1
|
Gori K, Baez-Ortega A, Strakova A, Stammnitz MR, Wang J, Chan J, Hughes K, Belkhir S, Hammel M, Moralli D, Bancroft J, Drydale E, Allum KM, Brignone MV, Corrigan AM, de Castro KF, Donelan EM, Faramade IA, Hayes A, Ignatenko N, Karmacharya R, Koenig D, Lanza-Perea M, Lopez Quintana AM, Meyer M, Neunzig W, Pedraza-Ordoñez F, Phuentshok Y, Phuntsho K, Ramirez-Ante JC, Reece JF, Schmeling SK, Singh S, Tapia Martinez LJ, Taulescu M, Thapa S, Thapa S, van der Wel MG, Wehrle-Martinez AS, Stratton MR, Murchison EP. Horizontal transfer of nuclear DNA in transmissible cancer. Proc Natl Acad Sci U S A 2025; 122:e2424634122. [PMID: 40261943 PMCID: PMC12067285 DOI: 10.1073/pnas.2424634122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Horizontal transfer of nuclear DNA between cells of host and cancer is a potential source of adaptive variation in cancer cells. An understanding of the frequency and significance of this process in naturally occurring tumors is, however, lacking. We screened for this phenomenon in the transmissible cancers of dogs and Tasmanian devils and found an instance in the canine transmissible venereal tumor (CTVT). This involved introduction of a 15-megabase dicentric genetic element, composed of 11 fragments of six chromosomes, to a CTVT sublineage occurring in Asia around 2,000 y ago. The element forms the short arm of a small submetacentric chromosome and derives from a dog with ancestry associated with the ancient Middle East. The introduced DNA fragment is transcriptionally active and has adopted the expression profile of CTVT. Its features suggest that it may derive from an engulfed apoptotic body. Our findings indicate that nuclear horizontal gene transfer, although likely a rare event in tumor evolution, provides a viable mechanism for the acquisition of genetic material in naturally occurring cancer genomes.
Collapse
Affiliation(s)
- Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jonathan Chan
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Sophia Belkhir
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maurine Hammel
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Daniela Moralli
- Pandemic Sciences Institute, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | - Edward Drydale
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | | | - María Verónica Brignone
- Faculty of Veterinary Sciences, Universidad de Buenos Aires, Buenos AiresC1053ABJ, Argentina
| | - Anne M. Corrigan
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | - Karina F. de Castro
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University, Jaboticabal14884-900, Brazil
| | - Edward M. Donelan
- Animal Management in Rural and Remote Indigenous Communities, Darwin, NT0820, Australia
| | | | - Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | | | - Rockson Karmacharya
- Veterinary Diagnostic and Research Laboratory Pvt. Ltd., Kathmandu44600, Nepal
| | | | - Marta Lanza-Perea
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | | | | | | | | | | | | | - Juan C. Ramirez-Ante
- Facultad de Ciencias Pecuarias, Corporación Universitaria Santa Rosa de Cabal, Santa Rosa de Cabal661020, Colombia
| | | | | | - Sanjay Singh
- Help in Suffering, Jaipur302018, Rajasthan, India
| | | | - Marian Taulescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca400372, Romania
| | - Samir Thapa
- Kathmandu Animal Treatment Centre, Kathmandu44622, Nepal
| | - Sunil Thapa
- Animal Nepal, Dobighat, Kathmandu44600, Nepal
| | | | | | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| |
Collapse
|
2
|
Yonemitsu MA, Sevigny JK, Vandepas LE, Dimond JL, Giersch RM, Gurney-Smith HJ, Abbott CL, Supernault J, Withler R, Smith PD, Weinandt SA, Garrett FES, Child ZJ, Sigo RLW, Unsell E, Crim RN, Metzger MJ. Multiple Lineages of Transmissible Neoplasia in the Basket Cockle (C. nuttallii) With Repeated Horizontal Transfer of Mitochondrial DNA. Mol Ecol 2025; 34:e17682. [PMID: 39980242 DOI: 10.1111/mec.17682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/05/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Transmissible cancers are clonal lineages of neoplastic cells able to infect multiple hosts, spreading through populations in the environment as an infectious disease. Transmissible cancers have been identified in Tasmanian devils, dogs, and bivalves. Several lineages of bivalve transmissible neoplasias (BTN) have been identified in multiple bivalve species. In 2019 in Puget Sound, Washington, USA, disseminated neoplasia was observed in basket cockles (Clinocardium nuttallii), a species that is important to the culture and diet of the Suquamish Tribe as well as other tribes with traditional access to the species. To test whether disseminated neoplasia in cockles is a previously unknown lineage of BTN, a nuclear locus was amplified from cockles from Agate Pass, Washington, and sequences revealed evidence of transmissible cancer in several individuals. We used a combination of cytology and quantitative PCR to screen collections of cockles from 11 locations in Puget Sound and along the Washington coastline to identify the extent of contagious cancer spread in this species. Two BTN lineages were identified in these cockles, with one of those lineages (CnuBTN1) being the most prevalent and geographically widespread. Within the CnuBTN1 lineage, multiple nuclear loci support the conclusion that all cancer samples form a single clonal lineage. However, the mitochondrial alleles in each cockle with CnuBTN1 are different from each other, suggesting mitochondrial genomes of this cancer have been replaced multiple times during its evolution, through horizontal transmission. The identification and analysis of these BTNs are critical for broodstock selection, management practices, and repopulation of declining cockle populations, which will enable continued cultural connection and dietary use of the cockles by Coast Salish Tribes.
Collapse
Affiliation(s)
- Marisa A Yonemitsu
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Jordana K Sevigny
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Lauren E Vandepas
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - James L Dimond
- Shannon Point Marine Center, Western Washington University, Anacortes, Washington, USA
- Puget Sound Restoration Fund, Bainbridge Island, Washington, USA
| | - Rachael M Giersch
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Helen J Gurney-Smith
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, New Brunswick, Canada
| | - Cathryn L Abbott
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Janine Supernault
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Ruth Withler
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Peter D Smith
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | | | | | - Zachary J Child
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | | | - Elizabeth Unsell
- Fisheries Department, Suquamish Tribe, Suquamish, Washington, USA
| | - Ryan N Crim
- Puget Sound Restoration Fund, Bainbridge Island, Washington, USA
| | | |
Collapse
|
3
|
Vodicka P, Vodenkova S, Danesova N, Vodickova L, Zobalova R, Tomasova K, Boukalova S, Berridge MV, Neuzil J. Mitochondrial DNA damage, repair, and replacement in cancer. Trends Cancer 2025; 11:62-73. [PMID: 39438191 DOI: 10.1016/j.trecan.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Natalie Danesova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Kristyna Tomasova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Jiri Neuzil
- First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
4
|
Kowal K, Ziółkowska-Twarowska K, Tkaczyk-Wlizło A, Grzybowska-Szatkowska L, Ślaska B. Defects in the Mitochondrial Genome of Dogs with Recurrent Tumours. Int J Mol Sci 2024; 25:13414. [PMID: 39769179 PMCID: PMC11678272 DOI: 10.3390/ijms252413414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
This study presents a comprehensive analysis of mitochondrial DNA (mtDNA) variations in dogs diagnosed with primary and recurrent tumours, employing Oxford Nanopore Technologies (ONT) for sequencing. Our investigation focused on mtDNA extracted from blood and tumour tissues of three dogs, aiming to pinpoint polymorphisms, mutations, and heteroplasmy levels that could influence mitochondrial function in cancer pathogenesis. Notably, we observed the presence of mutations in the D-loop region, especially in the VNTR region, which may be crucial for mitochondrial replication, transcription, and genome stability, suggesting its potential role in cancer progression. The study is pioneering in its use of long-read sequencing to explore the mutational landscape of mtDNA in canine tumours, revealing that while the overall mutational load did not differ between primary and recurrent tumours, specific changes in m.16168A/G, m.16188G/A, and m.16298A/G are linked with tumour tissues. Interestingly, the heteroplasmy outside the D-loop region was not specific to tumour tissues and did not provoke any malignant damage in protein-coding sequences, which in turn may be a tolerant effect of the reactive oxygen species (ROS) cellular stress mechanism.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (K.K.); (K.Z.-T.); (A.T.-W.)
| | - Kaja Ziółkowska-Twarowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (K.K.); (K.Z.-T.); (A.T.-W.)
| | - Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (K.K.); (K.Z.-T.); (A.T.-W.)
| | | | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (K.K.); (K.Z.-T.); (A.T.-W.)
