1
|
Zaheer J, Khan MN, Rahman AU, Shahzad MA, Yaasir Z, Lateef M, Gujar N. Identification and Epidemiological Analysis of Antibiotic-Resistant Bacteria in the Oral Microbiome of the Population in Pakistan. Cureus 2024; 16:e70666. [PMID: 39493182 PMCID: PMC11528176 DOI: 10.7759/cureus.70666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Antibiotic resistance in the oral microbiome poses serious health risks worldwide, particularly in developing countries like Pakistan. Public health efforts are challenged by the potential of the oral cavity to serve as a reservoir for resistant bacteria due to its frequent exposure to antibiotics. Objective This study aimed to identify and analyze the prevalence and epidemiology of antibiotic-resistant bacteria within the oral microbiome of the Pakistani population. Methodology A cross-sectional study was conducted at Akhtar Saeed Medical and Dental College, Lahore, and Gomal Medical College, Dera Ismail Khan, from January 2023 to December 2023. A total of 290 participants, aged 18 years or older, were recruited based on specific inclusion and exclusion criteria. Oral swabs were collected and analyzed using conventional culture methods. All descriptive and inferential statistical analyses were performed using SPSS version 25 (IBM Corp., Armonk, NY), with a significance level set at p <0.05. Results The most common antibiotic-resistant bacteria identified were Enterococcus faecalis (24.48%, n = 71), Staphylococcus aureus (27.24%, n = 79), and Streptococcus mutans (35.86%, n = 104). The most frequent resistances were to penicillin (32.14%, n = 93), tetracycline (23.45%, n = 68), and erythromycin (22.07%, n = 64). Recent antibiotic use was significantly associated with higher rates of resistance (p = 0.01), with 75.19% of individuals (n = 97) who had used antibiotics within the past three to six months showing resistance. Conclusion The study reveals a high prevalence of antibiotic-resistant bacteria, particularly to penicillin and tetracycline, in the oral microbiome of the Pakistani population.
Collapse
Affiliation(s)
- Javeria Zaheer
- Department of Microbiology, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | | | - Atiq Ur Rahman
- Department of Maxillofacial Surgery, Gomal Medical College, Dera Ismail Khan, PAK
| | - Muhammad Asif Shahzad
- Department of Oral and Maxillofacial Surgery, Azra Naheed Dental College, The Superior University, Lahore, PAK
| | - Zenab Yaasir
- Department of Dental Materials, Akhtar Saeed Medical and Dental College, Lahore, PAK
| | - Madeeha Lateef
- Department of Biochemistry, Sardar Begum Dental College, Gandhara University, Peshawar, PAK
| | - Nida Gujar
- Department of Internal Medicine, Punjab Medical College, Allied Hospital, Faisalabad, PAK
| |
Collapse
|
2
|
Lees JA, Russell TW, Shaw LP, Hellewell J. Recent approaches in computational modelling for controlling pathogen threats. Life Sci Alliance 2024; 7:e202402666. [PMID: 38906676 PMCID: PMC11192964 DOI: 10.26508/lsa.202402666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
In this review, we assess the status of computational modelling of pathogens. We focus on three disparate but interlinked research areas that produce models with very different spatial and temporal scope. First, we examine antimicrobial resistance (AMR). Many mechanisms of AMR are not well understood. As a result, it is hard to measure the current incidence of AMR, predict the future incidence, and design strategies to preserve existing antibiotic effectiveness. Next, we look at how to choose the finite number of bacterial strains that can be included in a vaccine. To do this, we need to understand what happens to vaccine and non-vaccine strains after vaccination programmes. Finally, we look at within-host modelling of antibody dynamics. The SARS-CoV-2 pandemic produced huge amounts of antibody data, prompting improvements in this area of modelling. We finish by discussing the challenges that persist in understanding these complex biological systems.
