1
|
Couper LI, Nalukwago DU, Lyberger KP, Farner JE, Mordecai EA. How Much Warming Can Mosquito Vectors Tolerate? GLOBAL CHANGE BIOLOGY 2024; 30:e17610. [PMID: 39624973 PMCID: PMC11645978 DOI: 10.1111/gcb.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/16/2024]
Abstract
Climate warming is expected to substantially impact the global landscape of mosquito-borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming-driven expansions in vector transmission, less is known about the potential for vectors to experience warming-driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins-the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, including Ae. aegypti and An. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, California, USA
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | | | - Kelsey P Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Damtew YT, Tong M, Varghese BM, Anikeeva O, Hansen A, Dear K, Driscoll T, Zhang Y, Capon T, Bi P. The impact of temperature on non-typhoidal Salmonella and Campylobacter infections: an updated systematic review and meta-analysis of epidemiological evidence. EBioMedicine 2024; 109:105393. [PMID: 39418985 PMCID: PMC11530612 DOI: 10.1016/j.ebiom.2024.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND As temperatures rise, the transmission and incidence of enteric infections such as those caused by Salmonella and Campylobacter increase. This study aimed to review and synthesise the available evidence on the effects of exposure to ambient temperatures on non-typhoidal Salmonella and Campylobacter infections. METHODS A systematic search was conducted for peer-reviewed epidemiological studies published between January 1990 and March 2024, in PubMed, Scopus, Embase, and Web of Science databases. Original observational studies using ecological time-series, case-crossover or case-series study designs reporting the association between ambient temperature and non-typhoidal Salmonella and Campylobacter infections in the general population were included. A random-effects meta-analysis was performed to pool the relative risks (RRs) per 1 °C temperature increase, and further meta regression, and subgroup analyses by climate zone, temperature metrics, temporal resolution, lag period, and continent were conducted. The Navigation Guide systematic review methodology framework was used to assess the quality and strength of evidence. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS Out of 3472 results, 44 studies were included in this systematic review encompassing over one million cases each of Salmonella and Campylobacter infections. Geographically, the 44 studies covered 27 countries across five continents and most of the studies were from high income countries. The meta-analysis incorporated 23 Salmonella studies (65 effect estimates) and 15 Campylobacter studies (24 effect estimates). For each 1 °C rise in temperature, the risk of non-typhoidal Salmonella and Campylobacter infections increased by 5% (RR: 1.05, 95% CI: 1.04-1.06), and 5% (RR: 1.05, 95% CI: 1.04-1.07%), respectively, with varying risks across different climate zones. The overall evidence was evaluated as being of "high" quality, and the strength of the evidence was determined to be "sufficient" for both infections. INTERPRETATION These findings emphasise the relationship between temperature and the incidence of Salmonella and Campylobacter infections. It is crucial to exercise caution when generalising these findings, given the limited number of studies conducted in low and middle-income countries. Nevertheless, the results demonstrate the importance of implementing focused interventions and adaptive measures, such as the establishment of localised early warning systems and preventive strategies that account for climatic fluctuations. Furthermore, our research emphasises the ongoing need for surveillance and research efforts to monitor and understand the changing dynamics of temperature-related enteric infections in the context of climate change. FUNDING Australian Research Council Discovery Projects grant (ARC DP200102571) Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia; College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia.
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
3
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Spatiotemporally Explicit Epidemic Model for West Nile Virus Outbreak in Germany: An Inversely Calibrated Approach. J Epidemiol Glob Health 2024; 14:1052-1070. [PMID: 38965178 PMCID: PMC11442818 DOI: 10.1007/s44197-024-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Since the first autochthonous transmission of West Nile Virus was detected in Germany (WNV) in 2018, it has become endemic in several parts of the country and is continuing to spread due to the attainment of a suitable environment for vector occurrence and pathogen transmission. Increasing temperature associated with a changing climate has been identified as a potential driver of mosquito-borne disease in temperate regions. This scenario justifies the need for the development of a spatially and temporarily explicit model that describes the dynamics of WNV transmission in Germany. In this study, we developed a process-based mechanistic epidemic model driven by environmental and epidemiological data. Functional traits of mosquitoes and birds of interest were used to parameterize our compartmental model appropriately. Air temperature, precipitation, and relative humidity were the key climatic forcings used to replicate the fundamental niche responsible for supporting mosquito population and infection transmission risks in the study area. An inverse calibration method was used to optimize our parameter selection. Our model was able to generate spatially and temporally explicit basic reproductive number (R0) maps showing dynamics of the WNV occurrences across Germany, which was strongly associated with the deviation from daily means of climatic forcings, signaling the impact of a changing climate in vector-borne disease dynamics. Epidemiological data for human infections sourced from Robert Koch Institute and animal cases collected from the Animal Diseases Information System (TSIS) of the Friedrich-Loeffler-Institute were used to validate model-simulated transmission rates. From our results, it was evident that West Nile Virus is likely to spread towards the western parts of Germany with the rapid attainment of environmental suitability for vector mosquitoes and amplifying host birds, especially short-distance migratory birds. Locations with high risk of WNV outbreak (Baden-Württemberg, Bavaria, Berlin, Brandenburg, Hamburg, North Rhine-Westphalia, Rhineland-Palatinate, Saarland, Saxony-Anhalt and Saxony) were shown on R0 maps. This study presents a path for developing an early warning system for vector-borne diseases driven by climate change.
Collapse
Affiliation(s)
- Oliver Chinonso Mbaoma
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany.
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Geographical Institute of the University of Bayreuth, GIB, Universitaetsstr. 30, 95447, Bayreuth, Germany
- Departamento de Botánico, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
4
|
Athni TS, Childs ML, Glidden CK, Mordecai EA. Temperature dependence of mosquitoes: Comparing mechanistic and machine learning approaches. PLoS Negl Trop Dis 2024; 18:e0012488. [PMID: 39283940 PMCID: PMC11460681 DOI: 10.1371/journal.pntd.0012488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/08/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.87). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming. Our results indicate that lab-based and field-based studies are highly complementary; performing the analyses in concert can help to more comprehensively understand vector response to climate change.