| |
Collapse
|
5
|
Tkaczyk-Wlizło A, Kowal K, Śmiech A, Ślaska B. Whole Mitochondrial Genome Sequencing Analysis of Canine Testicular Tumours. Int J Mol Sci 2024; 25:9944. [PMID: 39337432 PMCID: PMC11432695 DOI: 10.3390/ijms25189944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Currently, the molecular background based on mitochondrial DNA (mtDNA) analysis of canine testicular tumours is underestimated. The available data mostly focus on histopathological evaluations, with a few reports of nuclear genome (nDNA) studies. Tumourigenesis represents a highly complex and diverse genetic disorder, which can also encompass defects in mtDNA. The aim of this study was to identify molecular changes in whole mitochondrial genome sequences obtained from dogs affected by testicular tumours. Samples of blood, tumour, and healthy tissue were collected from each animal, and mtDNA (ultimately 45 samples) was subsequently sequenced. Thereafter, protein analyses were performed to assess the impact of the identified molecular alterations on the amino acid level. The total number of observed changes included 722 SNPs, 12 mutations, 62 indels, 5 indel mutations, and 35 heteroplasmic sites. The highest number of mtDNA variants in protein-coding genes COX1, COX3, ATP6, ND1, ND4, and ND5 was observed. Interestingly, SNPs were found in 10 out of 22 tRNA genes. Most of the identified mtDNA defects were synonymous changes at the amino acid level. Also, polymorphisms and heteroplasmy were frequently observed in the variable number of tandem repeat (VNTR) regions, especially in its fragment spanning 16,138-16,358 bp. Based on the obtained results, it was possible to select 11 polymorphisms that occurred in all the tested samples (benign, malignant) and an additional five SNPs identified only in benign neoplasms. The comprehensive analysis of malignant testicular tumours demonstrated a significant diversity in their molecular profiles, with changes ranging from 17 to 101 per sample.
Collapse
Affiliation(s)
- Angelika Tkaczyk-Wlizło
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| | - Anna Śmiech
- Department of Pathomorphology and Forensic Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30 St., 20-612 Lublin, Poland;
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland; (A.T.-W.); (K.K.)
| |
Collapse
|
6
|
Bramwell G, DeGregori J, Thomas F, Ujvari B. Transmissible cancers, the genomes that do not melt down. Evolution 2024; 78:1205-1211. [PMID: 38656785 DOI: 10.1093/evolut/qpae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Evolutionary theory predicts that the accumulation of deleterious mutations in asexually reproducing organisms should lead to genomic decay. Clonally reproducing cell lines, i.e., transmissible cancers, when cells are transmitted as allografts/xenografts, break these rules and survive for centuries and millennia. The currently known 11 transmissible cancer lineages occur in dogs (canine venereal tumour disease), in Tasmanian devils (devil facial tumor diseases, DFT1 and DFT2), and in bivalves (bivalve transmissible neoplasia). Despite the mutation loads of these cell lines being much higher than observed in human cancers, they have not been eliminated in space and time. Here, we provide potential explanations for how these fascinating cell lines may have overcome the fitness decline due to the progressive accumulation of deleterious mutations and propose that the high mutation load may carry an indirect positive fitness outcome. We offer ideas on how these host-pathogen systems could be used to answer outstanding questions in evolutionary biology. The recent studies on the evolution of these clonal pathogens reveal key mechanistic insight into transmissible cancer genomes, information that is essential for future studies investigating how these contagious cancer cell lines can repeatedly evade immune recognition, evolve, and survive in the landscape of highly diverse hosts.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
Chen C, Li H, Zhang J, Cheng SC. Exploring the limitations of mitochondrial dye as a genuine horizontal mitochondrial transfer surrogate. Commun Biol 2024; 7:281. [PMID: 38448655 PMCID: PMC10917768 DOI: 10.1038/s42003-024-05964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Rosamine-based mitochondrial dyes, such as Mitotracker Red, have commonly been employed to visualize mitochondrial localization within cells due to their preferential accumulation in organelles with membrane potential. Consequently, Mitotracker Red has often served as a surrogate indicator for tracking mitochondrial movement between neighboring cells. However, it is important to note that the presence of membrane potential in the cell membrane and other organelles may lead to the non-specific partial enrichment of Mitotracker Red in locations other than mitochondria. This study comprehensively investigates the reliability of mitochondrial dye as a marker for studying horizontal mitochondrial transfer (HMT). By meticulous replicating of previous experiments and comparing the efficiency of mitochondrial dye transfer with that of mito-targeted GFP, our findings confirm that HMT occurs at significantly lower efficiency than previously indicated by Mitotracker dye. Subsequent experiments involving mitochondria-deficient cells robustly demonstrates the non-specificity of mitochondrial dye as indicator for mitochondria. We advocate for a thorough reevaluation of existing literature in this field and propose exploration of alternative techniques to enhance the investigation of HMT. By addressing these pivotal aspects, we can advance our understanding of cellular dynamics and pave the way for future explorations in this captivating field.
Collapse
Affiliation(s)
- Chuanfang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian, 361102, China.
| | - Haige Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian, 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian, 361102, China
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University; Xiamen, Fujian, 361102, China.
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, Fujian, 361004, China.
| |
Collapse
|
8
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
9
|
Skazina M, Ponomartsev N, Maiorova M, Khaitov V, Marchenko J, Lentsman N, Odintsova N, Strelkov P. Genetic features of bivalve transmissible neoplasia in blue mussels from the Kola Bay (Barents Sea) suggest a recent trans-Arctic migration of the cancer lineages. Mol Ecol 2023; 32:5724-5741. [PMID: 37795906 DOI: 10.1111/mec.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.
Collapse
Affiliation(s)
- Maria Skazina
- St. Petersburg State University, St. Petersburg, Russia
| | | | - Mariia Maiorova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Vadim Khaitov
- St. Petersburg State University, St. Petersburg, Russia
- Kandalaksha State Nature Reserve, Kandalaksha, Russia
| | | | | | - Nelly Odintsova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| |
Collapse
|
10
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
11
|
Faro TAS, de Oliveira EHC. Canine transmissible venereal tumor - From general to molecular characteristics: A review. Anim Genet 2023; 54:82-89. [PMID: 36259378 DOI: 10.1111/age.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a group of complex diseases resulting from the accumulation of genetic and epigenetic changes affecting control and activity of several genes, especially those involved in cell differentiation and growth processes, leading to an abnormal proliferation. When the disease reaches an advanced stage, cancer can lead to metastasis in other organs. Interestingly, recent studies have shown that some types of cancer spread not only through the body, but also can be transmitted among individuals. Therefore, these cancers are known as transmissible tumors. Among the three types of transmissible tumors that occur in nature, the canine transmissible venereal tumor (CTVT) is known as the oldest cancer in the world, since it was originated from a single individual 11 000 years ago. The disease has a worldwide distribution, and its occurrence has been documented since 1810. The CTVT presents three types of cytomorphological classification: lymphocytoid type, mixed type, and plasmacytoid type, the latter being chemoresistant due to overexpression of the ABCB1 gene, and consequently increase of the P-glycoprotein. More knowledge about the epidemiology and evolution of CTVT may help to elucidate the pathway and form of the global spread of the disease.
Collapse
Affiliation(s)
- Thamirys A S Faro
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SEAMB, Instituto Evandro Chagas Ananindeua, Belém, Pará, Brazil
| | - Edivaldo H C de Oliveira
- Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SEAMB, Instituto Evandro Chagas Ananindeua, Belém, Pará, Brazil
| |
Collapse
|
12
|
Klucnika A, Mu P, Jezek J, McCormack M, Di Y, Bradshaw CR, Ma H. REC drives recombination to repair double-strand breaks in animal mtDNA. J Cell Biol 2023; 222:e202201137. [PMID: 36355348 PMCID: PMC9652705 DOI: 10.1083/jcb.202201137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Mechanisms that safeguard mitochondrial DNA (mtDNA) limit the accumulation of mutations linked to mitochondrial and age-related diseases. Yet, pathways that repair double-strand breaks (DSBs) in animal mitochondria are poorly understood. By performing a candidate screen for mtDNA repair proteins, we identify that REC-an MCM helicase that drives meiotic recombination in the nucleus-also localizes to mitochondria in Drosophila. We show that REC repairs mtDNA DSBs by homologous recombination in somatic and germline tissues. Moreover, REC prevents age-associated mtDNA mutations. We further show that MCM8, the human ortholog of REC, also localizes to mitochondria and limits the accumulation of mtDNA mutations. This study provides mechanistic insight into animal mtDNA recombination and demonstrates its importance in safeguarding mtDNA during ageing and evolution.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Peiqiang Mu
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Matthew McCormack
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Strakova A, Baez-Ortega A, Wang J, Murchison EP. Sex disparity in oronasal presentations of canine transmissible venereal tumour. Vet Rec 2022; 191:e1794. [PMID: 35781651 PMCID: PMC7615771 DOI: 10.1002/vetr.1794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The canine transmissible venereal tumour (CTVT) is a contagious cancer spread by the direct transfer of living cancer cells. CTVT usually spreads during mating, manifesting as genital tumours. However, oronasal CTVT is also occasionally observed, and presumably arises through oronasal contact with genital CTVT tumours during sniffing and licking. METHODS Given that sniffing and licking transmission behaviours may differ between sexes, we investigated whether oronasal CTVT shows sex disparity. RESULTS Twenty-seven of 32 (84%) primary oronasal tumours in a CTVT tumour database occurred in males. In addition, 53 of 65 (82%) primary oronasal CTVT tumours reported in the published literature involved male hosts. These findings suggest that male dogs are at four to five times greater risk of developing primary oronasal CTVT than females. This disparity may be due to sex differences in licking and sniffing activity, perhaps also influenced by sex differences in CTVT accessibility for these behaviours. CONCLUSION Although oronasal CTVT is rare, it should be considered as a possible diagnosis for oronasal tumours, particularly in male dogs.
