1
|
Salem IH, Blais M, Zuluaga-Sánchez VM, Rouleau L, Becker EBE, Dupré N. ARSACS: Clinical Features, Pathophysiology and iPS-Derived Models. CEREBELLUM (LONDON, ENGLAND) 2025; 24:24. [PMID: 39753868 DOI: 10.1007/s12311-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide. Prominent features include cerebellar ataxia, pyramidal spasticity, and neuropathy. Neuropathological findings revealed cerebellar atrophy of the superior cerebellar vermis and the anterior vermis associated with Purkinje cell death, pyramidal degeneration, cortical atrophy, loss of motor neurons, and demyelinating neuropathy. No effective therapy is available for ARSACS patients but, in the last two decades, there have been significant advances in our understanding of the disease. New approaches in ARSACS, such as the reprogramming of induced pluripotent stem cells derived from patients, open exciting perspectives of discoveries. Several research questions are now emerging. Here, we review the clinical features of ARSACS as well as the cerebellar aspects of the disease, with an emphasis on recent fields of investigation.
Collapse
Affiliation(s)
- Ikhlass Haj Salem
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Mathieu Blais
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Valeria M Zuluaga-Sánchez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Laurence Rouleau
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada
| | - Esther B E Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Nicolas Dupré
- Axe neurosciences du CHU de Québec - Université Laval, Quebec, QC, Canada.
- Faculty of Medicine, Department of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
2
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
3
|
Bartelt LC, Switonski PM, Adamek G, Longo F, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients. Sci Transl Med 2024; 16:eadn5449. [PMID: 39504355 DOI: 10.1126/scitranslmed.adn5449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7. Single-nucleus RNA sequencing in SCA7-266Q mice revealed dysregulation of cell identity genes affecting glia and PCs. Specifically, genes marking zebrin-II PC subtypes accounted for the highest proportion of DEGs in symptomatic SCA7-266Q mice. These transcriptomic changes in SCA7-266Q mice were associated with increased numbers of inhibitory synapses as quantified by immunohistochemistry and reduced spiking of PCs in acute brain slices. Dysregulation of zebrin-II cell subtypes was the predominant signal in PCs of SCA7-266Q mice and was associated with the loss of zebrin-II striping in the cerebellum at motor symptom onset. We furthermore demonstrated zebrin-II stripe degradation in additional mouse models of polyglutamine ataxia and observed decreased zebrin-II expression in the cerebella of patients with SCA7. Our results suggest that a breakdown of zebrin subtype regulation is a shared pathological feature of polyglutamine ataxias.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Fabiana Longo
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Yamamoto T, Yoshida Y, Ose T, Murata Y, Hayashi T, Higo N. Cerebellar Molecular Signatures in Non-Human Primates. J Comp Neurol 2024; 532:e25678. [PMID: 39439015 DOI: 10.1002/cne.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Cerebellar molecular signatures in primates remain largely unexplored. Here, we investigated the immunoreactivity of neuroplasticity-related molecular markers, including aldolase C (Aldoc), phospholipase C beta 3 (PLCB3), and phospholipase C beta 4 (PLCB4) in the cerebellar cortex and associated nuclei of rhesus macaque monkeys (Macaca mulatta). Our main findings are as follows: First, the cerebellar vermis in macaques exhibited striped compartmentalization for all markers, with the striped expression boundary of PLCB3 being less distinct than those of Aldoc and PLCB4. Second, the striped pattern was less pronounced in the cerebellar hemisphere compared to the vermis, with signals in the hemisphere being predominantly intense throughout. Third, distinct zonal patterns and elevated signals for Aldoc and PLCB3 were observed in the cerebellar deep nuclei. Specifically, the fastigial nucleus displayed intense Aldoc signals in both caudal and rostral regions, while the dentate nucleus displayed strong Aldoc signals in both ventral and dorsal regions. Compared to previous rodent studies, the macaque cerebellum demonstrated a higher proportion of intense signal areas and distinct compartmentalization patterns in both cortical and deep nuclei. These findings offer crucial insights into the unique molecular organization of the primate cerebellum, enhancing our understanding of the advanced neuroplasticity, cognitive, and motor capabilities in primates.
Collapse
Grants
- JP18dm0307006 Japan Agency for Medical Research and Development
- JP19wm0525006 Japan Agency for Medical Research and Development
- JP21wm0525006 Japan Agency for Medical Research and Development
- JP23wm0625001 Japan Agency for Medical Research and Development
- 16H03300 Ministry of Education, Culture, Sports, Science and Technology
- 18K17683 Ministry of Education, Culture, Sports, Science and Technology
- 20H04061 Ministry of Education, Culture, Sports, Science and Technology
- 20H05490 Ministry of Education, Culture, Sports, Science and Technology
- 22K11318 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yuko Yoshida
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yumi Murata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Öhman J, Sjölin E, Cundari M, Johansson F, Gilbert M, Boele HJ, Svensson P, Rasmussen A. The Effect of Nucleo-Olivary Stimulation on Climbing Fiber EPSPs in Purkinje Cells. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1859-1866. [PMID: 38467957 PMCID: PMC11489192 DOI: 10.1007/s12311-024-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Climbing fibers, connecting the inferior olive and Purkinje cells, form the nervous system's strongest neural connection. These fibers activate after critical events like motor errors or anticipation of rewards, leading to bursts of excitatory postsynaptic potentials (EPSPs) in Purkinje cells. The number of EPSPs is a crucial variable when the brain is learning a new motor skill. Yet, we do not know what determines the number of EPSPs. Here, we measured the effect of nucleo-olivary stimulation on periorbital elicited climbing fiber responses through in-vivo intracellular Purkinje cell recordings in decerebrated ferrets. The results show that while nucleo-olivary stimulation decreased the probability of a response occurring at all, it did not reduce the number of EPSPs. The results suggest that nucleo-olivary stimulation does not influence the number of EPSPs in climbing fiber bursts.
