metabolic pathway, mechanism of action, and potential therapeutic applications. Mini Rev Med Chem 2021; 22:273-311. [PMID: 33687881 DOI: 10.2174/1389557521666210308144302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Due to the global epidemic and high mortality of 2019 coronavirus disease (COVID-19), there is an immediate need to discover drugs that can help before a vaccine becomes available. Given that the process of producing new drugs is so long, the strategy of repurposing existing drugs is one of the promising options for the urgent treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19 disease. Although FDA has approved Remdesivir for the use in hospitalized adults and pediatric patients suffering from COVID-19, no fully effective and reliable drug has been yet identified worldwide to treat COVID-19 specifically. Thus, scientists are still trying to find antivirals specific to COVID-19. This work reviews the chemical structure, metabolic pathway, mechanism of action of existing drugs with potential therapeutic applications for COVID-19. Further, we summarized the molecular docking stimulation of the medications related to key protein targets. These already drugs could be developed for further clinical trials to supply suitable therapeutic options for patients suffering from COVID-19.
Collapse
Affiliation(s)
- Farzaneh Sorouri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Maryam Keykhaee
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran. Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran. Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran
| |
Collapse
|
35
|
Deb S, Arrighi S. Potential Effects of COVID-19 on Cytochrome P450-Mediated Drug Metabolism and Disposition in Infected Patients. Eur J Drug Metab Pharmacokinet 2021; 46:185-203. [PMID: 33538960 PMCID: PMC7859725 DOI: 10.1007/s13318-020-00668-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has been a global health crisis since it was first identified in December 2019. In addition to fever, cough, headache, and shortness of breath, an intense increase in immune response-based inflammation has been the hallmark of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) virus infection. This narrative review summarizes and critiques pathophysiology of COVID-19 and its plausible effects on drug metabolism and disposition. The release of inflammatory cytokines (e.g., interleukins, tumor necrosis factor α), also known as 'cytokine storm', leads to altered molecular pathophysiology and eventually organ damage in the lung, heart, and liver. The laboratory values for various liver function tests (e.g., alanine aminotransferase, aspartate aminotransferase, total bilirubin, albumin) have indicated potential hepatocellular injury in COVID-19 patients. Since the liver is the powerhouse of protein synthesis and the primary site of cytochrome P450 (CYP)-mediated drug metabolism, even a minor change in the liver function status has the potential to affect the hepatic clearance of xenobiotics. It has now been well established that extreme increases in cytokine levels are common in COVID-19 patients, and previous studies with patients infected with non-SARS-CoV-2 virus have shown that CYP enzymes can be suppressed by an infection-related cytokine increase and inflammation. Alongside the investigational COVID-19 drugs, the patients may also be on therapeutics for comorbidities; especially epidemiological studies have indicated that individuals with hypertension, hyperglycemia, and obesity are more vulnerable to COVID-19 than the average population. This complicates the drug-disease interaction profile of the patients as both the investigational drugs (e.g., remdesivir, dexamethasone) and the agents for comorbidities can be affected by compromised CYP-mediated hepatic metabolism. Overall, it is imperative that healthcare professionals pay attention to the COVID-19 and CYP-driven drug metabolism interactions with the goal to adjust the dose or discontinue the affected drugs as appropriate.