Collapse
Affiliation(s)
- Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Valcz G, Újvári B, Buzás EI, Krenács T, Spisák S, Kittel Á, Tulassay Z, Igaz P, Takács I, Molnár B. Small extracellular vesicle DNA-mediated horizontal gene transfer as a driving force for tumor evolution: Facts and riddles. Front Oncol 2022; 12:945376. [PMID: 36003770 PMCID: PMC9393732 DOI: 10.3389/fonc.2022.945376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The basis of the conventional gene-centric view on tumor evolution is that vertically inherited mutations largely define the properties of tumor cells. In recent years, however, accumulating evidence shows that both the tumor cells and their microenvironment may acquire external, non-vertically inherited genetic properties via horizontal gene transfer (HGT), particularly through small extracellular vesicles (sEVs). Many phases of sEV-mediated HGT have been described, such as DNA packaging into small vesicles, their release, uptake by recipient cells, and incorporation of sEV-DNA into the recipient genome to modify the phenotype and properties of cells. Recent techniques in sEV separation, genome sequencing and editing, as well as the identification of new secretion mechanisms, shed light on a number of additional details of this phenomenon. Here, we discuss the key features of this form of gene transfer and make an attempt to draw relevant conclusions on the contribution of HGT to tumor evolution.
Collapse
Affiliation(s)
- Gábor Valcz
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Beáta Újvári
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, Hungary
| | - Zsolt Tulassay
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Péter Igaz
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Department of Endocrinology, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Garcia-Souto D, Bruzos AL, Diaz S, Rocha S, Pequeño-Valtierra A, Roman-Lewis CF, Alonso J, Rodriguez R, Costas D, Rodriguez-Castro J, Villanueva A, Silva L, Valencia JM, Annona G, Tarallo A, Ricardo F, Bratoš Cetinić A, Posada D, Pasantes JJ, Tubio JMC. Mitochondrial genome sequencing of marine leukaemias reveals cancer contagion between clam species in the Seas of Southern Europe. eLife 2022; 11:e66946. [PMID: 35040778 PMCID: PMC8765752 DOI: 10.7554/elife.66946] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022] Open
Abstract
Clonally transmissible cancers are tumour lineages that are transmitted between individuals via the transfer of living cancer cells. In marine bivalves, leukaemia-like transmissible cancers, called hemic neoplasia (HN), have demonstrated the ability to infect individuals from different species. We performed whole-genome sequencing in eight warty venus clams that were diagnosed with HN, from two sampling points located more than 1000 nautical miles away in the Atlantic Ocean and the Mediterranean Sea Coasts of Spain. Mitochondrial genome sequencing analysis from neoplastic animals revealed the coexistence of haplotypes from two different clam species. Phylogenies estimated from mitochondrial and nuclear markers confirmed this leukaemia originated in striped venus clams and later transmitted to clams of the species warty venus, in which it survives as a contagious cancer. The analysis of mitochondrial and nuclear gene sequences supports all studied tumours belong to a single neoplastic lineage that spreads in the Seas of Southern Europe.
Collapse
Affiliation(s)
- Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Alicia L Bruzos
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Seila Diaz
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Sara Rocha
- Phylogenomics Lab, Universidade de VigoVigoSpain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Juana Alonso
- CINBIO, Universidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGOVigoSpain
| | - Rosana Rodriguez
- Centro de Investigación Mariña, Universidade de Vigo, ECIMATVigoSpain
| | - Damian Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMATVigoSpain
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Luis Silva
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de CádizCádizSpain
| | - Jose Maria Valencia
- Laboratori d’Investigacions Marines i Aqüicultura, (LIMIA) - Govern de les Illes BalearsPort d'Andratx, Balearic IslandsSpain
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB)Palma de Mallorca, Balearic IslandsSpain
| | | | | | - Fernando Ricardo
- ECOMARE, Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Santiago University CampusAveiroPortugal
| | | | - David Posada
- CINBIO, Universidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGOVigoSpain
- Department of Biochemistry, Genetics and Immunology, Universidade de VigoVigoSpain
| | - Juan Jose Pasantes
- Department of Biochemistry, Genetics and Immunology, Universidade de VigoVigoSpain
- Centro de Investigación Mariña, Universidade de VigoVigoSpain
| | - Jose MC Tubio
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de CompostelaSantiago de CompostelaSpain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
16
|
Akash M, Chowdhury UF, Khaleque FTZ, Reza RN, Howlader DC, Islam MR, Khan H. On the reappearance of the Indian grey wolf in Bangladesh after 70 years: what do we know? Mamm Biol 2021; 101:163-171. [DOI: 10.1007/s42991-020-00064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/29/2020] [Indexed: 01/31/2023]
|
17
|
Skazina M, Odintsova N, Maiorova M, Ivanova A, Väinölä R, Strelkov P. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci Rep 2021; 11:5809. [PMID: 33707525 PMCID: PMC7970980 DOI: 10.1038/s41598-021-85098-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Two lineages of bivalve transmissible neoplasia (BTN), BTN1 and BTN2, are known in blue mussels Mytilus. Both lineages derive from the Pacific mussel M. trossulus and are identified primarily by their unique genotypes of the nuclear gene EF1α. BTN1 is found in populations of M. trossulus from the Northeast Pacific, while BTN2 has been detected in populations of other Mytilus species worldwide but not in M. trossulus itself. Here we examined M. trossulus from the Sea of Japan (Northwest Pacific) for the presence of BTN. Using hemocytology and flow cytometry of the hemolymph, we confirmed the presence of disseminated neoplasia in our specimens. Cancerous mussels possessed the BTN2 EF1α genotype and two mitochondrial haplotypes with different recombinant control regions, similar to that of common BTN2 lineages. This is the first report of BTN2 in its original host species M. trossulus. A comparison of all available BTN and M. trossulus COI sequences suggests a common and recent origin of BTN2 diversity in populations of M. trossulus outside the Northeast Pacific, possibly in the Northwest Pacific.
Collapse
Affiliation(s)
- Maria Skazina
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178.
| | - Nelly Odintsova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Maria Maiorova
- National Scientific Center of Marine Biology of the Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia, 690041
| | - Angelina Ivanova
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, P. O. Box 17, 00014, Helsinki, Finland
| | - Petr Strelkov
- Saint-Petersburg State University, Saint-Petersburg, Russia, 199178
| |
Collapse
|
18
|
Harrison BM, Loukopoulos P. Genomics and transcriptomics in veterinary oncology. Oncol Lett 2021; 21:336. [PMID: 33692868 PMCID: PMC7933772 DOI: 10.3892/ol.2021.12597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the canine genome, combined with additional genomic technologies, has created opportunities for research linking veterinary genomics with naturally occurring cancer in dogs. Also, as numerous canine cancers have features in common with human cancers, comparative studies can be performed to evaluate the use of cancers in dogs as models for human cancer. There have been several reviews of veterinary genomics but, to the best of our knowledge, there has been no comprehensive review of the literature of canine cancer genomics. PubMed and CAB Abstracts databases were searched to retrieve relevant literature using the search terms ‘veterinary’, ‘cancer’ or ‘oncology’, and ‘genomics’ or ‘transcriptomics’. Results were manually assessed and grouped based on the techniques used, the cancer type investigated and genomic lesions targeted. The search resulted in the retrieval of 44 genomic and transcriptomic studies, with the most common technique employed being comparative genomic hybridization. Across both fields, the most commonly studied cancer type was canine osteosarcoma. Genomic and transcriptomic aberrations in canine cancer often reflected those reported in the corresponding human cancers. Analysis of the literature indicated that employing genomic and transcriptomic technologies has been instrumental in developing the understanding of the origin, development and pathogenesis of several canine cancers. However, their use in canine oncology is at an early phase, and there appears to be comparatively little understanding of certain canine cancer types in contrast to their human forms. Aberrations detected in all tumors were tabulated, and the results for osteosarcoma, lymphoma and leukemia, mast cell tumor, transmissible venereal tumor and urothelial carcinoma discussed in detail.
