1
|
Li T, La Camera G. A sticky Poisson Hidden Markov Model for solving the problem of over-segmentation and rapid state switching in cortical datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.07.606969. [PMID: 39149270 PMCID: PMC11326216 DOI: 10.1101/2024.08.07.606969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The application of hidden Markov models (HMMs) to neural data has uncovered hidden states and signatures of neural dynamics that are relevant for sensory and cognitive processes. However, training an HMM on cortical data requires a careful handling of model selection, since models with more numerous hidden states generally have a higher likelihood on new (unseen) data. A potentially related problem is the occurrence of very rapid state switching after decoding the data with an HMM. The first problem can lead to overfitting and over-segmentation of the data. The second problem is due to intermediate-to-low self-transition probabilities and is at odds with many reports that hidden states in cortex tend to last from hundred of milliseconds to seconds. Here, we show that we can alleviate both problems by regularizing a Poisson-HMM during training so as to enforce large self-transition probabilities. We call this algorithm the 'sticky Poisson-HMM' (sPHMM). When used together with the Bayesian Information Criterion for model selection, the sPHMM successfully eliminates rapid state switching, outperforming an alternative strategy based on an HMM with a large prior on the self-transition probabilities. The sPHMM also captures the ground truth in surrogate datasets built to resemble the statistical properties of the experimental data.
Collapse
Affiliation(s)
- Tianshu Li
- Department of Neurobiology & Behavior, Stony Brook University
- Graduate Program in Neuroscience, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| | - Giancarlo La Camera
- Department of Neurobiology & Behavior, Stony Brook University
- Graduate Program in Neuroscience, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| |
Collapse
|
2
|
Yang X, La Camera G. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits. PLoS Comput Biol 2024; 20:e1012220. [PMID: 38950068 PMCID: PMC11244818 DOI: 10.1371/journal.pcbi.1012220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/12/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Graduate Program in Physics and Astronomy, Stony Brook University, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York, United States of America
| | - Giancarlo La Camera
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
3
|
Yang X, La Camera G. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570692. [PMID: 38106233 PMCID: PMC10723399 DOI: 10.1101/2023.12.07.570692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Graduate Program in Physics and Astronomy, Stony Brook University
- Department of Neurobiology & Behavior, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| | - Giancarlo La Camera
- Department of Neurobiology & Behavior, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| |
Collapse
|
4
|
Londei F, Arena G, Ferrucci L, Russo E, Ceccarelli F, Genovesio A. Connecting the dots in the zona incerta: A study of neural assemblies and motifs of inter-area coordination in mice. iScience 2024; 27:108761. [PMID: 38274403 PMCID: PMC10808920 DOI: 10.1016/j.isci.2023.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 01/27/2024] Open
Abstract
The zona incerta (ZI), a subthalamic area connected to numerous brain regions, has raised clinical interest because its stimulation alleviates the motor symptoms of Parkinson's disease. To explore its coordinative nature, we studied the assembly formation in a dataset of neural recordings in mice and quantified the degree of functional coordination of ZI with other 24 brain areas. We found that the ZI is a highly integrative area. The analysis in terms of "loop-like" motifs, directional assemblies composed of three neurons spanning two areas, has revealed reciprocal functional interactions with reentrant signals that, in most cases, start and end with the activation of ZI units. In support of its proposed integrative role, we found that almost one-third of the ZI's neurons formed assemblies with more than half of the other recorded areas and that loop-like assemblies may stand out as hyper-integrative motifs compared to other types of activation patterns.
Collapse
Affiliation(s)
- Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Eleonora Russo
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Barth BB, Redington ER, Gautam N, Pelot NA, Grill WM. Calcium image analysis in the moving gut. Neurogastroenterol Motil 2023; 35:e14678. [PMID: 37736662 PMCID: PMC10999186 DOI: 10.1111/nmo.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The neural control of gastrointestinal muscle relies on circuit activity whose underlying motifs remain limited by small-sample calcium imaging recordings confounded by motion artifact, paralytics, and muscle dissections. We present a sequence of resources to register images from moving preparations and identify out-of-focus events in widefield fluorescent microscopy. METHODS Our algorithm uses piecewise rigid registration with pathfinding to correct movements associated with smooth muscle contractions. We developed methods to identify loss-of-focus events and to simulate calcium activity to evaluate registration. KEY RESULTS By combining our methods with principal component analysis, we found populations of neurons exhibit distinct activity patterns in response to distinct stimuli consistent with hypothesized roles. The image analysis pipeline makes deeper insights possible by capturing concurrently calcium dynamics from more neurons in larger fields of view. We provide access to the source code for our algorithms and make experimental and technical recommendations to increase data quality in calcium imaging experiments. CONCLUSIONS These methods make feasible large population, robust calcium imaging recordings and permit more sophisticated network analyses and insights into neural activity patterns in the gut.
Collapse
Affiliation(s)
- Bradley B. Barth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Emily R. Redington
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- Current employment Regeneron Pharmaceuticals, Inc. Contributions to this article were made as an employee of Duke University and the views expressed do not necessarily represent the views of Regeneron Pharmaceuticals Inc
| | - Nitisha Gautam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
6
|
Tanabe S, Lee H, Wang S, Hudetz AG. Spontaneous and Visual Stimulation Evoked Firing Sequences Are Distinct Under Desflurane Anesthesia. Neuroscience 2023; 528:54-63. [PMID: 37473851 DOI: 10.1016/j.neuroscience.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Recurring spike sequences are thought to underlie cortical computations and may be essential for information processing in the conscious state. How anesthesia at graded levels may influence spontaneous and stimulus-related spike sequences in visual cortex has not been fully elucidated. We recorded extracellular single-unit activity in the rat primary visual cortex in vivo during wakefulness and three levels of anesthesia produced by desflurane. The latencies of spike sequences within 0-200 ms from the onset of spontaneous UP states and visual flash-evoked responses were compared. During wakefulness, spike latency patterns linked to the local field potential theta cycle were similar to stimulus-evoked patterns. Under desflurane anesthesia, spontaneous UP state sequences differed from flash-evoked sequences due to the recruitment of low-firing excitatory neurons to the UP state. Flash-evoked spike sequences showed higher reliability and longer latency when stimuli were applied during DOWN states compared to UP states. At deeper levels, desflurane altered both UP state and flash-evoked spike sequences by selectively suppressing inhibitory neuron firing. The results reveal desflurane-induced complex changes in cortical firing sequences that may influence visual information processing.