Collapse
Affiliation(s)
- Josefine Öhman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elias Sjölin
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maurizio Cundari
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Unit of Neuropsychiatry, Hospital of Helsingborg, Helsingborg, Sweden
- Unit of Neurology, Hospital of Helsingborg, Helsingborg, Sweden
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mike Gilbert
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Henk-Jan Boele
- Princeton Neuroscience Institute, Washington Road, Princeton, USA
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Pär Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anders Rasmussen
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Cirtala G, De Schutter E. Branch-specific clustered parallel fiber input controls dendritic computation in Purkinje cells. iScience 2024; 27:110756. [PMID: 39286509 PMCID: PMC11404202 DOI: 10.1016/j.isci.2024.110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Most central neurons have intricately branched dendritic trees that integrate massive numbers of synaptic inputs. Intrinsic active mechanisms in dendrites can be heterogeneous and be modulated in a branch-specific way. However, it remains poorly understood how heterogeneous intrinsic properties contribute to processing of synaptic input. We propose the first computational model of the cerebellar Purkinje cell with dendritic heterogeneity, in which each branch is an individual unit and is characterized by its own set of ion channel conductance densities. When simultaneously activating a cluster of parallel fiber synapses, we measure the peak amplitude of a response and observe how changes in P-type calcium channel conductance density shift the dendritic responses from a linear one to a bimodal one including dendritic calcium spikes and vice-versa. These changes relate to the morphology of each branch. We show how dendritic calcium spikes propagate and how Kv4.3 channels block spreading depolarization to nearby branches.
Collapse
Affiliation(s)
- Gabriela Cirtala
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0412, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0412, Okinawa, Japan
| |
Collapse
|
7
|
Ipata AE, Fascianelli V, De Zeeuw CI, Sendhilnathan N, Fusi S, Goldberg ME. Purkinje cells in Crus I and II encode the visual stimulus and the impending choice as monkeys learn a reinforcement based visuomotor association task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612926. [PMID: 39314292 PMCID: PMC11419136 DOI: 10.1101/2024.09.13.612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Visuomotor association involves linking an arbitrary visual cue to a well-learned movement. Transient inactivation of Crus I/II impairs primates' ability to learn new associations and delays motor responses without affecting the kinematics of the movement. The simple spikes of Purkinje cells in the Crus regions signal cognitive errors as monkeys learn to associate specific fractal stimuli with movements of the left or right hand. Here we show that as learning progresses, the simple spike activity of individual neurons becomes more selective for stimulus-response associations, with selectivity developing closer to the appearance of visual stimuli. Initially, most neurons respond to both associations, irrespective of the identity of the stimulus and the associated movement, but as learning advances, more neurons distinguish between specific stimulus-hand associations. Using a linear decoder, it was found that in early learning stages, the visual stimulus can be decoded only when the choice can also be decoded. As learning improves, the visual stimulus is decoded earlier than the choice. A simple model can replicate the observed simple spike signals and the monkeys' behavior in both the early and late learning stages.
Collapse
|
8
|
Thomas RE, Mudlaff F, Schweers K, Farmer WT, Suvrathan A. Heterogeneity in Slow Synaptic Transmission Diversifies Purkinje Cell Timing. J Neurosci 2024; 44:e0455242024. [PMID: 39147589 PMCID: PMC11391503 DOI: 10.1523/jneurosci.0455-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The cerebellum plays an important role in diverse brain functions, ranging from motor learning to cognition. Recent studies have suggested that molecular and cellular heterogeneity within cerebellar lobules contributes to functional differences across the cerebellum. However, the specific relationship between molecular and cellular heterogeneity and diverse functional outputs of different regions of the cerebellum remains unclear. Here, we describe a previously unappreciated form of synaptic heterogeneity at parallel fiber synapses to Purkinje cells in the mouse cerebellum (both sexes). In contrast to uniform fast synaptic transmission, we found that the properties of slow synaptic transmission varied by up to threefold across different lobules of the mouse cerebellum, resulting in surprising heterogeneity. Depending on the location of a Purkinje cell, the time of peak of slow synaptic currents varied by hundreds of milliseconds. The duration and decay time of these currents also spanned hundreds of milliseconds, based on lobule. We found that, as a consequence of the heterogeneous synaptic dynamics, the same brief input stimulus was transformed into prolonged firing patterns over a range of timescales that depended on Purkinje cell location.
Collapse
Affiliation(s)
- Riya Elizabeth Thomas
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Franziska Mudlaff
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Kyra Schweers
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| | - William Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec H3G 1A4, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Pediatrics, McGill University, Montréal, Québec H3G 1A4, Canada
| |
Collapse
|
9
|
Mishra I, Feng B, Basu B, Brown AM, Kim LH, Lin T, Raza MA, Moore A, Hahn A, Bailey S, Sharp A, Bournat JC, Poulton C, Kim B, Langsner A, Sathyanesan A, Sillitoe RV, He Y, Chopra AR. The cerebellum modulates thirst. Nat Neurosci 2024; 27:1745-1757. [PMID: 38987435 DOI: 10.1038/s41593-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin's dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin-Ptprd signaling may be a potential therapeutic target for the management of thirst disorders.
Collapse
Affiliation(s)
- Ila Mishra
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Bijoya Basu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mir Abbas Raza
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Amelia Moore
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Abigayle Hahn
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Samantha Bailey
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Alaina Sharp
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Juan C Bournat
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Claire Poulton
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Brian Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amos Langsner
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aaron Sathyanesan
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
- Department of Electrical & Computer Engineering, School of Engineering, University of Dayton, Dayton, OH, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Atul R Chopra
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
10
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Fernández Santoro EM, Karim A, Warnaar P, De Zeeuw CI, Badura A, Negrello M. Purkinje cell models: past, present and future. Front Comput Neurosci 2024; 18:1426653. [PMID: 39049990 PMCID: PMC11266113 DOI: 10.3389/fncom.2024.1426653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC models have been developed since the 70's, a comprehensive review of contemporary models is currently lacking. Here, we provide an overview of PC models, ranging from the ones focused on single cell intracellular PC dynamics, through complex models which include synaptic and extrasynaptic inputs. We review how PC models can reproduce physiological activity of the neuron, including firing patterns, current and multistable dynamics, plateau potentials, calcium signaling, intrinsic and synaptic plasticity and input/output computations. We consider models focusing both on somatic and on dendritic computations. Our review provides a critical performance analysis of PC models with respect to known physiological data. We expect our synthesis to be useful in guiding future development of computational models that capture real-life PC dynamics in the context of cerebellar computations.
