1
|
Coombs RS, Overacre-Delgoffe AE, Bhattacharjee A, Hand TW, Boyle JP. Mouse innate resistance to Neospora caninum infection is driven by early production of IFNγ by NK cells in response to parasite ligands. mSphere 2024; 9:e0025524. [PMID: 39445806 PMCID: PMC11580461 DOI: 10.1128/msphere.00255-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 10/25/2024] Open
Abstract
Toxoplasma gondii is capable of being transmitted by nearly all warm-blooded animals, and rodents are a major source of parasite dissemination, yet mechanisms driving its broad host range are poorly understood. Although a phylogenetically close relative of T. gondii, Neospora caninum differs from T. gondii in that it does not infect mice and only infects a small number of ruminant and canine species. We recently showed that T. gondii and N. caninum grow similarly in mice during the first 24 h post-infection, but only N. caninum induces an IFNγ-driven response within hours that controls the infection. The goal of the present study was to understand the cellular basis of this rapid response to N. caninum. To do this, we compared immune cell populations at the site of infection 4 h after T. gondii or N. caninum infection in mice. We found that both parasites induced similar frequencies of peritoneal monocytes, while macrophages and dendritic cell populations were not increased compared to uninfected mice. Through a series of knockout mouse experiments, we show that B, T, and NKT cells are not required for immediate IFNγ production and ultimate control of N. caninum infection, suggesting that natural killer (NK) cells are the primary inducers of immediate IFNγ in response to N. caninum. N. caninum infections exhibited significantly more IFNγ+ NK cells in the peritoneum compared with T. gondii-infected and uninfected mice. Finally, we demonstrate that differences in early IFNγ production during N. caninum and T. gondii infections in mice are at least partly due to differences in soluble antigen(s) produced by tachyzoites. IMPORTANCE Pathogen differences in host range are poorly understood at the molecular level even though even closely related pathogen species can have dramatically distinct host ranges. Here, we study two related parasite species that have a dramatic difference in their ability to infect mice. Here, we show that soluble proteins from these species determine one driver of this difference: induction of interferon gamma by cells of the innate immune system.
Collapse
Affiliation(s)
- R. S. Coombs
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - A. Bhattacharjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T. W. Hand
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J. P. Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Shamaev ND, Batanova T, Iwatake Y, Moribe J, Kyan H, Masatani T, Kitamura Y, Nakagawa K, Saito T, Takashima Y. Diversity of genes encoding immune-related GTPase B2 protein, an inherited element responsible for resistance against virulent Toxoplasma gondii strains, among wild Mus musculus in local area of Japan. J Vet Med Sci 2024; 86:1056-1062. [PMID: 39155081 PMCID: PMC11442403 DOI: 10.1292/jvms.24-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
The major genetic group of Toxoplasma gondii, known as type I, generally displays high lethality in laboratory Mus musculus (mouse) strains, with few exceptions. However, because rodents are the primary reservoir hosts for T. gondii, if this characteristic manifests in the wild, type I strains would be extinct. Therefore, we hypothesized that populations of wild rodents capable of harboring type I T. gondii asymptomatically exist globally and are not limited to a few localized areas, as previously thought. The strength of mouse resistance to T. gondii is known to depend on the affinity of the mouse-expressed immunity-related GTPases B2 (IRGB2) protein for the T. gondii-expressed rphoptry protein 5B (ROP5B) protein. Therefore, the Irgb2 gene sequences of 12 individuals mice captured at two animal farms in Gifu Prefecture, and on an island in Okinawa Prefecture, Japan were determined, and subjected to a molecular phylogenetic analysis together with those of various mouse strains worldwide. The Irgb2 gene of M. musculus individuals captured on one farm and one island showed diverse sequences. The sequences from two individual mice captured in an animal farm formed a single clade with a wild mouse derived CAST/EiJ strain, known for its exceptional resistance to type I T. gondii lethality. These results suggest that M. musuculus individuals resistant to the Type I T. gondii strain may be present in Japan, in addition to the previously known populations in South Asia, Thailand and India.
Collapse
Affiliation(s)
- Nikolai D Shamaev
- Institute of Environmental Sciences, Kazan Federal University, Tatarstan, Russian Federation
- Kazan State Medical Academy, Russian Medical Academy of Continuous Professional Education, Tatarstan, Russian Federation
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tatiana Batanova
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Yuki Iwatake
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Junji Moribe
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
- School of Social System Management, Gifu University, Gifu, Japan
| | - Hisako Kyan
- Okinawa Prefectural Institute of Health and Environment Research Center for Infectious Diseases, Okinawa, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Yuko Kitamura
- Gifu Prefectural Chuo Livestock Hygiene Service Center, Gifu, Japan
| | - Keisuke Nakagawa
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Taizo Saito
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Yasuhiro Takashima
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Murillo-Léon M, Bastidas-Quintero AM, Steinfeldt T. Decoding Toxoplasma gondii virulence: the mechanisms of IRG protein inactivation. Trends Parasitol 2024; 40:805-819. [PMID: 39168720 DOI: 10.1016/j.pt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Toxoplasmosis is a common parasitic zoonosis that can be life-threatening in immunocompromised patients. About one-third of the human population is infected with Toxoplasma gondii. Primary infection triggers an innate immune response wherein IFN-γ-induced host cell GTPases, namely IRG and GBP proteins, serve as a vital component for host cell resistance. In the past decades, interest in elucidating the function of these GTPase families in controlling various intracellular pathogens has emerged. Numerous T. gondii effectors were identified to inactivate particular IRG proteins. T. gondii is re-optimizing its effectors to combat IRG function and in this way secures transmission. We discuss the IRG-specific effectors employed by the parasite in murine infections, contributing to a better understanding of T. gondii virulence.
Collapse
Affiliation(s)
- Mateo Murillo-Léon
- Institute of Medical Microbiology and Hygiene, Medical Center University of Freiburg, 79104 Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Aura María Bastidas-Quintero
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Cardona-Trujillo MC, Jiménez-González FJ, Veloza LA, Sepúlveda-Arias JC. In Vitro Anti- Toxoplasma Activity of Extracts Obtained from Tabebuia rosea and Tabebuia chrysantha: The Role of β-Amyrin. Molecules 2024; 29:920. [PMID: 38474432 DOI: 10.3390/molecules29050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii that is highly prevalent worldwide. Although the infection is asymptomatic in immunocompetent individuals, it severely affects immunocompromised individuals, causing conditions such as encephalitis, myocarditis, or pneumonitis. The limited therapeutic efficacy of drugs currently used to treat toxoplasmosis has prompted the search for new therapeutic alternatives. The aim of this study was to determine the anti-Toxoplasma activity of extracts obtained from two species of the genus Tabebuia. Twenty-six extracts, 12 obtained from Tabebuia chrysantha and 14 from Tabebuia rosea, were evaluated by a colorimetric technique using the RH strain of T. gondii that expresses β-galactosidase. Additionally, the activity of the promising extracts and their active compounds was evaluated by flow cytometry. β-amyrin was isolated from the chloroform extract obtained from the leaves of T. rosea and displayed important anti-Toxoplasma activity. The results show that natural products are an important source of new molecules with considerable biological and/or pharmacological activity.