Collapse
Affiliation(s)
- Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
7
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
8
|
Temporal progression along discrete coding states during decision-making in the mouse gustatory cortex. PLoS Comput Biol 2023; 19:e1010865. [PMID: 36749734 PMCID: PMC9904478 DOI: 10.1371/journal.pcbi.1010865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
The mouse gustatory cortex (GC) is involved in taste-guided decision-making in addition to sensory processing. Rodent GC exhibits metastable neural dynamics during ongoing and stimulus-evoked activity, but how these dynamics evolve in the context of a taste-based decision-making task remains unclear. Here we employ analytical and modeling approaches to i) extract metastable dynamics in ensemble spiking activity recorded from the GC of mice performing a perceptual decision-making task; ii) investigate the computational mechanisms underlying GC metastability in this task; and iii) establish a relationship between GC dynamics and behavioral performance. Our results show that activity in GC during perceptual decision-making is metastable and that this metastability may serve as a substrate for sequentially encoding sensory, abstract cue, and decision information over time. Perturbations of the model's metastable dynamics indicate that boosting inhibition in different coding epochs differentially impacts network performance, explaining a counterintuitive effect of GC optogenetic silencing on mouse behavior.
Collapse
|
9
|
Pietras B, Schmutz V, Schwalger T. Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity. PLoS Comput Biol 2022; 18:e1010809. [PMID: 36548392 PMCID: PMC9822116 DOI: 10.1371/journal.pcbi.1010809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/06/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Bottom-up models of functionally relevant patterns of neural activity provide an explicit link between neuronal dynamics and computation. A prime example of functional activity patterns are propagating bursts of place-cell activities called hippocampal replay, which is critical for memory consolidation. The sudden and repeated occurrences of these burst states during ongoing neural activity suggest metastable neural circuit dynamics. As metastability has been attributed to noise and/or slow fatigue mechanisms, we propose a concise mesoscopic model which accounts for both. Crucially, our model is bottom-up: it is analytically derived from the dynamics of finite-size networks of Linear-Nonlinear Poisson neurons with short-term synaptic depression. As such, noise is explicitly linked to stochastic spiking and network size, and fatigue is explicitly linked to synaptic dynamics. To derive the mesoscopic model, we first consider a homogeneous spiking neural network and follow the temporal coarse-graining approach of Gillespie to obtain a "chemical Langevin equation", which can be naturally interpreted as a stochastic neural mass model. The Langevin equation is computationally inexpensive to simulate and enables a thorough study of metastable dynamics in classical setups (population spikes and Up-Down-states dynamics) by means of phase-plane analysis. An extension of the Langevin equation for small network sizes is also presented. The stochastic neural mass model constitutes the basic component of our mesoscopic model for replay. We show that the mesoscopic model faithfully captures the statistical structure of individual replayed trajectories in microscopic simulations and in previously reported experimental data. Moreover, compared to the deterministic Romani-Tsodyks model of place-cell dynamics, it exhibits a higher level of variability regarding order, direction and timing of replayed trajectories, which seems biologically more plausible and could be functionally desirable. This variability is the product of a new dynamical regime where metastability emerges from a complex interplay between finite-size fluctuations and local fatigue.
Collapse
Affiliation(s)
- Bastian Pietras
- Institute for Mathematics, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentin Schmutz
- Brain Mind Institute, School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tilo Schwalger
- Institute for Mathematics, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
10
|
Li M, Cheng S, Fan J, Shang Z, Wan H, Yang L, Yang L. Disarrangement and reorganization of the hippocampal functional connectivity during the spatial path adjustment of pigeons. BMC ZOOL 2022; 7:54. [PMID: 37170160 PMCID: PMC10127027 DOI: 10.1186/s40850-022-00143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The hippocampus plays an important role to support path planning and adjustment in goal-directed spatial navigation. While we still only have limited knowledge about how do the hippocampal neural activities, especially the functional connectivity patterns, change during the spatial path adjustment. In this study, we measured the behavioural indicators and local field potentials of the pigeon (Columba livia, male and female) during a goal-directed navigational task with the detour paradigm, exploring the changing patterns of the hippocampal functional network connectivity of the bird during the spatial path learning and adjustment.
Results
Our study demonstrates that the pigeons progressively learned to solve the path adjustment task after the preferred path is blocked suddenly. Behavioural results show that both the total duration and the path lengths pigeons completed the task during the phase of adjustment are significantly longer than those during the acquisition and recovery phases. Furthermore, neural results show that hippocampal functional connectivity selectively changed during path adjustment. Specifically, we identified depressed connectivity in lower bands (delta and theta) and elevated connectivity in higher bands (slow-gamma and fast-gamma).
Conclusions
These results feature both the behavioural response and neural representation of the avian spatial cognitive learning process, suggesting that the functional disarrangement and reorganization of the connectivity in the avian hippocampus during different phases may contribute to our further understanding of the potential mechanism of path learning and adjustment.
Collapse
|
11
|
Mazzucato L. Neural mechanisms underlying the temporal organization of naturalistic animal behavior. eLife 2022; 11:e76577. [PMID: 35792884 PMCID: PMC9259028 DOI: 10.7554/elife.76577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Naturalistic animal behavior exhibits a strikingly complex organization in the temporal domain, with variability arising from at least three sources: hierarchical, contextual, and stochastic. What neural mechanisms and computational principles underlie such intricate temporal features? In this review, we provide a critical assessment of the existing behavioral and neurophysiological evidence for these sources of temporal variability in naturalistic behavior. Recent research converges on an emergent mechanistic theory of temporal variability based on attractor neural networks and metastable dynamics, arising via coordinated interactions between mesoscopic neural circuits. We highlight the crucial role played by structural heterogeneities as well as noise from mesoscopic feedback loops in regulating flexible behavior. We assess the shortcomings and missing links in the current theoretical and experimental literature and propose new directions of investigation to fill these gaps.