Collapse
Affiliation(s)
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | | | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
12
|
Hamel K, Moncada EL, Sheeler C, Rosa JG, Gilliat S, Zhang Y, Cvetanovic M. Cerebellar Heterogeneity and Selective vulnerability in Spinocerebellar Ataxia Type 1 (SCA1). Neurobiol Dis 2024; 197:106530. [PMID: 38750673 PMCID: PMC11184674 DOI: 10.1016/j.nbd.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.
Collapse
Affiliation(s)
| | | | | | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Graduate Program for Neuroscience, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Department of Neuroscience, Yale University, USA
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, USA; Minnesota Supercomputing Institute, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Prati JM, Pontes-Silva A, Gianlorenço ACL. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review. Behav Brain Res 2024; 465:114933. [PMID: 38458437 DOI: 10.1016/j.bbr.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The cerebellum has a large network of neurons that communicate with several brain structures and participate in different functions. Recent studies have demonstrated that the cerebellum is not only associated with motor functions but also participates in several non-motor functions. It is suggested that the cerebellum can modulate behavior through many connections with different nervous system structures in motor, sensory, cognitive, autonomic, and emotional processes. Recently, a growing number of clinical and experimental studies support this theory and provide further evidence. In light of recent findings, a comprehensive review is needed to summarize the knowledge on the influence of the cerebellum on the processing of different functions. Therefore, the aim of this review was to describe the neuroanatomical aspects of the activation of the cerebellum and its connections with other structures of the central nervous system in different behaviors.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
15
|
Geminiani A, Casellato C, Boele HJ, Pedrocchi A, De Zeeuw CI, D’Angelo E. Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning. PLoS Comput Biol 2024; 20:e1011277. [PMID: 38574161 PMCID: PMC11060558 DOI: 10.1371/journal.pcbi.1011277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/30/2024] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Neuroscience Institute, Princeton University, Washington Road, Princeton, New Jersey, United States of America
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
16
|
Wang Y, Wang Y, Wang H, Ma L, Eickhoff SB, Madsen KH, Chu C, Fan L. Spatio-molecular profiles shape the human cerebellar hierarchy along the sensorimotor-association axis. Cell Rep 2024; 43:113770. [PMID: 38363683 DOI: 10.1016/j.celrep.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Cerebellar involvement in both motor and non-motor functions manifests in specific regions of the human cerebellum, revealing the functional heterogeneity within it. One compelling theory places the heterogeneity within the cerebellar functional hierarchy along the sensorimotor-association (SA) axis. Despite extensive neuroimaging studies, evidence for the cerebellar SA axis from different modalities and scales was lacking. Thus, we establish a significant link between the cerebellar SA axis and spatio-molecular profiles. Utilizing the gene set variation analysis, we find the intermediate biological principles the significant genes leveraged to scaffold the cerebellar SA axis. Interestingly, we find these spatio-molecular profiles notably associated with neuropsychiatric dysfunction and recent evolution. Furthermore, cerebello-cerebral interactions at genetic and functional connectivity levels mirror the cerebral cortex and cerebellum's SA axis. These findings can provide a deeper understanding of how the human cerebellar SA axis is shaped and its role in transitioning from sensorimotor to association functions.
Collapse
Affiliation(s)
- Yaping Wang
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lingzhong Fan
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China.
| |
Collapse
|
17
|
Watanave M, Kawachi M, Konno A, Aoki R, Fukai Y, Matsuzaki Y, Kaneko R, Hirai H. Protein kinase Cγ negatively regulates the intrinsic excitability in zebrin-negative cerebellar Purkinje cells. Front Cell Neurosci 2024; 18:1349878. [PMID: 38433862 PMCID: PMC10904455 DOI: 10.3389/fncel.2024.1349878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Protein kinase C γ (PKCγ), a neuronal isoform present exclusively in the central nervous system, is most abundantly expressed in cerebellar Purkinje cells (PCs). Targeted deletion of PKCγ causes a climbing fiber synapse elimination in developing PCs and motor deficit. However, physiological roles of PKCγ in adult mouse PCs are little understood. In this study, we aimed to unravel the roles of PKCγ in mature mouse PCs by deleting PKCγ from adult mouse PCs of PKCγfl/fl mice via cerebellar injection of adeno-associated virus (AAV) vectors expressing Cre recombinase under the control of the PC-specific L7-6 promoter. Whole cell patch-clamp recording of PCs showed higher intrinsic excitability in PCs virally lacking PKCγ [PKCγ-conditional knockout (PKCγ-cKO) PCs] than in wild-type (WT) mouse PCs in the zebrin-negative module, but not in the zebrin-positive module. AAV-mediated PKCγ re-expression in PKCγ-deficient mouse PCs in the zebrin-negative module restored the enhanced intrinsic excitability to a level comparable to that of wild-type mouse PCs. In parallel with higher intrinsic excitability, we found larger hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents in PKCγ-cKO PCs located in the zebrin-negative module, compared with those in WT mouse PCs in the same region. However, pharmacological inhibition of the HCN currents did not restore the enhanced intrinsic excitability in PKCγ-cKO PCs in the zebrin-negative module. These results suggested that PKCγ suppresses the intrinsic excitability in zebrin-negative PCs, which is likely independent of the HCN current inhibition.