Collapse
Affiliation(s)
- Bridget Marie Harrison
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| |
Collapse
|
19
|
Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O, Girdland-Flink L, Lin AT, Storå J, Sjögren KG, Anthony D, Antipina E, Amiri S, Bar-Oz G, Bazaliiskii VI, Bulatović J, Brown D, Carmagnini A, Davy T, Fedorov S, Fiore I, Fulton D, Germonpré M, Haile J, Irving-Pease EK, Jamieson A, Janssens L, Kirillova I, Horwitz LK, Kuzmanovic-Cvetković J, Kuzmin Y, Losey RJ, Dizdar DL, Mashkour M, Novak M, Onar V, Orton D, Pasarić M, Radivojević M, Rajković D, Roberts B, Ryan H, Sablin M, Shidlovskiy F, Stojanović I, Tagliacozzo A, Trantalidou K, Ullén I, Villaluenga A, Wapnish P, Dobney K, Götherström A, Linderholm A, Dalén L, Pinhasi R, Larson G, Skoglund P. Origins and genetic legacy of prehistoric dogs. Science 2020; 370:557-564. [PMID: 33122379 PMCID: PMC7116352 DOI: 10.1126/science.aba9572] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Ryan Schmidt
- School of Archaeology and Earth Institute, University College Dublin, Dublin, Ireland
- CIBIO-InBIO, University of Porto, Campus de Vairão, Portugal
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Linus Girdland-Flink
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Liverpool John Moores University, Liverpool, UK
| | - Audrey T Lin
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - David Anthony
- Hartwick College, Oneonta, NY, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ekaterina Antipina
- Institute of Archaeology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Sarieh Amiri
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | | | | | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tom Davy
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | - Ivana Fiore
- Bioarchaeology Service, Museo delle Civiltà, Rome, Italy
- Environmental and Evolutionary Biology Doctoral Program, Sapienza University of Rome, Rome, Italy
| | | | | | - James Haile
- University of Copenhagen, Copenhagen, Denmark
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Lundbeck GeoGenetics Centre, The Globe Institute, Copenhagen, Denmark
| | - Alexandra Jamieson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | | | - Yaroslav Kuzmin
- Sobolev Institute of Geology and Mineralogy of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Tomsk State University, Tomsk, Russian Federation
| | | | | | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Vedat Onar
- Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | | | - Maja Pasarić
- Institute of Ethnology and Folklore Research, Zagreb, Croatia
| | | | | | | | - Hannah Ryan
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | | | | | | | - Katerina Trantalidou
- Hellenic Ministry of Culture & Sports, Athens, Greece
- University of Thessaly, Argonauton & Philellinon, Volos, Greece
| | - Inga Ullén
- National Historical Museums, Stockholm, Sweden
| | - Aritza Villaluenga
- Consolidated Research Group on Prehistory (IT-1223-19), University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Paula Wapnish
- Pennsylvania State University, University Park, PA, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
- School of Philosophical and Historical Inquiry, Faculty of Arts and Social Sciences, University of Sydney, Sydney, NSW, Australia
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
- Stockholm University, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Tasdogan A, McFadden DG, Mishra P. Mitochondrial DNA Haplotypes as Genetic Modifiers of Cancer. Trends Cancer 2020; 6:1044-1058. [PMID: 32980320 DOI: 10.1016/j.trecan.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in cellular metabolism, generation of reactive oxygen species (ROS), and the initiation of apoptosis. These properties enable mitochondria to be crucial integrators in the pathways of tumorigenesis. An open question is to what extent variation in the mitochondrial genome (mtDNA) contributes to the biological heterogeneity observed in human tumors. In this review, we summarize our current understanding of the role of mtDNA genetics in relation to human cancers.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Department of Biochemistry, Simmons Comprehensive Cancer Center, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Dujon AM, Gatenby RA, Bramwell G, MacDonald N, Dohrmann E, Raven N, Schultz A, Hamede R, Gérard AL, Giraudeau M, Thomas F, Ujvari B. Transmissible Cancers in an Evolutionary Perspective. iScience 2020; 23:101269. [PMID: 32592998 PMCID: PMC7327844 DOI: 10.1016/j.isci.2020.101269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Inter-individual transmission of cancer cells represents an intriguing and unexplored host-pathogen system, with significant ecological and evolutionary ramifications. The pathogen consists of clonal malignant cell lines that spread horizontally as allografts and/or xenografts. Although only nine transmissible cancer lineages in eight host species from both terrestrial and marine environments have been investigated, they exhibit evolutionary dynamics that may provide novel insights into tumor-host interactions particularly in the formation of metastases. Here we present an overview of known transmissible cancers, discuss the necessary and sufficient conditions for cancer transmission, and provide a comprehensive review on the evolutionary dynamics between transmissible cancers and their hosts.
Collapse
Affiliation(s)
- Antoine M Dujon
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Georgina Bramwell
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nick MacDonald
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Erin Dohrmann
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Nynke Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Aaron Schultz
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Anne-Lise Gérard
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia; School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
22
|
Comparative Cytogenetic Mapping and Telomere Analysis Provide Evolutionary Predictions for Devil Facial Tumour 2. Genes (Basel) 2020; 11:genes11050480. [PMID: 32354058 PMCID: PMC7290341 DOI: 10.3390/genes11050480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 01/20/2023] Open
Abstract
The emergence of a second transmissible tumour in the Tasmanian devil population, devil facial tumour 2 (DFT2), has prompted questions on the origin and evolution of these transmissible tumours. We used a combination of cytogenetic mapping and telomere length measurements to predict the evolutionary trajectory of chromosome rearrangements in DFT2. Gene mapping by fluorescence in situ hybridization (FISH) provided insight into the chromosome rearrangements in DFT2 and identified the evolution of two distinct DFT2 lineages. A comparison of devil facial tumour 1 (DFT1) and DFT2 chromosome rearrangements indicated that both started with the fusion of a chromosome, with potentially critically short telomeres, to chromosome 1 to form dicentric chromosomes. In DFT1, the dicentric chromosome resulted in breakage–fusion–bridge cycles leading to highly rearranged chromosomes. In contrast, the silencing of a centromere on the dicentric chromosome in DFT2 stabilized the chromosome, resulting in a less rearranged karyotype than DFT1. DFT2 retains a bimodal distribution of telomere length dimorphism observed on Tasmanian devil chromosomes, a feature lost in DFT1. Using long term cell culture, we observed homogenization of telomere length over time. We predict a similar homogenization of telomere lengths occurred in DFT1, and that DFT2 is unlikely to undergo further substantial rearrangements due to maintained telomere length.
Collapse
|
23
|
Development of a mitochondrial DNA marker that distinguishes domestic dogs from Washington state gray wolves. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01130-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
25
|
Alzate JM, Montoya-Florez LM, Pérez JE, Rocha NS, Pedraza-Ordonez FJ. The role of the multi-drug resistance 1, p53, b cell lymphoma 2, and bcl 2-associated X genes in the biologic behavior and chemotherapeutic resistance of canine transmissible venereal tumors. Vet Clin Pathol 2019; 48:730-739. [PMID: 31777108 DOI: 10.1111/vcp.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/02/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Canine transmissible venereal tumors (CTVTs) generally have different cytomorphologic subtypes and phases of progression. Some tumors have variable biologic behavior including a progressive increase in tumor aggressiveness and variable responses to chemotherapy. This behavior is partially due to high p-glycoprotein expression by tumor cells, which leads to the expulsion of chemotherapeutic drugs. Other possible causes include changes in pro- and anti-apoptotic genes from the BCL-2 family and DNA repair systems, which are associated with the p53 gene family. OBJECTIVES We aimed to determine the relative expression of the multi-drug resistance 1 (MDR1), p53, b-cell lymphoma 2 (BCL2), and bcl 2-associated X (BAX) genes in CTVT before and after therapy and establish a relationship with treatment responses, cytomorphologic patterns, and tumor progression identified with histopathology. METHODS RT-qPCR was performed on 21 CTVT tumor samples before and after initiating chemotherapy to determine specific gene expression. Normal canine testicular tissue was used as a negative control for all experiments. RESULTS MDR1 expression was decreased before and after initiating vincristine therapy in CTVT tumor tissues compared with normal canine testicular tissue; p53 and BAX were overexpressed at both time points compared with normal tissue, and no statistical differences were seen between the different morphologic types. However, BAX expression was decreased in the group with quick therapeutic responses but was still overexpressed compared with normal testicular tissue. In the group with the slowest chemotherapeutic responses, BCL2 was overexpressed. CONCLUSION The findings of this study showed a relative increase in MDR1 gene expression in response to chemotherapy and higher expression in plasmacytoid CTVTs compared with the other cytomorphologic patterns. BCL2 overexpression was related to a favorable prognosis, and p53, BAX, and BCL2 were expressed independent of the cytomorphologic CTVT type. All of the genes were expressed independent of tumor progression, as noted on histopathology.