Collapse
Affiliation(s)
- Luca Mazzucato
- Institute of Neuroscience, Departments of Biology, Mathematics and Physics, University of OregonEugeneUnited States
| |
Collapse
|
12
|
Noguchi A, Huszár R, Morikawa S, Buzsáki G, Ikegaya Y. Inhibition allocates spikes during hippocampal ripples. Nat Commun 2022; 13:1280. [PMID: 35277500 PMCID: PMC8917132 DOI: 10.1038/s41467-022-28890-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Sets of spikes emitted sequentially across neurons constitute fundamental pulse packets in neural information processing, including offline memory replay during hippocampal sharp-wave ripples (SWRs). The relative timing of neuronal spikes is fine-tuned in each spike sequence but can vary between different sequences. However, the microcircuitry mechanism that enables such flexible spike sequencing remains unexplored. We recorded the membrane potentials of multiple hippocampal CA1 pyramidal cells in mice and found that the neurons were transiently hyperpolarized prior to SWRs. The pre-SWR hyperpolarizations were spatiotemporally heterogeneous, and larger hyperpolarizations were associated with later spikes during SWRs. Intracellular blockade of Cl--mediated inhibition reduced pre-SWR hyperpolarizations and advanced spike times. Single-unit recordings also revealed that the pre-SWR firing rates of inhibitory interneurons predicted the SWR-relevant spike times of pyramidal cells. Thus, pre-SWR inhibitory activity determines the sequential spike times of pyramidal cells and diversifies the repertoire of sequence patterns.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Roman Huszár
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - György Buzsáki
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY, USA.
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Brinkman BAW, Yan H, Maffei A, Park IM, Fontanini A, Wang J, La Camera G. Metastable dynamics of neural circuits and networks. APPLIED PHYSICS REVIEWS 2022; 9:011313. [PMID: 35284030 PMCID: PMC8900181 DOI: 10.1063/5.0062603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
Cortical neurons emit seemingly erratic trains of action potentials or "spikes," and neural network dynamics emerge from the coordinated spiking activity within neural circuits. These rich dynamics manifest themselves in a variety of patterns, which emerge spontaneously or in response to incoming activity produced by sensory inputs. In this Review, we focus on neural dynamics that is best understood as a sequence of repeated activations of a number of discrete hidden states. These transiently occupied states are termed "metastable" and have been linked to important sensory and cognitive functions. In the rodent gustatory cortex, for instance, metastable dynamics have been associated with stimulus coding, with states of expectation, and with decision making. In frontal, parietal, and motor areas of macaques, metastable activity has been related to behavioral performance, choice behavior, task difficulty, and attention. In this article, we review the experimental evidence for neural metastable dynamics together with theoretical approaches to the study of metastable activity in neural circuits. These approaches include (i) a theoretical framework based on non-equilibrium statistical physics for network dynamics; (ii) statistical approaches to extract information about metastable states from a variety of neural signals; and (iii) recent neural network approaches, informed by experimental results, to model the emergence of metastable dynamics. By discussing these topics, we aim to provide a cohesive view of how transitions between different states of activity may provide the neural underpinnings for essential functions such as perception, memory, expectation, or decision making, and more generally, how the study of metastable neural activity may advance our understanding of neural circuit function in health and disease.
Collapse
Affiliation(s)
| | - H. Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | - J. Wang
- Authors to whom correspondence should be addressed: and
| | - G. La Camera
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
14
|
Metastable attractors explain the variable timing of stable behavioral action sequences. Neuron 2022; 110:139-153.e9. [PMID: 34717794 PMCID: PMC9194601 DOI: 10.1016/j.neuron.2021.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023]
Abstract
The timing of self-initiated actions shows large variability even when they are executed in stable, well-learned sequences. Could this mix of reliability and stochasticity arise within the same neural circuit? We trained rats to perform a stereotyped sequence of self-initiated actions and recorded neural ensemble activity in secondary motor cortex (M2), which is known to reflect trial-by-trial action-timing fluctuations. Using hidden Markov models, we established a dictionary between activity patterns and actions. We then showed that metastable attractors, representing activity patterns with a reliable sequential structure and large transition timing variability, could be produced by reciprocally coupling a high-dimensional recurrent network and a low-dimensional feedforward one. Transitions between attractors relied on correlated variability in this mesoscale feedback loop, predicting a specific structure of low-dimensional correlations that were empirically verified in M2 recordings. Our results suggest a novel mesoscale network motif based on correlated variability supporting naturalistic animal behavior.
Collapse
|
15
|
Kurikawa T, Kaneko K. Multiple-Timescale Neural Networks: Generation of History-Dependent Sequences and Inference Through Autonomous Bifurcations. Front Comput Neurosci 2021; 15:743537. [PMID: 34955798 PMCID: PMC8702558 DOI: 10.3389/fncom.2021.743537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Sequential transitions between metastable states are ubiquitously observed in the neural system and underlying various cognitive functions such as perception and decision making. Although a number of studies with asymmetric Hebbian connectivity have investigated how such sequences are generated, the focused sequences are simple Markov ones. On the other hand, fine recurrent neural networks trained with supervised machine learning methods can generate complex non-Markov sequences, but these sequences are vulnerable against perturbations and such learning methods are biologically implausible. How stable and complex sequences are generated in the neural system still remains unclear. We have developed a neural network with fast and slow dynamics, which are inspired by the hierarchy of timescales on neural activities in the cortex. The slow dynamics store the history of inputs and outputs and affect the fast dynamics depending on the stored history. We show that the learning rule that requires only local information can form the network generating the complex and robust sequences in the fast dynamics. The slow dynamics work as bifurcation parameters for the fast one, wherein they stabilize the next pattern of the sequence before the current pattern is destabilized depending on the previous patterns. This co-existence period leads to the stable transition between the current and the next pattern in the non-Markov sequence. We further find that timescale balance is critical to the co-existence period. Our study provides a novel mechanism generating robust complex sequences with multiple timescales. Considering the multiple timescales are widely observed, the mechanism advances our understanding of temporal processing in the neural system.