Collapse
Affiliation(s)
- Tejas S. Athni
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Marissa L. Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, United States of America
- Center for the Environment, Harvard University, Cambridge, Massachusetts, United States of America
| | - Caroline K. Glidden
- Department of Biology, Stanford University, Stanford, California, United States of America
- Stanford Institute for Human-centered Artificial Intelligence, Stanford University, Stanford, California, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
5
|
de Souza WM, Weaver SC. Effects of climate change and human activities on vector-borne diseases. Nat Rev Microbiol 2024; 22:476-491. [PMID: 38486116 DOI: 10.1038/s41579-024-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Vector-borne diseases are transmitted by haematophagous arthropods (for example, mosquitoes, ticks and sandflies) to humans and wild and domestic animals, with the largest burden on global public health disproportionately affecting people in tropical and subtropical areas. Because vectors are ectothermic, climate and weather alterations (for example, temperature, rainfall and humidity) can affect their reproduction, survival, geographic distribution and, consequently, ability to transmit pathogens. However, the effects of climate change on vector-borne diseases can be multifaceted and complex, sometimes with ambiguous consequences. In this Review, we discuss the potential effects of climate change, weather and other anthropogenic factors, including land use, human mobility and behaviour, as possible contributors to the redistribution of vectors and spread of vector-borne diseases worldwide.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Global Virus Network, Baltimore, MD, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
6
|
Damtew YT, Varghese BM, Anikeeva O, Tong M, Hansen A, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Gourley M, Prescott V, Bi P. Current and future burden of Ross River virus infection attributable to increasing temperature in Australia: a population-based study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 48:101124. [PMID: 39040035 PMCID: PMC11260579 DOI: 10.1016/j.lanwpc.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
Background Ross River virus (RRV), Australia's most notifiable vector-borne disease transmitted through mosquito bites, has seen increased transmission due to rising temperatures. Quantifying the burden of RRV infection attributable to increasing temperatures (both current and future) is pivotal to inform prevention strategies in the context of climate change. Methods As RRV-related deaths are rare in Australia, we utilised years lived with disability (YLDs) associated with RRV infection data from the Australian Institute of Health and Welfare (AIHW) Burden of Disease database between 2003 and 2018. We obtained relative risks per 1 °C temperature increase in RRV infection from a previous meta-analysis. Exposure distributions for each Köppen-Geiger climate zone were calculated separately and compared with the theoretical-minimum-risk exposure distribution to calculate RRV burden attributable to increasing temperatures during the baseline period (2003-2018), and projected future burdens for the 2030s and 2050s under two greenhouse gas emission scenarios (Representative Concentration Pathways, RCP 4.5 and RCP 8.5), two adaptation scenarios, and different population growth series. Findings During the baseline period (2003-2018), increasing mean temperatures contributed to 35.8 (±0.5) YLDs (19.1%) of the observed RRV burden in Australia. The mean temperature attributable RRV burden varied across climate zones and jurisdictions. Under both RCP scenarios, the projected RRV burden is estimated to increase in the future despite adaptation scenarios. By the 2050s, without adaptation, the RRV burden could reach 45.8 YLDs under RCP4.5 and 51.1 YLDs under RCP8.5. Implementing a 10% adaptation strategy could reduce RRV burden to 41.8 and 46.4 YLDs, respectively. Interpretation These findings provide scientific evidence for informing policy decisions and guiding resource allocation for mitigating the future RRV burden. The current findings underscore the need to develop location-specific adaptation strategies for climate-sensitive disease control and prevention. Funding Australian Research Council Discovery Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Geoffrey Morgan
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Vanessa Prescott
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT 2601, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
7
|
Fay RL, Cruz-Loya M, Keyel AC, Price DC, Zink SD, Mordecai EA, Ciota AT. Population-specific thermal responses contribute to regional variability in arbovirus transmission with changing climates. iScience 2024; 27:109934. [PMID: 38799579 PMCID: PMC11126822 DOI: 10.1016/j.isci.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander C. Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Dana C. Price
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
| | - Steve D. Zink
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | | | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, USA
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
8
|
Hector TE, Shocket MS, Sgrò CM, Hall MD. Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens. GLOBAL CHANGE BIOLOGY 2024; 30:e17341. [PMID: 38837568 DOI: 10.1111/gcb.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.
Collapse
Affiliation(s)
| | - Marta S Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Chuong C, Cereghino C, Rai P, Bates TA, Oberer M, Weger-Lucarelli J. Enhanced attenuation of chikungunya vaccines expressing antiviral cytokines. NPJ Vaccines 2024; 9:59. [PMID: 38472211 PMCID: PMC10933427 DOI: 10.1038/s41541-024-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Alphaviruses are vector-borne, medically relevant, positive-stranded RNA viruses that cause disease in animals and humans worldwide. Of this group, chikungunya virus (CHIKV) is the most significant human pathogen, responsible for generating millions of infections leading to severe febrile illness and debilitating chronic joint pain. Currently, there are limited treatments to protect against alphavirus disease; thus, there is a tremendous need to generate safe and effective vaccines. Live-attenuated vaccines (LAVs) are cost-effective and potent immunization strategies capable of generating long-term protection in a single dose. However, LAVs often produce systemic viral replication, which can lead to unwanted post-vaccination side effects and pose a risk of reversion to a pathogenic phenotype and transmission to mosquitoes. Here, we utilized a chimeric infectious clone of CHIKV engineered with the domain C of the E2 gene of Semliki Forest virus (SFV) to express IFNγ and IL-21-two potent antiviral and immunomodulatory cytokines-in order to improve the LAV's attenuation while maintaining immunogenicity. The IFNγ- and IL-21-expressing vaccine candidates were stable during passage and significantly attenuated post-vaccination, as mice experienced reduced footpad swelling with minimal systemic replication and dissemination capacity compared to the parental vaccine. Additionally, these candidates provided complete protection to mice challenged with WT CHIKV. Our dual attenuation strategy represents an innovative way to generate safe and effective alphavirus vaccines that could be applied to other viruses.
Collapse
Affiliation(s)
- Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Megan Oberer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Athni TS, Childs ML, Glidden CK, Mordecai EA. Temperature dependence of mosquitoes: comparing mechanistic and machine learning approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569955. [PMID: 38105988 PMCID: PMC10723351 DOI: 10.1101/2023.12.04.569955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mosquito vectors of pathogens (e.g., Aedes , Anopheles , and Culex spp. which transmit dengue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global public health. These vectors are geographically shifting under climate and other anthropogenic changes. As small-bodied ectotherms, mosquitoes are strongly affected by temperature, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult mortality rate, mosquito development rate, and probability of egg-to-adult survival) that exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies. However, it remains unknown how mosquito thermal responses measured in laboratory experiments relate to the realized thermal responses of mosquitoes in the field. To address this gap, we leverage thousands of global mosquito occurrences and geospatial satellite data at high spatial resolution to construct machine-learning based species distribution models, from which vector thermal responses are estimated. We apply methods to restrict models to the relevant mosquito activity season and to conduct ecologically-plausible spatial background sampling centered around ecoregions for comparison to mosquito occurrence records. We found that thermal minima estimated from laboratory studies were highly correlated with those from the species distributions (r = 0.90). The thermal optima were less strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their observed distributions so were unable to compare to laboratory-based estimates. The results suggest that laboratory studies have the potential to be highly transportable to predicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time, lab-based models likely capture physiological limits on mosquito persistence at high temperatures that are not apparent from field-based observational studies but may critically determine mosquito responses to climate warming.
