1
|
Turquetti-Moraes DK, Cardoso-Silva CB, Almeida-Silva F, Venancio TM. Multiomic analysis of genes related to oil traits in legumes provide insights into lipid metabolism and oil richness in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109180. [PMID: 39571454 DOI: 10.1016/j.plaphy.2024.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Soybean (Glycine max) and common bean (Phaseolus vulgaris) diverged approximately 19 million years ago. While these species share a whole-genome duplication (WGD), the Glycine lineage experienced a second, independent WGD. Despite the significance of these WGDs, their impact on gene families related to oil-traits remains poorly understood. Here, we report an in-depth investigation of oil-related gene families in soybean, common bean, and twenty-eight other legume species. We adopted a systematic approach that included 605 RNAseq samples for transcriptome and co-expression analyses, identification of orthologous groups, gene duplication modes and evolutionary rates, and family expansions and contractions. We curated a list of oil candidate genes and found that 91.5% of the families containing these genes expanded in soybean in comparison to common bean. Notably, we observed an expansion of triacylglycerol (TAG) biosynthesis (∼3:1) and an erosion of TAG degradation (∼1.4:1) families in soybean in comparison to common bean. In addition, TAG degradation genes were two-fold more expressed in common bean than in soybean, suggesting that oil degradation is also important for the sharply contrasting seed oil contents in these species. We found 17 transcription factor hub genes that are likely regulators of lipid metabolism. Finally, we inferred expanded and contracted families and correlated these patterns with oil content found in different legume species. In summary, our results do not only shed light on the evolution of oil metabolism genes in soybean, but also present multifactorial evidence supporting the prioritization of promising candidate genes that, if experimentally validated, could accelerate the development of high-oil soybean varieties.
Collapse
Affiliation(s)
- Dayana K Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Cláudio Benício Cardoso-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Universidade de Campinas, São Paulo, SP, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
2
|
Lorenzo CD, Blasco-Escámez D, Beauchet A, Wytynck P, Sanches M, Garcia Del Campo JR, Inzé D, Nelissen H. Maize mutant screens: from classical methods to new CRISPR-based approaches. THE NEW PHYTOLOGIST 2024; 244:384-393. [PMID: 39212458 DOI: 10.1111/nph.20084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mutations play a pivotal role in shaping the trajectory and outcomes of a species evolution and domestication. Maize (Zea mays) has been a major staple crop and model for genetic research for more than 100 yr. With the arrival of site-directed mutagenesis and genome editing (GE) driven by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), maize mutational research is once again in the spotlight. If we combine the powerful physiological and genetic characteristics of maize with the already available and ever increasing toolbox of CRISPR-Cas, prospects for its future trait engineering are very promising. This review aimed to give an overview of the progression and learnings of maize screening studies analyzing forward genetics, natural variation and reverse genetics to focus on recent GE approaches. We will highlight how each strategy and resource has contributed to our understanding of maize natural and induced trait variability and how this information could be used to design the next generation of mutational screenings.
Collapse
Affiliation(s)
- Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - David Blasco-Escámez
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Arthur Beauchet
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Pieter Wytynck
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Matilde Sanches
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Jose Rodrigo Garcia Del Campo
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
3
|
Yu P, Li C, Li M, He X, Wang D, Li H, Marcon C, Li Y, Perez-Limón S, Chen X, Delgado-Baquerizo M, Koller R, Metzner R, van Dusschoten D, Pflugfelder D, Borisjuk L, Plutenko I, Mahon A, Resende MFR, Salvi S, Akale A, Abdalla M, Ahmed MA, Bauer FM, Schnepf A, Lobet G, Heymans A, Suresh K, Schreiber L, McLaughlin CM, Li C, Mayer M, Schön CC, Bernau V, von Wirén N, Sawers RJH, Wang T, Hochholdinger F. Seedling root system adaptation to water availability during maize domestication and global expansion. Nat Genet 2024; 56:1245-1256. [PMID: 38778242 DOI: 10.1038/s41588-024-01761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.
Collapse
Affiliation(s)
- Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Chunhui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xiaoming He
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Danning Wang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Hongjie Li
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Sergio Perez-Limón
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University (SWU), Chongqing, PR China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Robert Koller
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ralf Metzner
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Dagmar van Dusschoten
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Daniel Pflugfelder
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Iaroslav Plutenko
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Audrey Mahon
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Asegidew Akale
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Abdalla
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mutez Ali Ahmed
- Chair of Root-Soil Interactions, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Felix Maximilian Bauer
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andrea Schnepf
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Guillaume Lobet
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Adrien Heymans
- Earth and Life Institute, Université catholique de Louvain, UCLouvain, Belgium
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Chloee M McLaughlin
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, State College, PA, USA
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, PR China
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vivian Bernau
- North Central Regional Plant Introduction Station, USDA-Agriculture Research Service and Iowa State University, Ames, IA, USA
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA.
| | - Tianyu Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Williams K, Subramani M, Lofton LW, Penney M, Todd A, Ozbay G. Tools and Techniques to Accelerate Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:1520. [PMID: 38891328 PMCID: PMC11174677 DOI: 10.3390/plants13111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
As climate changes and a growing global population continue to escalate the need for greater production capabilities of food crops, technological advances in agricultural and crop research will remain a necessity. While great advances in crop improvement over the past century have contributed to massive increases in yield, classic breeding schemes lack the rate of genetic gain needed to meet future demands. In the past decade, new breeding techniques and tools have been developed to aid in crop improvement. One such advancement is the use of speed breeding. Speed breeding is known as the application of methods that significantly reduce the time between crop generations, thereby streamlining breeding and research efforts. These rapid-generation advancement tactics help to accelerate the pace of crop improvement efforts to sustain food security and meet the food, feed, and fiber demands of the world's growing population. Speed breeding may be achieved through a variety of techniques, including environmental optimization, genomic selection, CRISPR-Cas9 technology, and epigenomic tools. This review aims to discuss these prominent advances in crop breeding technologies and techniques that have the potential to greatly improve plant breeders' ability to rapidly produce vital cultivars.
Collapse
Affiliation(s)
- Krystal Williams
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Lily W. Lofton
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA;
- Toxicology & Mycotoxin Research Unit, US National Poultry Research Center, USDA-ARS, Athens, GA 30602, USA
| | - Miranda Penney
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Gulnihal Ozbay
- One Health Laboratory, Department of Agriculture and Natural Resources, College of Agriculture, Science, and Technology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
5
|
Afram Y, Amenorpe G, Bediako EA, Darkwa AA, Shandu SF, Labuschagne MT, Amegbor IK. Induction of genetic variability of maize genotypes through radiation revealed mutants resistant to maize streak disease. Appl Radiat Isot 2024; 207:111279. [PMID: 38461628 DOI: 10.1016/j.apradiso.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The absence of genetic variability among crop genotypes is an impediment to breeding progress, hence mutagenesis could serve as a useful tool to create genetic variation to obtain desirable traits of interest. In this study, four maize genotypes, Obatampa, Dapango, Pann 54 and Honampa which were susceptible to maize streak disease (MSD) were acutely irradiated at 254.3 Gy, using a cobalt 60 (60Co) at a rate of 300 Gy/hr. The irradiated seeds were planted with their parental controls at streak disease highly endemic environment. Field trials for the selected maize genotypes were conducted from the M1 to M4 generations to screen for MSD resistance and improved grain yield. Sixteen putative mutants and four individual parental controls were selected across the four maize genotypes at the end of the M4 generation based on disease severity score and yield indices. Detailed morphological screening and field evaluation of putative mutants showing improved plant architecture, increased grain yield and resistance to maize streak disease were tagged and selected. Obatanpa-induced-genotype was the best mutant identified with a grain yield of 6.8 t ha-1. Data on days to 50% flowering indicated that all 16 putative mutants were maturing plants.
Collapse
Affiliation(s)
- Yayra Afram
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O. Box 245, Sekondi, Ghana.
| | - Godwin Amenorpe
- Biotechnology and Nuclear Agricultural Research Institute (BNARI), Ghana Atomic Energy Commission (GAEC), Accra, Ghana
| | - Elvis Asare Bediako
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alfred A Darkwa
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Maryke T Labuschagne
- Faculty of Agriculture and Natural Sciences, Department of Plant sciences Breeding, University of the Free State, P.O. Box 339, Bloemfontein, South Africa
| | - Isaac Kodzo Amegbor
- Faculty of Agriculture and Natural Sciences, Department of Plant sciences Breeding, University of the Free State, P.O. Box 339, Bloemfontein, South Africa; Council for Scientific and Industrial Research (CSIR), Savanna Agricultural Research Institute, P.O. Box TL 52, Tamale, Ghana.
| |
Collapse
|
6
|
He X, Wang D, Jiang Y, Li M, Delgado-Baquerizo M, McLaughlin C, Marcon C, Guo L, Baer M, Moya YAT, von Wirén N, Deichmann M, Schaaf G, Piepho HP, Yang Z, Yang J, Yim B, Smalla K, Goormachtig S, de Vries FT, Hüging H, Baer M, Sawers RJH, Reif JC, Hochholdinger F, Chen X, Yu P. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. NATURE PLANTS 2024; 10:598-617. [PMID: 38514787 DOI: 10.1038/s41477-024-01654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant-microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.
