1
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Fang D, Liu Y, Dou D, Su B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol Sin 2024; 39:709-718. [PMID: 39181538 DOI: 10.1016/j.virs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.
Collapse
Affiliation(s)
- Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Bin Su
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Lee SH, Bonifacio F, Prudente AS, Choi YI, Roh J, Adjafre BL, Park CK, Jung SJ, Cunha TM, Berta T. STING recognition of viral dsDNA by nociceptors mediates pain in mice. Brain Behav Immun 2024; 121:29-42. [PMID: 39025416 DOI: 10.1016/j.bbi.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fabio Bonifacio
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Y I Choi
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Beatriz Lima Adjafre
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States; Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, Medical School, Hanyang University, Seoul, South Korea
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
4
|
Shinkai H, Suzuki K, Itoh T, Yoshioka G, Takenouchi T, Kitazawa H, Uenishi H. Identification of Nonsynonymous SNPs in Immune-Related Genes Associated with Pneumonia Severity in Pigs. Genes (Basel) 2024; 15:1103. [PMID: 39202462 PMCID: PMC11353625 DOI: 10.3390/genes15081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism distribution and its influence on pneumonia in multiple commercial pig populations. Among the polymorphisms in 42 genes causing 634 amino acid substitutions extracted from the swine genome database, 80 in 24 genes were found to have a minor allele frequency of at least 10% in Japanese breeding stock pigs via targeted resequencing. Of these, 62 single nucleotide polymorphisms (SNPs) in 23 genes were successfully genotyped in 862 pigs belonging to four populations with data on pneumonia severity. Association analysis using a generalized linear mixed model revealed that 12 SNPs in nine genes were associated with pneumonia severity. In particular, SNPs in the cellular receptor for immunoglobulin G FCGR2B and the intracellular nucleic acid sensors IFI16 and LRRFIP1 were found to be associated with mycoplasmal pneumonia of swine or porcine pleuropneumonia in multiple populations and may therefore have wide applications in the improvement of disease resistance in pigs. Functional analyses at the cellular and animal levels are required to clarify the mechanisms underlying the effects of these SNPs on disease susceptibility.
Collapse
Affiliation(s)
- Hiroki Shinkai
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan;
| | - Kasumi Suzuki
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Tomohito Itoh
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan, Maebashi 371-0121, Japan;
| | - Gou Yoshioka
- Swine and Poultry Research Department, Gifu Prefectural Livestock Research Institute, Seki 501-3924, Japan; (K.S.); (G.Y.)
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8634, Japan;
| |
Collapse
|
5
|
Wiench L, Rizzo D, Sinay Z, Nacsa Z, Fuchs NV, König R. Role of PQBP1 in Pathogen Recognition-Impact on Innate Immunity. Viruses 2024; 16:1340. [PMID: 39205314 PMCID: PMC11360342 DOI: 10.3390/v16081340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The intrinsically disordered polyglutamine-binding protein 1 (PQBP1) has been linked to various cellular processes including transcription, alternative splicing, translation and innate immunity. Mutations in PQBP1 are causative for neurodevelopmental conditions collectively termed as the Renpenning syndrome spectrum. Intriguingly, cells of Renpenning syndrome patients exhibit a reduced innate immune response against human immunodeficiency virus 1 (HIV-1). PQBP1 is responsible for the initiation of a two-step recognition process of HIV-1 reverse-transcribed DNA products, ensuring a type 1 interferon response. Recent investigations revealed that PQBP1 also binds to the p17 protein of avian reovirus (ARV) and is affected by the ORF52 of Kaposi's sarcoma-associated herpesvirus (KSHV), possibly also playing a role in the innate immune response towards these RNA- and DNA-viruses. Moreover, PQBP1-mediated microglia activation in the context of tauopathies has been reported, highlighting the role of PQBP1 in sensing exogenous pathogenic species and innate immune response in the central nervous system. Its unstructured nature, the promiscuous binding of various proteins and its presence in various tissues indicate the versatile roles of PQBP1 in cellular regulation. Here, we systematically review the available data on the structure of PQBP1 and its cellular functions and interactome, as well as possible implications for innate immune responses and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51–59, 63225 Langen, Germany
| |
Collapse
|
6
|
Mollinari C, Cardinale A, Lupacchini L, Martire A, Chiodi V, Martinelli A, Rinaldi AM, Fini M, Pazzaglia S, Domenici MR, Garaci E, Merlo D. The DNA repair protein DNA-PKcs modulates synaptic plasticity via PSD-95 phosphorylation and stability. EMBO Rep 2024; 25:3707-3737. [PMID: 39085642 PMCID: PMC11315936 DOI: 10.1038/s44319-024-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.
Collapse
Affiliation(s)
- Cristiana Mollinari
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, 00133, Rome, Italy
| | | | | | - Alberto Martire
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Valentina Chiodi
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Andrea Martinelli
- Istituto Superiore di Sanita', Experimental Animal Welfare Sector, 00161, Rome, Italy
| | - Anna Maria Rinaldi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133, Rome, Italy
| | | | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123, Rome, Italy
| | - Maria Rosaria Domenici
- Istituto Superiore di Sanita', National Centre for Drug Research and Evaluation, 00161, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Roma, 00163, Rome, Italy
- MEBIC Consortium, 00166, Rome, Italy
| | - Daniela Merlo
- Istituto Superiore di Sanita', Department of Neuroscience, 00161, Rome, Italy.
| |
Collapse
|
7
|
Zhang JN, Dong MM, Cao W, Chen HG, Gu HY, Feng YL, Zhang EF, He JS, Liu SC, Xie AY, Cai Z. Disruption of DNA-PKcs-mediated cGAS retention on damaged chromatin potentiates DNA damage-inducing agent-induced anti-multiple myeloma activity. Br J Cancer 2024; 131:430-443. [PMID: 38877108 PMCID: PMC11300664 DOI: 10.1038/s41416-024-02742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.