Collapse
Affiliation(s)
- Juliana M Alzate
- Faculty of Agricultural Sciences, Veterinary Medicine Department, Universidad de Pamplona, Pamplona, Colombia
| | - Luis M Montoya-Florez
- Faculty of Veterinary Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Research Group in Veterinary Medicine and Husbandry - GIDIMEVETZ, Pedagogical and Technological University of Colombia, Tunja, Colombia
| | - Jorge E Pérez
- Basic Sciences Department, Universidad de Caldas, Manizales, Colombia
| | - Noeme S Rocha
- Laboratory of Investigative and Comparative Pathology, FMVZ-UNESP, Botucatu, Brazil
| | - Francisco J Pedraza-Ordonez
- Research Group in Veterinary Pathology, Animal Health Department, Universidad de Caldas, Manizales, Colombia
| |
Collapse
|
26
|
Yonemitsu MA, Giersch RM, Polo-Prieto M, Hammel M, Simon A, Cremonte F, Avilés FT, Merino-Véliz N, Burioli EAV, Muttray AF, Sherry J, Reinisch C, Baldwin SA, Goff SP, Houssin M, Arriagada G, Vázquez N, Bierne N, Metzger MJ. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. eLife 2019; 8:e47788. [PMID: 31686650 PMCID: PMC6831032 DOI: 10.7554/elife.47788] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.
Collapse
Affiliation(s)
| | | | | | - Maurine Hammel
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
- IHPE, Université de Montpellier, CNRS-Ifremer-UPVDMontpellierFrance
| | - Alexis Simon
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
| | - Florencia Cremonte
- Laboratorio de Parasitología (LAPA)Instituto de Biología de Organismos Marinos (IBIOMAR) (CCT CONICET - CENPAT)Puerto MadrynArgentina
| | - Fernando T Avilés
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Nicolás Merino-Véliz
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | | | | | - James Sherry
- Water Science & Technology DirectorateEnvironment and Climate Change CanadaBurlingtonCanada
| | - Carol Reinisch
- Water Science & Technology DirectorateEnvironment and Climate Change CanadaBurlingtonCanada
| | - Susan A Baldwin
- Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada
| | - Stephen P Goff
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Microbiology and ImmunologyColumbia University Medical CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia University Medical CenterNew YorkUnited States
| | - Maryline Houssin
- Research and DevelopmentLABÉO Frank DuncombeSaint-ContestFrance
- FRE BOREA, MNHN, UPMC, UCN, CNRS-7208, IRD-207, Université de Caen NormandieCaenFrance
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | - Nuria Vázquez
- Laboratorio de Parasitología (LAPA)Instituto de Biología de Organismos Marinos (IBIOMAR) (CCT CONICET - CENPAT)Puerto MadrynArgentina
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS- EPHE-IRDMontpellierFrance
| | | |
Collapse
|
27
|
Ayala-Díaz S, Jiménez-Lima R, Ramírez-Alcántara KM, Lizano M, Castro-Muñoz LJ, Reyes-Hernández DO, Arroyo-Ledezma J, Manzo-Merino J. Presence of Papillomavirus DNA sequences in the canine transmissible venereal tumor (CTVT). PeerJ 2019; 7:e7962. [PMID: 31667018 PMCID: PMC6816387 DOI: 10.7717/peerj.7962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Background The canine transmissible venereal tumor (CTVT) or Sticker’s sarcoma is a neoplastic disease affecting dogs. This disease is presented as a tumoral mass in the genital organs of both, male and female individuals. Up to date, there is no clear evidence indicating a viral agent as the causative mediator for CTVT development. Purpose The present work aims to analyze 21 samples from canines with CTVT for molecular identification of Papillomavirus DNA sequences. In addition, microbiological analysis, cytologic and histopathologic evaluations were also performed. Results All patients showed no biochemical and microbiological alterations. Molecular analysis demonstrated the viral DNA presence in the samples using different primer sets. The MY primers amplified a 450 bp band in seven out of 21 samples (33%). The PVF and Fap64 primer set, targeting the L1 sequence of Canine Papillomavirus (CPV), showed positivity in 16 out of 21 samples (76%). Conclusion These results support the possible causative association between CPV and CTVT; nevertheless, additional studies are required to uphold such statement. This work presents evidence indicating that a viral agent might be involved in the pathogenesis of CTVT and set the bases for a better understanding of the CTVT pathobiology.
Collapse
Affiliation(s)
- Sergio Ayala-Díaz
- Universidad del Mar, Puerto Escondido, Oaxaca, Mexico.,Programa de Maestría y Doctorado en Producción y Sanidad Animal, Universidad del Mar, Puerto Escondido, Oaxaca, Mexico
| | - Roberto Jiménez-Lima
- Clinical Research Division, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Katia M Ramírez-Alcántara
- Basic Research Division, Instituto Nacional de Cancerología, Mexico City, Mexico.,Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Lizano
- Basic Research Division, Instituto Nacional de Cancerología, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Diego O Reyes-Hernández
- Basic Research Division, Instituto Nacional de Cancerología, Mexico City, Mexico.,Programa de Posgrado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Arroyo-Ledezma
- Universidad del Mar, Puerto Escondido, Oaxaca, Mexico.,Asociación Esteriliza y Educa A.C., Puerto Escondido, Oaxaca, Mexico
| | - Joaquín Manzo-Merino
- Basic Research Division, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
28
|
Baez-Ortega A, Gori K, Strakova A, Allen JL, Allum KM, Bansse-Issa L, Bhutia TN, Bisson JL, Briceño C, Castillo Domracheva A, Corrigan AM, Cran HR, Crawford JT, Davis E, de Castro KF, B de Nardi A, de Vos AP, Delgadillo Keenan L, Donelan EM, Espinoza Huerta AR, Faramade IA, Fazil M, Fotopoulou E, Fruean SN, Gallardo-Arrieta F, Glebova O, Gouletsou PG, Häfelin Manrique RF, Henriques JJGP, Horta RS, Ignatenko N, Kane Y, King C, Koenig D, Krupa A, Kruzeniski SJ, Kwon YM, Lanza-Perea M, Lazyan M, Lopez Quintana AM, Losfelt T, Marino G, Martínez Castañeda S, Martínez-López MF, Meyer M, Migneco EJ, Nakanwagi B, Neal KB, Neunzig W, Ní Leathlobhair M, Nixon SJ, Ortega-Pacheco A, Pedraza-Ordoñez F, Peleteiro MC, Polak K, Pye RJ, Reece JF, Rojas Gutierrez J, Sadia H, Schmeling SK, Shamanova O, Sherlock AG, Stammnitz M, Steenland-Smit AE, Svitich A, Tapia Martínez LJ, Thoya Ngoka I, Torres CG, Tudor EM, van der Wel MG, Viţălaru BA, Vural SA, Walkinton O, Wang J, Wehrle-Martinez AS, Widdowson SAE, Stratton MR, Alexandrov LB, Martincorena I, Murchison EP. Somatic evolution and global expansion of an ancient transmissible cancer lineage. Science 2019; 365:eaau9923. [PMID: 31371581 PMCID: PMC7116271 DOI: 10.1126/science.aau9923] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by "metastasizing" between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.