Collapse
Affiliation(s)
- Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| | - Scott Arrighi
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA
| |
Collapse
|
36
|
Lepage MA, Rozza N, Kremer R, Grunbaum A. Safety and effectiveness concerns of lopinavir/ritonavir in COVID-19 affected patients: a retrospective series. Clin Toxicol (Phila) 2021; 59:644-647. [PMID: 33641562 PMCID: PMC7919102 DOI: 10.1080/15563650.2020.1842882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Context Originally developed for treatment of human immunodeficiency virus (HIV), the antiviral combination lopinavir/ritonavir (LPV/r) is being repurposed for treating the novel coronavirus disease (COVID-19) despite minimal experience in this markedly different population and an in-vitro derived EC50 against SARS-CoV-2 several hundred-fold greater than for HIV. We present a case series including a case of severe hyponatremia and a 32-fold overdose raising safety and effectiveness concerns in COVID-19 patients. Methods We measured LPV trough concentrations in 12 patients and reviewed their clinical charts for side effects known to occur in HIV patients. Findings Compared to established LPV trough concentrations in HIV patients, concentrations in COVID-19 patients were 3-fold greater (19.37 ± 10.12 mcg/mL versus 6.25 mcg/mL). In addition, cholestasis and dyslipidemia toxicity thresholds were exceeded in 12/12 and 11/12 patients respectively. No patients achieved the presumed therapeutic concentration. Side effects included gastrointestinal symptoms (5/12), electrolyte imbalances (4/12), liver enzyme disturbances (5/12) and triglyceride elevations (2/12). Conclusion No patients reached presumed therapeutic LPV concentrations despite experiencing side effects and exceeding cholestasis and dyslipidemia toxicity thresholds. This raises concerns for the safety and effectiveness of LPV/r. Clinicians should consider closely monitoring for side effects and not necessarily attribute them to COVID-19.
Collapse
Affiliation(s)
- Marc-Antoine Lepage
- McGill University Health Centre, Montreal, Canada.,McGill Faculty of Medecine and Health Sciences, Montreal, Canada
| | - Nicholas Rozza
- McGill Faculty of Medecine and Health Sciences, Montreal, Canada
| | - Richard Kremer
- McGill University Health Centre, Montreal, Canada.,McGill Faculty of Medecine and Health Sciences, Montreal, Canada
| | - Ami Grunbaum
- McGill University Health Centre, Montreal, Canada.,McGill Faculty of Medecine and Health Sciences, Montreal, Canada
| |
Collapse
|
37
|
Brown LB, Spinelli MA, Gandhi M. The interplay between HIV and COVID-19: summary of the data and responses to date. Curr Opin HIV AIDS 2021; 16:63-73. [PMID: 33186229 PMCID: PMC7735216 DOI: 10.1097/coh.0000000000000659] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW We examine the interplay between the HIV and COVID-19 epidemics, including the impact of HIV on COVID-19 susceptibility and severe disease, the effect of the COVID-19 epidemic on HIV prevention and treatment, and the influence of the HIV epidemic on responses to COVID-19. RECENT FINDINGS Evidence to date does not suggest that people living with HIV (PLWH) have a markedly higher susceptibility to SARS-CoV-2 infection, with disparities in the social determinants of health and comorbidities likely having a greater influence. The majority of literature has not supported a higher risk for severe disease among PLWH in Europe and the United States, although a large, population-based study in South Africa reported a higher rate of death due to COVID-19. Higher rates of comorbidities associated with COVID-19 disease severity among PLWH is an urgent concern. COVID-19 is leading to decreased access to HIV prevention services and HIV testing, and worsening HIV treatment access and virologic suppression, which could lead to worsening HIV epidemic control. CONCLUSION COVID-19 is threatening gains against the HIV epidemic, including the U.S. Ending the HIV Epidemic goals. The ongoing collision of these two global pandemics will continue to need both study and interventions to mitigate the effects of COVID-19 on HIV efforts worldwide.