Collapse
Affiliation(s)
- Jin-Na Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Meng-Meng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao-Guang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui-Yao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Li Feng
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - En-Fan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Si-Cheng Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China
| | - An-Yong Xie
- Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Hangzhou Qiantang Hospital, Hangzhou, Zhejiang, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Camfield S, Chakraborty S, Dwivedi SKD, Pramanik PK, Mukherjee P, Bhattacharya R. Secrets of DNA-PKcs beyond DNA repair. NPJ Precis Oncol 2024; 8:154. [PMID: 39043779 PMCID: PMC11266574 DOI: 10.1038/s41698-024-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
The canonical role of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in repairing DNA double-strand breaks combined with its reported dysregulation in several malignancies has driven the development of DNA-PKcs inhibitors as therapeutics. However, until recently the relationship between DNA-PKcs and tumorigenesis has been primarily investigated with regard to its role in non-homologous end joining (NHEJ) repair. Emerging research has uncovered non-canonical DNA-PKcs functions involved with transcriptional regulation, telomere maintenance, metabolic regulation, and immune signaling all of which may also impinge on tumorigenesis. This review mainly discusses these non-canonical roles of DNA-PKcs in cellular biology and their potential contribution to tumorigenesis, as well as evaluating the implications of targeting DNA-PKcs for cancer therapy.
Collapse
Affiliation(s)
- Sydney Camfield
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sayan Chakraborty
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pijush Kanti Pramanik
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
10
|
Kajimura Y, Tessari A, Orlacchio A, Thoms A, Cufaro MC, Marco FD, Amari F, Chen M, Soliman SHA, Rizzotto L, Zhang L, Amann J, Carbone DP, Ahmed A, Fiermonte G, Freitas M, Lodi A, Boccio PD, Palmieri D, Coppola V. An in vivo "turning model" reveals new RanBP9 interactions in lung macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595416. [PMID: 38826292 PMCID: PMC11142189 DOI: 10.1101/2024.05.22.595416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biological functions of the scaffold protein Ran Binding Protein 9 (RanBP9) remain elusive in macrophages or any other cell type where this protein is expressed together with its CTLH (C-terminal to LisH) complex partners. We have engineered a new mouse model, named RanBP9-TurnX, where RanBP9 fused to three copies of the HA tag (RanBP9-3xHA) can be turned into RanBP9-V5 tagged upon Cre-mediated recombination. We created this model to enable stringent biochemical studies at cell type specific level throughout the entire organism. Here, we have used this tool crossed with LysM-Cre transgenic mice to identify RanBP9 interactions in lung macrophages. We show that RanBP9-V5 and RanBP9-3xHA can be both co-immunoprecipitated with the known members of the CTLH complex from the same whole lung lysates. However, more than ninety percent of the proteins pulled down by RanBP9-V5 differ from those pulled-down by RanBP9-HA. The lung RanBP9-V5 associated proteome includes previously unknown interactions with macrophage-specific proteins as well as with players of the innate immune response, DNA damage response, metabolism, and mitochondrial function. This work provides the first lung specific RanBP9-associated interactome in physiological conditions and reveals that RanBP9 and the CTLH complex could be key regulators of macrophage bioenergetics and immune functions.
Collapse
|
11
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Han C, Gui C, Dong S, Lan K. The Interplay between KSHV Infection and DNA-Sensing Pathways. Viruses 2024; 16:749. [PMID: 38793630 PMCID: PMC11125855 DOI: 10.3390/v16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Chenwu Gui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Shuhong Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Ghonim MA, Ju J, Pyakurel K, Ibba SV, Abouzeid MM, Rady HF, Matsuyama S, Del Valle L, Boulares AH. Unconventional activation of PRKDC by TNF-α: deciphering its crucial role in Th1-mediated inflammation beyond DNA repair as part of the DNA-PK complex. J Inflamm (Lond) 2024; 21:14. [PMID: 38689261 PMCID: PMC11059672 DOI: 10.1186/s12950-024-00386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The DNA-dependent protein kinase (DNA-PK) complex comprises a catalytic (PRKDC) and two requisite DNA-binding (Ku70/Ku80) subunits. The role of the complex in repairing double-stranded DNA breaks (DSBs) is established, but its role in inflammation, as a complex or individual subunits, remains elusive. While only ~ 1% of PRKDC is necessary for DNA repair, we reported that partial inhibition blocks asthma in mice without causing SCID. METHODS We investigated the central role of PRKDC in inflammation and its potential association with DNA repair. We also elucidated the relationship between inflammatory cytokines (e.g., TNF-α) and PRKDC by analyzing its connections to inflammatory kinases. Human cell lines, primary human endothelial cells, and mouse fibroblasts were used to conduct the in vitro studies. For animal studies, LPS- and oxazolone-induced mouse models of acute lung injury (ALI) and delayed-type hypersensitivity (DHT) were used. Wild-type, PRKDC+/-, or Ku70+/- mice used in this study. RESULTS A ~ 50% reduction in PRKDC markedly blocked TNF-α-induced expression of inflammatory factors (e.g., ICAM-1/VCAM-1). PRKDC regulates Th1-mediated inflammation, such as DHT and ALI, and its role is highly sensitive to inhibition achieved by gene heterozygosity or pharmacologically. In endothelial or epithelial cells, TNF-α promoted rapid PRKDC phosphorylation in a fashion resembling that induced by, but independent of, DSBs. Ku70 heterozygosity exerted little to no effect on ALI in mice, and whatever effect it had was associated with a specific increase in MCP-1 in the lungs and systemically. While Ku70 knockout blocked VP-16-induced PRKDC phosphorylation, it did not prevent TNF-α - induced phosphorylation of the kinase, suggesting Ku70 dispensability. Immunoprecipitation studies revealed that PRKDC transiently interacts with p38MAPK. Inhibition of p38MAPK blocked TNF-α-induced PRKDC phosphorylation. Direct phosphorylation of PRKDC by p38MAPK was demonstrated using a cell-free system. CONCLUSIONS This study presents compelling evidence that PRKDC functions independently of the DNA-PK complex, emphasizing its central role in Th1-mediated inflammation. The distinct functionality of PRKDC as an individual enzyme, its remarkable sensitivity to inhibition, and its phosphorylation by p38MAPK offer promising therapeutic opportunities to mitigate inflammation while sparing DNA repair processes. These findings expand our understanding of PRKDC biology and open new avenues for targeted anti-inflammatory interventions.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jihang Ju