Collapse
Affiliation(s)
- Xiaoming He
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University (SWU), Chongqing, People's Republic of China
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Danning Wang
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yong Jiang
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Meng Li
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Chloee McLaughlin
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Li Guo
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Marcel Baer
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Yudelsy A T Moya
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Marion Deichmann
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | - Zhikai Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bunlong Yim
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Hubert Hüging
- Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Mareike Baer
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Ruairidh J H Sawers
- Department of Plant Science, Pennsylvania State University, State College, PA, USA.
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University (SWU), Chongqing, People's Republic of China.
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Cao S, Zhang H, Liu Y, Sun Y, Chen ZJ. Cytoplasmic genome contributions to domestication and improvement of modern maize. BMC Biol 2024; 22:64. [PMID: 38481288 PMCID: PMC10938767 DOI: 10.1186/s12915-024-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Studies on maize evolution and domestication are largely limited to the nuclear genomes, and the contribution of cytoplasmic genomes to selection and domestication of modern maize remains elusive. Maize cytoplasmic genomes have been classified into fertile (NA and NB) and cytoplasmic-nuclear male-sterility (CMS-S, CMS-C, and CMS-T) groups, but their contributions to modern maize breeding have not been systematically investigated. RESULTS Here we report co-selection and convergent evolution between nuclear and cytoplasmic genomes by analyzing whole genome sequencing data of 630 maize accessions modern maize and its relatives, including 24 fully assembled mitochondrial and chloroplast genomes. We show that the NB cytotype is associated with the expansion of modern maize to North America, gradually replaces the fertile NA cytotype probably through unequal division, and predominates in over 90% of modern elite inbred lines. The mode of cytoplasmic evolution is increased nucleotypic diversity among the genes involved in photosynthesis and energy metabolism, which are driven by selection and domestication. Furthermore, genome-wide association study reveals correlation of cytoplasmic nucleotypic variation with key agronomic and reproductive traits accompanied with the diversification of the nuclear genomes. CONCLUSIONS Our results indicate convergent evolution between cytoplasmic and nuclear genomes during maize domestication and breeding. These new insights into the important roles of mitochondrial and chloroplast genomes in maize domestication and improvement should help select elite inbred lines to improve yield stability and crop resilience of maize hybrids.
Collapse
Affiliation(s)
- Shuai Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Huanhuan Zhang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China
| | - Yang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yi Sun
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Shanxi, Taiyuan, 030031, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Zhang C, Chen B, Zhang P, Han Q, Zhao G, Zhao F. Comparative Transcriptome Analysis Reveals the Underlying Response Mechanism to Salt Stress in Maize Seedling Roots. Metabolites 2023; 13:1155. [PMID: 37999251 PMCID: PMC10673138 DOI: 10.3390/metabo13111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Crop growth and development can be impeded by salt stress, leading to a significant decline in crop yield and quality. This investigation performed a comparative analysis of the physiological responses of two maize inbred lines, namely L318 (CML115) and L323 (GEMS58), under salt-stress conditions. The results elucidated that CML115 exhibited higher salt tolerance compared with GEMS58. Transcriptome analysis of the root system revealed that DEGs shared by the two inbred lines were significantly enriched in the MAPK signaling pathway-plant and plant hormone signal transduction, which wield an instrumental role in orchestrating the maize response to salt-induced stress. Furthermore, the DEGs' exclusivity to salt-tolerant genotypes was associated with sugar metabolism pathways, and these unique DEGs may account for the disparities in salt tolerance between the two genotypes. Meanwhile, we investigated the dynamic global transcriptome in the root systems of seedlings at five time points after salt treatment and compared transcriptome data from different genotypes to examine the similarities and differences in salt tolerance mechanisms of different germplasms.
Collapse
Affiliation(s)
- Chen Zhang
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Bin Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Ping Zhang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| | - Qinghui Han
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Guangwu Zhao
- College of Advanced Agricultural Science, Zhejiang Agriculture and Forestry University, Lin’an 311300, China; (C.Z.)
| | - Fucheng Zhao
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China; (B.C.)
| |
Collapse
|
9
|
Zheng X, Wang T, Niu Q, Wu J, Zhao Z, Gao H, Li J, Xu L. Evaluation of Linear Programming and Optimal Contribution Selection Approaches for Long-Term Selection on Beef Cattle Breeding. BIOLOGY 2023; 12:1157. [PMID: 37759557 PMCID: PMC10525978 DOI: 10.3390/biology12091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
The optimized selection method can maximize the genetic gain in offspring under the premise of controlling the inbreeding level of the population. At present, genetic gain has been largely improved by using genomic selection in multiple farm animals. However, the design of the optimal selection method and assessment of its effects during long-term selection in beef cattle breeding are yet to be fully explored. In this study, a simulated beef cattle population was constructed, and 15 generations of simulated breeding were carried out using the linear programming breeding strategy (LP) and optimal contribution selection strategy (OCS), respectively. The truncation selection strategy (TS-I and TS-II) was used as the control. During the breeding process, genetic parameters including genetic gain, average kinship coefficient, QTL effect variance, and average observed heterozygosity were calculated and compared across generations. Our results showed that the LP method can significantly improve the genetic gain in the population, especially the genetic performance of the traits with high heritability and the traits with high weight in the breeding process, but the inbreeding level of the population is higher under LP strategy. Although the genetic gain in the population under the OCS strategy is lower than the TS-II strategy, this method can effectively control the inbreeding level of the population. Our findings also suggest that the LP and OCS method can be used as an effective means to improve genetic gain, while the OCS method is a more ideal method to obtain sustainable genetic gain during long-term selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junya Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (T.W.); (Q.N.); (J.W.); (Z.Z.); (H.G.)
| | - Lingyang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (T.W.); (Q.N.); (J.W.); (Z.Z.); (H.G.)
| |
Collapse
|
10
|
Xiao J, Tsim KWK, Hajisamae S, Wang WX. Chromosome-level genome and population genomics provide novel insights into adaptive divergence in allopatric Eleutheronema tetradactylum. Int J Biol Macromol 2023:125299. [PMID: 37315663 DOI: 10.1016/j.ijbiomac.2023.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Understanding the adaptive ecological divergence provides important information for revealing biodiversity generation and maintenance. Adaptive ecology divergence in populations occurs in various environments and locations, but its genetic underpinnings remain elusive. We generated a chromosome-level genome of Eleutheronema tetradactylum (~582 Mb) and re-sequenced 50 allopatric E. tetradactylum in two independent environmental axes in China and Thailand Coastal waters as well as 11 cultured relatives. A low level of whole genome-wide diversity explained their decreased adaptive potential in the wild environment. Demographic analysis showed evidence of historically high abundance followed by a continuous distinct decline, plus signs of recent inbreeding and accumulation of deleterious mutations. Extensive signals of selective sweeps with signs of local adaptation to environmental differentiation between China and Thailand at genes related to thermal and salinity adaptation were discovered, which might be the driving factors of the geographical divergence of E. tetradactylum. Many genes and pathways subjected to strong selection under artificial breeding were associated with fatty acids and immunity (ELOVL6L, MAPK, p53/NF-kB), likely contributing to the eventual adaptation of artificial selective breeding. Our comprehensive study provided crucial genetic information for E. tetradactylum, with implications for the further conservation efforts of this threatened and ecologically valuable fish.
Collapse
Affiliation(s)
- Jie Xiao
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Karl W K Tsim
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sukree Hajisamae
- Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Zhi Y, Chuanjiang Z, Xinfang Y, Mengyi D, Zhenlei W, Fenfen Y, Cuiyun W, Jiurui W, Mengjun L, Minjuan L. Genetic analysis of mixed models of fruit sugar-acid fractions in a cross between jujube ( Ziziphus jujuba Mill.) and wild jujube ( Z. acido jujuba). FRONTIERS IN PLANT SCIENCE 2023; 14:1181903. [PMID: 37251778 PMCID: PMC10213531 DOI: 10.3389/fpls.2023.1181903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.), an economically significant species in the Rhamnaceae family, is a popular fruit tree in Asia. The sugar and acid concentrations in jujube are considerably higher than those in other plants. Due to the low kernel rate, it is extremely difficult to establish hybrid populations. Little is known about jujube evolution and domestication, particularly with regard to the role of the sugar and acid components of jujube. Therefore, we used cover net control as a hybridization technique for the cross-breeding of Ziziphus jujuba Mill and 'JMS2' and (Z. acido jujuba) 'Xing16' to obtain an F1 population (179 hybrid progeny). The sugar and acid levels in the F1 and parent fruit were determined by HPLC. The coefficient of variation ranged from 28.4 to 93.9%. The sucrose and quinic acid levels in the progeny were higher than those in the parents. The population showed continuous distributions with transgressive segregation on both sides. Analysis by the mixed major gene and polygene inheritance model was performed. It was found that glucose is controlled by one additive-dominant major gene and polygenes, malic acid is controlled by two additive-dominant major genes and polygenes, and oxalic acid and quinic acid are controlled by two additive-dominant-epistatic major genes and polygenes. The results of this study provide insights into the genetic predisposition and molecular mechanisms underlying the role of sugar acids in jujube fruit.