Collapse
Affiliation(s)
- Maria Camila Cardona-Trujillo
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | | | - Luz Angela Veloza
- Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| |
Collapse
|
5
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. PLoS Pathog 2023; 19:e1011120. [PMID: 37463170 PMCID: PMC10353827 DOI: 10.1371/journal.ppat.1011120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25, act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans-the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17, as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16, are positive regulators of the IPR, acting downstream of pals-17. These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity, and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside and at the apical side of intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
8
|
Joeres M, Cardron G, Passebosc-Faure K, Plault N, Fernández-Escobar M, Hamilton CM, O'Brien-Anderson L, Calero-Bernal R, Galal L, Luttermann C, Maksimov P, Conraths FJ, Dardé ML, Ortega-Mora LM, Jokelainen P, Mercier A, Schares G. A ring trial to harmonize Toxoplasma gondii microsatellite typing: comparative analysis of results and recommendations for optimization. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04597-7. [PMID: 37093325 DOI: 10.1007/s10096-023-04597-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
A ring trial among five European laboratories was organized to reach consistency in microsatellite (MS) typing of the zoonotic parasite Toxoplasma gondii. Three sample sets were circulated and analyzed by each laboratory following a previously published method that is based on fragment length polymorphism of 15 MS markers. The first sample set compared typing results in general and focused on effects of DNA concentration; the second sample set focused on the polymorphic fingerprinting markers that can differentiate T. gondii strains within the same archetypal lineage; and the third set focused on non-archetypal genotypes. Methodological variations between laboratories, including the software programs used to determine MS fragment length, were collated using a questionnaire. Overall, lineage-level typing results reached a high level of agreement, especially in samples with the highest DNA concentrations. However, laboratory-specific differences were observed for particular markers. Major median differences in fragment length, of up to 6 base pairs, were related to the fluorophore used to label fragment-specific primers. In addition, primer pairs with identical sequences obtained from different suppliers resulted in fragments of differing length. Furthermore, differences in the way the sequencing profiles were assessed and interpreted may have led to deviating results in fragment length determination. Harmonization of MS typing, for example, by using the same fluorophores or by numerical adjustments applied to the fragment-lengths determined, could improve the uniformity of the results across laboratories. This is the first interlaboratory comparison, providing guidelines (added as a supplement) for the optimization of this technique.
Collapse
Affiliation(s)
- M Joeres
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - G Cardron
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - K Passebosc-Faure
- Centre National de Référence (CNR) Toxoplasmose Centre Hospitalier-Universitaire Dupuytren, Limoges, France
| | - N Plault
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - M Fernández-Escobar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - C M Hamilton
- The Moredun Research Institute, Penicuik, Midlothian, UK
| | - L O'Brien-Anderson
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - R Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - L Galal
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - C Luttermann
- Institute of Immunology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, -Insel Riems, Greifswald, Germany
| | - P Maksimov
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - F J Conraths
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - M L Dardé
- Centre National de Référence (CNR) Toxoplasmose Centre Hospitalier-Universitaire Dupuytren, Limoges, France
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - L M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - P Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - A Mercier
- Centre National de Référence (CNR) Toxoplasmose Centre Hospitalier-Universitaire Dupuytren, Limoges, France
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - G Schares
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
9
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
10
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524171. [PMID: 36711775 PMCID: PMC9882112 DOI: 10.1101/2023.01.15.524171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25 , act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans - the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17 , as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16 , are positive regulators of the IPR, acting downstream of pals-17 . These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans . AUTHOR SUMMARY Immune responses to pathogens induce extensive rewiring of host physiology. In the short term, these changes are generally beneficial as they can promote resistance against infection. However, prolonged activation of immune responses can have serious negative consequences on host health, including impaired organismal development and fitness. Therefore, the balance between activating the immune system and promoting development must be precisely regulated. In this study, we used genetics to identify a gene in the roundworm Caenorhabditis elegans called pals-17 that acts as a repressor of the Intracellular Pathogen Response (IPR), a defense response against viral and microsporidian infections. We also found that pals-17 is required for the normal development of these animals. Furthermore, we identified two other pals genes, pals-20 and pals-16 , as suppressors of pals-17 mutant phenotypes. Finally, we found that PALS-17 and PALS-20 proteins colocalize inside intestinal cells, where viruses and microsporidia invade and replicate in the host. Taken together, our study demonstrates a balance between organismal development and immunity that is regulated by several genetic ON/OFF switch 'modules' in C. elegans .
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States,Corresponding author
| |
Collapse
|
11
|
Etougbétché JR, Hamidović A, Dossou HJ, Coan-Grosso M, Roques R, Plault N, Houéménou G, Badou S, Missihoun AA, Abdou Karim IY, Galal L, Diagne C, Dardé ML, Dobigny G, Mercier A. Molecular prevalence, genetic characterization and patterns of Toxoplasma gondii infection in domestic small mammals from Cotonou, Benin. Parasite 2022; 29:58. [PMID: 36562439 PMCID: PMC9879161 DOI: 10.1051/parasite/2022058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Toxoplasmosis, one of the most prevalent parasitic infections in humans and animals, is caused by the intracellular protozoan parasite Toxoplasma gondii. Small mammals play a key role as intermediate reservoir hosts in the maintenance of the T. gondii life cycle. In this study, we estimated the molecular prevalence and provide genetic diversity data for T. gondii in 632 small mammals sampled in four areas of Cotonou city, Benin. Both the brain and heart of each individual were screened through T. gondii-targeting qPCR, and positive samples were then genotyped using a set of 15 T. gondii-specific microsatellites. Prevalence data were statistically analyzed in order to assess the relative impact of individual host characteristics, spatial distribution, composition of small mammal community, and urban landscape features. An overall T. gondii molecular prevalence of 15.2% was found and seven genotypes, all belonging to the Africa 1 lineage, could be retrieved from the invasive black rat Rattus rattus and the native African giant shrew Crocidura olivieri. Statistical analyses did not suggest any significant influence of the environmental parameters used in this study. Rather, depending on the local context, T. gondii prevalence appeared to be associated either with black rat, shrew, or mouse abundance or with the trapping period. Overall, our results highlight the intricate relationships between biotic and abiotic factors involved in T. gondii epidemiology and suggest that R. rattus and C. olivieri are two competent reservoirs for the Africa 1 lineage, a widespread lineage in tropical Africa and the predominant lineage in Benin.
Collapse
Affiliation(s)
- Jonas R. Etougbétché
- Ecole Polytechnique d’Abomey-Calavi, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Université d’Abomey-Calavi 01 BP 2009 Cotonou Benin,Laboratoire de Génétique Moléculaire et d’Analyse des Génomes, Faculté des Sciences et Techniques, Université d’Abomey-Calavi 01BP 526 Cotonou Bénin,Corresponding authors: ;
| | - Azra Hamidović
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France
| | - Henri-Joël Dossou
- Ecole Polytechnique d’Abomey-Calavi, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Université d’Abomey-Calavi 01 BP 2009 Cotonou Benin,Institut du Cadre de Vie (ICaV), Université d’Abomey-Calavi BP 2899 Abomey-Calavi Benin
| | - Maeva Coan-Grosso
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France
| | - Roxane Roques
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France
| | - Nicolas Plault
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France
| | - Gualbert Houéménou
- Ecole Polytechnique d’Abomey-Calavi, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Université d’Abomey-Calavi 01 BP 2009 Cotonou Benin
| | - Sylvestre Badou
- Ecole Polytechnique d’Abomey-Calavi, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Université d’Abomey-Calavi 01 BP 2009 Cotonou Benin
| | - Antoine A. Missihoun
- Laboratoire de Génétique Moléculaire et d’Analyse des Génomes, Faculté des Sciences et Techniques, Université d’Abomey-Calavi 01BP 526 Cotonou Bénin
| | - Issaka Youssao Abdou Karim
- Ecole Polytechnique d’Abomey-Calavi, Laboratoire de Biotechnologie Animale et de Technologie des Viandes, Université d’Abomey-Calavi 01 BP 2009 Cotonou Benin
| | - Lokman Galal
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France
| | - Christophe Diagne
- Institut de Recherche pour le Développement, UMR CBGP (IRD, INRA, Cirad, Montpellier SupAgro), Montpellier Université d’Excellence 755 avenue du campus Agropolis 34988 Montferrier-sur-Lez Cedex France
| | - Marie-Laure Dardé
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France,Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Center (BRC), Centre Hospitalier-Universitaire Dupuytren 87000 Limoges France
| | - Gauthier Dobigny
- Institut de Recherche pour le Développement, UMR CBGP (IRD, INRA, Cirad, Montpellier SupAgro), Montpellier Université d’Excellence 755 avenue du campus Agropolis 34988 Montferrier-sur-Lez Cedex France,Unité Peste, Institut Pasteur de Madagascar BP 1274 Ambatofotsikely Avaradoha 101 Antananarivo Madagascar
| | - Aurélien Mercier
- Inserm U1094, IRD U270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidémiologie des maladies chroniques en zone tropicale, Institut d’Epidémiologie et de Neurologie Tropicale, Omega Health 87000 Limoges France,Centre National de Référence (CNR) Toxoplasmose/Toxoplasma Biological Center (BRC), Centre Hospitalier-Universitaire Dupuytren 87000 Limoges France
| |
Collapse
|
12
|
Avirulence: an essential feature of the parasitic lifestyle. Trends Parasitol 2022; 38:1028-1030. [PMID: 36195508 DOI: 10.1016/j.pt.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The host plays an essential role in parasite transmission. The viability of the host-parasite relationship depends upon development of immune resistance and the induction of disease tolerance. Here I propose that pathogen coevolution of avirulence factors promoting host disease tolerance is an essential feature of the parasitic lifestyle.