Collapse
Affiliation(s)
- Masashi Watanave
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mika Kawachi
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Japan
| | - Ryo Aoki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuuki Fukai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Neuroscience Laboratories, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
- Viral Vector Core, Gunma University, Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
18
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. eLife 2024; 12:RP88439. [PMID: 38345922 PMCID: PMC10942583 DOI: 10.7554/elife.88439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| | - Long Yang
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Hugh T Blair
- Department of Psychology, University of California Los AngelesLos AngelesUnited States
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los AngelesLos AngelesUnited States
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical CenterTorranceUnited States
- Department of Neurology, Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los AngelesLos AngelesUnited States
| |
Collapse
|
19
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Wu S, Wardak A, Khan MM, Chen CH, Regehr WG. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs. eLife 2024; 13:e89095. [PMID: 38241596 PMCID: PMC10798666 DOI: 10.7554/elife.89095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Asem Wardak
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mehak M Khan
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
21
|
WATANABE T, KANO M. Molecular and cellular mechanisms of developmental synapse elimination in the cerebellum: Involvement of autism spectrum disorder-related genes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:508-523. [PMID: 39522973 PMCID: PMC11635086 DOI: 10.2183/pjab.100.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Neural circuits are initially created with excessive synapse formation until around birth and undergo massive reorganization until they mature. During postnatal development, necessary synapses strengthen and remain, whereas unnecessary ones are weakened and eventually eliminated. These events, collectively called "synapse elimination" or "synapse pruning", are thought to be fundamental for creating functionally mature neural circuits in adult animals. In the cerebellum of neonatal rodents, Purkinje cells (PCs) receive synaptic inputs from multiple climbing fibers (CFs). Then, inputs from a single CF are strengthened and those from the other CFs are eliminated, and most PCs become innervated by single CFs by the end of the third postnatal week. These events are regarded as a representative model of synapse elimination. This review examines the molecular and cellular mechanisms of CF synapse elimination in the developing cerebellum and argues how autism spectrum disorder (ASD)-related genes are involved in CF synapse development. We introduce recent studies to update our knowledge, incorporate new data into the known scheme, and discuss the remaining issues and future directions.
Collapse
Affiliation(s)
- Takaki WATANABE
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| | - Masanobu KANO
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, Tokyo, Japan
| |
Collapse
|
22
|
Kang Q, Lang EJ, Sahin M. Transsynaptic entrainment of cerebellar nuclear cells by alternating currents in a frequency dependent manner. Front Neurosci 2023; 17:1282322. [PMID: 38027520 PMCID: PMC10667418 DOI: 10.3389/fnins.2023.1282322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation technique that is being tested clinically for treatment of a variety of neural disorders. Animal studies investigating the underlying mechanisms of tACS are scarce, and nearly absent in the cerebellum. In the present study, we applied 10-400 Hz alternating currents (AC) to the cerebellar cortex in ketamine/xylazine anesthetized rats. The spiking activity of cerebellar nuclear (CN) cells was transsynaptically entrained to the frequency of AC stimulation in an intensity and frequency-dependent manner. Interestingly, there was a tuning curve for modulation where the frequencies in the midrange (100 and 150 Hz) were more effective, although the stimulation frequency for maximum modulation differed for each CN cell with slight dependence on the stimulation amplitude. CN spikes were entrained with latencies of a few milliseconds with respect to the AC stimulation cycle. These short latencies and that the transsynaptic modulation of the CN cells can occur at such high frequencies strongly suggests that PC simple spike synchrony at millisecond time scales is the underlying mechanism for CN cell entrainment. These results show that subthreshold AC stimulation can induce such PC spike synchrony without resorting to supra-threshold pulse stimulation for precise timing. Transsynaptic entrainment of deep CN cells via cortical stimulation could help keep stimulation currents within safety limits in tACS applications, allowing development of tACS as an alternative treatment to deep cerebellar stimulation. Our results also provide a possible explanation for human trials of cerebellar stimulation where the functional impacts of tACS were frequency dependent.
Collapse
Affiliation(s)
- Qi Kang
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eric J. Lang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mesut Sahin
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
23
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535750. [PMID: 37066345 PMCID: PMC10104017 DOI: 10.1101/2023.04.05.535750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
25
|
Cole BA, Becker EBE. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cells 2023; 12:2215. [PMID: 37759438 PMCID: PMC10526463 DOI: 10.3390/cells12182215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.
Collapse
Affiliation(s)
- Bethan A. Cole
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
26
|
Liu D, Nanclares C, Simbriger K, Fang K, Lorsung E, Le N, Amorim IS, Chalkiadaki K, Pathak SS, Li J, Gewirtz JC, Jin VX, Kofuji P, Araque A, Orr HT, Gkogkas CG, Cao R. Autistic-like behavior and cerebellar dysfunction in Bmal1 mutant mice ameliorated by mTORC1 inhibition. Mol Psychiatry 2023; 28:3727-3738. [PMID: 35301425 PMCID: PMC9481983 DOI: 10.1038/s41380-022-01499-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Although circadian and sleep disorders are frequently associated with autism spectrum disorders (ASD), it remains elusive whether clock gene disruption can lead to autistic-like phenotypes in animals. The essential clock gene Bmal1 has been associated with human sociability and its missense mutations are identified in ASD. Here we report that global Bmal1 deletion led to significant social impairments, excessive stereotyped and repetitive behaviors, as well as motor learning disabilities in mice, all of which resemble core behavioral deficits in ASD. Furthermore, aberrant cell density and immature morphology of dendritic spines were identified in the cerebellar Purkinje cells (PCs) of Bmal1 knockout (KO) mice. Electrophysiological recordings uncovered enhanced excitatory and inhibitory synaptic transmission and reduced firing rates in the PCs of Bmal1 KO mice. Differential expression of ASD- and ataxia-associated genes (Ntng2, Mfrp, Nr4a2, Thbs1, Atxn1, and Atxn3) and dysregulated pathways of translational control, including hyperactivated mammalian target of rapamycin complex 1 (mTORC1) signaling, were identified in the cerebellum of Bmal1 KO mice. Interestingly, the antidiabetic drug metformin reversed mTORC1 hyperactivation and alleviated major behavioral and PC deficits in Bmal1 KO mice. Importantly, conditional Bmal1 deletion only in cerebellar PCs was sufficient to recapitulate autistic-like behavioral and cellular changes akin to those identified in Bmal1 KO mice. Together, these results unveil a previously unidentified role for Bmal1 disruption in cerebellar dysfunction and autistic-like behaviors. Our findings provide experimental evidence supporting a putative role for dysregulation of circadian clock gene expression in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Konstanze Simbriger
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Kun Fang
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Inês Silva Amorim
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Kleanthi Chalkiadaki
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Jonathan C Gewirtz
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, Arizona State University, Tempe, AZ, 85287, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Christos G Gkogkas
- Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110, Ioannina, Greece.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Broersen R, Canto CB, De Zeeuw CI. Cerebellar nuclei: Associative motor learning in zebrafish. Curr Biol 2023; 33:R867-R870. [PMID: 37607484 DOI: 10.1016/j.cub.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cerebellar output neurons integrate strong inhibitory input and weaker excitatory input during the control of spontaneous and learned movements. A new study sheds light on how those inputs are integrated during associative swimming in zebrafish larvae.