Collapse
Affiliation(s)
- Yang Zhi
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Zhang Chuanjiang
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Yang Xinfang
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Dong Mengyi
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wang Zhenlei
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Yan Fenfen
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wu Cuiyun
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| | - Wang Jiurui
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Liu Mengjun
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Lin Minjuan
- The National and Local Joint Engineering Laboratory of High Efficiency and High Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang, the Production Engineering Laboratory of Characteristic Fruit Trees in Southern Xinjiang of Xinjiang Production and Construction Corps, College of Plant Science of Tarim University, Alar, Xinjiang, China
- Key Laboratory of Tarim Basin Biological Resources Protection and Utilization, Xinjiang Production and Construction Corps, Alar, Xinjiang, China
| |
Collapse
|
12
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
13
|
Karnatam KS, Chhabra G, Saini DK, Singh R, Kaur G, Praba UP, Kumar P, Goyal S, Sharma P, Ranjan R, Sandhu SK, Kumar R, Vikal Y. Genome-Wide Meta-Analysis of QTLs Associated with Root Traits and Implications for Maize Breeding. Int J Mol Sci 2023; 24:6135. [PMID: 37047112 PMCID: PMC10093813 DOI: 10.3390/ijms24076135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Root system architecture (RSA), also known as root morphology, is critical in plant acquisition of soil resources, plant growth, and yield formation. Many QTLs associated with RSA or root traits in maize have been identified using several bi-parental populations, particularly in response to various environmental factors. In the present study, a meta-analysis of QTLs associated with root traits was performed in maize using 917 QTLs retrieved from 43 mapping studies published from 1998 to 2020. A total of 631 QTLs were projected onto a consensus map involving 19,714 markers, which led to the prediction of 68 meta-QTLs (MQTLs). Among these 68 MQTLs, 36 MQTLs were validated with the marker-trait associations available from previous genome-wide association studies for root traits. The use of comparative genomics approaches revealed several gene models conserved among the maize, sorghum, and rice genomes. Among the conserved genomic regions, the ortho-MQTL analysis uncovered 20 maize MQTLs syntenic to 27 rice MQTLs for root traits. Functional analysis of some high-confidence MQTL regions revealed 442 gene models, which were then subjected to in silico expression analysis, yielding 235 gene models with significant expression in various tissues. Furthermore, 16 known genes viz., DXS2, PHT, RTP1, TUA4, YUC3, YUC6, RTCS1, NSA1, EIN2, NHX1, CPPS4, BIGE1, RCP1, SKUS13, YUC5, and AW330564 associated with various root traits were present within or near the MQTL regions. These results could aid in QTL cloning and pyramiding in developing new maize varieties with specific root architecture for proper plant growth and development under optimum and abiotic stress conditions.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Simran Goyal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Priti Sharma
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| | - Rumesh Ranjan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Surinder K. Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141001, India
| | - Ramesh Kumar
- Indian Institute of Maize Research, Ludhiana 141001, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141001, India
| |
Collapse
|
14
|
Kirschner GK. Embracing diversity: a genetic marker dataset with increased marker density facilitates association studies in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1107-1108. [PMID: 36920972 DOI: 10.1111/tpj.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
15
|
Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:97-108. [PMID: 36114820 PMCID: PMC9829394 DOI: 10.1111/pbi.13927] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 05/31/2023]
Abstract
The sodium cation (Na+ ) is the predominant cation with deleterious effects on crops in salt-affected agricultural areas. Salt tolerance of crop can be improved by increasing shoot Na+ exclusion. Therefore, it is crucial to identify and use genetic variants of various crops that promote shoot Na+ exclusion. Here, we show that a HKT1 family gene ZmNC3 (Zea mays L. Na+ Content 3; designated ZmHKT1;2) confers natural variability in shoot-Na+ accumulation and salt tolerance in maize. ZmHKT1;2 encodes a Na+ -preferential transporter localized in the plasma membrane, which mediates shoot Na+ exclusion, likely by withdrawing Na+ from the root xylem flow. A naturally occurring nonsynonymous SNP (SNP947-G) increases the Na+ transport activity of ZmHKT1;2, promoting shoot Na+ exclusion and salt tolerance in maize. SNP947-G first occurred in the wild grass teosinte (at a allele frequency of 43%) and has become a minor allele in the maize population (allele frequency 6.1%), suggesting that SNP947-G is derived from teosinte and that the genomic region flanking SNP947 likely has undergone selection during domestication or post-domestication dispersal of maize. Moreover, we demonstrate that introgression of the SNP947-G ZmHKT1;2 allele into elite maize germplasms reduces shoot Na+ content by up to 80% and promotes salt tolerance. Taken together, ZmNC3/ZmHKT1;2 was identified as an important QTL promoting shoot Na+ exclusion, and its favourable allele provides an effective tool for developing salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yidan Li
- Agro‐Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchunChina
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weibin Song
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
16
|
Cagirici HB, Andorf CM, Sen TZ. Co-expression pan-network reveals genes involved in complex traits within maize pan-genome. BMC PLANT BIOLOGY 2022; 22:595. [PMID: 36529716 PMCID: PMC9762053 DOI: 10.1186/s12870-022-03985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND With the advances in the high throughput next generation sequencing technologies, genome-wide association studies (GWAS) have identified a large set of variants associated with complex phenotypic traits at a very fine scale. Despite the progress in GWAS, identification of genotype-phenotype relationship remains challenging in maize due to its nature with dozens of variants controlling the same trait. As the causal variations results in the change in expression, gene expression analyses carry a pivotal role in unraveling the transcriptional regulatory mechanisms behind the phenotypes. RESULTS To address these challenges, we incorporated the gene expression and GWAS-driven traits to extend the knowledge of genotype-phenotype relationships and transcriptional regulatory mechanisms behind the phenotypes. We constructed a large collection of gene co-expression networks and identified more than 2 million co-expressing gene pairs in the GWAS-driven pan-network which contains all the gene-pairs in individual genomes of the nested association mapping (NAM) population. We defined four sub-categories for the pan-network: (1) core-network contains the highest represented ~ 1% of the gene-pairs, (2) near-core network contains the next highest represented 1-5% of the gene-pairs, (3) private-network contains ~ 50% of the gene pairs that are unique to individual genomes, and (4) the dispensable-network contains the remaining 50-95% of the gene-pairs in the maize pan-genome. Strikingly, the private-network contained almost all the genes in the pan-network but lacked half of the interactions. We performed gene ontology (GO) enrichment analysis for the pan-, core-, and private- networks and compared the contributions of variants overlapping with genes and promoters to the GWAS-driven pan-network. CONCLUSIONS Gene co-expression networks revealed meaningful information about groups of co-regulated genes that play a central role in regulatory processes. Pan-network approach enabled us to visualize the global view of the gene regulatory network for the studied system that could not be well inferred by the core-network alone.
Collapse
Affiliation(s)
- H Busra Cagirici
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA
| | - Carson M Andorf
- US Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| | - Taner Z Sen
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA.
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
17
|
Goldshmidt A, Ziegler T, Zhou D, Brower‐Toland B, Preuss S, Slewinski T. Tuning of meristem maturation rate increases yield in multiple Triticum aestivum cultivars. PLANT DIRECT 2022; 6:e459. [PMID: 36447652 PMCID: PMC9694431 DOI: 10.1002/pld3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/02/2020] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Breeding programs aim to improve crop yield and environmental stability for enhanced food security. The principal methodology in breeding for stable yield gain relies on the indirect selection of beneficial genetics by yield evaluation across diverse environmental conditions. This methodology requires substantial resources while delivering a slow pace of yield gain and environmental adaptation. Alternative methods are required to accelerate gain and adaptation, becoming even more imperative in a changing climate. New molecular tools and approaches can enable accelerated creation and deployment of multiple alleles of genes identified to control key traits. With the advent of tools that enable breeding by targeted allelic selection, identifying gene targets associated with an improved crop performance ideotype will become crucial. Previous studies have shown that altered photoperiod regimes increase yield in wheat (Triticum aestivum). In the current study, we have employed such treatments to study the resulting yield ideotype in five spring wheat cultivars. We found that the photoperiod treatment creates a yield ideotype arising from delayed spike establishment rates that are accompanied by increased early shoot expression of TARGET OF EAT1 (TaTOE1) genes. Genes identified in this way could be used for ideotype-based improve crop performance through targeted allele creation and selection in relevant environments.