Collapse
Affiliation(s)
- Tomoki Kurikawa
- Department of Physics, Kansai Medical University, Hirakata, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.,Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Krause EL, Drugowitsch J. A large majority of awake hippocampal sharp-wave ripples feature spatial trajectories with momentum. Neuron 2021; 110:722-733.e8. [PMID: 34863366 DOI: 10.1016/j.neuron.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs). Heuristic approaches have revealed that a small fraction of SWRs appear to "simulate" trajectories through the environment, called awake hippocampal replay. However, the functional role of a majority of these SWRs remains unclear. We find, using Bayesian model comparison of state-space models to characterize the spatiotemporal dynamics embedded in SWRs, that almost all SWRs of foraging rodents simulate such trajectories. Furthermore, these trajectories feature momentum, or inertia in their velocities, that mirrors the animals' natural movement, in contrast to replay events during sleep, which lack such momentum. Last, we show that past analyses of replayed trajectories for navigational planning were biased by the heuristic SWR sub-selection. Our findings thus identify the dominant function of awake SWRs as simulating trajectories with momentum and provide a principled foundation for future work on their computational function.
Collapse
Affiliation(s)
- Emma L Krause
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Cao L, Varga V, Chen ZS. Uncovering spatial representations from spatiotemporal patterns of rodent hippocampal field potentials. CELL REPORTS METHODS 2021; 1:100101. [PMID: 34888543 PMCID: PMC8654278 DOI: 10.1016/j.crmeth.2021.100101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022]
Abstract
Spatiotemporal patterns of large-scale spiking and field potentials of the rodent hippocampus encode spatial representations during maze runs, immobility, and sleep. Here, we show that multisite hippocampal field potential amplitude at ultra-high-frequency band (FPAuhf), a generalized form of multiunit activity, provides not only a fast and reliable reconstruction of the rodent's position when awake, but also a readout of replay content during sharp-wave ripples. This FPAuhf feature may serve as a robust real-time decoding strategy from large-scale recordings in closed-loop experiments. Furthermore, we develop unsupervised learning approaches to extract low-dimensional spatiotemporal FPAuhf features during run and ripple periods and to infer latent dynamical structures from lower-rank FPAuhf features. We also develop an optical flow-based method to identify propagating spatiotemporal LFP patterns from multisite array recordings, which can be used as a decoding application. Finally, we develop a prospective decoding strategy to predict an animal's future decision in goal-directed navigation.
Collapse
Affiliation(s)
- Liang Cao
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Physics, East China Normal University, Shanghai 200241, China
| | - Viktor Varga
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institute of Experimental Medicine, 43 Szigony Street, 1083 Budapest, Hungary
| | - Zhe S. Chen
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
18
|
Denovellis EL, Gillespie AK, Coulter ME, Sosa M, Chung JE, Eden UT, Frank LM. Hippocampal replay of experience at real-world speeds. eLife 2021; 10:64505. [PMID: 34570699 PMCID: PMC8476125 DOI: 10.7554/elife.64505] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Representations related to past experiences play a critical role in memory and decision-making processes. The rat hippocampus expresses these types of representations during sharp-wave ripple (SWR) events, and previous work identified a minority of SWRs that contain ‘replay’ of spatial trajectories at ∼20x the movement speed of the animal. Efforts to understand replay typically make multiple assumptions about which events to examine and what sorts of representations constitute replay. We therefore lack a clear understanding of both the prevalence and the range of representational dynamics associated with replay. Here, we develop a state space model that uses a combination of movement dynamics of different speeds to capture the spatial content and time evolution of replay during SWRs. Using this model, we find that the large majority of replay events contain spatially coherent, interpretable content. Furthermore, many events progress at real-world, rather than accelerated, movement speeds, consistent with actual experiences.
Collapse
Affiliation(s)
- Eric L Denovellis
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Anna K Gillespie
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Michael E Coulter
- Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Jason E Chung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, United States
| | - Loren M Frank
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
19
|
Diomedi S, Vaccari FE, Galletti C, Hadjidimitrakis K, Fattori P. Motor-like neural dynamics in two parietal areas during arm reaching. Prog Neurobiol 2021; 205:102116. [PMID: 34217822 DOI: 10.1016/j.pneurobio.2021.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
The classical view on motor control makes a clear distinction between the role of motor cortex in controlling muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal connections argue against such clear-cut separation of function. Modern dynamical approaches revealed that population activity in motor cortex can be captured by a limited number of patterns, called neural states that are preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population activity largely reflects timing constraints while motor actions unfold.
Collapse
Affiliation(s)
- S Diomedi
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - F E Vaccari
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - C Galletti
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - K Hadjidimitrakis
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| | - P Fattori
- Dept. of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Italy.
| |
Collapse
|
20
|
Liu Y, Dolan RJ, Higgins C, Penagos H, Woolrich MW, Ólafsdóttir HF, Barry C, Kurth-Nelson Z, Behrens TE. Temporally delayed linear modelling (TDLM) measures replay in both animals and humans. eLife 2021; 10:e66917. [PMID: 34096501 PMCID: PMC8318595 DOI: 10.7554/elife.66917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/06/2021] [Indexed: 12/25/2022] Open
Abstract
There are rich structures in off-task neural activity which are hypothesized to reflect fundamental computations across a broad spectrum of cognitive functions. Here, we develop an analysis toolkit - temporal delayed linear modelling (TDLM) - for analysing such activity. TDLM is a domain-general method for finding neural sequences that respect a pre-specified transition graph. It combines nonlinear classification and linear temporal modelling to test for statistical regularities in sequences of task-related reactivations. TDLM is developed on the non-invasive neuroimaging data and is designed to take care of confounds and maximize sequence detection ability. Notably, as a linear framework, TDLM can be easily extended, without loss of generality, to capture rodent replay in electrophysiology, including in continuous spaces, as well as addressing second-order inference questions, for example, its temporal and spatial varying pattern. We hope TDLM will advance a deeper understanding of neural computation and promote a richer convergence between animal and human neuroscience.