Collapse
Affiliation(s)
- Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Janice L Allen
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), Darwin, Australia
| | | | | | - Thinlay N Bhutia
- Sikkim Anti-Rabies and Animal Health Programme, Department of Animal Husbandry, Livestock, Fisheries and Veterinary Services, Government of Sikkim, India
| | - Jocelyn L Bisson
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Cristóbal Briceño
- ConserLab, Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, Chile
| | | | | | - Hugh R Cran
- The Nakuru District Veterinary Scheme Ltd, Nakuru, Kenya
| | | | - Eric Davis
- International Animal Welfare Training Institute, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Karina F de Castro
- Centro Universitário de Rio Preto (UNIRP), São José do Rio Preto, São Paulo, Brazil
| | - Andrigo B de Nardi
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | - Edward M Donelan
- Animal Management in Rural and Remote Indigenous Communities (AMRRIC), Darwin, Australia
| | | | | | | | - Eleni Fotopoulou
- Intermunicipal Stray Animals Care Centre (DIKEPAZ), Perama, Greece
| | | | | | | | - Pagona G Gouletsou
- Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Rodrigo F Häfelin Manrique
- Veterinary Clinic El Roble, Animal Healthcare Network, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago de Chile, Chile
| | | | | | | | - Yaghouba Kane
- École Inter-états des Sciences et Médecine Vétérinaires de Dakar, Dakar, Senegal
| | | | | | - Ada Krupa
- Department of Small Animal Medicine, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Thibault Losfelt
- Clinique Veterinaire de Grand Fond, Saint Gilles les Bains, Reunion, France
| | - Gabriele Marino
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Simón Martínez Castañeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Mayra F Martínez-López
- School of Veterinary Medicine, Universidad de las Américas, Quito, Ecuador
- Cancer Development and Innate Immune Evasion Lab, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | | | | | | | | | - Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Maria C Peleteiro
- Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | | | - Ruth J Pye
- Vets Beyond Borders, The Rocks, Australia
| | | | | | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | | | | | | | - Maximilian Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Alla Svitich
- State Hospital of Veterinary Medicine, Dniprodzerzhynsk, Ukraine
| | | | | | - Cristian G Torres
- Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago, Chile
| | - Elizabeth M Tudor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | | | - Bogdan A Viţălaru
- Clinical Sciences Department, Faculty of Veterinary Medicine Bucharest, Bucharest, Romania
| | - Sevil A Vural
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | | | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Kaufman BA, Picard M, Sondheimer N. Mitochondrial DNA, nuclear context, and the risk for carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:455-462. [PMID: 29332303 PMCID: PMC6045969 DOI: 10.1002/em.22169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
The inheritance of mitochondrial DNA (mtDNA) from mother to child is complicated by differences in the stability of the mitochondrial genome. Although the germ line mtDNA is protected through the minimization of replication between generations, sequence variation can occur either through mutation or due to changes in the ratio between distinct genomes that are present in the mother (known as heteroplasmy). Thus, the unpredictability in transgenerational inheritance of mtDNA may cause the emergence of pathogenic mitochondrial and cellular phenotypes in offspring. Studies of the role of mitochondrial metabolism in cancer have a long and rich history, but recent evidence strongly suggests that changes in mitochondrial genotype and phenotype play a significant role in the initiation, progression and treatment of cancer. At the intersection of these two fields lies the potential for emerging mtDNA mutations to drive carcinogenesis in the offspring. In this review, we suggest that this facet of transgenerational carcinogenesis remains underexplored and is a potentially important contributor to cancer. Environ. Mol. Mutagen. 60:455-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brett A. Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA (USA)
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032 USA
- Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032 USA
| | - Neal Sondheimer
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada M5G1X8
- Department of Paediatrics, The University of Toronto School of Medicine, Toronto, ON, Canada M5G1X8
- Correspondence to: Neal Sondheimer, 555 University Avenue, Toronto ON M5G 1X8, p – 416-813-7654 x 301480, f – 416-813-5345,
| |
Collapse
|
30
|
Klucnika A, Ma H. A battle for transmission: the cooperative and selfish animal mitochondrial genomes. Open Biol 2019; 9:180267. [PMID: 30890027 PMCID: PMC6451365 DOI: 10.1098/rsob.180267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial genome is an evolutionarily persistent and cooperative component of metazoan cells that contributes to energy production and many other cellular processes. Despite sharing the same host as the nuclear genome, the multi-copy mitochondrial DNA (mtDNA) follows very different rules of replication and transmission, which translate into differences in the patterns of selection. On one hand, mtDNA is dependent on the host for its transmission, so selections would favour genomes that boost organismal fitness. On the other hand, genetic heterogeneity within an individual allows different mitochondrial genomes to compete for transmission. This intra-organismal competition could select for the best replicator, which does not necessarily give the fittest organisms, resulting in mito-nuclear conflict. In this review, we discuss the recent advances in our understanding of the mechanisms and opposing forces governing mtDNA transmission and selection in bilaterians, and what the implications of these are for mtDNA evolution and mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Anna Klucnika
- 1 Wellcome Trust/Cancer Research UK Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN , UK
- 2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK
| | - Hansong Ma
- 1 Wellcome Trust/Cancer Research UK Gurdon Institute , Tennis Court Road, Cambridge CB2 1QN , UK
- 2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK
| |
Collapse
|
31
|
Bajzikova M, Kovarova J, Coelho AR, Boukalova S, Oh S, Rohlenova K, Svec D, Hubackova S, Endaya B, Judasova K, Bezawork-Geleta A, Kluckova K, Chatre L, Zobalova R, Novakova A, Vanova K, Ezrova Z, Maghzal GJ, Magalhaes Novais S, Olsinova M, Krobova L, An YJ, Davidova E, Nahacka Z, Sobol M, Cunha-Oliveira T, Sandoval-Acuña C, Strnad H, Zhang T, Huynh T, Serafim TL, Hozak P, Sardao VA, Koopman WJH, Ricchetti M, Oliveira PJ, Kolar F, Kubista M, Truksa J, Dvorakova-Hortova K, Pacak K, Gurlich R, Stocker R, Zhou Y, Berridge MV, Park S, Dong L, Rohlena J, Neuzil J. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metab 2019; 29:399-416.e10. [PMID: 30449682 PMCID: PMC7484595 DOI: 10.1016/j.cmet.2018.10.014] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/04/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.
Collapse
Affiliation(s)
- Martina Bajzikova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
| | - Ana R Coelho
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Sona Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Kristyna Judasova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | | | - Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Laurent Chatre
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Anna Novakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Katerina Vanova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Zuzana Ezrova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Ghassan J Maghzal
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Silvia Magalhaes Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Marie Olsinova
- Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Linda Krobova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Yong Jin An
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Eliska Davidova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Margarita Sobol
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia
| | - Thanh Huynh
- Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Teresa L Serafim
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Pavel Hozak
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vilma A Sardao
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Werner J H Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 Nijmegen, the Netherlands
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France; CNRS UMR 3738, Team Stability of Nuclear and Mitochondrial DNA, 75015 Paris, France
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic
| | - Katerina Dvorakova-Hortova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert Gurlich
- Third Faculty Hospital, Charles University, Prague, Czech Republic
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Southport, 4222 QLD, Australia
| | | | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.
| | - Lanfeng Dong
- School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50, Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
32
|
Marlein CR, Piddock RE, Mistry JJ, Zaitseva L, Hellmich C, Horton RH, Zhou Z, Auger MJ, Bowles KM, Rushworth SA. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res 2019; 79:2285-2297. [PMID: 30622116 DOI: 10.1158/0008-5472.can-18-0773] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/11/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
Metabolic adjustments are necessary for the initiation, proliferation, and spread of cancer cells. Although mitochondria have been shown to move to cancer cells from their microenvironment, the metabolic consequences of this phenomenon have yet to be fully elucidated. Here, we report that multiple myeloma cells use mitochondrial-based metabolism as well as glycolysis when located within the bone marrow microenvironment. The reliance of multiple myeloma cells on oxidative phosphorylation was caused by intercellular mitochondrial transfer to multiple myeloma cells from neighboring nonmalignant bone marrow stromal cells. This mitochondrial transfer occurred through tumor-derived tunneling nanotubes (TNT). Moreover, shRNA-mediated knockdown of CD38 inhibits mitochondrial transfer and TNT formation in vitro and blocks mitochondrial transfer and improves animal survival in vivo. This study describes a potential treatment strategy to inhibit mitochondrial transfer for clinical benefit and scientifically expands the understanding of the functional effects of mitochondrial transfer on tumor metabolism. SIGNIFICANCE: Multiple myeloma relies on both oxidative phosphorylation and glycolysis following acquisition of mitochondria from its bone marrow microenvironment.See related commentary by Boise and Shanmugam, p. 2102.