Collapse
Affiliation(s)
- John A Lees
- https://ror.org/02catss52 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Timothy W Russell
- https://ror.org/00a0jsq62 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Joel Hellewell
- https://ror.org/02catss52 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
3
|
Pham TM, Zhang Y, Nevers M, Li H, Khader K, Grad YH, Lipsitch M, Samore M. Trends in infection incidence and antimicrobial resistance in the US Veterans Affairs Healthcare System: a nationwide retrospective cohort study (2007-22). THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00416-X. [PMID: 39151443 DOI: 10.1016/s1473-3099(24)00416-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Antimicrobial resistance poses a major threat to public health. There are few comprehensive nationwide studies that quantify long-term trends in infection incidence and antimicrobial resistance for multiple pathogens. We aimed to analyse trends in inpatient infection incidence and antimicrobial resistance for nine pathogens over the past 15 years across the USA. METHODS In this US nationwide retrospective cohort study, we analysed clinical microbiology data from electronic health records from all patients admitted to all 138 Veterans Affairs (VA) Medical Centers with acute care wards across the USA from Feb 1, 2007, to March 31, 2022. We quantified inpatient antibiotic use as days of therapy (DOT) per 1000 patient-days and antimicrobial resistance by resistance proportion (proportion of incident isolates identified as resistant) and phenotypic incidence (incidence of infections per 1000 admissions classified as resistant, susceptible, or missing). To analyse trends before the COVID-19 pandemic and during the COVID-19 pandemic, we used generalised estimating equation models and reported average annual percentage changes (AAPC). FINDINGS We collected 991 527 30-day incident isolates from 507 760 patients in 138 VA Medical Centers and 50 states in the USA. Between Feb 1, 2007, and Dec 31, 2019, infection incidence and antimicrobial resistance declined for many pathogens and pathogen-drug combinations. The proportion of methicillin resistance in Staphylococcus aureus decreased from 57·7% (11 876 of 20 584 incident isolates) to 44·6% (5916 of 13 257) over these 13 years (AAPC -1·8%; 95% CI -2·4 to -1·2; p<0·0001), and vancomycin-resistant Enterococcus faecium infections decreased from 77·8% (2555 of 3285) to 65·1% (893 of 1371; AAPC -1·2%; 95% CI -2·5 to 0·0; p=0·052). Fluoroquinolone resistance declined in both proportion and incidence for most pathogens. These trends correlated with substantial reductions in fluoroquinolone use, from 125 DOT per 1000 patient-days to 20 DOT per 1000 patient-days. Third generation cephalosporin resistance increased steeply in Escherichia coli infections from 6·7% (942 of 14 042) in 2007 to 15·3% (2153 of 14 053) in 2019 (AAPC 8·5%; 95% CI 6·2 to 10·7; p<0·0001). Carbapenem resistance proportion increased in Enterobacter cloacae infections from 1·1% (30 of 2852) in 2007 to 7·3% (212 of 2919) in 2019 (AAPC 19·8%; 95% CI 13·7 to 26·2; p<0·0001), but remained low for Klebsiella pneumoniae and E coli. During the COVID-19 pandemic between Jan 1, 2020, and March 31, 2022, several pathogen-drug combinations increased in both incidence and resistance for hospital-associated infections. For some pathogen-drug combinations, trends in incidence of resistant and susceptible infections were divergent, whereas for other combinations, these trends were in the same direction. INTERPRETATION Significant reductions in methicillin resistance in S aureus, vancomycin-resistant E faecium, and fluoroquinolone resistance across multiple pathogens suggest that control efforts have had an effect on resistance. The rise in extended-spectrum β-lactamases-producing Enterobacterales and recent surge in hospital-associated infections emphasise the need for ongoing surveillance and interventions. Our study highlights how coupling the analysis of phenotypic incidence with resistance proportion can enhance interpretation of antimicrobial resistance data. FUNDING US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Thi Mui Pham
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Yue Zhang
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - McKenna Nevers
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA; IDEAS Center of Innovation, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
| | - Haojia Li
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Karim Khader
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA; IDEAS Center of Innovation, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
| | - Yonatan H Grad
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA; Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Matthew Samore