Collapse
Affiliation(s)
- Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMissouriUSA
- Present address:
The Volcani Agriculture InstituteRishon LeZionIsrael
| | | | | | | | | | | |
Collapse
|
18
|
Draves MA, Muench RL, Lang MG, Kelley DR. Maize Seedling Growth and Hormone Response Assays Using the Rolled Towel Method. Curr Protoc 2022; 2:e562. [PMID: 36194012 PMCID: PMC11648833 DOI: 10.1002/cpz1.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Root system architecture is a critical factor in maize health and stress resilience. Determining the genetic and environmental factors that shape maize root system architecture is an active research area. However, the ability to phenotype juvenile root systems is hindered by the use of field-grown and soil-based systems. An alternative to soil- and field-based growing conditions for maize seedlings is a controlled environment with a soil-free medium, which can facilitate root system phenotyping. Here, we describe how to grow maize under soil-free conditions for up to 12 days to facilitate root phenotyping. Maize seeds are sterilized and planted on specialized seed germination paper to minimize fungal contamination and ensure synchronized seedling growth, followed by imaging at the desired time point. The root images are then analyzed to quantify traits of interest, such as primary root length, lateral root density, seminal root length, and seminal root number. In addition, juvenile shoot traits can be quantified using manual annotation methods. We also outline the steps for performing rigorous hormone response assays for four classical phytohormones: auxin, brassinosteroid, cytokinin, and jasmonic acid. This protocol can be rapidly scaled up and is compatible with genetic screens and sample collection for downstream molecular analyses such as transcriptomics and proteomics. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Maize seedling rolled towel assay and phenotyping Basic Protocol 2: Maize seedling hormone response assays using the rolled towel assay.
Collapse
Affiliation(s)
- Melissa A. Draves
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Rebekah L. Muench
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| | - Michelle G. Lang
- Current address: Corteva Agriscience8325 NW 62nd AveJohnstonIowa
| | - Dior R. Kelley
- Department of Genetics, Development, and Cell BiologyIowa State UniversityAmesIowa
| |
Collapse
|
19
|
Zuffo LT, DeLima RO, Lübberstedt T. Combining datasets for maize root seedling traits increases the power of GWAS and genomic prediction accuracies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5460-5473. [PMID: 35608947 PMCID: PMC9467658 DOI: 10.1093/jxb/erac236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
The identification of genomic regions associated with root traits and the genomic prediction of untested genotypes can increase the rate of genetic gain in maize breeding programs targeting roots traits. Here, we combined two maize association panels with different genetic backgrounds to identify single nucleotide polymorphisms (SNPs) associated with root traits, and used a genome-wide association study (GWAS) and to assess the potential of genomic prediction for these traits in maize. For this, we evaluated 377 lines from the Ames panel and 302 from the Backcrossed Germplasm Enhancement of Maize (BGEM) panel in a combined panel of 679 lines. The lines were genotyped with 232 460 SNPs, and four root traits were collected from 14-day-old seedlings. We identified 30 SNPs significantly associated with root traits in the combined panel, whereas only two and six SNPs were detected in the Ames and BGEM panels, respectively. Those 38 SNPs were in linkage disequilibrium with 35 candidate genes. In addition, we found higher prediction accuracy in the combined panel than in the Ames or BGEM panel. We conclude that combining association panels appears to be a useful strategy to identify candidate genes associated with root traits in maize and improve the efficiency of genomic prediction.
Collapse
Affiliation(s)
- Leandro Tonello Zuffo
- Corteva Agriscience, Rio Verde, GO, Brazil
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
20
|
Li Q, Ren Y, Fu H, Li Z, Kong F, Yuan J. Cultivar differences in carbon and nitrogen accumulation, balance, and grain yield in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:992041. [PMID: 36161002 PMCID: PMC9502009 DOI: 10.3389/fpls.2022.992041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The balance of carbon (C) and nitrogen (N) metabolism influences plant growth and development as well as yield. A two-year field experiment was conducted in a hilly region in southwest China in 2019-2020 to investigate the correlation between the accumulation and balance of C and N, as well as the grain yield of maize cultivars with contrasting N efficiencies. Using Zhenghong 311 (ZH 311) and Xianyu 508 (XY 508) as research sources, the differences in C and N accumulation and balance in maize cultivars with contrasting N efficiencies were compared to analyze the correlation between the accumulation and balance of C and N with grain yield. According to the results, the ZH 311 cultivar had higher C and N accumulation in each stage and grain yield than the XY 508 cultivar, while the C/N ratio in each stage and organ was significantly lower in ZH 311 than in XY 508, with the greatest difference occurring in the silking stage and leaf, indicating that the N-efficient cultivar ZH 311 had evident advantages in accumulation and balance of C and N and grain yield than the N-inefficient cultivar XY 508. Moreover, the C and N accumulation and grain yield increased significantly with N application, while the C/N ratio in each stage and organ decreased significantly with N application, but the differences between ZH 311 and XY 508 increased first and then decreased with the increase of N level, the optimum N level when obtaining the highest grain yield of ZH 311 (273.21 kg ha-1) was significantly lower than that of XY 508 (355.88 kg ha-1). Furthermore, grain yield was positively correlated with C (R 2 = 0.9251) and N (R 2 = 0.9033) accumulation, affected by pre-anthesis N (R 2 = 0.9198) and post-anthesis C (R 2 = 0.8632) accumulation, and negatively correlated with the C/N ratio (R 2 = 0.7664), with the highest correlation between grain yield and the C/N ratio in silking stage (R 2 = 0.7984) and leaf (R 2 = 0.7616). In conclusion, the N-efficient cultivar ZH 311 could better coordinate the C and N balance of the plant, especially the C and N balance in the silking stage and leaf, promote photosynthetic product storage and transport, prolong the leaf function period, and make the pre-anthesis and post-anthesis C and N accumulation of ZH 311 significantly higher than those of XY 508, allowing higher grain yields.
Collapse
Affiliation(s)
- Qiang Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yun Ren
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hao Fu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhexin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Fanlei Kong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jichao Yuan
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
21
|
Mittelsten Scheid O. Mendelian and non-Mendelian genetics in model plants. THE PLANT CELL 2022; 34:2455-2461. [PMID: 35218351 PMCID: PMC9252483 DOI: 10.1093/plcell/koac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 05/13/2023]
Abstract
The "Mendelian Rules" of inheritance are cornerstones of genetics, described in Mendel's seminal publication from 1866. The experimental results and their interpretation have been discussed in numerous ways. This perspective emphasizes the contribution of Mendel's preparations prior to his crossing experiments to the discovery of Mendelian genetics. This thoughtful experimental design, and some fortune, avoided pitfalls that could have resulted in non-Mendelian inheritance.
Collapse
|
22
|
Hudson AI, Odell SG, Dubreuil P, Tixier MH, Praud S, Runcie DE, Ross-Ibarra J. Analysis of genotype-by-environment interactions in a maize mapping population. G3 (BETHESDA, MD.) 2022; 12:6520465. [PMID: 35134181 PMCID: PMC8895993 DOI: 10.1093/g3journal/jkac013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Genotype-by-environment interactions are a significant challenge for crop breeding as well as being important for understanding the genetic basis of environmental adaptation. In this study, we analyzed genotype-by-environment interactions in a maize multiparent advanced generation intercross population grown across 5 environments. We found that genotype-by-environment interactions contributed as much as genotypic effects to the variation in some agronomically important traits. To understand how genetic correlations between traits change across environments, we estimated the genetic variance–covariance matrix in each environment. Changes in genetic covariances between traits across environments were common, even among traits that show low genotype-by-environment variance. We also performed a genome-wide association study to identify markers associated with genotype-by-environment interactions but found only a small number of significantly associated markers, possibly due to the highly polygenic nature of genotype-by-environment interactions in this population.
Collapse
Affiliation(s)
- Asher I Hudson
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Corresponding author: Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95823, USA.
| | - Sarah G Odell
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Pierre Dubreuil
- Center of Research of Chappes, Limagrain, Chappes 63720, France
| | | | - Sebastien Praud
- Center of Research of Chappes, Limagrain, Chappes 63720, France
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Xu G, Zhang X, Chen W, Zhang R, Li Z, Wen W, Warburton ML, Li J, Li H, Yang X. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC PLANT BIOLOGY 2022; 22:72. [PMID: 35180846 PMCID: PMC8855575 DOI: 10.1186/s12870-022-03427-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Maize (Zea mays L. ssp. mays) was domesticated from teosinte (Zea mays ssp. parviglumis) about 9000 years ago in southwestern Mexico and adapted to a range of environments worldwide. Researchers have depicted the maize domestication and adaptation processes over the past two decades, but efforts have been limited either in sample size or genetic diversity. To better understand these processes, we conducted a genome-wide survey of 982 maize inbred lines and 190 teosinte accessions using over 40,000 single-nucleotide polymorphism markers. RESULTS Population structure, principal component analysis, and phylogenetic trees all confirmed the evolutionary relationship between maize and teosinte, and determined the evolutionary lineage of all species within teosinte. Shared haplotype analysis showed similar levels of ancestral alleles from Zea mays ssp. parviglumis and Zea mays ssp. mexicana in maize. Scans for selection signatures identified 394 domestication sweeps by comparing wild and cultivated maize and 360 adaptation sweeps by comparing tropical and temperate maize. Permutation tests revealed that the public association signals for flowering time were highly enriched in the domestication and adaptation sweeps. Genome-wide association study identified 125 loci significantly associated with flowering-time traits, ten of which identified candidate genes that have undergone selection during maize adaptation. CONCLUSIONS In this study, we characterized the history of maize domestication and adaptation at the population genomic level and identified hundreds of domestication and adaptation sweeps. This study extends the molecular mechanism of maize domestication and adaptation, and provides resources for basic research and genetic improvement in maize.