Collapse
|
13
|
Hernandez D, Walsh S, Saavedra Sanchez L, Dickinson MS, Coers J. Interferon-Inducible E3 Ligase RNF213 Facilitates Host-Protective Linear and K63-Linked Ubiquitylation of Toxoplasma gondii Parasitophorous Vacuoles. mBio 2022; 13:e0188822. [PMID: 36154443 PMCID: PMC9601232 DOI: 10.1128/mbio.01888-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular protozoan pathogen Toxoplasma gondii infects a wide range of vertebrate hosts and frequently causes zoonotic infections in humans. Whereas infected immunocompetent individuals typically remain asymptomatic, toxoplasmosis in immunocompromised individuals can manifest as a severe, potentially lethal disease, and congenital Toxoplasma infections are associated with adverse pregnancy outcomes. The protective immune response of healthy individuals involves the production of lymphocyte-derived cytokines such as interferon gamma (IFN-γ), which elicits cell-autonomous immunity in host cells. IFN-γ-inducible antiparasitic defense programs comprise nutritional immunity, the production of noxious gases, and the ubiquitylation of the Toxoplasma-containing parasitophorous vacuole (PV). PV ubiquitylation prompts the recruitment of host defense proteins to the PV and the consequential execution of antimicrobial effector programs, which reduce parasitic burden. However, the ubiquitin E3 ligase orchestrating these events has remained unknown. Here, we demonstrate that the IFN-γ-inducible E3 ligase RNF213 translocates to Toxoplasma PVs and facilitates PV ubiquitylation in human cells. Toxoplasma PVs become decorated with linear and K63-linked ubiquitin and recruit ubiquitin adaptor proteins in a process that is RNF213 dependent but independent of the linear ubiquitin chain assembly complex (LUBAC). IFN-γ priming fails to restrict Toxoplasma growth in cells lacking RNF213 expression, thus identifying RNF213 as a potent executioner of ubiquitylation-driven antiparasitic host defense. IMPORTANCE Globally, approximately one out of three people become infected with the obligate intracellular parasite Toxoplasma. These infections are typically asymptomatic but can cause severe disease and mortality in immunocompromised individuals. Infections can also be passed on from mother to fetus during pregnancy, potentially causing miscarriage or stillbirth. Therefore, toxoplasmosis constitutes a substantial public health burden. A better understanding of mechanisms by which healthy individuals control Toxoplasma infections could provide roadmaps toward novel therapies for vulnerable groups. Our work reveals a fundamental mechanism controlling intracellular Toxoplasma infections. Cytokines produced during Toxoplasma infections instruct human cells to produce the enzyme RNF213. We find that RNF213 labels intracellular vacuoles containing Toxoplasma with the small protein ubiquitin, which functions as an "eat-me" signal, attracting antimicrobial defense programs to fight off infection. Our work therefore identified a novel antiparasitic protein orchestrating a central aspect of the human immune response to Toxoplasma.
Collapse
Affiliation(s)
- Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stephen Walsh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Luz Saavedra Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Frickel EM, Hunter CA. Lessons from Toxoplasma: Host responses that mediate parasite control and the microbial effectors that subvert them. J Exp Med 2021; 218:212714. [PMID: 34670268 PMCID: PMC8532566 DOI: 10.1084/jem.20201314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.
Collapse
Affiliation(s)
- Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Dockterman J, Fee BE, Taylor GA, Coers J. Murine Irgm Paralogs Regulate Nonredundant Functions To Execute Host Defense to Toxoplasma gondii. Infect Immun 2021; 89:e0020221. [PMID: 34338548 PMCID: PMC8519265 DOI: 10.1128/iai.00202-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A. Taylor
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
16
|
Lažetić V, Troemel ER. Conservation lost: host-pathogen battles drive diversification and expansion of gene families. FEBS J 2021; 288:5289-5299. [PMID: 33190369 PMCID: PMC10901648 DOI: 10.1111/febs.15627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
One of the strongest drivers in evolution is the struggle to survive a host-pathogen battle. This pressure selects for diversity among the factors directly involved in this battle, including virulence factors deployed by pathogens, their corresponding host targets, and host immune factors. A logical outcome of this diversification is that over time, the sequence of many immune factors will not be evolutionarily conserved across a broad range of species. Thus, while universal sequence conservation is often hailed as the hallmark of the importance of a particular gene, the immune system does not necessarily play by these rules when defending against co-evolving pathogens. This loss of sequence conservation is in contrast to many signaling pathways in development and basic cell biology that are not targeted by pathogens. In addition to diversification, another consequence of host-pathogen battles can be an amplification in gene number, thus leading to large gene families that have sequence relatively specific to a particular strain, species, or clade. Here we highlight this general theme across a variety of pathogen virulence factors and host immune factors. We summarize the wide range and number across species of these expanded, lineage-specific host-pathogen factors including ubiquitin ligases, nucleotide-binding leucine-rich repeat receptors, GTPases, and proteins without obvious biochemical function but that nonetheless play key roles in immunity.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Matta SK, Rinkenberger N, Dunay IR, Sibley LD. Toxoplasma gondii infection and its implications within the central nervous system. Nat Rev Microbiol 2021; 19:467-480. [PMID: 33627834 DOI: 10.1038/s41579-021-00518-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.
Collapse
Affiliation(s)
- Sumit K Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Rinkenberger
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Ihara F, Nishikawa Y. Toxoplasma gondii manipulates host cell signaling pathways via its secreted effector molecules. Parasitol Int 2021; 83:102368. [PMID: 33905814 DOI: 10.1016/j.parint.2021.102368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The obligate intracellular parasite Toxoplasma gondii secretes a vast variety of effector molecules from organelles known as rhoptries (ROPs) and dense granules (GRAs). ROP proteins are released into the cytosol of the host cell where they are directed to the cell nucleus or to the parasitophorous vacuole (PV) membrane. ROPs secrete proteins that enable host cell penetration and vacuole formation by the parasites, as well as hijacking host-immune responses. After invading host cells, T. gondii multiplies within a PV that is maintained by the parasite proteins secreted from GRAs. Most GRA proteins remain within the PV, but some are known to access the host cytosol across the PV membrane, and a few are able to traffic into the host-cell nucleus. These effectors bind to host cell proteins and affect host cell signaling pathways to favor the parasite. Studies on host-pathogen interactions have identified many infection-altered host signal transductions. Notably, the relationship between individual parasite effector molecules and the specific targeting of host-signaling pathways is being elucidated through the advent of forward and reverse genetic strategies. Understanding the complex nature of the host-pathogen interactions underlying how the host-signaling pathway is manipulated by parasite effectors may lead to new molecular biological knowledge and novel therapeutic methods for toxoplasmosis. In this review, we discuss how T. gondii modulates cell signaling pathways in the host to favor its survival.