- Department of Internal Medicine, Division of Epidemiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA; IDEAS Center of Innovation, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT
| |
Collapse
|
4
|
Rolff J, Bonhoeffer S, Kloft C, Leistner R, Regoes R, Hochberg ME. Forecasting antimicrobial resistance evolution. Trends Microbiol 2024; 32:736-745. [PMID: 38238231 DOI: 10.1016/j.tim.2023.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 08/09/2024]
Abstract
Antimicrobial resistance (AMR) is a major global health issue. Current measures for tackling it comprise mainly the prudent use of drugs, the development of new drugs, and rapid diagnostics. Relatively little attention has been given to forecasting the evolution of resistance. Here, we argue that forecasting has the potential to be a great asset in our arsenal of measures to tackle AMR. We argue that, if successfully implemented, forecasting resistance will help to resolve the antibiotic crisis in three ways: it will (i) guide a more sustainable use (and therefore lifespan) of antibiotics and incentivize investment in drug development, (ii) reduce the spread of AMR genes and pathogenic microbes in the environment and between patients, and (iii) allow more efficient treatment of persistent infections, reducing the continued evolution of resistance. We identify two important challenges that need to be addressed for the successful establishment of forecasting: (i) the development of bespoke technology that allows stakeholders to empirically assess the risks of resistance evolving during the process of drug development and therapeutic/preventive use, and (ii) the transformative shift in mindset from the current praxis of mostly addressing the problem of antibiotic resistance a posteriori to a concept of a priori estimating, and acting on, the risks of resistance.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| | | | - Charlotte Kloft
- Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rasmus Leistner
- Charité-Universitätsmedizin Berlin Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Roland Regoes
- Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael E Hochberg
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, 34095 Montpellier, France; Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Khurana MP, Curran-Sebastian J, Bhatt S, Knight GM. Modelling the implementation of narrow versus broader spectrum antibiotics in the empiric treatment of E. coli bacteraemia. Sci Rep 2024; 14:16986. [PMID: 39043719 PMCID: PMC11266692 DOI: 10.1038/s41598-024-66193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The implementation of new antimicrobial resistance stewardship programs is crucial in optimizing antibiotic use. However, prescription choices can be difficult during empiric therapy; clinicians must balance the survival benefits of broader spectrum antibiotics with associated increases in resistance. The aim of this study was to evaluate the overall feasibility of switching to narrow spectrum antibiotics during the empiric treatment of E. coli bacteraemia by quantifying changes in resistance rates, antibiotic usage, and mortality using a deterministic state-transition model. Three unique model scenarios (A, B, and C), each representing a progressively broader spectrum empiric treatment regimen, were used to compare outcomes at 5 years. We show that the empiric use of the narrowest spectrum (first-line) antibiotics can lead to reductions in resistance to second-line antibiotics and the use of third-line antibiotics, but they also lead to increases in resistance to first-line therapy and higher mortality. Crucially, we find that shortening the duration of empiric and overall treatment, as well as reducing the baseline mortality rate, are important for increasing the feasibility of switching to narrow spectrum antibiotics in the empiric treatment of E. coli bacteraemia. We provide a flexible model design to investigate optimal treatment approaches for other bacterial infections.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1352, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Gwenan M Knight
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, AMR Centre, Centre for Mathematical Modeling of Infectious Diseases, London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| |
Collapse
|
6
|
Ng'eno E, Cobos ME, Kiplangat S, Mugoh R, Ouma A, Bigogo G, Omulo S, Peterson AT. Long-term antibiotic exposure landscapes and resistant Escherichia coli colonization in a densely populated setting. PLoS One 2024; 19:e0302521. [PMID: 38980845 PMCID: PMC11232973 DOI: 10.1371/journal.pone.0302521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/07/2024] [Indexed: 07/11/2024] Open
Abstract