Collapse
Affiliation(s)
- Gen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenkang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Renyu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhi Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marilyn L Warburton
- United States of Department of Agriculture, Agricultural Research Service, Corn Host Plant Resistance Research Unit, Box 9555, Mississippi, MS, 39762, USA
| | - Jiansheng Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, MOA Key Laboratory of Maize Biology, China Agricultural University, Beijing, 100193, China.
- Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Chen Z, Sun J, Li D, Li P, He K, Ali F, Mi G, Chen F, Yuan L, Pan Q. Plasticity of root anatomy during domestication of a maize-teosinte derived population. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:139-153. [PMID: 34487165 DOI: 10.1093/jxb/erab406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) has undergone profound changes in root anatomy for environmental adaptation during domestication. However, the genetic mechanism of plasticity of maize root anatomy during the domestication process remains unclear. In this study, high-resolution mapping was performed for nine root anatomical traits using a maize-teosinte population (mexicana × Mo17) across three environments. Large genetic variations were detected for different root anatomical traits. The cortex, stele, aerenchyma areas, xylem vessel number, and cortical cell number had large variations across three environments, indicating high plasticity. Sixteen quantitative trait loci (QTL) were identified, including seven QTL with QTL × environment interaction (EIQTL) for high plasticity traits and nine QTL without QTL × environment interaction (SQTL). Most of the root loci were consistent with shoot QTL depicting domestication signals. Combining transcriptome and genome-wide association studies revealed that AUXIN EFFLUX CARRIER PIN-FORMED LIKE 4 (ZmPILS4) serves as a candidate gene underlying a major QTL of xylem traits. The near-isogenic lines (NILs) with lower expression of ZmPILS4 had 18-24% more auxin concentration in the root tips and 8-15% more xylem vessels. Nucleotide diversity values analysis in the promoter region suggested that ZmPILS4 was involved in maize domestication and adaptation. These results revealed the potential genetic basis of root anatomical plasticity during domestication.
Collapse
Affiliation(s)
- Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Junli Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225000, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Lafuente E, Lürig MD, Rövekamp M, Matthews B, Buser C, Vorburger C, Räsänen K. Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Interactions between organisms and their environments are central to how biological diversity arises and how natural populations and ecosystems respond to environmental change. These interactions involve processes by which phenotypes are affected by or respond to external conditions (e.g., via phenotypic plasticity or natural selection) as well as processes by which organisms reciprocally interact with the environment (e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly dynamic and operate on different hierarchical levels, from genes and phenotypes to populations, communities, and ecosystems. Therefore, the study of organism-environment interactions requires integrative approaches and model systems that are suitable for studies across different hierarchical levels. Here, we introduce the freshwater isopod Asellus aquaticus, a keystone species and an emerging invertebrate model system, as a prime candidate to address fundamental questions in ecology and evolution, and the interfaces therein. We review relevant fields of research that have used A. aquaticus and draft a set of specific scientific questions that can be answered using this species. Specifically, we propose that studies on A. aquaticus can help understanding (i) the influence of host-microbiome interactions on organismal and ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and (iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.
Collapse
|
26
|
Calfee E, Gates D, Lorant A, Perkins MT, Coop G, Ross-Ibarra J. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genet 2021; 17:e1009810. [PMID: 34634032 PMCID: PMC8530355 DOI: 10.1371/journal.pgen.1009810] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
While often deleterious, hybridization can also be a key source of genetic variation and pre-adapted haplotypes, enabling rapid evolution and niche expansion. Here we evaluate these opposing selection forces on introgressed ancestry between maize (Zea mays ssp. mays) and its wild teosinte relative, mexicana (Zea mays ssp. mexicana). Introgression from ecologically diverse teosinte may have facilitated maize's global range expansion, in particular to challenging high elevation regions (> 1500 m). We generated low-coverage genome sequencing data for 348 maize and mexicana individuals to evaluate patterns of introgression in 14 sympatric population pairs, spanning the elevational range of mexicana, a teosinte endemic to the mountains of Mexico. While recent hybrids are commonly observed in sympatric populations and mexicana demonstrates fine-scale local adaptation, we find that the majority of mexicana ancestry tracts introgressed into maize over 1000 generations ago. This mexicana ancestry seems to have maintained much of its diversity and likely came from a common ancestral source, rather than contemporary sympatric populations, resulting in relatively low FST between mexicana ancestry tracts sampled from geographically distant maize populations. Introgressed mexicana ancestry in maize is reduced in lower-recombination rate quintiles of the genome and around domestication genes, consistent with pervasive selection against introgression. However, we also find mexicana ancestry increases across the sampled elevational gradient and that high introgression peaks are most commonly shared among high-elevation maize populations, consistent with introgression from mexicana facilitating adaptation to the highland environment. In the other direction, we find patterns consistent with adaptive and clinal introgression of maize ancestry into sympatric mexicana at many loci across the genome, suggesting that maize also contributes to adaptation in mexicana, especially at the lower end of its elevational range. In sympatric maize, in addition to high introgression regions we find many genomic regions where selection for local adaptation maintains steep gradients in introgressed mexicana ancestry across elevation, including at least two inversions: the well-characterized 14 Mb Inv4m on chromosome 4 and a novel 3 Mb inversion Inv9f surrounding the macrohairless1 locus on chromosome 9. Most outlier loci with high mexicana introgression show no signals of sweeps or local sourcing from sympatric populations and so likely represent ancestral introgression sorted by selection, resulting in correlated but distinct outcomes of introgression in different contemporary maize populations.
Collapse
Affiliation(s)
- Erin Calfee
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Daniel Gates
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - M. Taylor Perkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
27
|
Schweizer G, Haider MB, Barroso GV, Rössel N, Münch K, Kahmann R, Dutheil JY. Population Genomics of the Maize Pathogen Ustilago maydis: Demographic History and Role of Virulence Clusters in Adaptation. Genome Biol Evol 2021; 13:evab073. [PMID: 33837781 PMCID: PMC8120014 DOI: 10.1093/gbe/evab073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/14/2022] Open
Abstract
The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen. We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.
Collapse
Affiliation(s)
- Gabriel Schweizer
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Muhammad Bilal Haider
- Max-Planck-Institute for Evolutionary Biology, Research Group Molecular Systems Evolution, Plön, Germany
| | - Gustavo V Barroso
- Max-Planck-Institute for Evolutionary Biology, Research Group Molecular Systems Evolution, Plön, Germany
| | - Nicole Rössel
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Karin Münch
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julien Y Dutheil
- Department of Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institute for Evolutionary Biology, Research Group Molecular Systems Evolution, Plön, Germany
- Institute of Evolutionary Sciences of Montpellier, University of Montpellier 2, France
| |
Collapse
|
28
|
Tian L, Ku L, Yuan Z, Wang C, Su H, Wang S, Song X, Dou D, Ren Z, Lai J, Liu T, Du C, Chen Y. Large-scale reconstruction of chromatin structures of maize temperate and tropical inbred lines. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3582-3596. [PMID: 33677565 DOI: 10.1093/jxb/erab087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Maize is a model plant species often used for genetics and genomics research because of its genetic diversity. There are prominent morphological, genetic, and epigenetic variations between tropical and temperate maize lines. However, the genome-wide chromatin conformations of these two maize types remain unexplored. We applied a Hi-C approach to compare the genome-wide chromatin interactions between temperate inbred line D132 and tropical line CML288. A reconstructed maize three-dimensional genome model revealed the spatial segregation of the global A and B compartments. The A compartments contain enriched genes and active epigenome marks, whereas the B compartments are gene-poor, transcriptionally silent chromatin regions. Whole-genome analyses indicated that the global A compartment content of CML288 was 3.12% lower than that of D132. Additionally, global and A/B sub-compartments were associated with differential gene expression and epigenetic changes between two inbred lines. About 25.3% of topologically associating domains (TADs) were determined to be associated with complex domain-level modifications that induced transcriptional changes, indicative of a large-scale reorganization of chromatin structures between the inbred maize lines. Furthermore, differences in chromatin interactions between the two lines correlated with epigenetic changes. These findings provide a solid foundation for the wider plant community to further investigate the genome-wide chromatin structures in other plant species.
Collapse
Affiliation(s)
- Lei Tian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
- Henan Institute of Science and Technology for Development, Zhengzhou, China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zan Yuan
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Cuiling Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Shunxi Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Xiaoheng Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Dandan Dou
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Tao Liu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | - Yanhui Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
29
|
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. NATURE PLANTS 2021; 7:481-499. [PMID: 33833418 DOI: 10.1038/s41477-021-00897-y] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 05/06/2023]
Abstract
Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Peng Yu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Xiaoming He
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marcel Baer
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture Fisheries and Food, Merelbeke, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yudelsy A T Moya
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xuechen Zhang
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
| | - Marion Deichmann
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Felix P Frey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Verena Bresgen
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Frank Hochholdinger
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| |
Collapse
|
30
|
Bonkowski M, Tarkka M, Razavi BS, Schmidt H, Blagodatskaya E, Koller R, Yu P, Knief C, Hochholdinger F, Vetterlein D. Spatiotemporal Dynamics of Maize ( Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Front Microbiol 2021; 12:619499. [PMID: 33815308 PMCID: PMC8010349 DOI: 10.3389/fmicb.2021.619499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots – their “microbiome.” Microbiome assembly is considered as a key process in the self-organization of root systems. A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Using maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.