Collapse
Affiliation(s)
- Robin Broersen
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Cathrin B Canto
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands; Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands; Department of Cerebellar Coordination & Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Busch SE, Hansel C. Climbing fiber multi-innervation of mouse Purkinje dendrites with arborization common to human. Science 2023; 381:420-427. [PMID: 37499000 PMCID: PMC10962609 DOI: 10.1126/science.adi1024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Canonically, each Purkinje cell (PC) in the adult cerebellum receives only one climbing fiber (CF) from the inferior olive. Underlying current theories of cerebellar function is the notion that this highly conserved one-to-one relationship renders Purkinje dendrites into a single computational compartment. However, we discovered that multiple primary dendrites are a near-universal morphological feature in humans. Using tract tracing, immunolabeling, and in vitro electrophysiology, we found that in mice ~25% of mature multibranched cells receive more than one CF input. Two-photon calcium imaging in vivo revealed that separate dendrites can exhibit distinct response properties to sensory stimulation, indicating that some multibranched cells integrate functionally independent CF-receptive fields. These findings indicate that PCs are morphologically and functionally more diverse than previously thought.
Collapse
Affiliation(s)
- Silas E. Busch
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Lee JH, Khan MM, Stark AP, Seo S, Norton A, Yao Z, Chen CH, Regehr WG. Cerebellar granule cell signaling is indispensable for normal motor performance. Cell Rep 2023; 42:112429. [PMID: 37141091 PMCID: PMC10258556 DOI: 10.1016/j.celrep.2023.112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Within the cerebellar cortex, mossy fibers (MFs) excite granule cells (GCs) that excite Purkinje cells (PCs), which provide outputs to the deep cerebellar nuclei (DCNs). It is well established that PC disruption produces motor deficits such as ataxia. This could arise from either decreases in ongoing PC-DCN inhibition, increases in the variability of PC firing, or disruption of the flow of MF-evoked signals. Remarkably, it is not known whether GCs are essential for normal motor function. Here we address this issue by selectively eliminating calcium channels that mediate transmission (CaV2.1, CaV2.2, and CaV2.3) in a combinatorial manner. We observe profound motor deficits but only when all CaV2 channels are eliminated. In these mice, the baseline rate and variability of PC firing are unaltered, and locomotion-dependent increases in PC firing are eliminated. We conclude that GCs are indispensable for normal motor performance and that disruption of MF-induced signals impairs motor performance.
Collapse
Affiliation(s)
- Joon-Hyuk Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mehak M Khan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda P Stark
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Soobin Seo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aliya Norton
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, Wang JM, Xing GG. CSMD3 Deficiency Leads to Motor Impairments and Autism-Like Behaviors via Dysfunction of Cerebellar Purkinje Cells in Mice. J Neurosci 2023; 43:3949-3969. [PMID: 37037606 PMCID: PMC10219040 DOI: 10.1523/jneurosci.1835-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.
Collapse
Affiliation(s)
- Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Si-Qing Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Hui-Fang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
- Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, People's Republic of China
| |
Collapse
|
31
|
Márquez BT, Leung TCS, Hui J, Charron F, McKinney RA, Watt AJ. A mitochondrial-targeted antioxidant (MitoQ) improves motor coordination and reduces Purkinje cell death in a mouse model of ARSACS. Neurobiol Dis 2023; 183:106157. [PMID: 37209925 DOI: 10.1016/j.nbd.2023.106157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Mitochondrial deficits have been observed in animal models of Autosomal-recessive spastic ataxia of the Charlevoix-Saguenay (ARSACS) and in patient-derived fibroblasts. We investigated whether mitochondrial function could be restored in Sacs-/- mice, a mouse model of ARSACS, using the mitochondrial-targeted antioxidant ubiquinone MitoQ. After 10 weeks of chronic MitoQ administration in drinking water, we partially reversed motor coordination deficits in Sacs-/- mice but did not affect litter-matched wild-type control mice. MitoQ administration led to a restoration of superoxide dismutase 2 (SOD2) in cerebellar Purkinje cell somata without altering Purkinje cell firing deficits. Purkinje cells in anterior vermis of Sacs-/- mice normally undergo cell death in ARSACS; however, Purkinje cells numbers were elevated after chronic MitoQ treatment. Furthermore, Purkinje cell innervation of target neurons in the cerebellar nuclei of Sacs-/- mice were also partially restored with MitoQ treatment. Our data suggest that MitoQ is a potential therapeutic treatment for ARSACS and that it improves motor coordination via increasing cerebellar Purkinje cell mitochondria function and reducing Purkinje cell death.
Collapse
Affiliation(s)
| | | | - Jeanette Hui
- Department of Biology, McGill University, Montreal, QC, Canada
| | - François Charron
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
32
|
Monteverdi A, Di Domenico D, D'Angelo E, Mapelli L. Anisotropy and Frequency Dependence of Signal Propagation in the Cerebellar Circuit Revealed by High-Density Multielectrode Array Recordings. Biomedicines 2023; 11:biomedicines11051475. [PMID: 37239146 DOI: 10.3390/biomedicines11051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The cerebellum is one of the most connected structures of the central nervous system and receives inputs over an extended frequency range. Nevertheless, the frequency dependence of cerebellar cortical processing remains elusive. In this work, we characterized cerebellar cortex responsiveness to mossy fibers activation at different frequencies and reconstructed the spread of activity in the sagittal and coronal planes of acute mouse cerebellar slices using a high-throughput high-density multielectrode array (HD-MEA). The enhanced spatiotemporal resolution of HD-MEA revealed the frequency dependence and spatial anisotropy of cerebellar activation. Mossy fiber inputs reached the Purkinje cell layer even at the lowest frequencies, but the efficiency of transmission increased at higher frequencies. These properties, which are likely to descend from the topographic organization of local inhibition, intrinsic electroresponsiveness, and short-term synaptic plasticity, are critical elements that have to be taken into consideration to define the computational properties of the cerebellar cortex and its pathological alterations.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Danila Di Domenico
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Egidio D'Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
33
|
Martin HGS, Kullmann DM. Basket to Purkinje Cell Inhibitory Ephaptic Coupling Is Abolished in Episodic Ataxia Type 1. Cells 2023; 12:1382. [PMID: 37408217 PMCID: PMC10216961 DOI: 10.3390/cells12101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Dominantly inherited missense mutations of the KCNA1 gene, which encodes the KV1.1 potassium channel subunit, cause Episodic Ataxia type 1 (EA1). Although the cerebellar incoordination is thought to arise from abnormal Purkinje cell output, the underlying functional deficit remains unclear. Here we examine synaptic and non-synaptic inhibition of Purkinje cells by cerebellar basket cells in an adult mouse model of EA1. The synaptic function of basket cell terminals was unaffected, despite their intense enrichment for KV1.1-containing channels. In turn, the phase response curve quantifying the influence of basket cell input on Purkine cell output was maintained. However, ultra-fast non-synaptic ephaptic coupling, which occurs in the cerebellar 'pinceau' formation surrounding the axon initial segment of Purkinje cells, was profoundly reduced in EA1 mice in comparison with their wild type littermates. The altered temporal profile of basket cell inhibition of Purkinje cells underlines the importance of Kv1.1 channels for this form of signalling, and may contribute to the clinical phenotype of EA1.