Antibiotic exposure is associated with resistant bacterial colonization, but this relationship can be obscured in community settings owing to horizontal bacterial transmission and broad distributions. Locality-level exposure estimates considering inhabitants' length of stay, exposure history, and exposure conditions of areas nearby could clarify these relationships. We used prescription data filled during 2010-2015 for 23 antibiotic types for members of georeferenced households in a population-based infectious disease surveillance platform. For each antibiotic and locality, we generated exposure estimates, expressed in defined daily doses (DDD) per 1000 inhabitant days of observation (IDO). We also estimated relevant environmental parameters, such as the distance of each locality to water, sanitation, and other amenities. We used data on ampicillin, ceftazidime, and trimethoprim-and-sulfamethoxazole resistant Escherichia coli colonization from stool cultures of asymptomatic individuals in randomly selected households. We tested exposure-colonization associations using permutation analysis of variance and logistic generalized linear mixed-effect models. Overall, exposure was highest for trimethoprim-sulfamethoxazole (1.8 DDD per 1000 IDO), followed by amoxicillin (0.7 DDD per 1000 IDO). Of 1,386 unique household samples from 195 locations tested between September 2015 and January 2016, 90%, 85% and 4% were colonized with E. coli resistant to trimethoprim and sulfamethoxazole, ampicillin, and ceftazidime, respectively. Ceftazidime-resistant E. coli colonization was common in areas with increased trimethoprim-sulfamethoxazole, cloxacillin, and erythromycin exposure. No association with any of the physical environmental variables was observed. We did not detect relationships between distribution patterns of ampicillin or trimethoprim-and-sulfamethoxazole resistant E. coli colonization and the risk factors assessed. Appropriate temporal and spatial scaling of raw antibiotic exposure data to account for evolution and ecological contexts of antibiotic resistance could clarify exposure-colonization relationships in community settings and inform community stewardship program.
Collapse
Affiliation(s)
- Eric Ng'eno
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Marlon E Cobos
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Samuel Kiplangat
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Mugoh
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Alice Ouma
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Godfrey Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sylvia Omulo
- Washington State University Global Health-Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States of America
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - A Townsend Peterson
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
7
|
Zhang Y, Vodstrcil LA, Htaik K, Plummer EL, De Petra V, Sen MG, Williamson DA, Owlad M, Murray G, Chow EP, Fairley CK, Bradshaw CS, Ong JJ. Economic evaluation alongside a clinical trial of near-to-patient testing for sexually transmitted infections. J Infect Public Health 2024; 17:102447. [PMID: 38824739 DOI: 10.1016/j.jiph.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Current clinical care for common bacterial STIs (Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG) and Mycoplasma genitalium (MG)) involves empiric antimicrobial therapy when clients are symptomatic, or if asymptomatic, waiting for laboratory testing and recall if indicated. Near-to-patient testing (NPT) can improve pathogen-specific prescribing and reduce unnecessary or inappropriate antibiotic use in treating sexually transmitted infections (STI) by providing same-day delivery of results and treatment. METHODS We compared the economic cost of NPT to current clinic practice for managing clients with suspected proctitis, non-gonococcal urethritis (NGU), or as an STI contact, from a health provider's perspective. With a microsimulation of 1000 clients, we calculated the cost per client tested and per STI- and pathogen- detected for each testing strategy. Sensitivity analyses were conducted to assess the robustness of the main outcomes. Costs are reported as Australian dollars (2023). RESULTS In the standard care arm, cost per client tested for proctitis, NGU in men who have sex with men (MSM) and heterosexual men were the highest at $247.96 (95% Prediction Interval (PI): 246.77-249.15), $204.23 (95% PI: 202.70-205.75) and $195.01 (95% PI: 193.81-196.21) respectively. Comparatively, in the NPT arm, it costs $162.36 (95% PI: 161.43-163.28), $158.39 (95% PI: 157.62-159.15) and $149.17 (95% PI: 148.62-149.73), respectively. Using NPT resulted in cost savings of 34.52%, 22.45% and 23.51%, respectively. Among all the testing strategies, substantial difference in cost per client tested between the standard care arm and the NPT arm was observed for contacts of CT or NG, varying from 27.37% to 35.28%. CONCLUSION We found that NPT is cost-saving compared with standard clinical care for individuals with STI symptoms and sexual contacts of CT, NG, and MG.