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kusma Pyakurel
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Salome V Ibba
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mai M Abouzeid
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - Hamada F Rady
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Luis Del Valle
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA
| | - A Hamid Boulares
- The Stanley S. Scott Cancer Center, LSU Health Sciences Center-New Orleans, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Liu ZZ, Zhou CK, Lin XQ, Gao Y, Luo XY, Zhang JB, Yin Q, Zhang L, Zhang JG, An X, Chen W, Yang YJ. STING-dependent trained immunity contributes to host defense against Clostridium perfringens infection via mTOR signaling. Vet Res 2024; 55:52. [PMID: 38622656 PMCID: PMC11017476 DOI: 10.1186/s13567-024-01301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/10/2024] [Indexed: 04/17/2024] Open
Abstract
Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING‑deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.
Collapse
Affiliation(s)
- Zhen-Zhen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Cheng-Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiao-Qi Lin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yu Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xue-Yue Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jia-Bao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qi Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian-Gang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin An
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wei Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yong-Jun Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
18
|
Yang K, Jeltema D, Yan N. Innate immune sensing of macromolecule homeostasis. Adv Immunol 2024; 161:17-51. [PMID: 38763701 DOI: 10.1016/bs.ai.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The innate immune system uses a distinct set of germline-encoded pattern recognition receptors to recognize molecular patterns initially thought to be unique to microbial invaders, named pathogen-associated molecular patterns. The concept was later further developed to include similar molecular patterns originating from host cells during tissue damage, known as damage-associated molecular patterns. However, recent advances in the mechanism of monogenic inflammatory diseases have highlighted a much more expansive repertoire of cellular functions that are monitored by innate immunity. Here, we summarize several examples in which an innate immune response is triggered when homeostasis of macromolecule in the cell is disrupted in non-infectious or sterile settings. These ever-growing sensing mechanisms expand the repertoire of innate immune recognition, positioning it not only as a key player in host defense but also as a gatekeeper of cellular homeostasis. Therapeutics inspired by these advances to restore cellular homeostasis and correct the immune system could have far-reaching implications.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
19
|
Du Y, Zhu P, Li Y, Yu J, Xia T, Chang X, Zhu H, Li R, He Q. DNA-PKcs Phosphorylates Cofilin2 to Induce Endothelial Dysfunction and Microcirculatory Disorder in Endotoxemic Cardiomyopathy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0331. [PMID: 38550779 PMCID: PMC10976589 DOI: 10.34133/research.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 11/12/2024]
Abstract
The presence of endotoxemia is strongly linked to the development of endothelial dysfunction and disruption of myocardial microvascular reactivity. These factors play a crucial role in the progression of endotoxemic cardiomyopathy. Sepsis-related multiorgan damage involves the participation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). However, whether DNA-PKcs contributes to endothelial dysfunction and myocardial microvascular dysfunction during endotoxemia remains unclear. Hence, we conducted experiments in mice subjected to lipopolysaccharide (LPS)-induced endotoxemic cardiomyopathy, as well as assays in primary mouse cardiac microvascular endothelial cells. Results showed that endothelial-cell-specific DNA-PKcs ablation markedly attenuated DNA damage, sustained microvessel perfusion, improved endothelial barrier function, inhibited capillary inflammation, restored endothelium-dependent vasodilation, and improved heart function under endotoxemic conditions. Furthermore, we show that upon LPS stress, DNA-PKcs recognizes a TQ motif in cofilin2 and consequently induces its phosphorylation at Thr25. Phosphorylated cofilin2 shows increased affinity for F-actin and promotes F-actin depolymerization, resulting into disruption of the endothelial barrier integrity, microvascular inflammation, and defective eNOS-dependent vasodilation. Accordingly, cofilin2-knockin mice expressing a phospho-defective (T25A) cofilin2 mutant protein showed improved endothelial integrity and myocardial microvascular function upon induction of endotoxemic cardiomyopathy. These findings highlight a novel mechanism whereby DNA-PKcs mediates cofilin2Thr25 phosphorylation and subsequent F-actin depolymerization to contribute to endotoxemia-related cardiac microvascular dysfunction.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital,
Medical School of Chinese PLA, Beijing 100853, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing 100029, China
| | - Jiachi Yu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Tian Xia