Collapse
Affiliation(s)
- Lillian B. Brown
- Division of HIV, ID, and Global Medicine, University of California, San Francisco
| | - Matthew A. Spinelli
- Division of HIV, ID, and Global Medicine, University of California, San Francisco
| | - Monica Gandhi
- Division of HIV, ID, and Global Medicine, University of California, San Francisco
| |
Collapse
|
38
|
Alyamani OA, Bahatheq MS, Azzam HA, Hilal FM, Farsi S, Bahaziq W, Alshoaiby AN. Perioperative pain management in COVID-19 patients: Considerations and recommendations by the Saudi Anesthesia Society (SAS) and Saudi Society of Pain Medicine (SSPM). Saudi J Anaesth 2021; 15:59-69. [PMID: 33824647 PMCID: PMC8016059 DOI: 10.4103/sja.sja_765_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has swept across the world over the past few months. Many articles have been published on the safety of anesthetic medications and procedures used in COVID-19 positive patients presenting for surgery. Several other articles covered the chronic pain management aspect during the pandemic. Our review aimed to focus on perioperative pain management for COVID-19 patients. We conducted a literature search for pertinent recent articles that cover considerations and recommendations concerning perioperative pain management in COVID-19 patients. We also searched the literature for the relevant adverse effects of the commonly used medications in the treatment of COVID-19, and their potential drug-drug interactions with the common medications used in perioperative pain management. Professional societies recommend prioritizing regional anesthesia techniques, which have many benefits over other perioperative pain management options. When neuraxial and continuous peripheral nerve block catheters are not an option, patient-controlled analgesia (PCA) should be considered if applicable. Many of the medications used for the treatment of COVID-19 and its symptoms can interfere with the metabolism of medications used in perioperative pain management. We formulated an up-to-date guide for anesthesia providers to help them manage perioperative pain in COVID-19 patients presenting for surgery.
Collapse
Affiliation(s)
- Omar A. Alyamani
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed S. Bahatheq
- Department of Anesthesia and Perioperative Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hatem A. Azzam
- Department of Anesthesia and Perioperative Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Faisal M. Hilal
- Department of Anesthesia, King Fahad Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Sara Farsi
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Wadeeah Bahaziq
- Department of Anesthesia and Critical Care, Faculty of Medicine, King Abdulaziz University, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ali N. Alshoaiby
- Department of Anesthesia and Perioperative Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Hariono M, Hariyono P, Dwiastuti R, Setyani W, Yusuf M, Salin N, Wahab H. Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. RESULTS IN CHEMISTRY 2021; 3:100195. [PMID: 34567959 PMCID: PMC8451405 DOI: 10.1016/j.rechem.2021.100195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
This present study reports some natural products and one hydroxamic acid synthetic compound which were previously reported as matrix metalloproteinase-9 (MMP-9) inhibitors to be evaluated for their inhibition toward severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro). This enzyme is one of the proteins responsible for this coronaviral replication. Two herbal methanolic extracts i.e., Averrhoa carambola leaves and Ageratum conyzoides aerial part demonstrate >50% inhibition at 1000 µg/mL. Interestingly, apigenin, one of flavonoids, demonstrates 92% inhibition at 250 µg/mL (925 µM) as well as hydroxamic acid compound, N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid (NNGH), which shows 69% inhibition at 100 µM. The in vitro results are supported by the docking studies revealing that the binding mode of both compounds is mainly by interacting with GLU166 residue in the hydrophobic pocket of the 3CLpro. Pharmacophore mapping further supported the results by confirming that the in vitro activities of both compounds are due to their pharmacophore features employing hydrogen bond acceptor (HBA), hydrogen bond donor (HBD) and hydrophobic. Gas Chromatography-Mass Spectrometry (GC-MS) analysis reported chromene compounds in Ageratum conyzoides aerial part methanolic extract are potential to be this enzyme inhibitor candidate. These all results reflect their potencies to be SARS-CoV-2 inhibitors through 3CLpro inhibition mechanism.