Collapse
Affiliation(s)
- Ying Zhang
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Lenka A Vodstrcil
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kay Htaik
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Erica L Plummer
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Vesna De Petra
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity at The University of Melbourne, Melbourne, Victoria, Australia
| | - Melodi G Sen
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity at The University of Melbourne, Melbourne, Victoria, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Monica Owlad
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Gerald Murray
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric Pf Chow
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher K Fairley
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Catriona S Bradshaw
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason J Ong
- School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Li Q, Zheng Y, Guo L, Xiao Y, Li H, Yang P, Xia L, Liu X, Chen Z, Li L, Zhang H. Microbial Degradation of Tetracycline Antibiotics: Mechanisms and Environmental Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38835142 DOI: 10.1021/acs.jafc.4c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The escalating global consumption of tetracyclines (TCs) as broad-spectrum antibiotics necessitates innovative approaches to mitigate their pervasive environmental persistence and associated risks. While initiatives such as China's antimicrobial reduction efforts highlight the urgency of responsible TC usage, the need for efficient degradation methods remains paramount. Microbial degradation emerges as a promising solution, offering novel insights into degradation pathways and mechanisms. Despite challenges, including the optimization of microbial activity conditions and the risk of antibiotic resistance development, microbial degradation showcases significant innovation in its cost-effectiveness, environmental friendliness, and simplicity of implementation compared to traditional degradation methods. While the published reviews have summarized some aspects of biodegradation of TCs, a systematic and comprehensive summary of all the TC biodegradation pathways, reactions, intermediates, and final products including ring-opening products involved with enzymes and mechanisms of each bacterium and fungus reported is necessary. This review aims to fill the current gap in the literature by offering a thorough and systematic overview of the structure, bioactivity mechanism, detection methods, microbial degradation pathways, and molecular mechanisms of all tetracycline antibiotics in various microorganisms. It comprehensively collects and analyzes data on the microbial degradation pathways, including bacteria and fungi, intermediate and final products, ring-opening products, product toxicity, and the degradation mechanisms for all tetracyclines. Additionally, it points out future directions for the discovery of degradation-related genes/enzymes and microbial resources that can effectively degrade tetracyclines. This review is expected to contribute to advancing knowledge in this field and promoting the development of sustainable remediation strategies for contaminated environments.