Collapse
Affiliation(s)
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| |
Collapse
|
34
|
Bartelt LC, Switonski PM, Adamek G, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Purkinje-Enriched snRNA-seq in SCA7 Cerebellum Reveals Zebrin Identity Loss as a Central Feature of Polyglutamine Ataxias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533345. [PMID: 37214832 PMCID: PMC10197555 DOI: 10.1101/2023.03.19.533345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. SCA7 patients display a striking loss of Purkinje cell (PC) neurons with disease progression; however, PCs are rare, making them difficult to characterize. We developed a PC nuclei enrichment protocol and applied it to single-nucleus RNA-seq of a SCA7 knock-in mouse model. Our results unify prior observations into a central mechanism of cell identity loss, impacting both glia and PCs, driving accumulation of inhibitory synapses and altered PC spiking. Zebrin-II subtype dysregulation is the predominant signal in PCs, leading to complete loss of zebrin-II striping at motor symptom onset in SCA7 mice. We show this zebrin-II subtype degradation is shared across Polyglutamine Ataxia mouse models and SCA7 patients. It has been speculated that PC subtype organization is critical for cerebellar function, and our results suggest that a breakdown of zebrin-II parasagittal striping is pathological.
Collapse
Affiliation(s)
- Luke C. Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine; Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M. Switonski
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A. Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I. Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B. Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R. La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine; Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine; Irvine, CA 92697, USA
| |
Collapse
|
35
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
36
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
37
|
Lobule-Related Action Potential Shape- and History-Dependent Current Integration in Purkinje Cells of Adult and Developing Mice. Cells 2023; 12:cells12040623. [PMID: 36831290 PMCID: PMC9953991 DOI: 10.3390/cells12040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Purkinje cells (PCs) are the principal cells of the cerebellar cortex and form a central element in the modular organization of the cerebellum. Differentiation of PCs based on gene expression profiles revealed two subpopulations with distinct connectivity, action potential firing and learning-induced activity changes. However, which basal cell physiological features underlie the differences between these subpopulations and to what extent they integrate input differentially remains largely unclear. Here, we investigate the cellular electrophysiological properties of PC subpopulation in adult and juvenile mice. We found that multiple fundamental cell physiological properties, including membrane resistance and various aspects of the action potential shape, differ between PCs from anterior and nodular lobules. Moreover, the two PC subpopulations also differed in the integration of negative and positive current steps as well as in size of the hyperpolarization-activated current. A comparative analysis in juvenile mice confirmed that most of these lobule-specific differences are already present at pre-weaning ages. Finally, we found that current integration in PCs is input history-dependent for both positive and negative currents, but this is not a distinctive feature between anterior and nodular PCs. Our results support the concept of a fundamental differentiation of PCs subpopulations in terms of cell physiological properties and current integration, yet reveals that history-dependent input processing is consistent across PC subtypes.
Collapse
|
38
|
Postsynaptic plasticity of Purkinje cells in mice is determined by molecular identity. Commun Biol 2022; 5:1328. [PMID: 36463347 PMCID: PMC9719509 DOI: 10.1038/s42003-022-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebellar learning is expressed as upbound or downbound changes in simple spike activity of Purkinje cell subpopulations, but the underlying mechanism remains enigmatic. By visualizing murine Purkinje cells with different molecular identities, we demonstrate that the potential for induction of long-term depression is prominent in downbound and minimal in the upbound subpopulation. These differential propensities depend on the expression profile, but not on the synaptic inputs, of the individual Purkinje cell involved, highlighting the functional relevance of intrinsic properties for memory formation.