Collapse
Affiliation(s)
- Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Max Planck University College London Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
| | - Raymond J Dolan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Max Planck University College London Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Cameron Higgins
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
| | - Hector Penagos
- Center for Brains, Minds and Machines, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mark W Woolrich
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| | - Caswell Barry
- Research Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing ResearchLondonUnited Kingdom
- DeepMindLondonUnited Kingdom
| | - Timothy E Behrens
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
21
|
Wyrick D, Mazzucato L. State-Dependent Regulation of Cortical Processing Speed via Gain Modulation. J Neurosci 2021; 41:3988-4005. [PMID: 33858943 PMCID: PMC8176754 DOI: 10.1523/jneurosci.1895-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
To thrive in dynamic environments, animals must be capable of rapidly and flexibly adapting behavioral responses to a changing context and internal state. Examples of behavioral flexibility include faster stimulus responses when attentive and slower responses when distracted. Contextual or state-dependent modulations may occur early in the cortical hierarchy and may be implemented via top-down projections from corticocortical or neuromodulatory pathways. However, the computational mechanisms mediating the effects of such projections are not known. Here, we introduce a theoretical framework to classify the effects of cell type-specific top-down perturbations on the information processing speed of cortical circuits. Our theory demonstrates that perturbation effects on stimulus processing can be predicted by intrinsic gain modulation, which controls the timescale of the circuit dynamics. Our theory leads to counterintuitive effects, such as improved performance with increased input variance. We tested the model predictions using large-scale electrophysiological recordings from the visual hierarchy in freely running mice, where we found that a decrease in single-cell intrinsic gain during locomotion led to an acceleration of visual processing. Our results establish a novel theory of cell type-specific perturbations, applicable to top-down modulation as well as optogenetic and pharmacological manipulations. Our theory links connectivity, dynamics, and information processing via gain modulation.SIGNIFICANCE STATEMENT To thrive in dynamic environments, animals adapt their behavior to changing circumstances and different internal states. Examples of behavioral flexibility include faster responses to sensory stimuli when attentive and slower responses when distracted. Previous work suggested that contextual modulations may be implemented via top-down inputs to sensory cortex coming from higher brain areas or neuromodulatory pathways. Here, we introduce a theory explaining how the speed at which sensory cortex processes incoming information is adjusted by changes in these top-down projections, which control the timescale of neural activity. We tested our model predictions in freely running mice, revealing that locomotion accelerates visual processing. Our theory is applicable to internal modulation as well as optogenetic and pharmacological manipulations and links circuit connectivity, dynamics, and information processing.
Collapse
Affiliation(s)
- David Wyrick
- Department of Biology and Institute of Neuroscience
| | - Luca Mazzucato
- Department of Biology and Institute of Neuroscience
- Departments of Mathematics and Physics, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
22
|
Benozzo D, La Camera G, Genovesio A. Slower prefrontal metastable dynamics during deliberation predicts error trials in a distance discrimination task. Cell Rep 2021; 35:108934. [PMID: 33826896 PMCID: PMC8083966 DOI: 10.1016/j.celrep.2021.108934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
Cortical activity related to erroneous behavior in discrimination or decision-making tasks is rarely analyzed, yet it can help clarify which computations are essential during a specific task. Here, we use a hidden Markov model (HMM) to perform a trial-by-trial analysis of the ensemble activity of dorsolateral prefrontal cortex (PFdl) neurons of rhesus monkeys performing a distance discrimination task. By segmenting the neural activity into sequences of metastable states, HMM allows us to uncover modulations of the neural dynamics related to internal computations. We find that metastable dynamics slow down during error trials, while state transitions at a pivotal point during the trial take longer in difficult correct trials. Both these phenomena occur during the decision interval, with errors occurring in both easy and difficult trials. Our results provide further support for the emerging role of metastable cortical dynamics in mediating complex cognitive functions and behavior.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giancarlo La Camera
- Department of Neurobiology and Behavior, Center for Neural Circuit Dynamics and Institute for Advanced Computational Science, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Findlay G, Tononi G, Cirelli C. The evolving view of replay and its functions in wake and sleep. ACTA ACUST UNITED AC 2021; 1:zpab002. [PMID: 33644760 PMCID: PMC7898724 DOI: 10.1093/sleepadvances/zpab002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Indexed: 12/28/2022]
Abstract
The term hippocampal replay originally referred to the temporally compressed reinstantiation, during rest, of sequential neural activity observed during prior active wake. Since its description in the 1990s, hippocampal replay has often been viewed as the key mechanism by which a memory trace is repeatedly rehearsed at high speeds during sleep and gradually transferred to neocortical circuits. However, the methods used to measure the occurrence of replay remain debated, and it is now clear that the underlying neural events are considerably more complicated than the traditional narratives had suggested. “Replay-like” activity happens during wake, can play out in reverse order, may represent trajectories never taken by the animal, and may have additional functions beyond memory consolidation, from learning values and solving the problem of credit assignment to decision-making and planning. Still, we know little about the role of replay in cognition, and to what extent it differs between wake and sleep. This may soon change, however, because decades-long efforts to explain replay in terms of reinforcement learning (RL) have started to yield testable predictions and possible explanations for a diverse set of observations. Here, we (1) survey the diverse features of replay, focusing especially on the latest findings; (2) discuss recent attempts at unifying disparate experimental results and putatively different cognitive functions under the banner of RL; (3) discuss methodological issues and theoretical biases that impede progress or may warrant a partial revaluation of the current literature, and finally; (4) highlight areas of considerable uncertainty and promising avenues of inquiry.