Collapse
Affiliation(s)
- Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Pandu Hariyono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Rini Dwiastuti
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Wahyuning Setyani
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Muhammad Yusuf
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor, Sumedang 45363, West Java, Indonesia
| | - Nurul Salin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institute of Biotechnology Malaysia, Halaman Bukit Gambir, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Habibah Wahab
- Pharmaceutical Technology Department, School of Pharmaceutical Sciences and USM-RIKEN Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| |
Collapse
|
40
|
El-Goly AMM. Lines of Treatment of COVID-19 Infection. COVID-19 INFECTIONS AND PREGNANCY 2021. [PMCID: PMC8298380 DOI: 10.1016/b978-0-323-90595-4.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Alhumaid S, Al Mutair A, Al Alawi Z, Alhmeed N, Zaidi ARZ, Tobaiqy M. Efficacy and Safety of Lopinavir/Ritonavir for Treatment of COVID-19: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2020; 5:E180. [PMID: 33260553 PMCID: PMC7768433 DOI: 10.3390/tropicalmed5040180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
(Background) Lopinavir-ritonavir (LPV/RTV) is a human immunodeficiency virus (HIV) antiviral combination that has been considered for the treatment of COVID-19 disease. (Aim) This systematic review aimed to assess the efficacy and safety of LPV/RTV in COVID-19 patients in the published research. (Methods) A protocol was developed based on the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement. Articles were selected for review from 8 electronic databases. This review evaluated the effects of LPV/RTV alone or in combination with standard care ± interferons/antiviral treatments compared to other therapies, regarding duration of hospital stay, risk of progressing to invasive mechanical, time to virological cure and body temperature normalization, cough relief, radiological progression, mortality and safety. (Results) A consensus was reached to select 32 articles for full-text screening; only 14 articles comprising 9036 patients were included in this study; and eight of these were included for meta-analysis. Most of these studies did not report positive clinical outcomes with LPV/RTV treatment. In terms of virological cure, three studies reported less time in days to achieve a virological cure for LPV/RTV arm relative to no antiviral treatment (-0.81 day; 95% confidence interval (CI), -4.44 to 2.81; p = 0.007, I2 = 80%). However, the overall effect was not significant (p = 0.66). When comparing the LPV/RTV arm to umifenovir arm, a favorable affect was observed for umifenovir arm, but not statically significant (p = 0.09). In terms of time to body normalization and cough relief, no favorable effects of LPV/RTV versus umifenovir were observed. The largest trials (RECOVERY and SOLIDARITY) have shown that LPV/RTV failed to reduce mortality, initiation of invasive mechanical ventilation or hospitalization duration. Adverse events were reported most frequently for LPV/RTV (n = 84) relative to other antivirals and no antiviral treatments. (Conclusions) This review did not reveal any significant advantage in efficacy of LPV/RTV for the treatment of COVID-19 over standard care, no antivirals or other antiviral treatments. This result might not reflect the actual evidence.
Collapse
Affiliation(s)
- Saad Alhumaid
- Administration of Pharmaceutical Care, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 31982, Saudi Arabia;
| | - Zainab Al Alawi
- Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Naif Alhmeed
- Administration of Supply and Shared Services, Ministry of Health, Riyadh 11461, Saudi Arabia;
| | | | - Mansour Tobaiqy
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 21442, Saudi Arabia;
| |
Collapse
|
42
|
Prediction of lopinavir/ritonavir effectiveness in COVID-19 patients: a recall of basic pharmacology concepts. Eur J Clin Pharmacol 2020; 77:791-792. [PMID: 33241457 PMCID: PMC7687976 DOI: 10.1007/s00228-020-03053-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022]
|
43
|
Drug-Drug Interactions and Prescription Appropriateness in Patients with COVID-19: A Retrospective Analysis from a Reference Hospital in Northern Italy. Drugs Aging 2020; 37:925-933. [PMID: 33150470 PMCID: PMC7641655 DOI: 10.1007/s40266-020-00812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Background Patients hospitalised with severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2; coronavirus 2019 disease (COVID-19)] infection are frequently older with co-morbidities and receiving polypharmacy, all of which are known risk factors for drug–drug interactions (DDIs). The pharmacological burden may be further aggravated by the addition of treatments for COVID-19. Objective The aim of this study was to assess the risk of potential DDIs upon admission and during hospitalisation in patients with COVID-19 treated at our hospital. Methods We retrospectively analysed 502 patients with COVID-19 (mean age 61 ± 16 years, range 15–99) treated at our hospital with a proven diagnosis of SARS-CoV-2 infection hospitalised between 21 February and 30 April 2020 and treated with at least two drugs. Results Overall, 68% of our patients with COVID-19 were exposed to at least one potential DDI, and 55% were exposed to at least one potentially severe DDI. The proportion of patients experiencing potentially severe DDIs increased from 22% upon admission to 80% during hospitalisation. Furosemide, amiodarone and quetiapine were the main drivers of potentially severe DDIs upon admission, and hydroxychloroquine and particularly lopinavir/ritonavir were the main drivers during hospitalisation. The majority of potentially severe DDIs carried an increased risk of cardiotoxicity. No potentially severe DDIs were identified in relation to tocilizumab and remdesivir. Conclusions Among hospitalised patients with COVID-19, concomitant treatment with lopinavir/ritonavir and hydroxychloroquine led to a dramatic increase in the number of potentially severe DDIs. Given the high risk of cardiotoxicity and the scant and conflicting data concerning their efficacy in treating SARS-CoV-2 infection, the use of lopinavir/ritonavir and hydroxychloroquine in patients with COVID-19 with polypharmacy needs to be carefully considered.