Collapse
|
11
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
12
|
Chen D, Sun X, Cheke RA. Inferring a Causal Relationship between Environmental Factors and Respiratory Infections Using Convergent Cross-Mapping. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050807. [PMID: 37238562 DOI: 10.3390/e25050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The incidence of respiratory infections in the population is related to many factors, among which environmental factors such as air quality, temperature, and humidity have attracted much attention. In particular, air pollution has caused widespread discomfort and concern in developing countries. Although the correlation between respiratory infections and air pollution is well known, establishing causality between them remains elusive. In this study, by conducting theoretical analysis, we updated the procedure of performing the extended convergent cross-mapping (CCM, a method of causal inference) to infer the causality between periodic variables. Consistently, we validated this new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the refined method is applicable by investigating the periodicity of influenza-like illness cases, an air quality index, temperature, and humidity through wavelet analysis. We next illustrated that air quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases, and, in particular, the respiratory infection cases increased progressively with increased AQI with a time delay of 11 days.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
- Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| | - Xiaodan Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham ME4 4TB, Kent, UK
| |
Collapse
|
13
|
Ryan SJ, Lippi CA, Villena OC, Singh A, Murdock CC, Johnson LR. Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensi. Malar J 2023; 22:104. [PMID: 36945014 PMCID: PMC10029218 DOI: 10.1186/s12936-023-04531-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Anopheles stephensi is a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of both Plasmodium falciparum and Plasmodium vivax malaria. Perhaps most alarming, the characteristics of An. stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. METHODS In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission by An. stephensi were created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. RESULTS Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability with An. stephensi presence. General patterns of poleward expansion for thermal suitability were seen for both P. falciparum and P. vivax transmission potential. CONCLUSIONS Understanding the potential suitability for An. stephensi transmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.
Collapse
Affiliation(s)
- Sadie J Ryan
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL, 32611, USA.
| | - Catherine A Lippi
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL, 32611, USA
| | - Oswaldo C Villena
- The Earth Commons Institute, Georgetown University, Washington, DC, 20007, USA
| | - Aspen Singh
- Department of Geography and Emerging Pathogens Institute, University Florida, Gainesville, FL, 32611, USA
| | - Courtney C Murdock
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
- Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, USA
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
14
|
Furlong M, Adamu A, Hickson RI, Horwood P, Golchin M, Hoskins A, Russell T. Estimating the Distribution of Japanese Encephalitis Vectors in Australia Using Ecological Niche Modelling. Trop Med Infect Dis 2022; 7:tropicalmed7120393. [PMID: 36548648 PMCID: PMC9782987 DOI: 10.3390/tropicalmed7120393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Recent Japanese encephalitis virus (JEV) outbreaks in southeastern Australia have sparked interest into epidemiological factors surrounding the virus' novel emergence in this region. Here, the geographic distribution of mosquito species known to be competent JEV vectors in the country was estimated by combining known mosquito occurrences and ecological drivers of distribution to reveal insights into communities at highest risk of infectious disease transmission. Species distribution models predicted that Culex annulirostris and Culex sitiens presence was mostly likely along Australia's eastern and northern coastline, while Culex quinquefasciatus presence was estimated to be most likely near inland regions of southern Australia as well as coastal regions of Western Australia. While Culex annulirostris is considered the dominant JEV vector in Australia, our ecological niche models emphasise the need for further entomological surveillance and JEV research within Australia.
Collapse
Affiliation(s)
- Morgan Furlong
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: (M.F.); (P.H.)
| | - Andrew Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Roslyn I. Hickson
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Paul Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: (M.F.); (P.H.)
| | - Maryam Golchin
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Andrew Hoskins
- Commonwealth Scientific Industrial Research Organisation (CSIRO), Townsville, QLD 4811, Australia
| | - Tanya Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
15
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
16
|
Kirk D, O’Connor MI, Mordecai EA. Scaling effects of temperature on parasitism from individuals to populations. J Anim Ecol 2022; 91:2087-2102. [PMID: 35900837 PMCID: PMC9532350 DOI: 10.1111/1365-2656.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Biology, Stanford University, Stanford, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Mary I. O’Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
17
|
de Mello CF, Figueiró R, Roque RA, Maia DA, da Costa Ferreira V, Guimarães AÉ, Alencar J. Spatial distribution and interactions between mosquitoes (Diptera: Culicidae) and climatic factors in the Amazon, with emphasis on the tribe Mansoniini. Sci Rep 2022; 12:16214. [PMID: 36171406 PMCID: PMC9519922 DOI: 10.1038/s41598-022-20637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
This work aimed to evaluate the spatial distribution of mosquitoes in different seasonal periods and the interaction between climatic factors and the abundance of mosquitoes, especially those belonging to the tribe Mansoniini in the area surrounding the Amazon hydroelectric production region (Jirau-HP) of Rondônia state, Brazil. Mosquito specimens were collected in May, July, October, and December 2018, and April, July, September, and November 2019, over periods of three alternating days during the hours of 6:00 p.m. to 8:00 p.m. Mosquito sampling was performed using automatic CDC and Shannon light traps. Canonical correspondence analysis (CCA), combined with Monte Carlo permutations, was used to evaluate the correlation between climatic variables and species distribution. In addition, non-metric multidimensional scaling (NMDS) was used to verify the similarity among the sampled communities from the different collections. After analyzing the total mosquito fauna at all sampling points, 46,564 specimens were identified, with Mansonia dyari showing the highest relative abundance in 2018 (35.9%). In contrast, Mansonia titillans had the highest relative abundance in 2019 (25.34%), followed by Mansonia iguassuensis (24.26%). The CCA showed that maximum temperature significantly influenced the distribution of mosquito populations in the study area (p = 0.0406). The NMDS showed that sampling carried out in the rainy and dry seasons formed two distinct groups. There was a significant correlation between species richness and cumulative precipitation 15 days before the sampling period (R2 = 58.39%; p = 0.0272). Thus, both temperature and precipitation affected mosquito population dynamics. The effect of rainfall on mosquito communities may be due to variations in habitat availability for immature forms.