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Xing Chang
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hang Zhu
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Ruibing Li
- The First Medical Centre,
Medical School of Chinese People’s Liberation Army, Beijing, China
| | - Qingyong He
- Guang’anmen Hospital,
China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
20
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Wang H, Zhang Y, Tian Y, Yang W, Wang Y, Hou H, Pan H, Pei S, Zhu H, Gu Z, Zhang Y, Dai D, Chen W, Zheng M, Luo Q, Xiao Y, Huang J. DNA-PK-Mediated Cytoplasmic DNA Sensing Stimulates Glycolysis to Promote Lung Squamous Cell Carcinoma Malignancy and Chemoresistance. Cancer Res 2024; 84:688-702. [PMID: 38199791 DOI: 10.1158/0008-5472.can-23-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Detection of cytoplasmic DNA is an essential biological mechanism that elicits IFN-dependent and immune-related responses. A better understanding of the mechanisms regulating cytoplasmic DNA sensing in tumor cells could help identify immunotherapeutic strategies to improve cancer treatment. Here we identified abundant cytoplasmic DNA accumulated in lung squamous cell carcinoma (LUSC) cells. DNA-PK, but not cGAS, functioned as a specific cytoplasmic DNA sensor to activate downstream ZAK/AKT/mTOR signaling, thereby enhancing the viability, motility, and chemoresistance of LUSC cells. DNA-PK-mediated cytoplasmic DNA sensing boosted glycolysis in LUSC cells, and blocking glycolysis abolished the tumor-promoting activity of cytoplasmic DNA. Elevated DNA-PK-mediated cytoplasmic DNA sensing was positively correlated with poor prognosis of human patients with LUSC. Targeting signaling activated by cytoplasmic DNA sensing with the ZAK inhibitor iZAK2 alone or in combination with STING agonist or anti-PD-1 antibody suppressed the tumor growth and improved the survival of mouse lung cancer models and human LUSC patient-derived xenografts model. Overall, these findings established DNA-PK-mediated cytoplasmic DNA sensing as a mechanism that supports LUSC malignancy and highlight the potential of targeting this pathway for treating LUSC. SIGNIFICANCE DNA-PK is a cytoplasmic DNA sensor that activates ZAK/AKT/mTOR signaling and boosts glycolysis to enhance malignancy and chemoresistance of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyang Zhang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wanlin Yang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Hanbo Pan
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongda Zhu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zenan Gu
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yanyun Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P.R. China
| | - Wei Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, P.R. China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
22
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
23
|
Hristova DB, Oliveira M, Wagner E, Melcher A, Harrington KJ, Belot A, Ferguson BJ. DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. iScience 2024; 27:108760. [PMID: 38269102 PMCID: PMC10805666 DOI: 10.1016/j.isci.2023.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
To mount an efficient interferon response to virus infection, intracellular pattern recognition receptors (PRRs) sense viral nucleic acids and activate anti-viral gene transcription. The mechanisms by which intracellular DNA and DNA viruses are sensed are relevant not only to anti-viral innate immunity, but also to autoinflammation and anti-tumour immunity through the initiation of sterile inflammation by self-DNA recognition. The PRRs that directly sense and respond to viral or damaged self-DNA function by signaling to activate interferon regulatory factor (IRF)-dependent type one interferon (IFN-I) transcription. We and others have previously defined DNA-dependent protein kinase (DNA-PK) as an essential component of the DNA-dependent anti-viral innate immune system. Here, we show that DNA-PK is essential for cyclic GMP-AMP synthase (cGAS)- and stimulator of interferon genes (STING)-dependent IFN-I responses in human cells during stimulation with exogenous DNA and infection with DNA viruses.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marisa Oliveira
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Emma Wagner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alan Melcher
- The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard, Lyon, France
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
24
|
Liu K, Yuan X, Yang T, Deng D, Chen Y, Tang M, Zhang C, Zou Y, Zhang S, Li D, Shi M, Guo Y, Zhou Y, Zhao M, Yang Z, Chen L. Discovery, Optimization, and Evaluation of Potent and Selective DNA-PK Inhibitors in Combination with Chemotherapy or Radiotherapy for the Treatment of Malignancies. J Med Chem 2024; 67:245-271. [PMID: 38117951 DOI: 10.1021/acs.jmedchem.3c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.
Collapse
Affiliation(s)
- Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shunjie Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Li
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuang Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
25
|
Ha CT, Tageldein MM, Harding SM. The entanglement of DNA damage and pattern recognition receptor signaling. DNA Repair (Amst) 2024; 133:103595. [PMID: 37988925 DOI: 10.1016/j.dnarep.2023.103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Cells are under constant pressure to suppress DNA damage originating from both exogenous and endogenous sources. Cellular responses to DNA damage help to prevent mutagenesis and cell death that arises when DNA damage is either left unrepaired or repaired inaccurately. During the "acute phase" of DNA damage signaling, lesions are recognized, processed, and repaired to restore the primary DNA sequence whilst cell cycle checkpoints delay mitotic progression, cell death and the propagation of errors to daughter cells. Increasingly, there is recognition of a "chronic phase" of DNA damage signaling, exemplified by the secretion of dozens of cytokines days after the inciting damage event. In this review, we focus on the cellular origin of these chronic responses, the molecular pathways that control them and the increasing appreciation for the interconnection between acute and chronic DNA damage responses.