Collapse
Affiliation(s)
- Fumiaki Ihara
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.
| |
Collapse
|
19
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Su C. Epidemiological Significance of Toxoplasma Gondii Infections in Wild Rodents: 2009-2020. J Parasitol 2021; 107:182-204. [PMID: 33662119 DOI: 10.1645/20-121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. Rodents are one of the most important intermediate hosts for T. gondii because they are preyed on by cats, who in turn excrete the environmentally resistant oocysts in their feces and thus spread the infection. Information on T. gondii infections is spread in numerous reports and is not easily accessible to readers. Here, we review prevalence, persistence of infection, clinical disease, epidemiology, and genetic diversity of T. gondii infections in wild rodents worldwide. Data are tabulated by country, by each rodent species alphabetically, and chronologically. Recent genetic diversity of T. gondii strains in rodents is critically evaluated.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - F H A Murata
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C K Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - O C H Kwok
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845
| |
Collapse
|
21
|
Hamidović A, Etougbétché JR, Tonouhewa ABN, Galal L, Dobigny G, Houémènou G, Da Zoclanclounon H, Amagbégnon R, Laleye A, Fievet N, Piry S, Berthier K, Pena HFJ, Dardé ML, Mercier A. A hotspot of Toxoplasma gondii Africa 1 lineage in Benin: How new genotypes from West Africa contribute to understand the parasite genetic diversity worldwide. PLoS Negl Trop Dis 2021; 15:e0008980. [PMID: 33571262 PMCID: PMC7904144 DOI: 10.1371/journal.pntd.0008980] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/24/2021] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Through international trades, Europe, Africa and South America share a long history of exchanges, potentially of pathogens. We used the worldwide parasite Toxoplasma gondii to test the hypothesis of a historical influence on pathogen genetic diversity in Benin, a West African country with a longstanding sea trade history. In Africa, T. gondii spatial structure is still non-uniformly studied and very few articles have reported strain genetic diversity in fauna and clinical forms of human toxoplasmosis so far, even in African diaspora. Sera from 758 domestic animals (mainly poultry) in two coastal areas (Cotonou and Ouidah) and two inland areas (Parakou and Natitingou) were tested for T. gondii antibodies using a Modified Agglutination Test (MAT). The hearts and brains of 69 seropositive animals were collected for parasite isolation in a mouse bioassay. Forty-five strains were obtained and 39 genotypes could be described via 15-microsatellite genotyping, with a predominance of the autochthonous African lineage Africa 1 (36/39). The remaining genotypes were Africa 4 variant TUB2 (1/39) and two identical isolates (clone) of Type III (2/39). No difference in terms of genotype distribution between inland and coastal sampling sites was found. In particular, contrarily to what has been described in Senegal, no type II (mostly present in Europe) was isolated in poultry from coastal cities. This result seems to refute a possible role of European maritime trade in Benin despite it was one of the most important hubs during the slave trade period. However, the presence of the Africa 1 genotype in Brazil, predominant in Benin, and genetic analyses suggest that the triangular trade was a route for the intercontinental dissemination of genetic strains from Africa to South America. This supports the possibility of contamination in humans and animals with potentially imported virulent strains. The parasite Toxoplasma gondii is a worldwide-distributed pathogen, able to infect all warm-blooded animals. There are important differences in the clinical expression of the infection in direct relation with the parasite genetic profile. In some regions, the geographical structuration of its genetic diversity points towards a crucial role of human activities in some lineages introduction or sorting. Benin is a West African country with a history of extensive transcontinental exchanges. Our genetic study of Toxoplasma in Benin shows a surprisingly homogeneous and autochthonous diversity, which contrasts with previous studies from other West and Central African countries. In Benin, the absence of European Toxoplasma lineages may be explained by the extreme rarity of the house mouse (Mus musculus), a host species that was previously described as highly susceptible to the mouse-virulent African strains. Might Benin be the origin region for the Africa 1 lineage, our results suggest that Guinean Gulf coasts may be a starting point of this lineage towards South America, especially Brazil, during the slave trade. As a whole, the present study provides further insights into the recent evolutionary history of Toxoplasma gondii and its consequences on human and animal health.
Collapse
Affiliation(s)
- Azra Hamidović
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
- * E-mail:
| | - Jonas Raoul Etougbétché
- UAC, EPAC, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Cotonou, Benin
| | | | - Lokman Galal
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
| | - Gauthier Dobigny
- UAC, EPAC, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Cotonou, Benin
- Centre de Biologie pour la Gestion des Populations, IRD, CIRAD, INRA, Montpellier SupAgro, MUSE, Montpellier, France
| | - Gualbert Houémènou
- UAC, EPAC, Laboratoire de Recherche en Biologie Appliquée, Unité de Recherche sur les Invasions Biologiques, Cotonou, Benin
| | - Honoré Da Zoclanclounon
- Laboratoire d’Expérimentation Animale, Unité de Biologie Humaine, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Richard Amagbégnon
- Laboratoire de biologie médicale, Centre Hospitalo-Universitaire de la Mère et de l’Enfant Lagune (CHU-MEL), Cotonou, Bénin
| | - Anatole Laleye
- Laboratoire d’Expérimentation Animale, Unité de Biologie Humaine, Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Nadine Fievet
- UMR216-MERIT, IRD, Université Paris-5, Sorbonne Paris Cité, Paris, France; Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Cotonou, Bénin
| | - Sylvain Piry
- Centre de Biologie pour la Gestion des Populations, IRD, CIRAD, INRA, Montpellier SupAgro, MUSE, Montpellier, France
| | - Karine Berthier
- Centre de Biologie pour la Gestion des Populations, IRD, CIRAD, INRA, Montpellier SupAgro, MUSE, Montpellier, France
| | - Hilda Fátima Jesus Pena
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Marie-Laure Dardé
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
- Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, Limoges, France
| | - Aurélien Mercier
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
- Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, Limoges, France
| |
Collapse
|
22
|
Wang Y, Sangaré LO, Paredes-Santos TC, Hassan MA, Krishnamurthy S, Furuta AM, Markus BM, Lourido S, Saeij JPJ. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat Commun 2020; 11:5258. [PMID: 33067458 PMCID: PMC7567896 DOI: 10.1038/s41467-020-18991-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.
Collapse
Affiliation(s)
- Yifan Wang
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Lamba Omar Sangaré
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Tatiana C. Paredes-Santos
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Musa A. Hassan
- grid.4305.20000 0004 1936 7988College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988The Roslin Institute, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK
| | - Shruthi Krishnamurthy
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Anna M. Furuta
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Benedikt M. Markus
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Lourido
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jeroen P. J. Saeij
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
23
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rahman M, Devriendt B, Jennes M, Gisbert Algaba I, Dorny P, Dierick K, De Craeye S, Cox E. Early Kinetics of Intestinal Infection and Immune Responses to Two Toxoplasma gondii Strains in Pigs. Front Cell Infect Microbiol 2020; 10:161. [PMID: 32373554 PMCID: PMC7176905 DOI: 10.3389/fcimb.2020.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite, able to infect all homeothermic animals mostly through ingestion of (oo)cysts contaminated food or water. Recently, we observed a T. gondii strain-specific clearance from tissues upon infection in pigs: while the swine-adapted LR strain persisted in porcine tissues, a subsequent infection with the human-isolated Gangji strain cleared parasites from several tissues. We hypothesized that intestinal immune responses shortly after infection might play a role in this strain-specific clearance. To assess this possibility, the parasite load in small intestinal lymph node cells and blood immune cells as well as the IFNγ secretion by these cells were evaluated at 2, 4, 8, 14, and 28 days post oral inoculation of pigs with tissue cysts of both strains. Interestingly, at day 4 post inoculation with the LR strain the parasite was detected by qPCR only in the duodenal lymph node cells, while in the jejunal and ileal lymph node cells and PBMCs the parasite was detected from day 8 post inoculation onwards. Although we observed a similar profile upon inoculation with the Gangji strain, the parasite load in the examined cells was much lower. This was reflected in a significantly higher T. gondii-specific serum IgG response in LR compared to Gangji infected pigs at day 28 post inoculation. Unexpectedly, this was not reflected in the IFNγ secretion upon re-stimulation of the cells where almost equal IFNγ secretion was observed in both groups. In conclusion, our results show that T. gondii first enters the host at the duodenum and then probably disseminates from this site to the other tissues. How the early immune response influences the clearance of parasite from tissues needs further study.