Collapse
Affiliation(s)
- Cecilia Ferreira de Mello
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.,Programa de Pós-Graduação em Biologia Animal, UFRRJ, Rd BR 465, Km 7, Seropédica, RJ, CEP 23897-000, Brazil
| | - Ronaldo Figueiró
- Departamento de Biologia, Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Avenida Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070-200, Brazil
| | - Rosemary Aparecida Roque
- Instituto Nacional de Pesquisas da Amazônia, INPA, Avenida André Araújo, n. 2936, Petrópolis, Manaus, Amazonas, CEP 69067-375, Brazil
| | - Daniele Aguiar Maia
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Vânia da Costa Ferreira
- Energia Sustentável do Brasil, ESBR, Rodovia BR- 364, KM 824 S/N, Distrito de Jaci Paraná, Porto Velho, Rondônia, 76840-000, Brazil
| | - Anthony Érico Guimarães
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil
| | - Jeronimo Alencar
- Laboratório de Diptera, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil, n. 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| |
Collapse
|
18
|
Di Pol G, Crotta M, Taylor RA. Modelling the temperature suitability for the risk of West Nile Virus establishment in European Culex pipiens populations. Transbound Emerg Dis 2022; 69:e1787-e1799. [PMID: 35304820 PMCID: PMC9790397 DOI: 10.1111/tbed.14513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/31/2022]
Abstract
Increases in temperature and extreme weather events due to global warming can create an environment that is beneficial to mosquito populations, changing and possibly increasing the suitable geographical range for many vector-borne diseases. West Nile Virus (WNV) is a flavivirus, maintained in a mosquito-avian host cycle that is usually asymptomatic but can cause primarily flu-like symptoms in human and equid accidental hosts. In rare circumstances, serious disease and death are possible outcomes for both humans and horses. The main European vector of WNV is the Culex pipiens mosquito. This study examines the effect of environmental temperature on WNV establishment in Europe via Culex pipiens populations through use of a basic reproduction number ( R 0 ${R_0}$ ) model. A metric of thermal suitability derived from R 0 ${R_0}$ was developed by collating thermal responses of different Culex pipiens traits and combining them through use of a next-generation matrix. WNV establishment was determined to be possible between 14°C and 34.3°C, with the optimal temperature at 23.7°C. The suitability measure was plotted against monthly average temperatures in 2020 and the number of months with high suitability mapped across Europe. The average number of suitable months for each year from 2013 to 2019 was also calculated and validated with reported equine West Nile fever cases from 2013 to 2019. The widespread thermal suitability for WNV establishment highlights the importance of European surveillance for this disease and the need for increased research into mosquito and bird distribution.
Collapse
Affiliation(s)
- Gabriella Di Pol
- Veterinary Epidemiology, Economics and Public Health GroupDepartment of Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | - Matteo Crotta
- Veterinary Epidemiology, Economics and Public Health GroupDepartment of Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | - Rachel A. Taylor
- Department of Epidemiological SciencesAnimal and Plant Health AgencySurreyUK
| |
Collapse
|
19
|
Damtew YT, Tong M, Varghese BM, Hansen A, Liu J, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Bi P. Associations between temperature and Ross river virus infection: A systematic review and meta-analysis of epidemiological evidence. Acta Trop 2022; 231:106454. [PMID: 35405101 DOI: 10.1016/j.actatropica.2022.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022]
Abstract
Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.
Collapse
|
20
|
Endo A, Amarasekare P. Predicting the Spread of Vector-Borne Diseases in a Warming World. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.758277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predicting how climate warming affects vector borne diseases is a key research priority. The prevailing approach uses the basic reproductive number (R0) to predict warming effects. However, R0 is derived under assumptions of stationary thermal environments; using it to predict disease spread in non-stationary environments could lead to erroneous predictions. Here, we develop a trait-based mathematical model that can predict disease spread and prevalence for any vector borne disease under any type of non-stationary environment. We parameterize the model with trait response data for the Malaria vector and pathogen to test the latest IPCC predictions on warmer-than-average winters and hotter-than-average summers. We report three key findings. First, the R0 formulation commonly used to investigate warming effects on disease spread violates the assumptions underlying its derivation as the dominant eigenvalue of a linearized host-vector model. As a result, it overestimates disease spread in cooler environments and underestimates it in warmer environments, proving its predictions to be unreliable even in a constant thermal environment. Second, hotter-than-average summers both narrow the thermal limits for disease prevalence, and reduce prevalence within those limits, to a much greater degree than warmer-than-average winters, highlighting the importance of hot extremes in driving disease burden. Third, while warming reduces infected vector populations through the compounding effects of adult mortality, and infected host populations through the interactive effects of mortality and transmission, uninfected vector populations prove surprisingly robust to warming. This suggests that ecological predictions of warming-induced reductions in disease burden should be tempered by the evolutionary possibility of vector adaptation to both cooler and warmer climates.
Collapse
|
21
|
Wu Q, Miles DB, Richard M, Rutschmann A, Clobert J. Intraspecific diversity alters the relationship between climate change and parasitism in a polymorphic ectotherm. GLOBAL CHANGE BIOLOGY 2022; 28:1301-1314. [PMID: 34856039 DOI: 10.1111/gcb.16018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Climate-modulated parasitism is driven by a range of factors, yet the spatial and temporal variability of this relationship has received scant attention in wild vertebrate hosts. Moreover, most prior studies overlooked the intraspecific differences across host morphotypes, which impedes a full understanding of the climate-parasitism relationship. In the common lizard (Zootoca vivipara), females exhibit three colour morphs: yellow (Y-females), orange (O-females) and mixed (mixture of yellow and orange, M-females). Zootoca vivipara is also infested with an ectoparasite (Ophionyssus mites). We therefore used this model system to examine the intraspecific response of hosts to parasitism under climate change. We found infestation probability to differ across colour morphs at both spatial (10 sites) and temporal (20 years) scales: M-females had lower parasite infestations than Y- and O-females at lower temperatures, but became more susceptible to parasites as temperature increased. The advantage of M-females at low temperatures was counterbalanced by their higher mortality rates thereafter, which suggests a morph-dependent trade-off between resistance to parasites and host survival. Furthermore, significant interactions between colour morphs and temperature indicate that the relationship between parasite infestations and climate warming was contingent on host morphotypes. Parasite infestations increased with temperature for most morphs, but displayed morph-specific rates. Finally, infested M-females had higher reductions in survival rates than infested Y- or O-females, which implies a potential loss of intraspecific diversity within populations as parasitism and temperatures rise. Overall, we found parasitism increases with warming temperatures, but this relationship is modulated by host morphotypes and an interaction with temperature. We suggest that epidemiological models incorporate intraspecific diversity within species for better understanding the dynamics of wildlife diseases under climate warming.