Collapse
Affiliation(s)
- Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
31
|
Liu X, Van Acker R, Voorend W, Pallidis A, Goeminne G, Pollier J, Morreel K, Kim H, Muylle H, Bosio M, Ralph J, Vanholme R, Boerjan W. Rewired phenolic metabolism and improved saccharification efficiency of a Zea mays cinnamyl alcohol dehydrogenase 2 (zmcad2) mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1240-1257. [PMID: 33258151 DOI: 10.1111/tpj.15108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass is an abundant byproduct from cereal crops that can potentially be valorized as a feedstock to produce biomaterials. Zea mays CINNAMYL ALCOHOL DEHYDROGENASE 2 (ZmCAD2) is involved in lignification, and is a promising target to improve the cellulose-to-glucose conversion of maize stover. Here, we analyzed a field-grown zmcad2 Mutator transposon insertional mutant. Zmcad2 mutant plants had an 18% lower Klason lignin content, whereas their cellulose content was similar to that of control lines. The lignin in zmcad2 mutants contained increased levels of hydroxycinnamaldehydes, i.e. the substrates of ZmCAD2, ferulic acid and tricin. Ferulates decorating hemicelluloses were not altered. Phenolic profiling further revealed that hydroxycinnamaldehydes are partly converted into (dihydro)ferulic acid and sinapic acid and their derivatives in zmcad2 mutants. Syringyl lactic acid hexoside, a metabolic sink in CAD-deficient dicot trees, appeared not to be a sink in zmcad2 maize. The enzymatic cellulose-to-glucose conversion efficiency was determined after 10 different thermochemical pre-treatments. Zmcad2 yielded significantly higher conversions compared with controls for almost every pre-treatment. However, the relative increase in glucose yields after alkaline pre-treatment was not higher than the relative increase when no pre-treatment was applied, suggesting that the positive effect of the incorporation of hydroxycinnamaldehydes was leveled off by the negative effect of reduced p-coumarate levels in the cell wall. Taken together, our results reveal how phenolic metabolism is affected in CAD-deficient maize, and further support mutating CAD genes in cereal crops as a promising strategy to improve lignocellulosic biomass for sugar-platform biorefineries.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rebecca Van Acker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wannes Voorend
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas Pallidis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Hilde Muylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin, 53726, USA
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
32
|
Wu M, Goldshmidt A, Ovadya D, Larue H. I am all ears: Maximize maize doubled haploid success by promoting axillary branch elongation. PLANT DIRECT 2020; 4:e00226. [PMID: 32426692 PMCID: PMC7227119 DOI: 10.1002/pld3.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The maize doubled haploid (DH) technology plays an important role in accelerating breeding genetic gain. One major challenge in fully leveraging the potential of DH technology to accelerate genetic gain is obtaining a consistent seed return from haploid (DH0) plants after chromosome doubling. Here we demonstrated that DH0 seed production can be increased by increasing the number of mature axillary female inflorescences (ears) at anthesis. To determine the maximum capacity of a maize plant to develop ears, we first characterized the developmental progression of every axillary meristem. We found that all axillary meristems developed to a similar developmental stage before the reproductive transition of the shoot apical meristem (SAM). Upon reproductive transition of the SAM, all axillary meristems are released for reproductive development into ears in a developmental gradient reflective on their positions along the main stem. However, under most circumstances only the top one or two ears can generate silks at anthesis. We found that applying the GA inhibitor paclobutrazol (PAC) during the early reproductive transition of axillary meristems increased the number of silking ears at anthesis, leading to increased success of self-pollination and seed production. These results provide a blueprint to improve DH efficiency and demonstrate the potential of breeding innovation through understanding crops' developmental processes.
Collapse
Affiliation(s)
| | - Alexander Goldshmidt
- Bayer U.S. ‐ Crop ScienceChesterfieldMOUSA
- Present address:
Department of Field Crops ScienceInstitute of Plant ScienceAgricultural Research OrganizationThe Volcani CenterRishon LezionIsrael
| | | | | |
Collapse
|
33
|
Frey FP, Pitz M, Schön CC, Hochholdinger F. Transcriptomic diversity in seedling roots of European flint maize in response to cold. BMC Genomics 2020; 21:300. [PMID: 32293268 PMCID: PMC7158136 DOI: 10.1186/s12864-020-6682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Low temperatures decrease the capacity for biomass production and lead to growth retardation up to irreversible cellular damage in modern maize cultivars. European flint landraces are an untapped genetic resource for genes and alleles conferring cold tolerance which they acquired during their adaptation to the agroecological conditions in Europe. RESULTS Based on a phenotyping experiment of 276 doubled haploid lines derived from the European flint landrace "Petkuser Ferdinand Rot" diverging for cold tolerance, we selected 21 of these lines for an RNA-seq experiment. The different genotypes showed highly variable transcriptomic responses to cold. We identified 148, 3254 and 563 genes differentially expressed with respect to cold treatment, cold tolerance and growth rate at cold, respectively. Gene ontology (GO) term enrichment demonstrated that the detoxification of reactive oxygen species is associated with cold tolerance, whereas amino acids might play a crucial role as antioxidant precursors and signaling molecules. CONCLUSION Doubled haploids representing a European maize flint landrace display genotype-specific transcriptome patterns associated with cold response, cold tolerance and seedling growth rate at cold. Identification of cold regulated genes in European flint germplasm, could be a starting point for introgressing such alleles in modern breeding material for maize improvement.
Collapse
Affiliation(s)
- Felix P. Frey
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Marion Pitz
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Chris-Carolin Schön
- Department of Plant Breeding, Technische Universität München, Freising, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, Thierry A, Coton E, Le Piver M, Roueyre D, Ropars J, Branca A, Giraud T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol 2020; 29:2639-2660. [PMID: 31960565 PMCID: PMC7497015 DOI: 10.1111/mec.15359] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre‐industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation. see also the Perspective by Brigida Gallone, Jan Steensels and Kevin J. Verstrepen.
Collapse
Affiliation(s)
- Emilie Dumas
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, The Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent, Belgium
| | - Alice Feurtey
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Anne Thierry
- Science et Technologie du Lait et de l'Œuf (STLO), UMR1253, Agrocampus Ouest, INRAE, Rennes, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Jeanne Ropars
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
35
|
Steenackers W, El Houari I, Baekelandt A, Witvrouw K, Dhondt S, Leroux O, Gonzalez N, Corneillie S, Cesarino I, Inzé D, Boerjan W, Vanholme B. cis-Cinnamic acid is a natural plant growth-promoting compound. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6293-6304. [PMID: 31504728 PMCID: PMC6859716 DOI: 10.1093/jxb/erz392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Agrochemicals provide vast potential to improve plant productivity, because they are easy to implement at low cost while not being restricted by species barriers as compared with breeding strategies. Despite the general interest, only a few compounds with growth-promoting activity have been described so far. Here, we add cis-cinnamic acid (c-CA) to the small portfolio of existing plant growth stimulators. When applied at low micromolar concentrations to Arabidopsis roots, c-CA stimulates both cell division and cell expansion in leaves. Our data support a model explaining the increase in shoot biomass as the consequence of a larger root system, which allows the plant to explore larger areas for resources. The requirement of the cis-configuration for the growth-promoting activity of CA was validated by implementing stable structural analogs of both cis- and trans-CA in this study. In a complementary approach, we used specific light conditions to prevent cis/trans-isomerization of CA during the experiment. In both cases, the cis-form stimulated plant growth, whereas the trans-form was inactive. Based on these data, we conclude that c-CA is an appealing lead compound representing a novel class of growth-promoting agrochemicals. Unraveling the underlying molecular mechanism could lead to the development of innovative strategies for boosting plant biomass.