Collapse
Affiliation(s)
- Mizanur Rahman
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Malgorzata Jennes
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ignacio Gisbert Algaba
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium.,Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katelijne Dierick
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Stéphane De Craeye
- Sciensano, National Reference Center for Toxoplasmosis, Infectious Diseases in Humans, Brussels, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Balard A, Jarquín-Díaz VH, Jost J, Martincová I, Ďureje Ľ, Piálek J, Macholán M, Goüy de Bellocq J, Baird SJE, Heitlinger E. Intensity of infection with intracellular Eimeria spp. and pinworms is reduced in hybrid mice compared to parental subspecies. J Evol Biol 2020; 33:435-448. [PMID: 31834960 DOI: 10.1111/jeb.13578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 11/27/2022]
Abstract
Genetic diversity in animal immune systems is usually beneficial. In hybrid recombinants, this is less clear, as the immune system could also be impacted by genetic conflicts. In the European house mouse hybrid zone, the long-standing impression that hybrid mice are more highly parasitized and less fit than parentals persists despite the findings of recent studies. Working across a novel transect, we assessed infections by intracellular protozoans, Eimeria spp., and infections by extracellular macroparasites, pinworms. For Eimeria, we found lower intensities in hybrid hosts than in parental mice but no evidence of lowered probability of infection or increased mortality in the centre of the hybrid zone. This means ecological factors are very unlikely to be responsible for the reduced load of infected hybrids. Focusing on parasite intensity (load in infected hosts), we also corroborated reduced pinworm loads reported for hybrid mice in previous studies. We conclude that intensity of diverse parasites, including the previously unstudied Eimeria, is reduced in hybrid mice compared to parental subspecies. We suggest caution in extrapolating this to differences in hybrid host fitness in the absence of, for example, evidence for a link between parasitemia and health.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Jenny Jost
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Iva Martincová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt University Berlin (HU), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
27
|
Abstract
Toxoplasma is a widespread parasite of animals including many rodents that are a natural part of the transmission cycle between cats, which serve as the definitive host. Although wild rodents, including house mice, are relatively resistant, laboratory mice are highly susceptible to infection. As such, laboratory mice have been used to compare pathogenesis of natural variants and to evaluate the contributions of both host and parasite genes to infection. Protocols are provided here for evaluating acute and chronic infection with different parasite strains in laboratory mice. These protocols should provide uniform standards for evaluating natural variants and attenuated mutants and for comparing outcomes across different studies and between different laboratories.
Collapse
Affiliation(s)
- Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Abstract
For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.
Collapse
Affiliation(s)
- Jingtao Lilue
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Lisbon, Portugal
| | - Anu Shivalikanjli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | - Thomas M. Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
29
|
Arenas AF, Arango-Plaza N, Arenas JC, Salcedo GE. Time-Frequency Approach Applied to Finding Interaction Regions in Pathogenic Proteins. Bioinform Biol Insights 2019; 13:1177932219850172. [PMID: 31210729 PMCID: PMC6552352 DOI: 10.1177/1177932219850172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/15/2022] Open
Abstract
Protein-protein interactions govern all molecular processes for living organisms, even those involved in pathogen infection. Pathogens such as virus, bacteria, and parasites contain proteins that help the pathogen to attach, penetrate, and settle inside the target cell. Thus, it is necessary to know the regions in pathogenic proteins that interact with host cell receptors. Currently, powerful pathogen databases are available and many pathogenic proteins have been recognized, but many pathogenic proteins have not been characterized. This work developed a program in MATLAB environment based on the time-frequency analysis to recognize important sites in proteins. Our program highlights the highest energy patches in proteins from their time-frequency distribution and matches the corresponding frequency. We sought to know if this approach is able to recognize stretches residues related to interaction. Our approach was applied to five study cases from pathogenic co-crystallized structures that have been well characterized. We searched the frequencies that characterize interaction regions in pathogenic proteins and with this information tried to identify new interaction patches in either paralogs or orthologs. We found that our program generates a well-interpretable graphic under several descriptors that can show important regions in proteins even those related to interaction. We propose that this MATLAB program could be used as a tool to explore outstanding regions in uncharacterized proteins.
Collapse
Affiliation(s)
- Ailan F Arenas
- Grupo de Estudio en Parasitología Molecular (Gepamol), Universidad del Quindío, Armenia, Colombia.,Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Nicolás Arango-Plaza
- Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Juan Camilo Arenas
- Grupo de Estudio en Parasitología Molecular (Gepamol), Universidad del Quindío, Armenia, Colombia.,Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| | - Gladys E Salcedo
- Grupo de Investigación y Asesoría en Estadística, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
30
|
Melchor SJ, Ewald SE. Disease Tolerance in Toxoplasma Infection. Front Cell Infect Microbiol 2019; 9:185. [PMID: 31245299 PMCID: PMC6563770 DOI: 10.3389/fcimb.2019.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a successful protozoan parasite that cycles between definitive felid hosts and a broad range of intermediate hosts, including rodents and humans. Within intermediate hosts, this obligate intracellular parasite invades the small intestine, inducing an inflammatory response. Toxoplasma infects infiltrating immune cells, using them to spread systemically and reach tissues amenable to chronic infection. An intact immune system is necessary to control life-long chronic infection. Chronic infection is characterized by formation of parasite cysts, which are necessary for survival through the gastrointestinal tract of the next host. Thus, Toxoplasma must evade sterilizing immunity, but still rely on the host's immune response for survival and transmission. To do this, Toxoplasma exploits a central cost-benefit tradeoff in immunity: the need to escalate inflammation for pathogen clearance vs. the need to limit inflammation-induced bystander damage. What are the consequences of sustained inflammation on host biology? Many studies have focused on aspects of the immune response that directly target Toxoplasma growth and survival, commonly referred to as "resistance mechanisms." However, it is becoming clear that a parallel arm of the immune response has evolved to mitigate damage caused by the parasite directly (for example, egress-induced cell death) or bystander damage due to the inflammatory response (for example, reactive nitrogen species, degranulation). These so-called "disease tolerance" mechanisms promote tissue function and host survival without directly targeting the pathogen. Here we review changes to host metabolism, tissue structure, and immune function that point to disease tolerance mechanisms during Toxoplasma infection. We explore the impact tolerance programs have on the health of the host and parasite biology.
Collapse
Affiliation(s)
| | - Sarah E. Ewald
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
31
|
A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol Int 2019; 72:101935. [PMID: 31153918 DOI: 10.1016/j.parint.2019.101935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii strains have been isolated all over the world and their virulence has been examined mainly using laboratory mice. However, T. gondii differs in virulence depending on the host animal species. Therefore, to evaluate the virulence of each strain in domestic animals, it is necessary to examine using not only mice but also the concerned animals. We have shown that TgCatJpOk4, a T. gondii strain recently isolated in Okinawa, Japan, has a high virulence against laboratory mice, comparable to highest virulent RH strain in mice; however, the virulence to domestic animals remains unknown. In this study, we examined the virulence using the Microminipig. After infection, four out of five infected pigs showed severe clinical symptoms: inappetence, hypoactivity and tachypnea. Eventually, three out of the five infected pigs succumbed before the end of the observation. Among the three dead pigs, histological analysis revealed that interstitial pneumonia and spotty necrosis in the liver indicating that the TgCatJpOk4 strain has a high virulence not only in laboratory mice, but in pigs as well.
Collapse
|
32
|
Galal L, Hamidović A, Dardé ML, Mercier M. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol 2019; 15:e00052. [PMID: 32095622 PMCID: PMC7033991 DOI: 10.1016/j.fawpar.2019.e00052] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/30/2022] Open
Abstract
The population structure of Toxoplasma gondii is characterized by contrasting geographic patterns of strain diversity at different spatial scales: global, regional and even local scales in some regions. The determinants of this diversity pattern and its possible evolutionary mechanisms are still largely unexplored. This review will focus on three main dichotomies observed in the population structure of the parasite: (1) domestic versus wild, (2) South America versus the rest of the world and (3) intercontinental clonal lineages versus regional or local clonal lineages. Here, the impact in terms of public health of this remarkably contrasting geographic diversity of T. gondii populations is discussed, with emphasis on the role of globalization of exchanges that could lead to rapid evolution of T. gondii population spatial structure and new challenges in a One Health context. Recombination events drive the evolution of population structure of Toxoplasma gondii. The population structure of Toxoplasma is different in wild and domestic environments. Virulence of Toxoplasma strains in reservoir hosts influences selection of local strains. Globalization of exchanges will impact the population structure of the parasite. Clinicians should be aware of more pathogenic strains imported from the wild environment or from South America.