Collapse
Affiliation(s)
- Cindy T Ha
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maha M Tageldein
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Radak M, Fallahi H. Zbp1 gene: a modulator of multiple aging hallmarks as potential therapeutic target for age-related diseases. Biogerontology 2023; 24:831-844. [PMID: 37199888 DOI: 10.1007/s10522-023-10039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The Zbp1 gene has recently emerged as a potential therapeutic target for age-related diseases. Multiple studies have reported that Zbp1 plays a key role in regulating several aging hallmarks, including cellular senescence, chronic inflammation, DNA damage response, and mitochondrial dysfunction. Regarding cellular senescence, Zbp1 appears to regulate the onset and progression of senescence by controlling the expression of key markers such as p16INK4a and p21CIP1/WAF1. Similarly, evidence suggests that Zbp1 plays a role in regulating inflammation by promoting the production of pro-inflammatory cytokines, such as IL-6 and IL-1β, through activation of the NLRP3 inflammasome. Furthermore, Zbp1 seems to be involved in the DNA damage response, coordinating the cellular response to DNA damage by regulating the expression of genes such as p53 and ATM. Additionally, Zbp1 appears to regulate mitochondrial function, which is crucial for energy production and cellular homeostasis. Given the involvement of Zbp1 in multiple aging hallmarks, targeting this gene represents a potential strategy to prevent or treat age-related diseases. For example, inhibiting Zbp1 activity could be a promising approach to reduce cellular senescence and chronic inflammation, two critical hallmarks of aging associated with various age-related diseases. Similarly, modulating Zbp1 expression or activity could also improve DNA damage response and mitochondrial function, thus delaying or preventing the development of age-related diseases. Overall, the Zbp1 gene appears to be a promising therapeutic target for age-related diseases. In the current review, we have discussed the molecular mechanisms underlying the involvement of Zbp1 in aging hallmarks and proposed to develop effective strategies to target this gene for therapeutic purposes.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran.
| |
Collapse
|
27
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Sakai C, Ueda K, Goda K, Fujita R, Maeda J, Nakayama S, Sotomaru Y, Tashiro S, Yoshizumi M, Ishida T, Ishida M. A possible role for proinflammatory activation via cGAS-STING pathway in atherosclerosis induced by accumulation of DNA double-strand breaks. Sci Rep 2023; 13:16470. [PMID: 37777633 PMCID: PMC10542807 DOI: 10.1038/s41598-023-43848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
DNA damage contributes to atherosclerosis. However, causative links between DNA double-strand breaks (DSBs) and atherosclerosis have yet to be established. Here, we investigated the role of DSBs in atherosclerosis using mice and vascular cells deficient in Ku80, a DSB repair protein. After 4 weeks of a high-fat diet, Ku80-deficient apolipoprotein E knockout mice (Ku80+/-ApoE-/-) displayed increased plaque size and DSBs in the aorta compared to those of ApoE-/- control. In the preatherosclerotic stages (two-week high-fat diet), the plaque size was similar in both the Ku80+/-ApoE-/- and ApoE-/- control mice, but the number of DSBs and mRNA levels of inflammatory cytokines such as IL-6 and MCP-1 were significantly increased in the Ku80+/-ApoE-/- aortas. We further investigated molecular links between DSBs and inflammatory responses using vascular smooth muscle cells isolated from Ku80 wild-type and Ku80+/- mice. The Ku80+/- cells displayed senescent features and elevated levels of inflammatory cytokine mRNAs. Moreover, the cytosolic DNA-sensing cGAS-STING pathway was activated in the Ku80+/- cells. Inhibiting the cGAS-STING pathway reduced IL-6 mRNA level. Notably, interferon regulatory factor 3 (IRF3), a downstream effector of the cGAS-STING pathway, was activated, and the depletion of IRF3 also reduced IL-6 mRNA levels in the Ku80+/- cells. Finally, DSBs accumulation in normal cells also activated the cGAS-STING-IRF3 pathway. In addition, cGAS inhibition attenuated DNA damage-induced IL-6 expression and cellular senescence in these cells. These results suggest that DSBs accumulation promoted atherosclerosis by upregulating proinflammatory responses and cellular senescence via the cGAS-STING (-IRF3) pathway.
Collapse
Affiliation(s)
- Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Keitaro Ueda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kohei Goda
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Rikuto Fujita
- National Hospital Organization, Higashihiroshima Medical Center, Hiroshima City, Japan
| | - Junji Maeda
- Department of Cardiology, Tsuchiya General Hospital, Hiroshima City, Japan
| | - Shinya Nakayama
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima City, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| |
Collapse
|
30
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
31
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
32
|
Smith JR, Dowling JW, McFadden MI, Karp A, Schwerk J, Woodward JJ, Savan R, Forero A. MEF2A suppresses stress responses that trigger DDX41-dependent IFN production. Cell Rep 2023; 42:112805. [PMID: 37467105 PMCID: PMC10652867 DOI: 10.1016/j.celrep.2023.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.