Collapse
Affiliation(s)
- Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Williams AH, Degleris A, Wang Y, Linderman SW. Point process models for sequence detection in high-dimensional neural spike trains. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2020; 33:14350-14361. [PMID: 35002191 PMCID: PMC8734964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sparse sequences of neural spikes are posited to underlie aspects of working memory [1], motor production [2], and learning [3, 4]. Discovering these sequences in an unsupervised manner is a longstanding problem in statistical neuroscience [5-7]. Promising recent work [4, 8] utilized a convolutive nonnegative matrix factorization model [9] to tackle this challenge. However, this model requires spike times to be discretized, utilizes a sub-optimal least-squares criterion, and does not provide uncertainty estimates for model predictions or estimated parameters. We address each of these shortcomings by developing a point process model that characterizes fine-scale sequences at the level of individual spikes and represents sequence occurrences as a small number of marked events in continuous time. This ultra-sparse representation of sequence events opens new possibilities for spike train modeling. For example, we introduce learnable time warping parameters to model sequences of varying duration, which have been experimentally observed in neural circuits [10]. We demonstrate these advantages on experimental recordings from songbird higher vocal center and rodent hippocampus.
Collapse
Affiliation(s)
- Alex H Williams
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Anthony Degleris
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Yixin Wang
- Department of Statistics, Columbia University, New York NY 10027
| | | |
Collapse
|
25
|
Moyer AJ, Gardiner K, Reeves RH. All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends Genet 2020; 37:444-459. [PMID: 33097276 DOI: 10.1016/j.tig.2020.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Human chromosome 21 (Hsa21) contains more than 500 genes, making trisomy 21 one of the most complex genetic perturbations compatible with life. The ultimate goal of Down syndrome (DS) research is to design therapies that improve quality of life for individuals with DS by understanding which subsets of Hsa21 genes contribute to DS-associated phenotypes throughout the lifetime. However, the complexity of DS pathogenesis has made developing appropriate animal models an ongoing challenge. Here, we examine lessons learned from a variety of model systems, including yeast, nematode, fruit fly, and zebrafish, and discuss emerging methods for creating murine models that better reflect the genetic basis of trisomy 21.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Katheleen Gardiner
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA (retired)
| | - Roger H Reeves
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Dutta S, Gao S, Chu JP, Kemere C. Tracing a Path for Memory in the Hippocampus. Neuron 2020; 107:199-201. [PMID: 32702341 DOI: 10.1016/j.neuron.2020.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hippocampal activity supporting trace fear conditioning has long been mysterious, but a leading hypothesis posits "time-cell"-like sequential patterns. In this issue of Neuron, Ahmed et al. (2020) present new data suggesting that, at least during the first session of learning, a subset of neurons coalesce to selectively encode the task but without expressing reliable sequences.
Collapse
Affiliation(s)
- Shayok Dutta
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Sibo Gao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Joshua P Chu
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA; Neuroscience Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
The Role of Hp-NCL Network in Goal-Directed Routing Information Encoding of Bird: A Review. Brain Sci 2020; 10:brainsci10090617. [PMID: 32906650 PMCID: PMC7563516 DOI: 10.3390/brainsci10090617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.
Collapse
|
28
|
Ahmed MS, Priestley JB, Castro A, Stefanini F, Solis Canales AS, Balough EM, Lavoie E, Mazzucato L, Fusi S, Losonczy A. Hippocampal Network Reorganization Underlies the Formation of a Temporal Association Memory. Neuron 2020; 107:283-291.e6. [PMID: 32392472 PMCID: PMC7643350 DOI: 10.1016/j.neuron.2020.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/10/2020] [Accepted: 04/14/2020] [Indexed: 01/15/2023]
Abstract
Episodic memory requires linking events in time, a function dependent on the hippocampus. In "trace" fear conditioning, animals learn to associate a neutral cue with an aversive stimulus despite their separation in time by a delay period on the order of tens of seconds. But how this temporal association forms remains unclear. Here we use two-photon calcium imaging of neural population dynamics throughout the course of learning and show that, in contrast to previous theories, hippocampal CA1 does not generate persistent activity to bridge the delay. Instead, learning is concomitant with broad changes in the active neural population. Although neural responses were stochastic in time, cue identity could be read out from population activity over longer timescales after learning. These results question the ubiquity of seconds-long neural sequences during temporal association learning and suggest that trace fear conditioning relies on mechanisms that differ from persistent activity accounts of working memory.
Collapse
Affiliation(s)
- Mohsin S Ahmed
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Angel Castro
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Fabio Stefanini
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ana Sofia Solis Canales
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Elizabeth M Balough
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Erin Lavoie
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Luca Mazzucato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Departments of Mathematics and Biology, University of Oregon, Eugene, OR 97403, USA
| | - Stefano Fusi
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
29
|
Tu M, Zhao R, Adler A, Gan WB, Chen ZS. Efficient Position Decoding Methods Based on Fluorescence Calcium Imaging in the Mouse Hippocampus. Neural Comput 2020; 32:1144-1167. [PMID: 32343646 PMCID: PMC8011981 DOI: 10.1162/neco_a_01281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large-scale fluorescence calcium imaging methods have become widely adopted for studies of long-term hippocampal and cortical neuronal dynamics. Pyramidal neurons of the rodent hippocampus show spatial tuning in freely foraging or head-fixed navigation tasks. Development of efficient neural decoding methods for reconstructing the animal's position in real or virtual environments can provide a fast readout of spatial representations in closed-loop neuroscience experiments. Here, we develop an efficient strategy to extract features from fluorescence calcium imaging traces and further decode the animal's position. We validate our spike inference-free decoding methods in multiple in vivo calcium imaging recordings of the mouse hippocampus based on both supervised and unsupervised decoding analyses. We systematically investigate the decoding performance of our proposed methods with respect to the number of neurons, imaging frame rate, and signal-to-noise ratio. Our proposed supervised decoding analysis is ultrafast and robust, and thereby appealing for real-time position decoding applications based on calcium imaging.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, U.S.A., and Nanyang Technological University, 639798, Singapore
| | - Ruohe Zhao
- Skirball Institute, Department of Neuroscience and Physiology and Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, U.S.A., and Key Laboratory of Chemical Genomics, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Avital Adler
- Skirball Institute, Department of Neuroscience and Physiology and Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, U.S.A.