Collapse
Affiliation(s)
- Christopher R Marlein
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Rachel E Piddock
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jayna J Mistry
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Lyubov Zaitseva
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Charlotte Hellmich
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Rebecca H Horton
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Zhigang Zhou
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Martin J Auger
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
33
|
Weiss RA. Open questions: knowing who's who in multicellular animals is not always as simple as we imagine. BMC Biol 2018; 16:115. [PMID: 30322384 PMCID: PMC6190548 DOI: 10.1186/s12915-018-0582-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ability of certain tumor cells of mammals and molluscs to spread from the original host to others reopens the question of distinguishing self from non-self. It is part of a wider phenomenon of cellular parasitism and cell chimerism including germ cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, Cruciform Building 1.3, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
34
|
Ní Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O, Ameen C, Blick J, Boyko AR, Brace S, Cortes YN, Crockford SJ, Devault A, Dimopoulos EA, Eldridge M, Enk J, Gopalakrishnan S, Gori K, Grimes V, Guiry E, Hansen AJ, Hulme-Beaman A, Johnson J, Kitchen A, Kasparov AK, Kwon YM, Nikolskiy PA, Lope CP, Manin A, Martin T, Meyer M, Myers KN, Omura M, Rouillard JM, Pavlova EY, Sciulli P, Sinding MHS, Strakova A, Ivanova VV, Widga C, Willerslev E, Pitulko VV, Barnes I, Gilbert MTP, Dobney KM, Malhi RS, Murchison EP, Larson G, Frantz LAF. The evolutionary history of dogs in the Americas. Science 2018; 361:81-85. [PMID: 29976825 PMCID: PMC7116273 DOI: 10.1126/science.aao4776] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog populations. The closest detectable extant lineage to precontact American dogs is the canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that lived up to 8000 years ago.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angela R Perri
- Department of Archaeology, Durham University, Durham, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kelsey E Witt
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Anna Linderholm
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - James Haile
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Carly Ameen
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Jeffrey Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | | | | | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Jacob Enk
- Arbor Biosciences, Ann Arbor, MI, USA
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, St. John's, Canada
| | - Eric Guiry
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - Ardern Hulme-Beaman
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - John Johnson
- Department of Anthropology, Santa Barbara Museum of Natural History, Santa Barbara, CA, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel A Nikolskiy
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Aurélie Manin
- Department of Archaeology, BioArCh, University of York, York, UK
- UMR 7209, Archéozoologie, Archéobotanique, Muséum National d'Histoire Naturelle, Paris, France
| | - Terrance Martin
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | - Michael Meyer
- Touray & Meyer Veterinary Clinic, Serrekunda, Gambia
| | - Kelsey Noack Myers
- Glenn A. Black Laboratory of Anthropology, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Omura
- Department of Mammalogy, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elena Y Pavlova
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Arctic & Antarctic Research Institute, St. Petersburg, Russia
| | - Paul Sciulli
- Department of Anthropology, Ohio State University, Columbus, OH, USA
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Christopher Widga
- Center of Excellence in Paleontology, East Tennessee State University, Gray, TN, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Keith M Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Contagious cancer could have wiped out America's first dogs. Nature 2018. [DOI: 10.1038/d41586-018-05645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Marinov M, Teofanova D, Gadjev D, Radoslavov G, Hristov P. Mitochondrial diversity of Bulgarian native dogs suggests dual phylogenetic origin. PeerJ 2018; 6:e5060. [PMID: 29967734 PMCID: PMC6026455 DOI: 10.7717/peerj.5060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
The dog has been the first domesticated animal to have a central role in human society from ancient times to present day. Although there have been numerous investigations of dog phylogeny and origin, genetic data of dogs in the region of the Balkan Peninsula (South-Eastern Europe) are still scarce. Therefore, the aim of the present study was to perform phylogenetic analysis of three native Bulgarian dog breeds. A total of 130 samples were analyzed at HVR1 (hypervariable region, D-loop region). The samples were taken from two hunting dog breeds (Bulgarian Hound Dog: Barak, n = 34; Bulgarian Scenthound Dog: Gonche, n = 45) as well as from a Bulgarian Shepherd Dog (n = 51). The first two breeds are reared in a flat region of the country (the Northern part of Bulgaria, the Danubian Plain), while the last breed is a typical representative of the mountainous part of the country. The results have shown the presence of almost all main clades—A, B, C and D—in the three dog breeds taken together, except clades E and F, as expected. With regard to haplogroups distribution, there are clear differences among investigated breeds. While hunting breeds exhibit a prevalence of clade C, the mountainous Shepherd dog shows presence of the D2 haplogroup but absence of the C clade. In conclusion, the present study has been the first to investigate the mitochondrial DNA diversity of native dog breeds in Bulgaria. The results have revealed a clear difference of haplogroups dissemination in native hunting and shepherd dogs, which suggests a dual independent phylogenetic origin, without hybridization events between these dogs.
Collapse
Affiliation(s)
- Miroslav Marinov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Denitsa Teofanova
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Dimitar Gadjev
- Agricultural and Stockbreeding Experimental Station, Agricultural Academy, Smolyan, Bulgaria
| | - Georgi Radoslavov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
37
|
Stammnitz MR, Coorens THH, Gori KC, Hayes D, Fu B, Wang J, Martin-Herranz DE, Alexandrov LB, Baez-Ortega A, Barthorpe S, Beck A, Giordano F, Knowles GW, Kwon YM, Hall G, Price S, Pye RJ, Tubio JMC, Siddle HVT, Sohal SS, Woods GM, McDermott U, Yang F, Garnett MJ, Ning Z, Murchison EP. The Origins and Vulnerabilities of Two Transmissible Cancers in Tasmanian Devils. Cancer Cell 2018; 33:607-619.e15. [PMID: 29634948 PMCID: PMC5896245 DOI: 10.1016/j.ccell.2018.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023]
Abstract
Transmissible cancers are clonal lineages that spread through populations via contagious cancer cells. Although rare in nature, two facial tumor clones affect Tasmanian devils. Here we perform comparative genetic and functional characterization of these lineages. The two cancers have similar patterns of mutation and show no evidence of exposure to exogenous mutagens or viruses. Genes encoding PDGF receptors have copy number gains and are present on extrachromosomal double minutes. Drug screening indicates causative roles for receptor tyrosine kinases and sensitivity to inhibitors of DNA repair. Y chromosome loss from a male clone infecting a female host suggests immunoediting. These results imply that Tasmanian devils may have inherent susceptibility to transmissible cancers and present a suite of therapeutic compounds for use in conservation.
Collapse
Affiliation(s)
- Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Tim H H Coorens
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Kevin C Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Dane Hayes
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, TAS 7250, Australia; School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS 7248, Australia
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Daniel E Martin-Herranz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ludmil B Alexandrov
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Syd Barthorpe
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Alexandra Beck
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Francesca Giordano
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Graeme W Knowles
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment, Prospect, TAS 7250, Australia
| | - Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - George Hall
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Stacey Price
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ruth J Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jose M C Tubio
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hannah V T Siddle
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sukhwinder Singh Sohal
- School of Health Sciences, Faculty of Health, University of Tasmania, Launceston, TAS 7248, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Zemin Ning
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
38
|
Osorio-Morales LF, Pedraza-Ordóñez F. Electrochemotherapy Treatment of Canine Transmissible Venereal Tumors. Artif Organs 2017; 41:1185. [PMID: 29230847 DOI: 10.1111/aor.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Lina Fernanda Osorio-Morales
- Universidad UNISARC, Santa Rosa de Cabal, Colombia and Grupo de Investigación en Patología Veterinaria, Universidad de Caldas, Manizales, Colombia
| | | |
Collapse
|
39
|
Melvin RG, Ballard JWO. Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis 2017; 32:323-334. [PMID: 28521046 DOI: 10.1093/mutage/gex004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are found in all animals and have the unique feature of containing multiple copies of their own small, circular DNA genome (mtDNA). The rate and pattern of mutation accumulation in the mtDNA are influenced by molecular, cellular and population level processes. We distinguish between inherited and somatic mtDNA mutations and review evidence for the often-made assumption that mutations accumulate at a higher rate in mtDNA than in nuclear DNA (nDNA). We conclude that the whole genome mutation accumulation rate is higher for mtDNA than for nDNA but include the caveat that rates overlap considerably between the individual mtDNA- and nDNA-encoded genes. Next, we discuss the postulated causal mechanisms for the high rate of mtDNA mutation accumulation in both inheritance and in somatic cells. Perhaps unexpectedly, mtDNA is resilient to many mutagens of nDNA but is prone to errors of replication. We then consider the influence of maternal inheritance, recombination and selection on the observed accumulation pattern of inherited mtDNA mutations. Finally, we discuss environmental influences of temperature and diet on the observed frequency of inherited and somatic mtDNA mutations. We conclude that it is necessary to understand the cellular processes to fully interpret the pattern of mutations and how they influence our interpretations of evolution and disease.