Collapse
Affiliation(s)
- Qiang Wu
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- Université Toulouse III Paul Sabatier, Université Fédérale Toulouse Midi-Pyrénées, Toulouse, France
| | - Donald B Miles
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
22
|
Hector TE, Sgrò CM, Hall MD. Thermal limits in the face of infectious disease: How important are pathogens? GLOBAL CHANGE BIOLOGY 2021; 27:4469-4480. [PMID: 34170603 DOI: 10.1111/gcb.15761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of both extreme thermal events and disease outbreaks are predicted to continue to shift as a consequence of global change. As a result, species persistence will likely be increasingly dependent on the interaction between thermal stress and pathogen exposure. Missing from the intersection between studies of infectious disease and thermal ecology, however, is the capacity for pathogen exposure to directly disrupt a host's ability to cope with thermal stress. Common sources of variation in host thermal performance, which are likely to interact with infection, are also often unaccounted for when assessing either the vulnerability of species or the potential for disease spread during extreme thermal events. Here, we describe how infection can directly alter host thermal limits, to a degree that exceeds the level of variation commonly seen across species large geographic distributions and that equals the detrimental impact of other ecologically relevant stressors. We then discuss various sources of heterogeneity within and between populations that are likely to be important in mediating the impact that infection has on variation in host thermal limits. In doing so we highlight how infection is a widespread and important source of variation in host thermal performance, which will have implications for both the persistence and vulnerability of species and the dynamics and transmission of disease in a more thermally extreme world.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
- Centre of Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
23
|
Kain MP, Skinner EB, van den Hurk AF, McCallum H, Mordecai EA. Physiology and ecology combine to determine host and vector importance for Ross River virus. eLife 2021; 10:e67018. [PMID: 34414887 PMCID: PMC8457839 DOI: 10.7554/elife.67018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023] Open
Abstract
Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.
Collapse
Affiliation(s)
- Morgan P Kain
- Department of Biology, Stanford UniversityStanfordUnited States
- Natural Capital Project, Woods Institute for the Environment, Stanford UniversityStanfordUnited States
| | - Eloise B Skinner
- Department of Biology, Stanford UniversityStanfordUnited States
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of HealthBrisbaneAustralia
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith UniversityGold CoastAustralia
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
24
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
25
|
El Moustaid F, Thornton Z, Slamani H, Ryan SJ, Johnson LR. Predicting temperature-dependent transmission suitability of bluetongue virus in livestock. Parasit Vectors 2021; 14:382. [PMID: 34330315 PMCID: PMC8323090 DOI: 10.1186/s13071-021-04826-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector–host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where the transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature-sensitive midge life-history traits, using a Bayesian approach. We incorporate these curves into S(T), a transmission suitability metric derived from the disease’s basic reproductive number, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_0.$$\end{document}R0. This suitability metric encompasses all components that are known to be temperature-dependent. We use trait responses for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis present in North America. Our results show that outbreaks of BTV are more likely between 15\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{\circ }$$\end{document}∘ C and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$34^{\circ }\hbox { C}$$\end{document}34∘C, with predicted peak transmission risk at 26 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ$$\end{document}∘ C. The greatest uncertainty in S(T) is associated with the following: the uncertainty in mortality and fecundity of midges near optimal temperature for transmission; midges’ probability of becoming infectious post-infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare three model formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this modeling approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk and to anticipate potential locations of disease establishment.
Collapse
Affiliation(s)
- Fadoua El Moustaid
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Global Change Center, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zorian Thornton
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Hani Slamani
- Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA.,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.,School of Life Sciences, University of KwaZulu, Natal, South Africa
| | - Leah R Johnson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Global Change Center, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Statistics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Computational Modeling and Data Analytics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
26
|
Ngonghala CN, Ryan SJ, Tesla B, Demakovsky LR, Mordecai EA, Murdock CC, Bonds MH. Effects of changes in temperature on Zika dynamics and control. J R Soc Interface 2021; 18:20210165. [PMID: 33947225 PMCID: PMC8097513 DOI: 10.1098/rsif.2021.0165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number (R0) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.
Collapse
Affiliation(s)
- Calistus N Ngonghala
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA
| | - Sadie J Ryan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA
- Quantitative Disease Ecology and Conservation Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Leah R Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Erin A Mordecai
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- River Basin Center, University of Georgia, Athens, GA 30602, USA
- Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
- Northeast Regional Center of Excellence for Vector-borne Disease Research and the Cornell Institute for Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14850, USA
| | - Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Hall NL, Barnes S, Canuto C, Nona F, Redmond AM. Climate change and infectious diseases in Australia's Torres Strait Islands. Aust N Z J Public Health 2021; 45:122-128. [PMID: 33522674 DOI: 10.1111/1753-6405.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This research seeks to identify climate-sensitive infectious diseases of concern with a present and future likelihood of increased occurrence in the geographically vulnerable Torres Strait Islands, Australia. The objective is to contribute evidence to the need for adequate climate change responses. METHODS Case data of infectious diseases with proven, potential and speculative climate sensitivity were compiled. RESULTS Five climate-sensitive diseases in the Torres Strait and Cape York region were identified as of concern: tuberculosis, dengue, Ross River virus, melioidosis and nontuberculous mycobacterial infection. The region constitutes 0.52% of Queensland's population but has a disproportionately high proportion of the state's cases: 20.4% of melioidosis, 2.4% of tuberculosis and 2.1% of dengue. CONCLUSIONS The Indigenous Torres Strait Islander peoples intend to remain living on their traditional country long-term, yet climate change brings risks of both direct and indirect human health impacts. Implications for public health: Climate-sensitive infections pose a disproportionate burden and ongoing risk to Torres Strait Islander peoples. Addressing the causes of climate change is the responsibility of various agencies in parallel with direct action to minimise or prevent infections. All efforts should privilege Torres Strait Islander peoples' voices to self-determine response actions.
Collapse
Affiliation(s)
- Nina L Hall
- School of Public Health, The University of Queensland
| | - Samuel Barnes
- School of Public Health, The University of Queensland
| | - Condy Canuto
- School of Public Health, The University of Queensland
| | - Francis Nona
- School of Public Health, The University of Queensland
| | - Andrew M Redmond
- Faculty of Medicine, The University of Queensland
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Queensland
| |
Collapse
|
28
|
Ross River Virus Infection: A Cross-Disciplinary Review with a Veterinary Perspective. Pathogens 2021; 10:pathogens10030357. [PMID: 33802851 PMCID: PMC8002670 DOI: 10.3390/pathogens10030357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ross River virus (RRV) has recently been suggested to be a potential emerging infectious disease worldwide. RRV infection remains the most common human arboviral disease in Australia, with a yearly estimated economic cost of $4.3 billion. Infection in humans and horses can cause chronic, long-term debilitating arthritogenic illnesses. However, current knowledge of immunopathogenesis remains to be elucidated and is mainly inferred from a murine model that only partially resembles clinical signs and pathology in human and horses. The epidemiology of RRV transmission is complex and multifactorial and is further complicated by climate change, making predictive models difficult to design. Establishing an equine model for RRV may allow better characterization of RRV disease pathogenesis and immunology in humans and horses, and could potentially be used for other infectious diseases. While there are no approved therapeutics or registered vaccines to treat or prevent RRV infection, clinical trials of various potential drugs and vaccines are currently underway. In the future, the RRV disease dynamic is likely to shift into temperate areas of Australia with longer active months of infection. Here, we (1) review the current knowledge of RRV infection, epidemiology, diagnostics, and therapeutics in both humans and horses; (2) identify and discuss major research gaps that warrant further research.