Collapse
Affiliation(s)
- L Galal
- INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, 87000 Limoges, France
| | - A Hamidović
- INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, 87000 Limoges, France
| | - M L Dardé
- INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, 87000 Limoges, France.,Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, 87042 Limoges, France
| | - M Mercier
- INSERM, Univ. Limoges, CHU Limoges, UMR 1094, Institut d'Epidémiologie et de Neurologie Tropicale, GEIST, 87000 Limoges, France.,Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, CHU Limoges, 87042 Limoges, France
| |
Collapse
|
33
|
Murillo-León M, Müller UB, Zimmermann I, Singh S, Widdershooven P, Campos C, Alvarez C, Könen-Waisman S, Lukes N, Ruzsics Z, Howard JC, Schwemmle M, Steinfeldt T. Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice. Nat Commun 2019; 10:1233. [PMID: 30874554 PMCID: PMC6420625 DOI: 10.1038/s41467-019-09200-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Some strains of the protozoan parasite Toxoplasma gondii (such as RH) are virulent in laboratory mice because they are not restricted by the Immunity-Related GTPase (IRG) resistance system in these mouse strains. In some wild-derived Eurasian mice (such as CIM) on the other hand, polymorphic IRG proteins inhibit the replication of such virulent T. gondii strains. Here we show that this resistance is due to direct binding of the IRG protein Irgb2-b1CIM to the T. gondii virulence effector ROP5 isoform B. The Irgb2-b1 interface of this interaction is highly polymorphic and under positive selection. South American T. gondii strains are virulent even in wild-derived Eurasian mice. We were able to demonstrate that this difference in virulence is due to polymorphic ROP5 isoforms that are not targeted by Irgb2-b1CIM, indicating co-adaptation of host cell resistance GTPases and T. gondii virulence effectors. Toxoplasma gondii virulence in wild-derived mice is restricted by Immunity-Related GTPases (IRG). Here, the authors show specific binding of the IRG tandem protein Irgb2-b1 with the virulence effector ROP5, and provide insights into how different ROP5 isoforms and IRG alleles shape virulence among T. gondii strains.
Collapse
Affiliation(s)
- Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Urs B Müller
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany
| | - Ines Zimmermann
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Shishir Singh
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Pia Widdershooven
- Institute for Genetics, University of Cologne, 50674, Cologne, Germany.,Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Cláudia Campos
- Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal
| | - Catalina Alvarez
- Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal
| | - Stephanie Könen-Waisman
- Department for Dermatology and Venereology, University Hospital of Cologne, 50937, Cologne, Germany
| | - Nahleen Lukes
- Institute of Immunology, University Hospital Aachen, 52074, Aachen, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Jonathan C Howard
- Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
35
|
Currey N, Jahan Z, Caldon CE, Tran PN, Benthani F, De Lacavalerie P, Roden DL, Gloss BS, Campos C, Bean EG, Bullman A, Reibe-Pal S, Dinger ME, Febbraio MA, Clarke SJ, Dahlstrom JE, Kohonen-Corish MRJ. Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer. Cell Mol Gastroenterol Hepatol 2019; 7:819-839. [PMID: 30831321 PMCID: PMC6476813 DOI: 10.1016/j.jcmgh.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.
Collapse
Affiliation(s)
- Nicola Currey
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Zeenat Jahan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Phuong N Tran
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Fahad Benthani
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Penelope De Lacavalerie
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel L Roden
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Elaine G Bean
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Amanda Bullman
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Saskia Reibe-Pal
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark A Febbraio
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Maija R J Kohonen-Corish
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Schlüter D, Barragan A. Advances and Challenges in Understanding Cerebral Toxoplasmosis. Front Immunol 2019; 10:242. [PMID: 30873157 PMCID: PMC6401564 DOI: 10.3389/fimmu.2019.00242] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over one third of the global human population. The parasite invades and chronically persists in the central nervous system (CNS) of the infected host. Parasite spread and persistence is intimately linked to an ensuing immune response, which does not only limit parasite-induced damage but also may facilitate dissemination and induce parasite-associated immunopathology. Here, we discuss various aspects of toxoplasmosis where knowledge is scarce or controversial and, the recent advances in the understanding of the delicate interplay of T. gondii with the immune system in experimental and clinical settings. This includes mechanisms for parasite passage from the circulation into the brain parenchyma across the blood-brain barrier during primary acute infection. Later, as chronic latent infection sets in with control of the parasite in the brain parenchyma, the roles of the inflammatory response and of immune cell responses in this phase of the disease are discussed. Additionally, the function of brain resident cell populations is delineated, i.e., how neurons, astrocytes and microglia serve both as target cells for the parasite but also actively contribute to the immune response. As the infection can reactivate in the CNS of immune-compromised individuals, we bring up the immunopathogenesis of reactivated toxoplasmosis, including the special case of congenital CNS manifestations. The relevance, advantages and limitations of rodent infection models for the understanding of human cerebral toxoplasmosis are discussed. Finally, this review pinpoints questions that may represent challenges to experimental and clinical science with respect to improved diagnostics, pharmacological treatments and immunotherapies.
Collapse
Affiliation(s)
- Dirk Schlüter
- Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
37
|
Bay-Richter C, Petersen E, Liebenberg N, Elfving B, Wegener G. Latent toxoplasmosis aggravates anxiety- and depressive-like behaviour and suggest a role of gene-environment interactions in the behavioural response to the parasite. Behav Brain Res 2019; 364:133-139. [PMID: 30768994 DOI: 10.1016/j.bbr.2019.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 02/11/2019] [Indexed: 01/11/2023]
Abstract
Toxoplasma gondii (TOX) is an intracellular parasite which infects warm-blooded animals including humans. An increasing number of clinical studies now hypothesize that latent toxoplasmosis may be a risk factor for the development of psychiatric disease. For depression, the results have been varied and we speculate that genetic background is important for the response to latent toxoplasmosis. The main objective of this study was to elucidate gene - environment interactions in the behavioural response to TOX infection by use of genetically vulnerable animals (Flinders sensitive line, FSL) compared to control animals (Flinders resistant line, FRL). Our results show that all infected animals displayed increased anxiety-like behaviour whereas only genetically vulnerable animals (FSL rats) showed depressive-like behaviour as a consequence of the TOX infection. Furthermore, peripheral cytokine expression was increased following the infection, primarily independent of strain. In the given study 14 cytokines, chemokines, metabolic hormones, and growth factors were quantified with the bead-based Luminex200 system, however, only IL-1α expression was affected differently in FSL animals compared to FRL rats. These results suggest that latent TOX infection can induce anxiety-like behaviour independent of genetic background. Intriguingly, we also report that for depressive-like behaviour only the vulnerable rat strain is affected. This could explain the discrepancy in the literature as to whether TOX infection is a risk factor for depressive symptomatology. We propose that the low grade inflammation caused by the chronic infection is related to the development of behavioural symptoms.
Collapse
Affiliation(s)
- Cecilie Bay-Richter
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240 Risskov, Denmark.
| | - Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, 111 Muscat, Oman; Institute for Clinical Medicine, 8000 Aarhus University, Denmark
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240 Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240 Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240 Risskov, Denmark; Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| |
Collapse
|
38
|
Hassan MA, Olijnik AA, Frickel EM, Saeij JP. Clonal and atypical Toxoplasma strain differences in virulence vary with mouse sub-species. Int J Parasitol 2019; 49:63-70. [PMID: 30471286 PMCID: PMC6344230 DOI: 10.1016/j.ijpara.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/29/2022]
Abstract
The severe virulence of Toxoplasma gondii in classical laboratory inbred mouse strains contradicts the hypothesis that house mice (Mus musculus) are the most important intermediate hosts for its transmission and evolution because death of the mouse before parasite transmission equals death of the parasite. However, the classical laboratory inbred mouse strains (Mus musculus domesticus), commonly used to test Toxoplasma strain differences in virulence, do not capture the genetic diversity within Mus musculus. Thus, it is possible that Toxoplasma strains that are severely virulent in laboratory inbred mice are avirulent in some other mouse sub-species. Here, we present insight into the responses of individual mouse strains, representing strains of the genetically divergent Mus musculus musculus, Mus musculus castaneus and Mus musculus domesticus, to infection with individual clonal and atypical Toxoplasma strains. We observed that, unlike M. m. domesticus, M. m. musculus and M. m. castaneus are resistant to the clonal Toxoplasma strains. For M. m. musculus, we show that this is due to a locus on chromosome 11 that includes the genes that encode the interferon gamma (IFNG)-inducible immunity-related GTPases (Irgs) that can kill the parasite by localising and subsequently vesiculating the parasitophorous vacuole membrane. However, despite the localization of known effector Irgs to the Toxoplasma parasitophorous vacuole membrane, we observed that some atypical Toxoplasma strains are virulent in all the mouse strains tested. The virulence of these atypical strains in M. m. musculus could not be attributed to individual rhoptry protein 5 (ROP5) alleles, a secreted parasite pseudokinase that antagonises the canonical effector Irgs and is indispensable for parasite virulence in laboratory inbred mice (M. m. domesticus). We conclude that murine resistance to Toxoplasma is modulated by complex interactions between host and parasite genotypes and may be independent of known effector Irgs on murine chromosome 11.