Collapse
|
39
|
van der Heijden ME, Brown AM, Sillitoe RV. Influence of data sampling methods on the representation of neural spiking activity in vivo. iScience 2022; 25:105429. [PMID: 36388953 PMCID: PMC9641233 DOI: 10.1016/j.isci.2022.105429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In vivo single-unit recordings distinguish the basal spiking properties of neurons in different experimental settings and disease states. Here, we examined over 300 spike trains recorded from Purkinje cells and cerebellar nuclei neurons to test whether data sampling approaches influence the extraction of rich descriptors of firing properties. Our analyses included neurons recorded in awake and anesthetized control mice, and disease models of ataxia, dystonia, and tremor. We find that recording duration circumscribes overall representations of firing rate and pattern. Notably, shorter recording durations skew estimates for global firing rate variability toward lower values. We also find that only some populations of neurons in the same mouse are more similar to each other than to neurons recorded in different mice. These data reveal that recording duration and approach are primary considerations when interpreting task-independent single neuron firing properties. If not accounted for, group differences may be concealed or exaggerated.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
40
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
41
|
Cheron G, Ristori D, Marquez-Ruiz J, Cebolla AM, Ris L. Electrophysiological alterations of the Purkinje cells and deep cerebellar neurons in a mouse model of Alzheimer disease (electrophysiology on cerebellum of AD mice). Eur J Neurosci 2022; 56:5547-5563. [PMID: 35141975 DOI: 10.1111/ejn.15621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is histopathologically well defined by the presence of amyloid deposits and tau-related neurofibrillary tangles in crucial regions of the brain. Interest is growing in revealing and determining possible pathological markers also in the cerebellum as its involvement in cognitive functions is now well supported. Despite the central position of the Purkinje cell in the cerebellum, its electrophysiological behaviour in mouse models of Alzheimer's disease is scarce in the literature. Our first aim was here to focus on the electrophysiological behaviour of the cerebellum in awake mouse model of Alzheimer's disease (APPswe/PSEN1dE9) and the related performance on the water-maze test classically used in behavioural studies. We found prevalent signs of electrophysiological alterations in both Purkinje cells and deep cerebellar nuclei neurons which might explain the behavioural deficits reported during the water-maze test. The alterations of neurons firing were accompanied by a dual (~16 and ~228 Hz) local field potential's oscillation in the Purkinje cell layer of Alzheimer's disease mice which was concomitant to an important increase of both the simple and the complex spikes. In addition, β-amyloid deposits were present in the molecular layer of the cerebellum. These results highlight the importance of the output firing modification of the AD cerebellum that may indirectly impact the activity of its subcortical and cortical targets.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institut, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier Marquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Anna-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ris
- Laboratory of Neuroscience, Université de Mons, Mons, Belgium.,UMONS Research Institut for health and technology, Université de Mons, Mons, Belgium
| |
Collapse
|
42
|
Apsley EJ, Becker EBE. Purkinje Cell Patterning-Insights from Single-Cell Sequencing. Cells 2022; 11:2918. [PMID: 36139493 PMCID: PMC9497131 DOI: 10.3390/cells11182918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Despite their homogeneous appearance, Purkinje cells are remarkably diverse with respect to their molecular phenotypes, physiological properties, afferent and efferent connectivity, as well as their vulnerability to insults. Heterogeneity in Purkinje cells arises early in development, with molecularly distinct embryonic cell clusters present soon after Purkinje cell specification. Traditional methods have characterized cerebellar development and cell types, including Purkinje cell subtypes, based on knowledge of selected markers. However, recent single-cell RNA sequencing studies provide vastly increased resolution of the whole cerebellar transcriptome. Here we draw together the results of multiple single-cell transcriptomic studies in developing and adult cerebellum in both mouse and human. We describe how this detailed transcriptomic data has increased our understanding of the intricate development and function of Purkinje cells and provides first clues into features specific to human cerebellar development.
Collapse
Affiliation(s)
- Elizabeth J. Apsley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
43
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
44
|
Solouki S, Mehrabi F, Mirzaii-Dizgah I. Localization of long-term synaptic plasticity defects in cerebellar circuits using optokinetic reflex learning profile. J Neural Eng 2022; 19. [PMID: 35675762 DOI: 10.1088/1741-2552/ac76df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Objective.Functional maps of the central nervous system attribute the coordination and control of many body movements directly or indirectly to the cerebellum. Despite this general picture, there is little information on the function of cerebellar neural components at the circuit level. The presence of multiple synaptic junctions and the synergistic action of different types of plasticity make it virtually difficult to determine the distinct contribution of cerebellar neural processes to behavioral manifestations. In this study, investigating the effect of long-term synaptic changes on cerebellar motor learning, we intend to provide quantitative criteria for localizing defects in the major forms of synaptic plasticity in the cerebellum.Approach.To this end, we develop a firing rate model of the cerebellar circuits to simulate learning of optokinetic reflex (OKR), one of the most well-known cerebellar-dependent motor tasks. In the following, by comparing the simulated OKR learning profile for normal and pathosynaptic conditions, we extract the learning features affected by long-term plasticity disorders. Next, conducting simulation with different massed (continuous with no rest) and spaced (interleaved with rest periods) learning paradigms, we estimate the detrimental impact of plasticity defects at corticonuclear synapses on short- and long-term motor memory.Main results.Our computational approach predicts a correlation between location and grade of the defect with some learning factors such as the rate of formation and retention of motor memory, baseline performance, and even cerebellar motor reserve capacity. Further, spacing analysis reveal the dependence of learning paradigm efficiency on the spatiotemporal characteristic of defect in the network. Indeed, defects in cortical memory formation and nuclear memory consolidation mainly harm massed and spaced learning, respectively. This result is used to design a differential assay for identifying the faulty phases of cerebellar learning.Significance.The proposed computational framework can help develop neural-screening systems and prepare meso-scale functional maps of the cerebellar circuits.
Collapse
Affiliation(s)
- Saeed Solouki
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Farzad Mehrabi
- Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Iraj Mirzaii-Dizgah
- Department of Physiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Chen X, Du Y, Broussard GJ, Kislin M, Yuede CM, Zhang S, Dietmann S, Gabel H, Zhao G, Wang SSH, Zhang X, Bonni A. Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature 2022; 605:722-727. [PMID: 35545673 PMCID: PMC9887520 DOI: 10.1038/s41586-022-04711-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/31/2022] [Indexed: 02/03/2023]
Abstract
Cellular diversification is critical for specialized functions of the brain including learning and memory1. Single-cell RNA sequencing facilitates transcriptomic profiling of distinct major types of neuron2-4, but the divergence of transcriptomic profiles within a neuronal population and their link to function remain poorly understood. Here we isolate nuclei tagged5 in specific cell types followed by single-nucleus RNA sequencing to profile Purkinje neurons and map their responses to motor activity and learning. We find that two major subpopulations of Purkinje neurons, identified by expression of the genes Aldoc and Plcb4, bear distinct transcriptomic features. Plcb4+, but not Aldoc+, Purkinje neurons exhibit robust plasticity of gene expression in mice subjected to sensorimotor and learning experience. In vivo calcium imaging and optogenetic perturbation reveal that Plcb4+ Purkinje neurons have a crucial role in associative learning. Integrating single-nucleus RNA sequencing datasets with weighted gene co-expression network analysis uncovers a learning gene module that includes components of FGFR2 signalling in Plcb4+ Purkinje neurons. Knockout of Fgfr2 in Plcb4+ Purkinje neurons in mice using CRISPR disrupts motor learning. Our findings define how diversification of Purkinje neurons is linked to their responses in motor learning and provide a foundation for understanding their differential vulnerability to neurological disorders.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Hope Center for Neurological Disorders,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yanhua Du
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | | | - Mikhail Kislin
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Shuwei Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Sabine Dietmann
- Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
- Insitute for Informatics, Washington University School of Medicine, St Louis, MO, USA
| | - Harrison Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Samuel S-H Wang
- Neuroscience Institute, Washington Road, Princeton University, Princeton, NJ, USA.
| | - Xiaoqing Zhang
- Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China.