Collapse
Affiliation(s)
- Richard G Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
40
|
Bock R. Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer. Annu Rev Genet 2017; 51:1-22. [PMID: 28846455 DOI: 10.1146/annurev-genet-120215-035329] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Present day mitochondria and plastids (chloroplasts) evolved from formerly free-living bacteria that were acquired through endosymbiosis more than a billion years ago. Conversion of the bacterial endosymbionts into cell organelles involved the massive translocation of genetic material from the organellar genomes to the nucleus. The development of transformation technologies for organellar genomes has made it possible to reconstruct this endosymbiotic gene transfer in laboratory experiments and study the mechanisms involved. Recently, the horizontal transfer of genetic information between organisms has also become amenable to experimental investigation. It led to the discovery of horizontal genome transfer as an asexual process generating new species and new combinations of nuclear and organellar genomes. This review describes experimental approaches towards studying endosymbiotic and horizontal gene transfer processes, discusses the new knowledge gained from these approaches about both the evolutionary significance of gene transfer and the underlying molecular mechanisms, and highlights exciting possibilities to exploit gene and genome transfer in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
41
|
Vivian CJ, Brinker AE, Graw S, Koestler DC, Legendre C, Gooden GC, Salhia B, Welch DR. Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Res 2017; 77:6202-6214. [PMID: 28663334 DOI: 10.1158/0008-5472.can-17-1473] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations and polymorphisms contribute to many complex diseases, including cancer. Using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s)-designated Mitochondrial Nuclear Exchange (MNX)-we showed that mtDNA could alter mammary tumor metastasis. Because retrograde and anterograde communication exists between the nuclear and mitochondrial genomes, we hypothesized that there are differential mtDNA-driven changes in nuclear (n)DNA expression and DNA methylation. Genome-wide nDNA methylation and gene expression were measured in harvested brain tissue from paired wild-type and MNX mice. Selective differential DNA methylation and gene expression were observed between strains having identical nDNA, but different mtDNA. These observations provide insights into how mtDNA could be altering epigenetic regulation and thereby contribute to the pathogenesis of metastasis. Cancer Res; 77(22); 6202-14. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Vivian
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona
| | - Amanda E Brinker
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas. .,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
42
|
Ní Leathlobhair M, Gulland FMD, Murchison EP. No evidence for clonal transmission of urogenital carcinoma in California sea lions ( Zalophus californianus). Wellcome Open Res 2017; 2:46. [PMID: 28948233 PMCID: PMC5527528 DOI: 10.12688/wellcomeopenres.11483.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/03/2022] Open
Abstract
Urogenital carcinoma is a highly metastatic cancer affecting California sea lions (
Zalophus californianus). The disease has high prevalence amongst stranded animals, and is one of the most commonly observed cancers in wildlife. The genital localisation of primary tumours suggests the possibility that coital transmission of an infectious agent could underlie this disease. Otarine herpesvirus type 1 has been associated with lesions, however a causative role for this virus has not been confirmed. We investigated the possibility that urogenital carcinoma might be clonally transmissible, spread by the direct transfer of cancer cells. Analysis of sequences at the mitochondrial DNA control region in seven matched tumour and host pairs confirmed that tumour genotypes were identical to those of their matched hosts and did not show similarity with tumours from other individuals. Thus our findings suggest that urogenital carcinoma in California sea lions is not clonally transmitted, but rather arises from transformed host cells.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | | | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
43
|
Abstract
Contagious cancers are malignant cells that are physically transferred between individuals as a natural allograft, forming new clonal tumours. These cancers are highly unusual, but have emerged in 2 mammalian species, the dog and the Tasmanian devil, as well as 4 species of bivalve. The transfer of malignant cells in mammals should initiate a robust immune response and although invertebrates have a less complex immune system, these species still have mechanisms that should prevent engraftment and protect against cellular parasitism. Here the naturally occurring contagious cancers are reviewed to determine what features are important and necessary for the emergence and spread of these types of cancer, with a focus on the mammalian contagious cancers and how they successfully cross histocompatibility barriers.
Collapse
Affiliation(s)
- H V Siddle
- Department of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
44
|
Dong LF, Kovarova J, Bajzikova M, Bezawork-Geleta A, Svec D, Endaya B, Sachaphibulkij K, Coelho AR, Sebkova N, Ruzickova A, Tan AS, Kluckova K, Judasova K, Zamecnikova K, Rychtarcikova Z, Gopalan V, Andera L, Sobol M, Yan B, Pattnaik B, Bhatraju N, Truksa J, Stopka P, Hozak P, Lam AK, Sedlacek R, Oliveira PJ, Kubista M, Agrawal A, Dvorakova-Hortova K, Rohlena J, Berridge MV, Neuzil J. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. eLife 2017; 6. [PMID: 28195532 PMCID: PMC5367896 DOI: 10.7554/elife.22187] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI:http://dx.doi.org/10.7554/eLife.22187.001
Collapse
Affiliation(s)
- Lan-Feng Dong
- School of Medical Science, Griffith University, Southport, Australia
| | - Jaromira Kovarova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Bajzikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Berwini Endaya
- School of Medical Science, Griffith University, Southport, Australia
| | | | - Ana R Coelho
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Natasa Sebkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Ruzickova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - An S Tan
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katarina Kluckova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Judasova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Zamecnikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Zittau/Goerlitz University of Applied Sciences, Zittau, Germany
| | - Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Vinod Gopalan
- School of Medical Science, Griffith University, Southport, Australia.,School of Medicine, Griffith University, Southport, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Margarita Sobol
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Bing Yan
- School of Medical Science, Griffith University, Southport, Australia
| | - Bijay Pattnaik
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Naveen Bhatraju
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Hozak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Alfred K Lam
- School of Medicine, Griffith University, Southport, Australia
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Mikael Kubista
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,TATAA Biocenter, Gothenburg, Sweden
| | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Katerina Dvorakova-Hortova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
45
|
Hochberg ME, Noble RJ. A framework for how environment contributes to cancer risk. Ecol Lett 2017; 20:117-134. [DOI: 10.1111/ele.12726] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/03/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Michael E. Hochberg
- Intstitut des Sciences de l'Evolution de Montpellier; Université de Montpellier; Place E. Bataillon, CC065 34095 Montpellier Cedex 5 France
- Santa Fe Institute; 1399 Hyde Park Rd. Santa Fe NM 87501 USA
| | - Robert J. Noble
- Intstitut des Sciences de l'Evolution de Montpellier; Université de Montpellier; Place E. Bataillon, CC065 34095 Montpellier Cedex 5 France
| |
Collapse
|
46
|
Abstract
Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
47
|
Riquet F, Simon A, Bierne N. Weird genotypes? Don't discard them, transmissible cancer could be an explanation. Evol Appl 2016; 10:140-145. [PMID: 28127390 PMCID: PMC5253422 DOI: 10.1111/eva.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic chimerism is rarely considered in the analysis of population genetics data, because assumed to be an exceptionally rare, mostly benign, developmental accident. An unappreciated source of chimerism is transmissible cancer, when malignant cells have become independent parasites and can infect other individuals. Parasitic cancers were thought to be rare exceptions, only reported in dogs (Murgia et al., Cell, 2006, 126, 477; Rebbeck et al., Evolution, 2009, 63, 2340), Tasmanian devils (Pearse and Swift, Nature, 2006, 439, 549; Pye et al., Proceedings of the National Academy of Sciences, 2016, 113, 374), and soft-shell clams (Metzger et al., Cell, 2015, 161, 255). However, the recent simultaneous report of four new contagious leukemias in marine mollusks (Metzger et al., Nature, 2016, 534, 705) might change the rules. By doubling up the number of naturally occurring transmissible cancers, this discovery suggests they may essentially be missed because not sufficiently searched for, especially outside mammals. We encourage population geneticists to keep in mind infectious cancer when interpreting weird genotypes in their molecular data. It would then contribute in the investigation of how widespread contagious cancer could really be in the wild. We provide an example with our own data in Mytilus mussels, a commercially important shellfish. We identified genetic chimerism in a few mussels that suggests the possible occurrence at low prevalence in European M. edulis populations of a M. trossulus contagious cancer related to the one described by Metzger et al. (Nature, 2016, 534, 705) in populations of British Columbia.
Collapse
Affiliation(s)
- Florentine Riquet
- Université de Montpellier Sète France; Institut des Sciences de l'Evolution CNRS-UM-IRD Montpellier France
| | - Alexis Simon
- Université de Montpellier Sète France; Institut des Sciences de l'Evolution CNRS-UM-IRD Montpellier France
| | - Nicolas Bierne
- Université de Montpellier Sète France; Institut des Sciences de l'Evolution CNRS-UM-IRD Montpellier France
| |
Collapse
|
48
|
Metzger MJ, Goff SP. A Sixth Modality of Infectious Disease: Contagious Cancer from Devils to Clams and Beyond. PLoS Pathog 2016; 12:e1005904. [PMID: 27788268 PMCID: PMC5082865 DOI: 10.1371/journal.ppat.1005904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Michael J. Metzger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail:
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| |
Collapse
|
49
|
Vaux F, Trewick SA, Morgan-Richards M. Speciation through the looking-glass. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix Vaux
- Ecology Group; Institute of Agriculture and Environment; Massey University; Palmerston North New Zealand
| | - Steven A. Trewick
- Ecology Group; Institute of Agriculture and Environment; Massey University; Palmerston North New Zealand
| | - Mary Morgan-Richards
- Ecology Group; Institute of Agriculture and Environment; Massey University; Palmerston North New Zealand
| |
Collapse
|