Collapse
|
44
|
Chavant A, Gautier-Veyret E, Chhun S, Guilhaumou R, Stanke-Labesque F. [Pharmacokinetic changes related to acute infection. Examples from the SARS-CoV-2 pandemic]. Therapie 2020; 76:319-333. [PMID: 33129512 PMCID: PMC7833468 DOI: 10.1016/j.therap.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of factors of pharmacokinetic variability is important in order to personalize pharmacological treatment, particularly for drugs with a narrow therapeutic range for which pharmacological therapeutic monitoring is recommended. Inflammation is a protective response against acute infections and injuries that contributes to intra- and inter-individual variability in drug exposure by modulating the activity of enzymes involved in drug metabolism, and by altering the binding of drugs to plasma proteins. The understanding of the impact of inflammation on drug metabolism and the related clinical consequences allow to better take into consideration the effect of inflammation on the variability of drug exposure. We first summarized the molecular mechanisms by which inflammation contributes to the inhibition of drug metabolism enzymes. We then presented an updated overview of the consequences of the outcome of acute infectious event on pharmacokinetic exposure of drugs with a narrow therapeutic range and that are substrates of cytochrome P450, and the related clinical consequences. Finally, in the context of the COVID-19 pandemic, we reported examples of drug overexposures in COVID- 19 infected patients.
Collapse
Affiliation(s)
- Anaëlle Chavant
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elodie Gautier-Veyret
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France
| | - Stéphanie Chhun
- UFR de médecine Paris centre, 75015 Paris, France; Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75015 Paris, France; Laboratoire d'immunologie biologique, département médico universitaire BioPhyGen, hôpital universitaire Necker-enfants malades, AP-HP, 75015 Paris, France
| | - Romain Guilhaumou
- Unité de pharmacologie clinique et pharmacovigilance AP-HM, 13354 Marseille, France; Aix Marseille Univ, Inserm, INS Inst Neurosci Syst, 13354 Marseille, France
| | - Françoise Stanke-Labesque
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France.
| |
Collapse
|
45
|
Cojutti PG, Londero A, Della Siega P, Givone F, Fabris M, Biasizzo J, Tascini C, Pea F. Comparative Population Pharmacokinetics of Darunavir in SARS-CoV-2 Patients vs. HIV Patients: The Role of Interleukin-6. Clin Pharmacokinet 2020; 59:1251-1260. [PMID: 32856282 PMCID: PMC7453069 DOI: 10.1007/s40262-020-00933-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Darunavir is an anti-HIV protease inhibitor repurposed for SARS-CoV-2 treatment. Objective The aim of this study was to assess the population pharmacokinetics of darunavir in SARS-CoV-2 patients compared with HIV patients. Methods Two separate models were created by means of a nonlinear mixed-effect approach. The influence of clinical covariates on each basic model was tested and the association of significant covariates with darunavir parameters was assessed at multivariate regression and classification and regression tree (CART) analyses. Monte Carlo simulation assessed the influence of covariates on the darunavir concentration versus time profile. Results A one-compartment model well-described darunavir concentrations in both groups. In SARS-CoV-2 patients (n = 30), interleukin (IL)-6 and body surface area were covariates associated with darunavir oral clearance (CL/F) and volume of distribution (Vd), respectively; no covariates were identified in HIV patients (n = 25). Darunavir CL/F was significantly lower in SARS-CoV-2 patients compared with HIV patients (4.1 vs. 10.3 L/h; p < 0.001). CART analysis found that an IL-6 level of 18 pg/mL may split the SARS-CoV-2 population in patients with low versus high darunavir CL/F (mean ± standard deviation 3.47 ± 1.90 vs. 8.03 ± 3.24 L/h; proportion of reduction in error = 0.46). Median (interquartile range) darunavir CL/F was significantly lower in SARS-CoV-2 patients with IL-6 levels ≥ 18 pg/mL than in SARS-CoV-2 patients with IL-6 levels < 18 pg/mL or HIV patients (2.78 [2.16–4.47] vs. 7.24 [5.88–10.38] vs. 9.75 [8.45–13.79] L/h, respectively; p < 0.0001). Increasing IL-6 levels affected darunavir concentration versus time simulated profiles. We hypothesized that increases in IL-6 levels associated with severe SARS-CoV-2 disease may downregulate the cytochrome P450 (CYP) 3A4-mediated metabolism of darunavir. Conclusions This is a proof-of-concept of SARS-CoV-2 disease–drug interactions, and may support the need for optimal dose selection of sensitive CYP3A4 substrates in severe SARS-CoV-2 patients. Electronic supplementary material The online version of this article (10.1007/s40262-020-00933-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pier Giorgio Cojutti