Collapse
Affiliation(s)
- Ward Steenackers
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Klaas Witvrouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Stijn Dhondt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | | | - Nathalie Gonzalez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Sander Corneillie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Igor Cesarino
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| | - Bartel Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Gent, Belgium
| |
Collapse
|
36
|
Cao Y, Liang X, Yin P, Zhang M, Jiang C. A domestication-associated reduction in K + -preferring HKT transporter activity underlies maize shoot K + accumulation and salt tolerance. THE NEW PHYTOLOGIST 2019; 222:301-317. [PMID: 30461018 DOI: 10.1111/nph.15605] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/10/2018] [Indexed: 05/26/2023]
Abstract
Maize was domesticated from Balsas teosinte c. 10 000 yr ago. Previous studies have suggested that increased tolerance to environmental stress occurred during maize domestication. However, the underlying genetic basis remains largely unknown. We used a maize (W22)-teosinte recombinant inbred line (RIL) to investigate the salt wild-type tolerance aspects of maize domestication. We revealed that ZmHKT2 is a major QTL that regulates K+ homeostasis in saline soils. ZmHKT2 encodes a K+ -preferring HKT family transporter and probably reduces shoot K+ content by removing K+ ions from root-to-shoot flowing xylem sap, ZmHKT2 deficiency increases xylem sap and shoot K+ concentrations, and increases salt tolerance. A coding sequence polymorphism in the ZmHKT2W22 allele (SNP389-G) confers an amino acid variant ZmHKT2 that increases xylem sap K+ concentration, thereby increasing shoot K+ content and salt tolerance. Additional analyses showed that SNP389-G first existed in teosinte (allele frequency 56% in assayed accessions), then swept through the maize population (allele frequency 98%), and that SNP389-G probably underwent positive selection during maize domestication. We conclude that a domestication-associated reduction in K+ transport activity in ZmHKT2 underlies maize shoot K+ content and salt tolerance, and propose that CRISPR-based editing of ZmHKT2 might provide a feasible strategy for improving maize salt tolerance.
Collapse
Affiliation(s)
- Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Pan Yin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
37
|
Pang J, Fu J, Zong N, Wang J, Song D, Zhang X, He C, Fang T, Zhang H, Fan Y, Wang G, Zhao J. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:19-32. [PMID: 30548709 PMCID: PMC6850110 DOI: 10.1111/tpj.14193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 11/16/2018] [Indexed: 05/21/2023]
Abstract
In maize, kernel traits strongly impact overall grain yields, and it is known that sophisticated spatiotemporal programs of gene expression coordinate kernel development, so advancing our knowledge of kernel development can help efforts to improve grain yields. Here, using phenotype, genotype and transcriptomics data of maize kernels at 5 and 15 days after pollination (DAP) for a large association mapping panel, we employed multiple quantitative genetics approaches-genome-wide association studies (GWAS) as well as expression quantitative trait loci (eQTL) and quantitative trait transcript (QTT) analyses-to gain insights about molecular genetic basis of kernel development in maize. This resulted in the identification of 137 putative kernel length-related genes at 5 DAP, of which 43 are located in previously reported QTL regions. Strikingly, we identified an eQTL that overlaps the locus encoding a maize homolog of the recently described m6 A methylation reader protein ECT2 from Arabidopsis; this putative epi eQTL is associated with 53 genes and may represent a master epi-transcriptomic regulator of kernel development. Notably, among the genes associated with this epi eQTL, 10 are for the main storage proteins in the maize endosperm (zeins) and two are known regulators of zein expression or endosperm development (Opaque2 and ZmICE1). Collectively, beyond cataloging and characterizing genomic attributes of a large number of eQTL associated with kernel development in maize, our study highlights how an eQTL approach can bolster the impact of both GWAS and QTT studies and can drive insights about the basic biology of plants.
Collapse
Affiliation(s)
- Junling Pang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Junjie Fu
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Na Zong
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Jing Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Dandan Song
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Xia Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Cheng He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Ting Fang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Hongwei Zhang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Yunliu Fan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Guoying Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081China
| | - Jun Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
38
|
Nogueira L, Costa EN, Di Bello MM, Diniz JFS, Ribeiro ZA, Boiça Júnior AL. Oviposition Preference and Antibiosis to Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazilian Maize Landraces. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:939-947. [PMID: 30561669 DOI: 10.1093/jee/toy388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 06/09/2023]
Abstract
Spodoptera frugiperda (J.E. Smith) is a major pest of maize [Zea mays L. (Poales: Poaceae)] in tropical and subtropical regions. We aimed to evaluate the oviposition preference, growth, and survival of S. frugiperda on maize landraces and assess the nutritional quality of the leaves of different Brazilian maize landraces through evaluation of consumption indices. The oviposition preference was assayed using free and no-choice tests, and antibiosis by evaluating insect growth parameters, including weight, development time, survival in different stages of the life cycle, and nutritional indices. Landrace Pérola and cultivar BRS-Caatingueiro were the least preferred for S. frugiperda oviposition. Larvae fed with landrace Pérola consumed a lower amount of leaves and showed longer development time and lower survival until the end of the pupal stage. Larvae fed with the leaves of landrace Pérola and cultivar BRS-Caatingueiro displayed the lowest nutritional indices. Overall, Pérola was the most promising source of resistance to S. frugiperda. Identification of resistance in maize landraces may support breeding programs aimed at developing cultivars and hybrids resistant to S. frugiperda and other agricultural pests and inform growers regarding resistance of their landraces for integrated pest management.
Collapse
Affiliation(s)
- Luciano Nogueira
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Fitossanidade, Universidade Estadual Paulista (UNESP), via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, Brazil
| | - Eduardo Neves Costa
- Faculdade de Ciências Agrárias, Departamento de Agronomia, Universidade Federal da Grande Dourados (UFGD), Rodovia Dourados-Itahum, Km 12-Cidade Universitária, Dourados, Mato Grosso do Sul, Brazil
| | - Mirella Marconato Di Bello
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Fitossanidade, Universidade Estadual Paulista (UNESP), via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, Brazil
| | - Juno Ferreira Silva Diniz
- Departamento de Fitotecnia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, Minas Gerais, Brazil
| | - Zulene Antônio Ribeiro
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Fitossanidade, Universidade Estadual Paulista (UNESP), via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, Brazil
| | - Arlindo Leal Boiça Júnior
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Fitossanidade, Universidade Estadual Paulista (UNESP), via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
39
|
Aslam MM, Rehman S, Khatoon A, Jamil M, Yamaguchi H, Hitachi K, Tsuchida K, Li X, Sunohara Y, Matsumoto H, Komatsu S. Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution. Int J Mol Sci 2019; 20:E1319. [PMID: 30875914 PMCID: PMC6471572 DOI: 10.3390/ijms20061319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Plant-derived smoke has effects on plant growth. To find the molecular mechanism of plant-derived smoke on maize, a gel-free/label-free proteomic technique was used. The length of root and shoot were increased in maize by plant-derived smoke. Proteomic analysis revealed that 2000 ppm plant-derived smoke changed the abundance of 69 proteins in 4-days old maize shoot. Proteins in cytoplasm, chloroplast, and cell membrane were altered by plant-derived smoke. Catalytic, signaling, and nucleotide binding proteins were changed. Proteins related to sucrose synthase, nucleotides, signaling, and glutathione were significantly increased; however, cell wall, lipids, photosynthetic, and amino acid degradations related proteins were decreased. Based on proteomic and immunoblot analyses, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was decreased; however, RuBisCO activase was not changed by plant-derived smoke in maize shoot. Ascorbate peroxidase was not affected; however, peroxiredoxin was decreased by plant-derived smoke. Furthermore, the results from enzyme-activity and mRNA-expression analyses confirmed regulation of ascorbate peroxidase and the peroxiredoxinin reactive oxygen scavenging system. These results suggest that increases in sucrose synthase, nucleotides, signaling, and glutathione related proteins combined with regulation of reactive oxygen species and their scavenging system in response to plant-derived smoke may improve maize growth.
Collapse
Affiliation(s)
- Muhammad Mudasar Aslam
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Shafiq Rehman
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Amana Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Xinyue Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
40
|
Abstract
Crop domestication is a well-established system for understanding evolution. We interrogated the genetic architecture of maize domestication from a quantitative genetics perspective. We analyzed domestication-related traits in a maize landrace and a population of its ancestor, teosinte. We observed strong divergence in the underlying genetic architecture including change in the genetic correlations among traits. Despite striking divergence, selection intensities were low for all traits, indicating that selection under domestication can be weaker than natural selection. Analyses suggest total grain weight per plant was not improved and that genetic correlations placed considerable constraint on selection. We hope our results will motivate crop evolutionists to perform similar work in other crops. The process of evolution under domestication has been studied using phylogenetics, population genetics–genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance–covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.
Collapse
|
41
|
Boden SA, Østergaard L. How can developmental biology help feed a growing population? Development 2019; 146:146/3/dev172965. [PMID: 30709913 DOI: 10.1242/dev.172965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Agriculture is challenged globally from a variety of fronts, including a steady increase in world population, changes in climate and a requirement to reduce fertiliser inputs. In the production of crops that are able to overcome these challenges, developmental biology can play a crucial role. The process of domesticating wild progenitors into edible crops is closely linked to modification of developmental processes, and the steps that are needed to face the current challenges will equally require developmental modifications. In this Spotlight, we describe the achievements by developmental biologists in identifying the genes responsible for domestication of some of the most important crops, and highlight that developmental biology is in a unique position to remain centre stage in improving crop performance to meet current and future demands. We propose that the explosive technological advances in sequencing, genome editing and advanced data processing provide an excellent opportunity for researchers to combine scientific disciplines and realise the continued potential of plants as the primary food source for generations to come.