Collapse
Affiliation(s)
- Julian R Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jack W Dowling
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Karp
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Discovery PREP, The Ohio State University, Columbus, OH 43210, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Cancer Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Liu D, Lum KK, Treen N, Núñez CT, Yang J, Howard T, Levine M, Cristea I. IFI16 phase separation via multi-phosphorylation drives innate immune signaling. Nucleic Acids Res 2023; 51:6819-6840. [PMID: 37283074 PMCID: PMC10359621 DOI: 10.1093/nar/gkad449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The interferon inducible protein 16 (IFI16) is a prominent sensor of nuclear pathogenic DNA, initiating innate immune signaling and suppressing viral transcription. However, little is known about mechanisms that initiate IFI16 antiviral functions or its regulation within the host DNA-filled nucleus. Here, we provide in vitro and in vivo evidence to establish that IFI16 undergoes liquid-liquid phase separation (LLPS) nucleated by DNA. IFI16 binding to viral DNA initiates LLPS and induction of cytokines during herpes simplex virus type 1 (HSV-1) infection. Multiple phosphorylation sites within an intrinsically disordered region (IDR) function combinatorially to activate IFI16 LLPS, facilitating filamentation. Regulated by CDK2 and GSK3β, IDR phosphorylation provides a toggle between active and inactive IFI16 and the decoupling of IFI16-mediated cytokine expression from repression of viral transcription. These findings show how IFI16 switch-like phase transitions are achieved with temporal resolution for immune signaling and, more broadly, the multi-layered regulation of nuclear DNA sensors.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicholas Treen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Corazón T Núñez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy R Howard
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
34
|
Liu X, Cen X, Wu R, Chen Z, Xie Y, Wang F, Shan B, Zeng L, Zhou J, Xie B, Cai Y, Huang J, Liang Y, Wu Y, Zhang C, Wang D, Xia H. ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade. Nat Commun 2023; 14:4066. [PMID: 37429863 DOI: 10.1038/s41467-023-39920-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite advances in cancer treatment, immune checkpoint blockade (ICB) only achieves complete response in some patients, illustrating the need to identify resistance mechanisms. Using an ICB-insensitive tumor model, here we discover cisplatin enhances the anti-tumor effect of PD-L1 blockade and upregulates the expression of Ariadne RBR E3 ubiquitin-protein ligase 1 (ARIH1) in tumors. Arih1 overexpression promotes cytotoxic T cell infiltration, inhibits tumor growth, and potentiates PD-L1 blockade. ARIH1 mediates ubiquitination and degradation of DNA-PKcs to trigger activation of the STING pathway, which is blocked by the phospho-mimetic mutant T68E/S213D of cGAS protein. Using a high-throughput drug screen, we further identify that ACY738, less cytotoxic than cisplatin, effectively upregulates ARIH1 and activates STING signaling, sensitizing tumors to PD-L1 blockade. Our findings delineate a mechanism that tumors mediate ICB resistance through the loss of ARIH1 and ARIH1-DNA-PKcs-STING signaling and indicate that activating ARIH1 is an effective strategy to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaolan Liu
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Ronghai Wu
- Hangzhou PhecdaMed Co.Ltd, 2626 Yuhangtang Road, Hangzhou, 311121, China
| | - Ziyan Chen
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanqi Xie
- Department of Urology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fengqi Wang
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 50# Huzhou Rd., Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Bojian Xie
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Yangjun Cai
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Jinyan Huang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yingjiqiong Liang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Youqian Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Chao Zhang
- Department of Anatomy and Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dongrui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
36
|
Wardlaw CP, Petrini JH. ISG15: A link between innate immune signaling, DNA replication, and genome stability. Bioessays 2023; 45:e2300042. [PMID: 37147792 PMCID: PMC10473822 DOI: 10.1002/bies.202300042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Interferon stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that is highly induced upon activation of interferon signaling and cytoplasmic DNA sensing pathways. As part of the innate immune system ISG15 acts to inhibit viral replication and particle release via the covalent conjugation to both viral and host proteins. Unlike ubiquitin, unconjugated ISG15 also functions as an intracellular and extra-cellular signaling molecule to modulate the immune response. Several recent studies have shown ISG15 to also function in a diverse array of cellular processes and pathways outside of the innate immune response. This review explores the role of ISG15 in maintaining genome stability, particularly during DNA replication, and how this relates to cancer biology. It puts forth the hypothesis that ISG15, along with DNA sensors, function within a DNA replication fork surveillance pathway to help maintain genome stability.
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Chen D, Ren H, Zhao N, Hao J. Expression and prognostic value of DNA sensors in hepatocellular carcinoma. J Leukoc Biol 2023; 114:68-78. [PMID: 37171016 DOI: 10.1093/jleuko/qiad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
DNA sensor proteins play an important role in transducing DNA signals to induce immune responses that initiate inflammation or clear pathogens. It has been previously shown that several DNA sensors are involved in regulating tumor biology and/or cancer immunology. However, a systemic analysis of DNA sensor expression and its correlation with prognosis has not been conducted. Here, we analyzed messenger RNA expression and protein abundance in liver cancer databases and found that the genes of 5 DNA sensors (POLR3A, PRKDC, DHX9, cGAS, and MRE11) were consistently upregulated in tumor tissue. Moreover, the expression of these DNA sensor genes correlated with patient survival. Using a gene alterations analysis, we discovered that patients with genetically altered DNA sensors had significantly lower survival compared with an unaltered group. Furthermore, receiver-operating characteristic curves confirmed that the signatures of the 5 DNA sensors were independent prognostic factors in hepatocellular carcinoma. Tumor-infiltrating immune cell analysis revealed that expression of all 5 DNA sensors correlated with the amount of B cells, CD8 T cells, CD4 T cells, Tregs, DCs, Mϕs, and neutrophils. Surprisingly, 4 of the DNA sensors (POLR3A, PRKDC, DHX9, and MRE11) were inversely correlated with the amount of γδ T cells. Gene set enrichment analysis showed that all 5 DNA sensor genes were enriched for oxidative phosphorylation and xenobiotic metabolism. These results suggest that expression of these DNA sensors is associated with a unique immune profile and metabolic regulation in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Danchun Chen
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 157 Baojian Road, Harbin 150076, Heilongjiang, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, Tianjin, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, 79 Kangning Road, Zhuhai 519000, Guangdong, China