Collapse
Affiliation(s)
- Musa A Hassan
- Division of Infection and Immunity, The Roslin Institute, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK; Centre for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK.
| | - Aude-Anais Olijnik
- Division of Infection and Immunity, The Roslin Institute, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK; Centre for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Jeroen P Saeij
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
39
|
Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals. Int J Parasitol 2018; 49:267-275. [PMID: 30578812 DOI: 10.1016/j.ijpara.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Commensal rodent species are key reservoirs for Toxoplasma gondii in the domestic environment. In rodents, different T. gondii strains show variable patterns of virulence according to host species. Toxoplasma gondii strains causing non-lethal chronic infections in local hosts will be more likely to persist in a given environment, but few studies have addressed the possible role of these interactions in shaping the T. gondii population structure. In addition, the absence of validated techniques for upstream detection of T. gondii chronic infection in wild rodents hinders exploration of this issue under natural conditions. In this study, we took advantage of an extensive survey of commensal small mammals in three coastal localities of Senegal, with a species assemblage constituted of both native African species and invasive species. We tested 828 individuals for T. gondii chronic infection using the modified agglutination test for antibody detection in serum samples and a quantitative PCR assay for detection of T. gondii DNA in brain samples. The infecting T. gondii strains were genotyped whenever possible by the analysis of 15 microsatellite markers. We found (i) a very poor concordance between molecular detection and serology in the invasive house mouse, (ii) significantly different levels of prevalence by species and (iii) the autochthonous T. gondii Africa 1 lineage strains, which are lethal for laboratory mice, only in the native African species of commensal small mammals. Overall, this study highlights the need to reconsider the use of MAT serology in natural populations of house mice and provides the first known data about T. gondii genetic diversity in invasive and native species of small mammals from Africa. In light of these results, we discuss the role of invasive and native species, with their variable adaptations to different T. gondii strains, in shaping the spatial structure of T. gondii genetic diversity in Africa.
Collapse
|
40
|
Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, Chow W, Collins J, Collins S, Czechanski A, Danecek P, Diekhans M, Dolle DD, Dunn M, Durbin R, Earl D, Ferguson-Smith A, Flicek P, Flint J, Frankish A, Fu B, Gerstein M, Gilbert J, Goodstadt L, Harrow J, Howe K, Ibarra-Soria X, Kolmogorov M, Lelliott C, Logan DW, Loveland J, Mathews CE, Mott R, Muir P, Nachtweide S, Navarro FC, Odom DT, Park N, Pelan S, Pham SK, Quail M, Reinholdt L, Romoth L, Shirley L, Sisu C, Sjoberg-Herrera M, Stanke M, Steward C, Thomas M, Threadgold G, Thybert D, Torrance J, Wong K, Wood J, Yalcin B, Yang F, Adams DJ, Paten B, Keane TM. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nat Genet 2018; 50:1574-1583. [PMID: 30275530 PMCID: PMC6205630 DOI: 10.1038/s41588-018-0223-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development.
Collapse
MESH Headings
- Animals
- Animals, Laboratory
- Chromosome Mapping/veterinary
- Genetic Loci
- Genome
- Haplotypes/genetics
- Mice
- Mice, Inbred BALB C/genetics
- Mice, Inbred C3H/genetics
- Mice, Inbred C57BL/genetics
- Mice, Inbred CBA/genetics
- Mice, Inbred DBA/genetics
- Mice, Inbred NOD/genetics
- Mice, Inbred Strains/classification
- Mice, Inbred Strains/genetics
- Molecular Sequence Annotation
- Phylogeny
- Polymorphism, Single Nucleotide
- Species Specificity
Collapse
Affiliation(s)
- Jingtao Lilue
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Anthony G. Doran
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ian T. Fiddes
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Monica Abrudan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Joel Armstrong
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ruth Bennett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Joanna Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Stephan Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, 67404 Illkirch, France
- Centre des Sciences du Goût et de l’Alimentation, University of Bourgogne Franche-Comté, 21000 Dijon, France
| | - Anne Czechanski
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mark Diekhans
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Dirk-Dominik Dolle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Matt Dunn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Dent Earl
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anne Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jonathan Flint
- Brain Research Institute, University of California, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Beiyuan Fu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mark Gerstein
- Yale Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - James Gilbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Leo Goodstadt
- OxFORD Asset Management, OxAM House, 6 George Street, Oxford OX1 2BW
| | - Jennifer Harrow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Chris Lelliott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Darren W. Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jane Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Richard Mott
- Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul Muir
- Yale Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Stefanie Nachtweide
- Institute of Mathematics and Computer Science, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Fabio C.P. Navarro
- Yale Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Duncan T. Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, 69120 Heidelberg, Germany
| | - Naomi Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Sarah Pelan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Son K Pham
- BioTuring Inc., San Diego, California, CA92121
| | - Mike Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Laura Reinholdt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Lars Romoth
- Institute of Mathematics and Computer Science, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Lesley Shirley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Cristina Sisu
- Yale Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Bioscience, Brunel University London, Uxbridge UB8 3PH, UK
| | - Marcela Sjoberg-Herrera
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Charles Steward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Mark Thomas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Glen Threadgold
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David Thybert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - James Torrance
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Jonathan Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, 67404 Illkirch, France
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Thomas M. Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
41
|
Coers J, Brown HM, Hwang S, Taylor GA. Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Curr Opin Immunol 2018; 54:93-101. [PMID: 29986303 PMCID: PMC6196122 DOI: 10.1016/j.coi.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023]
Abstract
Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hailey M Brown
- Committee on Immunology, The University of Chicago, IL 60637, USA
| | - Seungmin Hwang
- Committee on Immunology, The University of Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, IL 60637, USA
| | - Gregory A Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Geriatrics, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC 27710, USA; Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA
| |
Collapse
|
42
|
Brouat C, Diagne CA, Ismaïl K, Aroussi A, Dalecky A, Bâ K, Kane M, Niang Y, Diallo M, Sow A, Galal L, Piry S, Dardé ML, Mercier A. Seroprevalence of Toxoplasma gondii in commensal rodents sampled across Senegal, West Africa. ACTA ACUST UNITED AC 2018; 25:32. [PMID: 30016257 PMCID: PMC6050035 DOI: 10.1051/parasite/2018036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Risks related to Toxoplasma gondii infection in humans remain poorly known in Senegal. Although rodent surveys could help to assess the circulation of T. gondii, they have seldom been set up in sub-Saharan Africa. The aim of this study was to examine Toxoplasma seroprevalence in rodents from villages and towns across Senegal. Rodents were sampled in 40 localities using a standardised trapping protocol. Detection of T. gondii antibodies was performed on 1205 rodents, using a modified agglutination test (MAT) technique. Seroprevalence data were analysed depending on geography, the local rodent community, and individual characteristics of the rodent hosts. We found 44 seropositive rodents from four different species (Mastomys erythroleucus, Mastomys natalensis, Mus musculus domesticus, Rattus rattus). Toxoplasma seroprevalence was low, averaging 4% in the localities. Higher Toxoplasma seroprevalence (up to 24%) was found in northern Senegal, a region known to be the heart of pastoral herding in the country.