Collapse
Affiliation(s)
- Scott A Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
42
|
Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X, Ma KY, Wang X, Lin W, Wang L, Zhu X, Zhang C, Zhang J, Jin S, Yu K, Kong J, Xu P, Chen J, Zhang H, Sorgeloos P, Sagi A, Alcivar-Warren A, Liu Z, Wang L, Ruan J, Chu KH, Liu B, Li F, Xiang J. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun 2019; 10:356. [PMID: 30664654 PMCID: PMC6341167 DOI: 10.1038/s41467-018-08197-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
Crustacea, the subphylum of Arthropoda which dominates the aquatic environment, is of major importance in ecology and fisheries. Here we report the genome sequence of the Pacific white shrimp Litopenaeus vannamei, covering ~1.66 Gb (scaffold N50 605.56 Kb) with 25,596 protein-coding genes and a high proportion of simple sequence repeats (>23.93%). The expansion of genes related to vision and locomotion is probably central to its benthic adaptation. Frequent molting of the shrimp may be explained by an intensified ecdysone signal pathway through gene expansion and positive selection. As an important aquaculture organism, L. vannamei has been subjected to high selection pressure during the past 30 years of breeding, and this has had a considerable impact on its genome. Decoding the L. vannamei genome not only provides an insight into the genetic underpinnings of specific biological processes, but also provides valuable information for enhancing crustacean aquaculture. The Pacific white shrimp Litopenaeus vannamei is an important aquaculture species and a promising model for crustacean biology. Here, the authors provide a reference genome assembly, and show that gene expansion is involved in the regulation of frequent molting as well as benthic adaptation of the shrimp.
Collapse
Affiliation(s)
- Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yamin Sun
- Tianjin Biochip Corporation, Tianjin, 300457, China
| | - Shihao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yi Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Quanchao Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xinjia Lv
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ka Yan Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong SAR
| | - Xiaobo Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenchao Lin
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Long Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xueli Zhu
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chengsong Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiquan Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Songjun Jin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kuijie Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Peng Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jack Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hongbin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Patrick Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, Gent, 9000, Belgium
| | - Amir Sagi
- Department of Life Sciences and the National Institute for Biotechnology, Negev Ben Gurion University, Beer Sheva, 84105, Israel
| | | | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong SAR.
| | - Bin Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
43
|
Costa EN, Nogueira L, de Souza BHS, Ribeiro ZA, Louvandini H, Zukoff SN, Júnior ALB. Characterization of Antibiosis to Diabrotica speciosa (Coleoptera: Chrysomelidae) in Brazilian Maize Landraces. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:454-462. [PMID: 29340603 DOI: 10.1093/jee/tox350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Resistance to insect pests can be found in several native, landrace plants and can be an important alternative to conventional control methods. Diabrotica speciosa (Germar) (Coleoptera: Chrysomelidae) larvae are important maize (Zea mays L.) (Cyperales: Poaceae) root pests and finding native resistance in landraces would greatly contribute to maize-breeding programs aimed at controlling this pest. This study investigated whether the growth, survival, oviposition rhythm, fecundity, and fertility of D. speciosa are negatively influenced by specific maize landraces, and the existence of any morphological barriers in the roots that may correlate with plant resistance to the larval attack. Nineteen genotypes (17 landraces and 2 cultivars) were screened for antibiosis in assays that were conducted in the laboratory using seedling maize plants where the development time, longevity, weight, total survival, and sex ratio of adults were evaluated. Out of nineteen genotypes, eight were selected according to their resistance levels for an additional rearing study evaluating oviposition and fecundity. Landrace Pérola and cultivar SCS 154-Fortuna were classified as resistant because they increased the maturation period from larva to adult and decreased survivorship; and the landrace Palha Roxa was also classified as resistant for showing a lower fertility rate than other landraces. Resistant landraces that were infested by D. speciosa larvae showed greater amounts of some morphological barriers comparing with uninfested plants. The landraces classified as resistant may be considered in future plant-breeding programs, aiming to develop resistant maize cultivars to D. speciosa larval attack.
Collapse
Affiliation(s)
- Eduardo Neves Costa
- Departamento de Fitossanidade, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
- Departamento de Agronomia, Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Luciano Nogueira
- Departamento de Fitossanidade, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | | | - Zulene Antônio Ribeiro
- Departamento de Fitossanidade, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Helder Louvandini
- Centro de Energia Nuclear na Agricultura-CENA/USP, Laboratório de Nutrição Animal, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Sarah Natalie Zukoff
- Southwest Research and Extension Center, Kansas State University, Garden City, KS
| | - Arlindo Leal Boiça Júnior
- Departamento de Fitossanidade, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
44
|
Manchanda N, Snodgrass SJ, Ross-Ibarra J, Hufford MB. Evolution and Adaptation in the Maize Genome. COMPENDIUM OF PLANT GENOMES 2018. [DOI: 10.1007/978-3-319-97427-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
45
|
Hochholdinger F, Yu P, Marcon C. Genetic Control of Root System Development in Maize. TRENDS IN PLANT SCIENCE 2018; 23:79-88. [PMID: 29170008 DOI: 10.1016/j.tplants.2017.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 05/21/2023]
Abstract
The maize root system comprises structurally and functionally different root types. Mutant analyses have revealed that root-type-specific genetic regulators intrinsically determine the maize root system architecture. Molecular cloning of these genes has demonstrated that key elements of auxin signal transduction, such as LOB domain (LBD) and Aux/IAA proteins, are instrumental for seminal, shoot-borne, and lateral root initiation. Moreover, genetic analyses have demonstrated that genes related to exocytotic vesicle docking, cell wall loosening, and cellulose synthesis and organization control root hair elongation. The identification of upstream regulators, protein interaction partners, and downstream targets of these genes together with cell-type-specific transcriptome analyses have provided novel insights into the regulatory networks controlling root development and architecture in maize.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
46
|
Hernández-Terán A, Wegier A, Benítez M, Lira R, Escalante AE. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin. FRONTIERS IN PLANT SCIENCE 2017; 8:2030. [PMID: 29259610 PMCID: PMC5723393 DOI: 10.3389/fpls.2017.02030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest consequences of genetic modification beyond the target trait(s).
Collapse
Affiliation(s)
- Alejandra Hernández-Terán
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Wegier
- Laboratorio de Genética de la Conservación, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Lira
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
47
|
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D. Improved maize reference genome with single-molecule technologies. Nature 2017; 546:524-527. [PMID: 28605751 DOI: 10.1101/079004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/14/2017] [Indexed: 05/21/2023]
Abstract
Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Collapse
Affiliation(s)
- Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Peluso
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Jinghua Shi
- BioNano Genomics, San Diego, California 92121, USA
| | | | - Michelle C Stitzer
- Department of Plant Sciences and Center for Population Biology, University of California, Davis, Davis, California 95616, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Joshua C Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Xuehong Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Katherine Guill
- USDA-ARS, Plant Genetics Research Unit, Columbia, Missouri 65211, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Kevin L Schneider
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Thomas K Wolfgruber
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Michael R May
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Eric Antoniou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | - Gernot G Presting
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - Michael McMullen
- USDA-ARS, Plant Genetics Research Unit, Columbia, Missouri 65211, USA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, Center for Population Biology, and Genome Center, University of California, Davis, California 95616, USA
| | - R Kelly Dawe
- University of Georgia, Athens, Georgia 30602, USA
| | - Alex Hastie
- BioNano Genomics, San Diego, California 92121, USA
| | - David R Rank
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- USDA-ARS, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
48
|
Improved maize reference genome with single-molecule technologies. Nature 2017; 546:524-527. [PMID: 28605751 PMCID: PMC7052699 DOI: 10.1038/nature22971] [Citation(s) in RCA: 732] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/14/2017] [Indexed: 01/01/2023]
Abstract
An improved reference genome for maize, using single-molecule sequencing and high-resolution optical mapping, enables characterization of structural variation and repetitive regions, and identifies lineage expansions of transposable elements that are unique to maize. The maize genome was initially reported in 2009 but with some accuracy limitations. Doreen Ware and colleagues report a new reference genome for maize using single-molecule sequencing and high-resolution optical mapping. The technique shows improvements in the gene space including resolution of gaps and misassemblies and correction of order and orientation of genes. The authors characterize structural variation and repetitive regions, and identify transposable element lineage expansions unique to maize. Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation1. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions2. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome3, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing4. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Collapse
|
49
|
Stetter MG, Müller T, Schmid KJ. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus
). Mol Ecol 2017; 26:871-886. [DOI: 10.1111/mec.13974] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/09/2016] [Accepted: 12/14/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Markus G. Stetter
- Institute of Plant Breeding, Seed Science and Population Genetics; University of Hohenheim; Fruwirthstraße 21 D-70599 Stuttgart Germany
| | - Thomas Müller
- Institute of Plant Breeding, Seed Science and Population Genetics; University of Hohenheim; Fruwirthstraße 21 D-70599 Stuttgart Germany
| | - Karl J. Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics; University of Hohenheim; Fruwirthstraße 21 D-70599 Stuttgart Germany
| |
Collapse
|
50
|
Li Q, Liu B. Genetic regulation of maize flower development and sex determination. PLANTA 2017; 245:1-14. [PMID: 27770199 DOI: 10.1007/s00425-016-2607-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/14/2016] [Indexed: 05/23/2023]
Abstract
The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.
Collapse
Affiliation(s)
- Qinglin Li
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| |
Collapse
|