- Fuda Cancer Hospital, Jinan University, 2 Tangdexi Road, Guangzhou 510399, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, 601 W Huangpu Ave, Guangzhou 510632, Guangdong, China
| |
Collapse
|
38
|
Taffoni C, Schüssler M, Vila IK, Laguette N. Harnessing the cooperation between DNA-PK and cGAS in cancer therapies: The cooperation between DNA-PK and cGAS shapes tumour immunogenicity. Bioessays 2023; 45:e2300045. [PMID: 37147791 DOI: 10.1002/bies.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is central for the initiation of anti-tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS-STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA-dependent protein kinase (DNA-PK) complex, that recently emerged as an activator of inflammatory responses in tumour cells. We propose that stratification analyses on cGAS and DNA-PK expression/activation status should be carried out to predict treatment efficacy. We herein also provide insights into non-canonical functions borne by cGAS and cGAMP, highlighting how they may influence tumourigenesis. All these parameters should be taken into consideration concertedly to choose strategies aiming to effectively boost tumour immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | | | | | | |
Collapse
|
39
|
Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. JCI Insight 2023; 8:e167270. [PMID: 37166992 PMCID: PMC10371251 DOI: 10.1172/jci.insight.167270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an antitumor immune response. Recent studies reveal that cGAS is frequently inhibited in cancer, and therapeutic targets to promote antitumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS antitumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
Collapse
Affiliation(s)
| | - Shivam A. Zaver
- Department of Microbiology and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Jose Mario Bello Pineda
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Robert K. Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
40
|
Yang N, Wang Y, Dai P, Li T, Zierhut C, Tan A, Zhang T, Xiang JZ, Ordureau A, Funabiki H, Chen Z, Deng L. Vaccinia E5 is a major inhibitor of the DNA sensor cGAS. Nat Commun 2023; 14:2898. [PMID: 37217469 PMCID: PMC10201048 DOI: 10.1038/s41467-023-38514-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is not well understood. In this study, we screened 80 vaccinia genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS. E5 is responsible for abolishing cGAMP production during vaccinia virus (Western Reserve strain) infection of dendritic cells. E5 localizes to the cytoplasm and nucleus of infected cells. Cytosolic E5 triggers ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, and thereby improves antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christian Zierhut
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
- The Institute of Cancer Research, London, SW3 6JB, UK
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Zhijian Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
41
|
Molteni C, Forni D, Cagliani R, Arrigoni F, Pozzoli U, De Gioia L, Sironi M. Selective events at individual sites underlie the evolution of monkeypox virus clades. Virus Evol 2023; 9:vead031. [PMID: 37305708 PMCID: PMC10256197 DOI: 10.1093/ve/vead031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
In endemic regions (West Africa and the Congo Basin), the genetic diversity of monkeypox virus (MPXV) is geographically structured into two major clades (Clades I and II) that differ in virulence and host associations. Clade IIb is closely related to the B.1 lineage, which is dominating a worldwide outbreak initiated in 2022. Lineage B.1 has however accumulated mutations of unknown significance that most likely result from apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) editing. We applied a population genetics-phylogenetics approach to investigate the evolution of MPXV during historical viral spread in Africa and to infer the distribution of fitness effects. We observed a high preponderance of codons evolving under strong purifying selection, particularly in viral genes involved in morphogenesis and replication or transcription. However, signals of positive selection were also detected and were enriched in genes involved in immunomodulation and/or virulence. In particular, several genes showing evidence of positive selection were found to hijack different steps of the cellular pathway that senses cytosolic DNA. Also, a few selected sites in genes that are not directly involved in immunomodulation are suggestive of antibody escape or other immune-mediated pressures. Because orthopoxvirus host range is primarily determined by the interaction with the host immune system, we suggest that the positive selection signals represent signatures of host adaptation and contribute to the different virulence of Clade I and II MPXVs. We also used the calculated selection coefficients to infer the effects of mutations that define the predominant human MPXV1 (hMPXV1) lineage B.1, as well as the changes that have been accumulating during the worldwide outbreak. Results indicated that a proportion of deleterious mutations were purged from the predominant outbreak lineage, whose spread was not driven by the presence of beneficial changes. Polymorphic mutations with a predicted beneficial effect on fitness are few and have a low frequency. It remains to be determined whether they have any significance for ongoing virus evolution.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| |
Collapse
|
42
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:pathogens12050735. [PMID: 37242405 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
43
|
Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne) 2023; 10:1165225. [PMID: 37228405 PMCID: PMC10203243 DOI: 10.3389/fmed.2023.1165225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Interferon (IFN) is a key component of the innate immune response. For reasons that remain incompletely understood, the IFN system is upregulated in several rheumatic diseases, particularly those that feature autoantibody production, such as SLE, Sjögren's syndrome, myositis and systemic sclerosis. Interestingly, many of the autoantigens targeted in these diseases are components of the IFN system, representing IFN-stimulated genes (ISGs), pattern recognition receptors (PRRs), and modulators of the IFN response. In this review, we describe features of these IFN-linked proteins that may underlie their status as autoantigens. Note is also made of anti-IFN autoantibodies that have been described in immunodeficiency states.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
44
|
Kong L, Sui C, Chen T, Zhang L, Zhao W, Zheng Y, Liu B, Cheng X, Gao C. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus. Cell Rep 2023; 42:112306. [PMID: 36972172 DOI: 10.1016/j.celrep.2023.112306] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023] Open
Abstract
STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Lingli Kong
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Chen
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaochen Cheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong 250012, P.R. China; Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
45
|
Spens AE, Sutliff NA, Bennett SR, Campbell AE, Tapscott SJ. Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction. eLife 2023; 12:e82057. [PMID: 37092726 PMCID: PMC10195082 DOI: 10.7554/elife.82057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNγ induction of major histocompatibility complex class I (MHC class I) and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNγ-stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of interferon-stimulated genes (ISGs) requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNγ induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNγ induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.