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUFC, P.le S. Maria della Misericordia 3, 33100, Udine, Italy
| | - Angela Londero
- Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Paola Della Siega
- Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Filippo Givone
- Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Martina Fabris
- Institute of Clinical Pathology, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Jessica Biasizzo
- Institute of Clinical Pathology, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Carlo Tascini
- Clinic of Infectious Diseases, Santa Maria della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
| | - Federico Pea
- Department of Medicine, University of Udine, Udine, Italy. .,Institute of Clinical Pharmacology, Santa Maria della Misericordia University Hospital of Udine, ASUFC, P.le S. Maria della Misericordia 3, 33100, Udine, Italy.
| |
Collapse
|
46
|
Horby PW, Mafham M, Bell JL, Linsell L, Staplin N, Emberson J, Palfreeman A, Raw J, Elmahi E, Prudon B, Green C, Carley S, Chadwick D, Davies M, Wise MP, Baillie JK, Chappell LC, Faust SN, Jaki T, Jefferey K, Lim WS, Montgomery A, Rowan K, Juszczak E, Haynes R, Landray MJ. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020; 396:1345-1352. [PMID: 33031764 PMCID: PMC7535623 DOI: 10.1016/s0140-6736(20)32013-4] [Citation(s) in RCA: 445] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lopinavir-ritonavir has been proposed as a treatment for COVID-19 on the basis of in vitro activity, preclinical studies, and observational studies. Here, we report the results of a randomised trial to assess whether lopinavir-ritonavir improves outcomes in patients admitted to hospital with COVID-19. METHODS In this randomised, controlled, open-label, platform trial, a range of possible treatments was compared with usual care in patients admitted to hospital with COVID-19. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus lopinavir-ritonavir (400 mg and 100 mg, respectively) by mouth for 10 days or until discharge (or one of the other RECOVERY treatment groups: hydroxychloroquine, dexamethasone, or azithromycin) using web-based simple (unstratified) randomisation with allocation concealment. Randomisation to usual care was twice that of any of the active treatment groups (eg, 2:1 in favour of usual care if the patient was eligible for only one active group, 2:1:1 if the patient was eligible for two active groups). The primary outcome was 28-day all-cause mortality. Analyses were done on an intention-to-treat basis in all randomly assigned participants. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. FINDINGS Between March 19, 2020, and June 29, 2020, 1616 patients were randomly allocated to receive lopinavir-ritonavir and 3424 patients to receive usual care. Overall, 374 (23%) patients allocated to lopinavir-ritonavir and 767 (22%) patients allocated to usual care died within 28 days (rate ratio 1·03, 95% CI 0·91-1·17; p=0·60). Results were consistent across all prespecified subgroups of patients. We observed no significant difference in time until discharge alive from hospital (median 11 days [IQR 5 to >28] in both groups) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 0·98, 95% CI 0·91-1·05; p=0·53). Among patients not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion who met the composite endpoint of invasive mechanical ventilation or death (risk ratio 1·09, 95% CI 0·99-1·20; p=0·092). INTERPRETATION In patients admitted to hospital with COVID-19, lopinavir-ritonavir was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death. These findings do not support the use of lopinavir-ritonavir for treatment of patients admitted to hospital with COVID-19. FUNDING Medical Research Council and National Institute for Health Research.