| | - Wen-Biao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, and Neuroscience Institute, New York University School of Medicine, New York, NY 10016, U.S.A.
| | - Zhe S Chen
- Department of Psychiatry and Neuroscience Institute, New York University School of Medicine, New York, NY 10016, U.S.A.
| |
Collapse
|
30
|
Kinsky NR, Mau W, Sullivan DW, Levy SJ, Ruesch EA, Hasselmo ME. Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. Nat Commun 2020; 11:2443. [PMID: 32415083 PMCID: PMC7229120 DOI: 10.1038/s41467-020-16226-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Trajectory-dependent splitter neurons in the hippocampus encode information about a rodent's prior trajectory during performance of a continuous alternation task. As such, they provide valuable information for supporting memory-guided behavior. Here, we employed single-photon calcium imaging in freely moving mice to investigate the emergence and fate of trajectory-dependent activity through learning and mastery of a continuous spatial alternation task. In agreement with others, the quality of trajectory-dependent information in hippocampal neurons correlated with task performance. We thus hypothesized that, due to their utility, splitter neurons would exhibit heightened stability. We find that splitter neurons were more likely to remain active and retained more consistent spatial information across multiple days than other neurons. Furthermore, we find that both splitter neurons and place cells emerged rapidly and maintained stable trajectory-dependent/spatial activity thereafter. Our results suggest that neurons with useful functional coding exhibit heightened stability to support memory guided behavior.
Collapse
Affiliation(s)
- Nathaniel R. Kinsky
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000000086837370grid.214458.eDepartment of Anesthesiology, University of Michigan, 1301 Catherine St. Rm 7433, Ann Arbor, MI 48109 USA
| | - William Mau
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10th Floor, New York, NY 10029 USA
| | - David W. Sullivan
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Samuel J. Levy
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Evan A. Ruesch
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Michael E. Hasselmo
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| |
Collapse
|
31
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
32
|
Liu TY, Watson BO. Patterned activation of action potential patterns during offline states in the neocortex: replay and non-replay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190233. [PMID: 32248782 PMCID: PMC7209911 DOI: 10.1098/rstb.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Action potential generation (spiking) in the neocortex is organized into repeating non-random patterns during both awake experiential states and non-engaged states ranging from inattention to sleep to anaesthesia—and even occur in slice preparations. Repeating patterns in a given population of neurons between states may imply a common means by which cortical networks can be engaged despite brain state changes, but super-imposed on this common firing is a variability that is both specific to ongoing inputs and can be re-shaped by experience. This similarity with specifically induced variance may allow for a range of processes including perception, memory consolidation and network homeostasis. Here, we review how patterned activity in neocortical populations has been studied and what it may imply for a cortex that must be both static and plastic. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Tang-Yu Liu
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Tingley D, Peyrache A. On the methods for reactivation and replay analysis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190231. [PMID: 32248787 DOI: 10.1098/rstb.2019.0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major task in the history of neurophysiology has been to relate patterns of neural activity to ongoing external stimuli. More recently, this approach has branched out to relating current neural activity patterns to external stimuli or experiences that occurred in the past or future. Here, we aim to review the large body of methodological approaches used towards this goal, and to assess the assumptions each makes with reference to the statistics of neural data that are commonly observed. These methods primarily fall into two categories, those that quantify zero-lag relationships without examining temporal evolution, termed reactivation, and those that quantify the temporal structure of changing activity patterns, termed replay. However, no two studies use the exact same approach, which prevents an unbiased comparison between findings. These observations should instead be validated by multiple and, if possible, previously established tests. This will help the community to speak a common language and will eventually provide tools to study, more generally, the organization of neuronal patterns in the brain. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- David Tingley
- Neuroscience Institute, New York University, New York, NY, USA
| | - Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
34
|
van der Meer MAA, Kemere C, Diba K. Progress and issues in second-order analysis of hippocampal replay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190238. [PMID: 32248780 DOI: 10.1098/rstb.2019.0238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Patterns of neural activity that occur spontaneously during sharp-wave ripple (SWR) events in the hippocampus are thought to play an important role in memory formation, consolidation and retrieval. Typical studies examining the content of SWRs seek to determine whether the identity and/or temporal order of cell firing is different from chance. Such 'first-order' analyses are focused on a single time point and template (map), and have been used to show, for instance, the existence of preplay. The major methodological challenge in first-order analyses is the construction and interpretation of different chance distributions. By contrast, 'second-order' analyses involve a comparison of SWR content between different time points, and/or between different templates. Typical second-order questions include tests of experience-dependence (replay) that compare SWR content before and after experience, and comparisons or replay between different arms of a maze. Such questions entail additional methodological challenges that can lead to biases in results and associated interpretations. We provide an inventory of analysis challenges for second-order questions about SWR content, and suggest ways of preventing, identifying and addressing possible analysis biases. Given evolving interest in understanding SWR content in more complex experimental scenarios and across different time scales, we expect these issues to become increasingly pervasive. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kamran Diba
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Abstract
Abstract
Brains are information processing systems whose operational principles ultimately cannot be understood without resource to information theory. We suggest that understanding how external signals are represented in the brain is a necessary step towards employing further engineering tools (such as control theory) to understand the information processing performed by brain circuits during behaviour.
Collapse
|
36
|
La Camera G, Fontanini A, Mazzucato L. Cortical computations via metastable activity. Curr Opin Neurobiol 2019; 58:37-45. [PMID: 31326722 DOI: 10.1016/j.conb.2019.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/22/2019] [Indexed: 12/27/2022]
Abstract
Metastable brain dynamics are characterized by abrupt, jump-like modulations so that the neural activity in single trials appears to unfold as a sequence of discrete, quasi-stationary 'states'. Evidence that cortical neural activity unfolds as a sequence of metastable states is accumulating at fast pace. Metastable activity occurs both in response to an external stimulus and during ongoing, self-generated activity. These spontaneous metastable states are increasingly found to subserve internal representations that are not locked to external triggers, including states of deliberations, attention and expectation. Moreover, decoding stimuli or decisions via metastable states can be carried out trial-by-trial. Focusing on metastability will allow us to shift our perspective on neural coding from traditional concepts based on trial-averaging to models based on dynamic ensemble representations. Recent theoretical work has started to characterize the mechanistic origin and potential roles of metastable representations. In this article we review recent findings on metastable activity, how it may arise in biologically realistic models, and its potential role for representing internal states as well as relevant task variables.