Collapse
|
29
|
Koolhof IS, Firestone SM, Bettiol S, Charleston M, Gibney KB, Neville PJ, Jardine A, Carver S. Optimising predictive modelling of Ross River virus using meteorological variables. PLoS Negl Trop Dis 2021; 15:e0009252. [PMID: 33690616 PMCID: PMC7978384 DOI: 10.1371/journal.pntd.0009252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/19/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Statistical models are regularly used in the forecasting and surveillance of infectious diseases to guide public health. Variable selection assists in determining factors associated with disease transmission, however, often overlooked in this process is the evaluation and suitability of the statistical model used in forecasting disease transmission and outbreaks. Here we aim to evaluate several modelling methods to optimise predictive modelling of Ross River virus (RRV) disease notifications and outbreaks in epidemiological important regions of Victoria and Western Australia. METHODOLOGY/PRINCIPAL FINDINGS We developed several statistical methods using meteorological and RRV surveillance data from July 2000 until June 2018 in Victoria and from July 1991 until June 2018 in Western Australia. Models were developed for 11 Local Government Areas (LGAs) in Victoria and seven LGAs in Western Australia. We found generalised additive models and generalised boosted regression models, and generalised additive models and negative binomial models to be the best fit models when predicting RRV outbreaks and notifications, respectively. No association was found with a model's ability to predict RRV notifications in LGAs with greater RRV activity, or for outbreak predictions to have a higher accuracy in LGAs with greater RRV notifications. Moreover, we assessed the use of factor analysis to generate independent variables used in predictive modelling. In the majority of LGAs, this method did not result in better model predictive performance. CONCLUSIONS/SIGNIFICANCE We demonstrate that models which are developed and used for predicting disease notifications may not be suitable for predicting disease outbreaks, or vice versa. Furthermore, poor predictive performance in modelling disease transmissions may be the result of inappropriate model selection methods. Our findings provide approaches and methods to facilitate the selection of the best fit statistical model for predicting mosquito-borne disease notifications and outbreaks used for disease surveillance.
Collapse
Affiliation(s)
- Iain S. Koolhof
- College of Health and Medicine, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Silvana Bettiol
- College of Health and Medicine, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Charleston
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Katherine B. Gibney
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Peter J. Neville
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Andrew Jardine
- Department of Health, Western Australia, Environmental Health Directorate, Public and Aboriginal Health Division, Perth, Western Australia, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
30
|
Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nat Commun 2021; 12:1233. [PMID: 33623008 PMCID: PMC7902664 DOI: 10.1038/s41467-021-21496-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 01/26/2021] [Indexed: 11/08/2022] Open
Abstract
Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28–85% for vectors, 44–88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections. The effects of climate on vector-borne disease systems are highly context-dependent. Here, the authors incorporate laboratory-measured physiological traits of the mosquito Aedes aegypti into climate-driven mechanistic models to predict number, timing, and duration of outbreaks in Ecuador and Kenya.
Collapse
|
31
|
Ryan SJ, Carlson CJ, Tesla B, Bonds MH, Ngonghala CN, Mordecai EA, Johnson LR, Murdock CC. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. GLOBAL CHANGE BIOLOGY 2021; 27:84-93. [PMID: 33037740 PMCID: PMC7756632 DOI: 10.1111/gcb.15384] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 06/04/2023]
Abstract
In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of GeographyUniversity of FloridaGainesvilleFLUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | | | - Blanka Tesla
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGAUSA
| | - Matthew H. Bonds
- Department of Global Health and Social MedicineHarvard Medical SchoolBostonMAUSA
| | - Calistus N. Ngonghala
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- Department of MathematicsUniversity of FloridaGainesvilleFLUSA
| | | | - Leah R. Johnson
- Department of StatisticsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
- Computational Modeling and Data AnalyticsVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Courtney C. Murdock
- Department of Infectious DiseasesCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGAUSA
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
- Center for Vaccines and ImmunologyCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
- Riverbasin CenterUniversity of GeorgiaAthensGAUSA
- Department of EntomologyCollege of Agriculture and Life SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
32
|
Ryan SJ. Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability. Curr Environ Health Rep 2020; 7:415-423. [PMID: 32902817 PMCID: PMC7748992 DOI: 10.1007/s40572-020-00290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW To describe a collection of recent work published on thermal suitability for vector-borne diseases, in which mapping approaches illustrated the geographic shifts, and spatial approaches describe the demographic impact anticipated with a changing climate. RECENT FINDINGS While climate change predictions of warming indicate an expansion in VBD suitability risk in some parts of the globe, while in others, optimal temperatures for transmission may be exceeded, as seen for malaria in Western Africa, resulting in declining risk. The thermal suitability of specific vector-pathogen pairs can have large impacts on geographic range of risk, and changes in human demography itself will intersect with this risk to create different vulnerability profiles over the coming century. Using a physiological approach to describe the thermal suitability of transmission for vector-borne diseases allows us to illustrate the future risk as mapped information. This in turn can be coupled with demographic projections to anticipate changing risk, and even changing vulnerability within that population change.
Collapse
Affiliation(s)
- Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
- School of Life Sciences, University of KwaZulu Natal, Durban, 4041, South Africa.
| |
Collapse
|
33
|
Abstract
Climate change is expected to have complex effects on infectious diseases, causing some to increase, others to decrease, and many to shift their distributions. There have been several important advances in understanding the role of climate and climate change on wildlife and human infectious disease dynamics over the past several years. This essay examines 3 major areas of advancement, which include improvements to mechanistic disease models, investigations into the importance of climate variability to disease dynamics, and understanding the consequences of thermal mismatches between host and parasites. Applying the new information derived from these advances to climate-disease models and addressing the pressing knowledge gaps that we identify should improve the capacity to predict how climate change will affect disease risk for both wildlife and humans.