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Tognolina M, Monteverdi A, D’Angelo E. Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network Dynamics. Front Cell Neurosci 2022; 16:805670. [PMID: 35370553 PMCID: PMC8971197 DOI: 10.3389/fncel.2022.805670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The cerebellar cortex microcircuit is characterized by a highly ordered neuronal architecture having a relatively simple and stereotyped connectivity pattern. For a long time, this structural simplicity has incorrectly led to the idea that anatomical considerations would be sufficient to understand the dynamics of the underlying circuitry. However, recent experimental evidence indicates that cerebellar operations are much more complex than solely predicted by anatomy, due to the crucial role played by neuronal and synaptic properties. To be able to explore neuronal and microcircuit dynamics, advanced imaging, electrophysiological techniques and computational models have been combined, allowing us to investigate neuronal ensembles activity and to connect microscale to mesoscale phenomena. Here, we review what is known about cerebellar network organization, neural dynamics and synaptic plasticity and point out what is still missing and would require experimental assessments. We consider the available experimental techniques that allow a comprehensive assessment of circuit dynamics, including voltage and calcium imaging and extracellular electrophysiological recordings with multi-electrode arrays (MEAs). These techniques are proving essential to investigate the spatiotemporal pattern of activity and plasticity in the cerebellar network, providing new clues on how circuit dynamics contribute to motor control and higher cognitive functions.
Collapse
Affiliation(s)
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Brain Connectivity Center, Pavia, Italy
| |
Collapse
|
47
|
Laricchia KM, Lake NJ, Watts NA, Shand M, Haessly A, Gauthier L, Benjamin D, Banks E, Soto J, Garimella K, Emery J, Rehm HL, MacArthur DG, Tiao G, Lek M, Mootha VK, Calvo SE. Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Res 2022; 32:569-582. [PMID: 35074858 PMCID: PMC8896463 DOI: 10.1101/gr.276013.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three technical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.
Collapse
Affiliation(s)
- Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Nicole J Lake
- Yale School of Medicine, New Haven, Connecticut 06510, USA
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | - Nicholas A Watts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Megan Shand
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Andrea Haessly
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Laura Gauthier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Benjamin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jose Soto
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kiran Garimella
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - James Emery
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Heidi L Rehm
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Daniel G MacArthur
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
- Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales 2010, Australia
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Monkol Lek
- Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sarah E Calvo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Romano V, Zhai P, van der Horst A, Mazza R, Jacobs T, Bauer S, Wang X, White JJ, De Zeeuw CI. Olivocerebellar control of movement symmetry. Curr Biol 2022; 32:654-670.e4. [PMID: 35016009 DOI: 10.1016/j.cub.2021.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Coordination of bilateral movements is essential for a large variety of animal behaviors. The olivocerebellar system is critical for the control of movement, but its role in bilateral coordination has yet to be elucidated. Here, we examined whether Purkinje cells encode and influence synchronicity of left-right whisker movements. We found that complex spike activity is correlated with a prominent left-right symmetry of spontaneous whisker movements within parts, but not all, of Crus1 and Crus2. Optogenetic stimulation of climbing fibers in the areas with high and low correlations resulted in symmetric and asymmetric whisker movements, respectively. Moreover, when simple spike frequency prior to the complex spike was higher, the complex spike-related symmetric whisker protractions were larger. This finding alludes to a role for rebound activity in the cerebellar nuclei, which indeed turned out to be enhanced during symmetric protractions. Tracer injections suggest that regions associated with symmetric whisker movements are anatomically connected to the contralateral cerebellar hemisphere. Together, these data point toward the existence of modules on both sides of the cerebellar cortex that can differentially promote or reduce the symmetry of left and right movements in a context-dependent fashion.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Viet NM, Wang T, Tran-Anh K, Sugihara I. Heterogeneity of intrinsic plasticity in cerebellar Purkinje cells linked with cortical molecular zones. iScience 2022; 25:103705. [PMID: 35059609 PMCID: PMC8760437 DOI: 10.1016/j.isci.2021.103705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.
Collapse
Affiliation(s)
- Nguyen-Minh Viet
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tianzhuo Wang
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Khoa Tran-Anh
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
50
|
Halverson HE, Kim J, Khilkevich A, Mauk MD, Augustine GJ. Feedback inhibition underlies new computational functions of cerebellar interneurons. eLife 2022; 11:77603. [PMID: 36480240 PMCID: PMC9771357 DOI: 10.7554/elife.77603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The function of a feedback inhibitory circuit between cerebellar Purkinje cells and molecular layer interneurons (MLIs) was defined by combining optogenetics, neuronal activity recordings both in cerebellar slices and in vivo, and computational modeling. Purkinje cells inhibit a subset of MLIs in the inner third of the molecular layer. This inhibition is non-reciprocal, short-range (less than 200 μm) and is based on convergence of one to two Purkinje cells onto MLIs. During learning-related eyelid movements in vivo, the activity of a subset of MLIs progressively increases as Purkinje cell activity decreases, with Purkinje cells usually leading the MLIs. Computer simulations indicate that these relationships are best explained by the feedback circuit from Purkinje cells to MLIs and that this feedback circuit plays a central role in making cerebellar learning efficient.
Collapse
Affiliation(s)
- Hunter E Halverson
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Jinsook Kim
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| | - Andrei Khilkevich
- Center for Learning and Memory, The University of TexasAustinUnited States
| | - Michael D Mauk
- Center for Learning and Memory, The University of TexasAustinUnited States,Department of Neuroscience, The University of TexasAustinUnited States
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore,Institute of Molecular and Cell BiologySingaporeSingapore
| |
Collapse
|