Collapse
Affiliation(s)
- Giancarlo La Camera
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, United States; Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY 11794, United States.
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, United States; Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, NY 11794, United States
| | - Luca Mazzucato
- Departments of Biology and Mathematics and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, United States
| |
Collapse
|
37
|
Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, Fee MS. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. eLife 2019; 8:38471. [PMID: 30719973 PMCID: PMC6363393 DOI: 10.7554/elife.38471] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022] Open
Abstract
Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. Here, we describe a software toolbox—called seqNMF—with new methods for extracting informative, non-redundant, sequences from high-dimensional neural data, testing the significance of these extracted patterns, and assessing the prevalence of sequential structure in data. We test these methods on simulated data under multiple noise conditions, and on several real neural and behavioral data sets. In hippocampal data, seqNMF identifies neural sequences that match those calculated manually by reference to behavioral events. In songbird data, seqNMF discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits without relying on temporal references from stimuli or behavioral outputs.
Collapse
Affiliation(s)
- Emily L Mackevicius
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrew H Bahle
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Alex H Williams
- Neurosciences Program, Stanford University, Stanford, United States
| | - Shijie Gu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Natalia I Denisenko
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States.,Department of Ophthamology and Vision Science, University of California, Davis, Davis, United States
| | - Michale S Fee
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
38
|
Hippocampal Reactivation Extends for Several Hours Following Novel Experience. J Neurosci 2018; 39:866-875. [PMID: 30530857 DOI: 10.1523/jneurosci.1950-18.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
New memories are believed to be consolidated over several hours of post-task sleep. The reactivation or "replay" of hippocampal cell assemblies has been proposed to provide a key mechanism for this process. However, previous studies have indicated that such replay is restricted to the first 10-30 min of post-task sleep, suggesting that it has a limited role in memory consolidation. We performed long-duration recordings in sleeping and behaving male rats and applied methods for evaluating the reactivation of neurons in pairs as well as in larger ensembles while controlling for the continued activation of ensembles already present during pre-task sleep ("preplay"). We found that cell assemblies reactivate for up to 10 h, with a half-maximum timescale of ∼6 h, in sleep following novel experience, even when corrected for preplay. We further confirmed similarly prolonged reactivation in post-task sleep of rats in other datasets that used behavior in novel environments. In contrast, we saw limited reactivation in sleep following behavior in familiar environments. Overall, our findings reconcile the duration of replay with the timescale attributed to cellular memory consolidation and provide strong support for an integral role of replay in memory.SIGNIFICANCE STATEMENT Neurons that are active during an experience reactivate again afterward during rest and sleep. This replay of ensembles of neurons has been proposed to help strengthen memories, but it has also been reported that replay occurs only in the first 10-30 min of sleep, suggesting a circumscribed role. We performed long-duration recordings in the hippocampus of rats and found that replay persists for several hours in sleep following novel experience, far beyond the limits found in previous reports based on shorter recordings. These findings reconcile the duration of replay with the hours-long timescales attributed to memory consolidation.
Collapse
|
39
|
Ciliberti D, Michon F, Kloosterman F. Real-time classification of experience-related ensemble spiking patterns for closed-loop applications. eLife 2018; 7:36275. [PMID: 30373716 PMCID: PMC6207426 DOI: 10.7554/elife.36275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Communication in neural circuits across the cortex is thought to be mediated by spontaneous temporally organized patterns of population activity lasting ~50 –200 ms. Closed-loop manipulations have the unique power to reveal direct and causal links between such patterns and their contribution to cognition. Current brain–computer interfaces, however, are not designed to interpret multi-neuronal spiking patterns at the millisecond timescale. To bridge this gap, we developed a system for classifying ensemble patterns in a closed-loop setting and demonstrated its application in the online identification of hippocampal neuronal replay sequences in the rat. Our system decodes multi-neuronal patterns at 10 ms resolution, identifies within 50 ms experience-related patterns with over 70% sensitivity and specificity, and classifies their content with 95% accuracy. This technology scales to high-count electrode arrays and will help to shed new light on the contribution of internally generated neural activity to coordinated neural assembly interactions and cognition.
Collapse
Affiliation(s)
- Davide Ciliberti
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Frédéric Michon
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,imec, Leuven, Belgium
| |
Collapse
|
40
|
Liu K, Sibille J, Dragoi G. Generative Predictive Codes by Multiplexed Hippocampal Neuronal Tuplets. Neuron 2018; 99:1329-1341.e6. [PMID: 30146305 DOI: 10.1016/j.neuron.2018.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/03/2018] [Accepted: 07/27/2018] [Indexed: 01/20/2023]
Abstract
Rapid internal representations are continuously formed based on single experiential episodes in space and time, but the neuronal ensemble mechanisms enabling rapid encoding without constraining the capacity for multiple distinct representations are unknown. We developed a probabilistic statistical model of hippocampal spontaneous sequential activity and revealed existence of an internal model of generative predictive codes for the regularities of multiple future novel spatial sequences. During navigation, the inferred difference between external stimuli and the internal model was encoded by emergence of intrinsic-unlikely, novel functional connections, which updated the model by preferentially potentiating post-experience. This internal model and these predictive codes depended on neuronal organization into inferred modules of short, high-repeat sequential neuronal "tuplets" operating as "neuro-codons." We propose that flexible multiplexing of neuronal tuplets into repertoires of extended sequences vastly expands the capacity of hippocampal predictive codes, which could initiate top-down hierarchical cortical loops for spatial and mental navigation and rapid learning.
Collapse
Affiliation(s)
- Kefei Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Jeremie Sibille
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - George Dragoi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience and Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|