Collapse
Affiliation(s)
- Jason R. Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeremy M. Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
34
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
35
|
Murphy AK, Clennon JA, Vazquez-Prokopec G, Jansen CC, Frentiu FD, Hafner LM, Hu W, Devine GJ. Spatial and temporal patterns of Ross River virus in south east Queensland, Australia: identification of hot spots at the rural-urban interface. BMC Infect Dis 2020; 20:722. [PMID: 33008314 PMCID: PMC7530966 DOI: 10.1186/s12879-020-05411-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
Background Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. Methods The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001–2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. Results The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. Conclusions Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.
Collapse
Affiliation(s)
- Amanda K Murphy
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Julie A Clennon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Cassie C Jansen
- Communicable Diseases Branch, Queensland Health, Herston, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
36
|
Shocket MS, Verwillow AB, Numazu MG, Slamani H, Cohen JM, El Moustaid F, Rohr J, Johnson LR, Mordecai EA. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. eLife 2020; 9:e58511. [PMID: 32930091 PMCID: PMC7492091 DOI: 10.7554/elife.58511] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector-pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23-26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24-25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Ecology and Evolutionary Biology, University of California Los AngelesLos AngelesUnited States
| | | | - Mailo G Numazu
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Hani Slamani
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jeremy M Cohen
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Forest and Wildlife Ecology, University of WisconsinMadisonUnited States
| | - Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Jason Rohr
- Department of Integrative Biology, University of South FloridaTampaUnited States
- Department of Biological Sciences, Eck Institute of Global Health, Environmental Change Initiative, University of Notre DameSouth BendUnited States
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUnited States
| | - Erin A Mordecai
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
37
|
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020; 4:e416-e423. [PMID: 32918887 PMCID: PMC7490804 DOI: 10.1016/s2542-5196(20)30178-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Jamie M. Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Melisa M. Shah
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Miazgowicz KL, Shocket MS, Ryan SJ, Villena OC, Hall RJ, Owen J, Adanlawo T, Balaji K, Johnson LR, Mordecai EA, Murdock CC. Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi. Proc Biol Sci 2020; 287:20201093. [PMID: 32693720 PMCID: PMC7423674 DOI: 10.1098/rspb.2020.1093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Models predicting disease transmission are vital tools for long-term planning of malaria reduction efforts, particularly for mitigating impacts of climate change. We compared temperature-dependent malaria transmission models when mosquito life-history traits were estimated from a truncated portion of the lifespan (a common practice) versus traits measured across the full lifespan. We conducted an experiment on adult female Anopheles stephensi, the Asian urban malaria mosquito, to generate daily per capita values for mortality, egg production and biting rate at six constant temperatures. Both temperature and age significantly affected trait values. Further, we found quantitative and qualitative differences between temperature-trait relationships estimated from truncated data versus observed lifetime values. Incorporating these temperature-trait relationships into an expression governing the thermal suitability of transmission, relative R0(T), resulted in minor differences in the breadth of suitable temperatures for Plasmodium falciparum transmission between the two models constructed from only An. stephensi trait data. However, we found a substantial increase in thermal niche breadth compared with a previously published model consisting of trait data from multiple Anopheles mosquito species. Overall, this work highlights the importance of considering how mosquito trait values vary with mosquito age and mosquito species when generating temperature-based suitability predictions of transmission.
Collapse
Affiliation(s)
- K L Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M S Shocket
- Biology Department, Stanford University, Stanford, CA, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - S J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O C Villena
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - R J Hall
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - J Owen
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - T Adanlawo
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - K Balaji
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L R Johnson
- Computational Modeling and Data Analytics, Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | - E A Mordecai
- Biology Department, Stanford University, Stanford, CA, USA
| | - C C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,River Basin Center, University of Georgia, Athens, GA, USA.,Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
40
|
Tall JA, Gatton ML. Flooding and Arboviral Disease: Predicting Ross River Virus Disease Outbreaks Across Inland Regions of South-Eastern Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:241-251. [PMID: 31310648 DOI: 10.1093/jme/tjz120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 06/10/2023]
Abstract
Flood frequency is expected to increase across the globe with climate change. Understanding the relationship between flooding and arboviral disease can reduce disease risk and associated costs. South-eastern Australia is dominated by the flood-prone Murray-Darling River system where the incidence of Australia's most common arboviral disease, Ross River virus (RRV), is high. This study aimed to determine the relationship between riverine flooding and RRV disease outbreaks in inland south-eastern Australia, specifically New South Wales (NSW). Each study month from 1991 to 2013, for each of 37 local government areas (LGAs) was assigned 'outbreak/non-outbreak' status based on long-term trimmed-average age-standardized RRV notification rates and 'flood/non-flood' status based on riverine overflow. LGAs were grouped into eight climate zones with the relationship between flood and RRV outbreak modeled using generalized estimating equations. Modeling adjusted for rainfall in the previous 1-3 mo. Spring-summer flooding increased the odds of summer RRV outbreaks in three climate zones before and after adjusting for rainfall 1, 2, and 3 mo prior to the outbreak. Flooding at any time of the year was not predictive of RRV outbreaks in the remaining five climate zones. Predicting RRV disease outbreaks with flood events can assist with more targeted mosquito spraying programs, thereby reducing disease transmission and mosquito resistance.
Collapse
Affiliation(s)
- Julie A Tall
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| |
Collapse
|
41
|
El Moustaid F, Johnson LR. Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti. INSECTS 2019; 10:E393. [PMID: 31703421 PMCID: PMC6920917 DOI: 10.3390/insects10110393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
Mosquito density plays an important role in the spread of mosquito-borne diseases such as dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers have tried different methods to represent it in mathematical models. The goal of this paper is to investigate the various ways mosquito density has been quantified, as well as to propose a dynamical system model that includes the details of mosquito life stages leading to the adult population. We first discuss the mosquito traits involved in determining mosquito density, focusing on those that are temperature dependent. We evaluate different forms of models for mosquito densities based on these traits and explore their dynamics as temperature varies. Finally, we compare the predictions of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced by temperature, but that all seem reasonably consistent with observed abundance data.