Collapse
Affiliation(s)
- Amy E Spens
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas A Sutliff
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusDenverUnited States
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Neurology, University of WashingtonSeattleUnited States
| |
Collapse
|
46
|
He X, Sun Y, Lu J, Naz F, Ma S, Liu J. Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. Front Immunol 2023; 14:1117760. [PMID: 37122745 PMCID: PMC10130589 DOI: 10.3389/fimmu.2023.1117760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Cytoplasmic DNA is emerging as a pivotal contributor to the pathogenesis of inflammatory diseases and cancer, such as COVID-19 and lung carcinoma. However, the complexity of various cytoplasmic DNA-related pathways and their crosstalk remains challenging to distinguish their specific roles in many distinct inflammatory diseases, especially for the underlying mechanisms. Here, we reviewed the latest findings on cytoplasmic DNA and its signaling pathways in inflammatory lung conditions and lung cancer progression. We found that sustained activation of cytoplasmic DNA sensing pathways contributes to the development of common lung diseases, which may result from external factors or mutations of key genes in the organism. We further discussed the interplays between cytoplasmic DNA and anti-inflammatory or anti-tumor effects for potential immunotherapy. In sum, this review aids in understanding the roles of cytoplasmic DNAs and exploring more therapeutic strategies.
Collapse
Affiliation(s)
- Xintong He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ye Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jianzhang Lu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Faiza Naz
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Shenglin Ma
- Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Cancer Center, Zhejiang University, Hangzhou, China
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Riederer S, Del Canizo A, Navas J, Peter MG, Link EK, Sutter G, Rojas JJ. Improving poxvirus-mediated antitumor immune responses by deleting viral cGAMP-specific nuclease. Cancer Gene Ther 2023:10.1038/s41417-023-00610-5. [PMID: 37016144 DOI: 10.1038/s41417-023-00610-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
cGAMP-specific nucleases (poxins) are a recently described family of proteins dedicated to obstructing cyclic GMP-AMP synthase signaling (cGAS), an important sensor triggered by cytoplasmic viral replication that activates type I interferon (IFN) production. The B2R gene of vaccinia viruses (VACV) codes for one of these nucleases. Here, we evaluated the effects of inactivating the VACV B2 nuclease in the context of an oncolytic VACV. VACV are widely used as anti-cancer vectors due to their capacity to activate immune responses directed against tumor antigens. We aimed to elicit robust antitumor immunity by preventing viral inactivation of the cGAS/STING/IRF3 pathway after infection of cancer cells. Activation of such a pathway is associated with a dominant T helper 1 (Th1) cell differentiation of the response, which benefits antitumor outcomes. Deletion of the B2R gene resulted in enhanced IRF3 phosphorylation and type I IFN expression after infection of tumor cells, while effective VACV replication remained unimpaired, both in vitro and in vivo. In syngeneic mouse tumor models, the absence of the VACV cGAMP-specific nuclease translated into improved antitumor activity, which was associated with antitumor immunity directed against tumor epitopes.
Collapse
Affiliation(s)
- Stephanie Riederer
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Navas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Marlowe G Peter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Ellen K Link
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Juan J Rojas
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain.
- Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
48
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
49
|
Taffoni C, Marines J, Chamma H, Guha S, Saccas M, Bouzid A, Valadao AC, Maghe C, Jardine J, Park MK, Polak K, De Martino M, Vanpouille‐Box C, Del Rio M, Gongora C, Gavard J, Bidère N, Song MS, Pineau D, Hugnot J, Kissa K, Fontenille L, Blanchet FP, Vila IK, Laguette N. DNA damage repair kinase DNA-PK and cGAS synergize to induce cancer-related inflammation in glioblastoma. EMBO J 2023; 42:e111961. [PMID: 36574362 PMCID: PMC10068334 DOI: 10.15252/embj.2022111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
Collapse
Affiliation(s)
- Clara Taffoni
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | - Johanna Marines
- IGH, Université de Montpellier, CNRSMontpellierFrance
- Azelead©MontpellierFrance
| | - Hanane Chamma
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | | | - Amel Bouzid
- IGH, Université de Montpellier, CNRSMontpellierFrance
| | | | - Clément Maghe
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Mi Kyung Park
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | | | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell MedicineNew YorkNYUSA
| | | | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Celine Gongora
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, ICMMontpellierFrance
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO)Saint‐HerblainFrance
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université d'AngersNantesFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Min Sup Song
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Donovan Pineau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Jean‐Philippe Hugnot
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERMMontpellierFrance
| | - Karima Kissa
- Université de Montpellier, CNRS UMR 5235MontpellierFrance
| | | | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRSMontpellierFrance
| | | | | |
Collapse
|
50
|
Constanzo J, Bouden Y, Godry L, Kotzki PO, Deshayes E, Pouget JP. Immunomodulatory effects of targeted radionuclide therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:105-136. [PMID: 37438015 DOI: 10.1016/bs.ircmb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
It is now clear that conventional radiation therapy can reinstate cell death immunogenicity. Recent preclinical data indicate that targeted radionuclide therapy that irradiate tumors at continuous low dose rate also can elicit immunostimulatory effects and represents a promising strategy to circumvent immune checkpoint inhibitor resistance. In this perspective, we discuss the accumulating preclinical and clinical data suggesting that activation of the immune system through the cGAS-STING axis and the release of extracellular vesicles by irradiated cells, participate to this antitumor immunity. This should need to be considered for adapting clinical practices to state of the art of the radiobiology and to increase targeted radionuclide therapy effectiveness.
Collapse
Affiliation(s)
- J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Y Bouden
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Godry
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - P-O Kotzki
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - E Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - J-P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|