Collapse
Affiliation(s)
- Carine Brouat
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, 755 avenue du campus Agropolis, 34988 Montferrier-sur-Lez cedex, France
| | - Christophe Amidi Diagne
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, 755 avenue du campus Agropolis, 34988 Montferrier-sur-Lez cedex, France - BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Khadija Ismaïl
- UMR-S 1094, Neuroépidémiologie Tropicale, INSERM, Univ. Limoges, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Abdelkrim Aroussi
- UMR-S 1094, Neuroépidémiologie Tropicale, INSERM, Univ. Limoges, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Ambroise Dalecky
- LPED, IRD, Aix Marseille Univ., Centre St Charles, case 10, 3 place Victor Hugo, CS 80249, 13331 Marseille cedex 03, France
| | - Khalilou Bâ
- BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Mamadou Kane
- BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Youssoupha Niang
- BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Mamoudou Diallo
- BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Aliou Sow
- BIOPASS, CBGP-IRD, ISRA, UCAD, Campus de Bel-Air, BP 1386, Dakar CP 18524, Senegal
| | - Lokman Galal
- UMR-S 1094, Neuroépidémiologie Tropicale, INSERM, Univ. Limoges, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Sylvain Piry
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ. Montpellier, 755 avenue du campus Agropolis, 34988 Montferrier-sur-Lez cedex, France
| | - Marie-Laure Dardé
- UMR-S 1094, Neuroépidémiologie Tropicale, INSERM, Univ. Limoges, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Aurélien Mercier
- UMR-S 1094, Neuroépidémiologie Tropicale, INSERM, Univ. Limoges, 2 rue du Dr Marcland, 87025 Limoges, France
| |
Collapse
|
43
|
Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc Natl Acad Sci U S A 2018; 115:E6956-E6963. [PMID: 29967142 PMCID: PMC6055184 DOI: 10.1073/pnas.1722202115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A majority of emerging infectious diseases in humans are zoonoses. Understanding factors that influence the emergence and transmission of zoonoses is pivotal for their prevention and control. Toxoplasma gondii is one of the most widespread zoonotic pathogens known today. Whereas only a few genotypes of T. gondii dominate in the Northern Hemisphere, many genotypes coexist in South America. Furthermore, T. gondii strains from South America are more likely to be virulent than those from the Northern Hemisphere. However, it is not clear what factor(s) shaped modern-day genetic diversity and virulence of T. gondii Here, our analysis suggests that the rise and expansion of farming in the past 11,000 years established the domestic cat/mouse transmission cycle for T. gondii, which has undoubtedly played a significant role in the selection of certain linages of T. gondii Our mathematical simulations showed that within the domestic transmission cycle, intermediately mouse-virulent T. gondii genotypes have an adaptive advantage and eventually become dominant due to a balance between lower host mortality and the ability to superinfect mice previously infected with a less virulent T. gondii strain. Our analysis of the global type II lineage of T. gondii suggests its Old World origin but recent expansion in North America, which is likely the consequence of global human migration and trading. These results have significant implications concerning transmission and evolution of zoonotic pathogens in the rapidly expanding anthropized environment demanded by rapid growth of the human population and intensive international trading at present and in the future.
Collapse
|
44
|
Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J 2018; 37:embj.201898947. [PMID: 29789390 DOI: 10.15252/embj.201898947] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic lipid droplets are important organelles in nearly every eukaryotic and some prokaryotic cells. Storing and providing energy is their main function, but they do not work in isolation. They respond to stimuli initiated either on the cell surface or in the cytoplasm as conditions change. Cellular stresses such as starvation and invasion are internal insults that evoke changes in droplet metabolism and dynamics. This review will first outline lipid droplet assembly and then discuss how droplets respond to stress and in particular nutrient starvation. Finally, the role of droplets in viral and microbial invasion will be presented, where an unresolved issue is whether changes in droplet abundance promote the invader, defend the host, to try to do both. The challenges of stress and infection are often accompanied by changes in physical contacts between droplets and other organelles. How these changes may result in improving cellular physiology, an ongoing focus in the field, is discussed.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Michael L Reese
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
45
|
Torelli F, Zander S, Ellerbrok H, Kochs G, Ulrich RG, Klotz C, Seeber F. Recombinant IFN-γ from the bank vole Myodes glareolus: a novel tool for research on rodent reservoirs of zoonotic pathogens. Sci Rep 2018; 8:2797. [PMID: 29434310 PMCID: PMC5809609 DOI: 10.1038/s41598-018-21143-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/25/2018] [Indexed: 12/28/2022] Open
Abstract
Rodent species like Myodes glareolus and Microtus spp. are natural reservoirs for many zoonotic pathogens causing human diseases and are gaining increasing interest in the field of eco-immunology as candidate animal models. Despite their importance the lack of immunological reagents has hampered research in these animal species. Here we report the recombinant production and functional characterization of IFN-γ, a central mediator of host’s innate and adaptive immune responses, from the bank vole M. glareolus. Soluble dimeric recMgIFN-γ was purified in high yield from Escherichia coli. Its activity on M. glareolus and Microtus arvalis kidney cell lines was assessed by immunofluorescent detection of nuclear translocation and phosphorylation of the transcription factor STAT1. RecMgIFN-γ also induced expression of an IFN-γ-regulated innate immunity gene. Inhibition of vesicular stomatitis virus replication in vole cells upon recMgIFN-γ treatment provided further evidence of its biological activity. Finally, we established a recMgIFN-γ-responsive bank vole reporter cell line that allows the sensitive titration of the cytokine activity via a bioluminescence reporter assay. Taken together, we report valuable tools for future investigations on the immune response against zoonotic pathogens in their natural animal hosts, which might foster the development of novel animal models.
Collapse
Affiliation(s)
- Francesca Torelli
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Steffen Zander
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Heinz Ellerbrok
- Center for Biological Threats and Special Pathogens, Highly Pathogenic Viruses, Robert Koch-Institut, Berlin, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Klotz
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- Department of Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany.
| |
Collapse
|
46
|
Galal L, Ajzenberg D, Hamidović A, Durieux MF, Dardé ML, Mercier A. Toxoplasma and Africa: One Parasite, Two Opposite Population Structures. Trends Parasitol 2017; 34:140-154. [PMID: 29174610 DOI: 10.1016/j.pt.2017.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/01/2023]
Abstract
Exploring the genetic diversity of Toxoplasma gondii is essential for an understanding of its worldwide distribution and the determinants of its evolution. Africa remains one of the least studied areas of the world regarding T. gondii genetic diversity. This review has compiled published data on T. gondii strains from Africa to generate a comprehensive map of their continent-wide geographical distribution. The emerging picture about T. gondii strain distribution in Africa suggests a geographical separation of the parasite populations across the continent. We discuss the potential role of a number of factors in shaping this structure. We finally suggest the next steps towards a better understanding of Toxoplasma epidemiology in Africa in light of the strains circulating on this continent.
Collapse
Affiliation(s)
- Lokman Galal
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Daniel Ajzenberg
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France; Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Azra Hamidović
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France
| | - Marie-Fleur Durieux
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Marie-Laure Dardé
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France; Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France; Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France
| | - Aurélien Mercier
- INSERM UMR_S 1094, Neuroépidémiologie Tropicale, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, Université de Limoges, Limoges 87025, France; Centre National de Référence Toxoplasmose/Toxoplasma Biological Resource Center, Centre Hospitalier Universitaire de Limoges, 87042 Limoges, France.
| |
Collapse
|
47
|
Praefcke GJK. Regulation of innate immune functions by guanylate-binding proteins. Int J Med Microbiol 2017; 308:237-245. [PMID: 29174633 DOI: 10.1016/j.ijmm.2017.10.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Division of Haematology / Transfusion Medicine, Paul-Ehrlich-Institut, Langen, Germany; Institute for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
48
|
Abstract
Specialized adaptations for killing microbes are synonymous with phagocytic cells including macrophages, monocytes, inflammatory neutrophils, and eosinophils. Recent genome sequencing of extant species, however, reveals that analogous antimicrobial machineries exist in certain non-immune cells and also within species that ostensibly lack a well-defined immune system. Here we probe the evolutionary record for clues about the ancient and diverse phylogenetic origins of macrophage killing mechanisms and how some of their properties are shared with cells outside the traditional bounds of immunity in higher vertebrates such as mammals.
Collapse
|
49
|
Ehret T, Torelli F, Klotz C, Pedersen AB, Seeber F. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities. Front Cell Infect Microbiol 2017. [PMID: 28638807 PMCID: PMC5461347 DOI: 10.3389/fcimb.2017.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.
Collapse
Affiliation(s)
- Totta Ehret
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany.,Department of Molecular Parasitology, Humboldt-Universität zu BerlinBerlin, Germany
| | - Francesca Torelli
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Christian Klotz
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| | - Amy B Pedersen
- School of Biological Sciences, University of EdinburghEdinburgh, United Kingdom
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
50
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|