Collapse
Affiliation(s)
- Fadoua El Moustaid
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Leah R. Johnson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
42
|
Koolhof IS, Gibney KB, Bettiol S, Charleston M, Wiethoelter A, Arnold AL, Campbell PT, Neville PJ, Aung P, Shiga T, Carver S, Firestone SM. The forecasting of dynamical Ross River virus outbreaks: Victoria, Australia. Epidemics 2019; 30:100377. [PMID: 31735585 DOI: 10.1016/j.epidem.2019.100377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022] Open
Abstract
Ross River virus (RRV) is Australia's most epidemiologically important mosquito-borne disease. During RRV epidemics in the State of Victoria (such as 2010/11 and 2016/17) notifications can account for up to 30% of national RRV notifications. However, little is known about factors which can forecast RRV transmission in Victoria. We aimed to understand factors associated with RRV transmission in epidemiologically important regions of Victoria and establish an early warning forecast system. We developed negative binomial regression models to forecast human RRV notifications across 11 Local Government Areas (LGAs) using climatic, environmental, and oceanographic variables. Data were collected from July 2008 to June 2018. Data from July 2008 to June 2012 were used as a training data set, while July 2012 to June 2018 were used as a testing data set. Evapotranspiration and precipitation were found to be common factors for forecasting RRV notifications across sites. Several site-specific factors were also important in forecasting RRV notifications which varied between LGA. From the 11 LGAs examined, nine experienced an outbreak in 2011/12 of which the models for these sites were a good fit. All 11 LGAs experienced an outbreak in 2016/17, however only six LGAs could predict the outbreak using the same model. We document similarities and differences in factors useful for forecasting RRV notifications across Victoria and demonstrate that readily available and inexpensive climate and environmental data can be used to predict epidemic periods in some areas. Furthermore, we highlight in certain regions the complexity of RRV transmission where additional epidemiological information is needed to accurately predict RRV activity. Our findings have been applied to produce a Ross River virus Outbreak Surveillance System (ROSS) to aid in public health decision making in Victoria.
Collapse
Affiliation(s)
- Iain S Koolhof
- College of Health and Medicine, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia; College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.
| | - Katherine B Gibney
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Department of Infectious Diseases, Austin Hospital, Melbourne, Victoria, Australia
| | - Silvana Bettiol
- College of Health and Medicine, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Charleston
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Anke Wiethoelter
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Anna-Lena Arnold
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia
| | - Patricia T Campbell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Peter J Neville
- Victorian Department of Health and Human Services, Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Melbourne, Victoria, Australia; Department of Health, Western Australia, Public and Aboriginal Health, Environmental Health Directorate, Perth, Western Australia, Australia
| | - Phyo Aung
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Tsubasa Shiga
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Carver
- College of Sciences and Engineering, School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Simon M Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Hector TE, Sgrò CM, Hall MD. Pathogen exposure disrupts an organism's ability to cope with thermal stress. GLOBAL CHANGE BIOLOGY 2019; 25:3893-3905. [PMID: 31148326 DOI: 10.1111/gcb.14713] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
As a result of global climate change, species are experiencing an escalation in the severity and regularity of extreme thermal events. With patterns of disease distribution and transmission predicted to undergo considerable shifts in the coming years, the interplay between temperature and pathogen exposure will likely determine the capacity of a population to persist under the dual threat of global change and infectious disease. In this study, we investigated how exposure to a pathogen affects an individual's ability to cope with extreme temperatures. Using experimental infections of Daphnia magna with its obligate bacterial pathogen Pasteuria ramosa, we measured upper thermal limits of multiple host and pathogen genotype combinations across the dynamic process of infection and under various forms (static and ramping) of thermal stress. We find that pathogens substantially limit the thermal tolerance of their host, with the reduction in upper thermal limits on par with the breadth of variation seen across similar species entire geographical ranges. The precise magnitude of any reduction, however, was specific to the host and pathogen genotype combination. In addition, as thermal ramping rate slowed, upper thermal limits of both healthy and infected individuals were reduced. Our results suggest that the capacity of a population to evolve new thermal limits, when also faced with the threat of infection, will depend not only on a host's genetic variability in warmer environments, but also on the frequency of host and pathogen genotypes. We suggest that pathogen-induced alterations of host thermal performance should be taken into account when assessing the resilience of any population and its potential for adaptation to global change.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
45
|
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, Rohr JR, Ryan SJ, Savage V, Shocket MS, Sippy R, Stewart Ibarra AM, Thomas MB, Villena O. Thermal biology of mosquito-borne disease. Ecol Lett 2019; 22:1690-1708. [PMID: 31286630 PMCID: PMC6744319 DOI: 10.1111/ele.13335] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Mosquito-borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait-based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species - including globally important diseases like malaria, dengue, and Zika - synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23-29ºC and declining to zero below 9-23ºC and above 32-38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25-26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | | | - Marissa K. Grossman
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Catherine A. Lippi
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Leah R. Johnson
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| | - Marco Neira
- Center for Research on Health in Latin America (CISeAL)Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Jason R. Rohr
- Department of Biological SciencesEck Institute of Global HealthEnvironmental Change InitiativeUniversity of Notre Dame, Notre DameINUSA
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Van Savage
- Department of Ecology and Evolutionary Biology and Department of BiomathematicsUniversity of California Los AngelesLos AngelesCA90095USA
- Santa Fe Institute1399 Hyde Park RdSanta FeNM87501USA
| | - Marta S. Shocket
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | - Rachel Sippy
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Anna M. Stewart Ibarra
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Oswaldo Villena
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| |
Collapse
|
46
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
47
|
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 2019; 13:e0007213. [PMID: 30921321 PMCID: PMC6438455 DOI: 10.1371/journal.pntd.0007213] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, United States of America
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
48
|
Walsh MG. Ecological and life history traits are associated with Ross River virus infection among sylvatic mammals in Australia. BMC Ecol 2019; 19:2. [PMID: 30646881 PMCID: PMC6334474 DOI: 10.1186/s12898-019-0220-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Ross River virus (RRV) is Australia’s most important arbovirus given its annual burden of disease and the relatively large number of Australians at risk for infection. This mosquito-borne arbovirus is also a zoonosis, making its epidemiology and infection ecology complex and cryptic. Our grasp of enzootic, epizootic, and zoonotic RRV transmission dynamics is imprecise largely due to a poor understanding of the role of wild mammalian hosts in the RRV system. Methods The current study applied a piecewise structural equation model (PSEM) toward an interspecific comparison of sylvatic Australian mammals to characterize the ecological and life history profile of species with a history of RRV infection relative to those species with no such history among all wild mammalian species surveyed for RRV infection. The effects of species traits were assessed through multiple causal pathways within the PSEM framework. Results Sylvatic mammalian species with a history of RRV infection tended to express dietary specialization and smaller population density. These species were also characterized by a longer gestation length. Conclusions This study provides the first interspecific comparison of wild mammals for RRV infection and identifies some potential targets for future wildlife surveys into the infection ecology of this important arbovirus. An applied RRV macroecology may prove invaluable to the epidemiological modeling of RRV epidemics across diverse sylvatic landscapes, as well as to the development of human and animal health surveillance systems. Electronic supplementary material The online version of this article (10.1186/s12898-019-0220-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael G Walsh
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia. .,Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| |
Collapse
|