Collapse
|
47
|
Bagheri M, Niavarani A. Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding. J Biomol Struct Dyn 2020; 40:1597-1606. [DOI: 10.1080/07391102.2020.1830854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Milad Bagheri
- Digestive Oncology Research Center (DORC), Digestive Disease Research Institute (DDRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center (DORC), Digestive Disease Research Institute (DDRI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Hajjo R, Tropsha A. A Systems Biology Workflow for Drug and Vaccine Repurposing: Identifying Small-Molecule BCG Mimics to Reduce or Prevent COVID-19 Mortality. Pharm Res 2020; 37:212. [PMID: 33025261 PMCID: PMC7537965 DOI: 10.1007/s11095-020-02930-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Coronavirus disease 2019 (COVID-19) is expected to continue to cause worldwide fatalities until the World population develops 'herd immunity', or until a vaccine is developed and used as a prevention. Meanwhile, there is an urgent need to identify alternative means of antiviral defense. Bacillus Calmette-Guérin (BCG) vaccine that has been recognized for its off-target beneficial effects on the immune system can be exploited to boast immunity and protect from emerging novel viruses. METHODS We developed and employed a systems biology workflow capable of identifying small-molecule antiviral drugs and vaccines that can boast immunity and affect a wide variety of viral disease pathways to protect from the fatal consequences of emerging viruses. RESULTS Our analysis demonstrates that BCG vaccine affects the production and maturation of naïve T cells resulting in enhanced, long-lasting trained innate immune responses that can provide protection against novel viruses. We have identified small-molecule BCG mimics, including antiviral drugs such as raltegravir and lopinavir as high confidence hits. Strikingly, our top hits emetine and lopinavir were independently validated by recent experimental findings that these compounds inhibit the growth of SARS-CoV-2 in vitro. CONCLUSIONS Our results provide systems biology support for using BCG and small-molecule BCG mimics as putative vaccine and drug candidates against emergent viruses including SARS-CoV-2.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy - Computational Chemical Biology, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, UNC Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
49
|
Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Viruses 2020; 12:v12091039. [PMID: 32961897 PMCID: PMC7551260 DOI: 10.3390/v12091039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some coronaviruses are zoonotic viruses of human and veterinary medical importance. The novel coronavirus, severe acute respiratory symptoms coronavirus 2 (SARS-CoV-2), associated with the current global pandemic, is characterized by pneumonia, lymphopenia, and a cytokine storm in humans that has caused catastrophic impacts on public health worldwide. Coronaviruses are known for their ability to evade innate immune surveillance exerted by the host during the early phase of infection. It is important to comprehensively investigate the interaction between highly pathogenic coronaviruses and their hosts. In this review, we summarize the existing knowledge about coronaviruses with a focus on antiviral immune responses in the respiratory and intestinal tracts to infection with severe coronaviruses that have caused epidemic diseases in humans and domestic animals. We emphasize, in particular, the strategies used by these coronaviruses to circumvent host immune surveillance, mainly including the hijack of antigen-presenting cells, shielding RNA intermediates in replication organelles, 2′-O-methylation modification for the evasion of RNA sensors, and blocking of interferon signaling cascades. We also provide information about the potential development of coronavirus vaccines and antiviral drugs.
Collapse
|
50
|
Marzolini C, Battegay M, Sendi P, Back DJ. Prescribing in COVID-19 patients: Should we take into account inflammation? Br J Clin Pharmacol 2020; 87:719-721. [PMID: 32820554 DOI: 10.1111/bcp.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Parham Sendi
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David J Back
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|