Collapse
Affiliation(s)
- Qin Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Yanhong Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Lijun Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Ying Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Haiyue Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Pingping Yang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Xia
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Xiangqing Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
| | - Zhangyan Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| | - Huaidong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, People's Republic of China
- Engineering Research Center of Industrial Microbiology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
- Collaborative Innovation Center of Hai'xi Green Bio-Manufacturing Technology, Ministry of Education, Fuzhou, Fujian 350117, People's Republic of China
| |
Collapse
|
9
|
Lai HY, Cooper TF. Costs of antibiotic resistance genes depend on host strain and environment and can influence community composition. Proc Biol Sci 2024; 291:20240735. [PMID: 38889784 DOI: 10.1098/rspb.2024.0735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Antibiotic resistance genes (ARGs) benefit host bacteria in environments containing corresponding antibiotics, but it is less clear how they are maintained in environments where antibiotic selection is weak or sporadic. In particular, few studies have measured if the direct effect of ARGs on host fitness is fixed or if it depends on the host strain, perhaps marking some ARG-host combinations as selective refuges that can maintain ARGs in the absence of antibiotic selection. We quantified the fitness effects of six ARGs in 11 diverse Escherichia spp. strains. Three ARGs (blaTEM-116, cat and dfrA5, encoding resistance to β-lactams, chloramphenicol, and trimethoprim, respectively) imposed an overall cost, but all ARGs had an effect in at least one host strain, reflecting a significant strain interaction effect. A simulation predicts these interactions can cause the success of ARGs to depend on available host strains, and, to a lesser extent, can cause host strain success to depend on the ARGs present in a community. These results indicate the importance of considering ARG effects across different host strains, and especially the potential of refuge strains to allow resistance to persist in the absence of direct selection, in efforts to understand resistance dynamics.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Tim F Cooper
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
10
|
Ashton PM, Chunga Chirambo A, Meiring JE, Patel PD, Mbewe M, Silungwe N, Chizani K, Banda H, Heyderman RS, Dyson ZA, MacPherson P, Henrion MYR, Holt KE, Gordon MA. Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study. THE LANCET. MICROBE 2024; 5:e226-e234. [PMID: 38387472 PMCID: PMC10914669 DOI: 10.1016/s2666-5247(23)00327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. METHODS We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. FINDINGS From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8-7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4-10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. INTERPRETATION We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. FUNDING Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK).
Collapse
Affiliation(s)
- Philip M Ashton
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Angeziwa Chunga Chirambo
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Medical Laboratory Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - James E Meiring
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Maurice Mbewe
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Niza Silungwe
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | | | - Happy Banda
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Zoe A Dyson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Peter MacPherson
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Marc Y R Henrion
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kathryn E Holt
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi; Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Yi J, Ahn J. Heterogeneous Phenotypic Responses of Antibiotic-Resistant Salmonella Typhimurium to Food Preservative-Related Stresses. Antibiotics (Basel) 2023; 12:1702. [PMID: 38136736 PMCID: PMC10740406 DOI: 10.3390/antibiotics12121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
This study was designed to evaluate the response of antibiotic-resistant Salmonella Typhimurium to food preservative-related stresses, such as lactic acid and sodium chloride (NaCl). S. Typhimurium cells were exposed to 1 µg/mL of ciprofloxacin (CIP), 0.2% lactic acid (LA), 6% NaCl, CIP followed by LA (CIP-LA), and CIP followed by NaCl (CIP-NaCl). The untreated S. Typhimurium cells were the control (CON). All treatments were as follows: CON, CIP, LA, NaCl, CIP-LA, and CIP-NaCl. The phenotypic heterogeneity was evaluated by measuring the antimicrobial susceptibility, bacterial fluctuation, cell injury, persistence, and cross-resistance. The CIP, CIP-LA, and CIP-NaCl groups were highly resistant to ciprofloxacin, showing MIC values of 0.70, 0.59, and 0.54 µg/mL, respectively, compared to the CON group (0.014 µg/mL). The susceptibility to lactic acid was not changed after exposure to NaCl, while that to NaCl was decreased after exposure to NaCl. The Eagle phenomenon was observed in the CIP, CIP-LA, and CIP-NaCl groups, showing Eagle effect concentrations (EECs) of more than 8 µg/mL. No changes in the MBCs of lactic acid and NaCl were observed in the CIP, LA, and CIP-LA groups, and the EECs of lactic acid and NaCl were not detected in all treatments. The bacterial fluctuation rates of the CIP-LA and CIP-NaCl groups were considerably increased to 33% and 41%, respectively, corresponding to the injured cell proportions of 82% and 89%. CIP-NaCl induced persister cells as high as 2 log cfu/mL. The LA and NaCl treatments decreased the fitness cost. The CIP-NaCl treatment showed positive cross-resistance to erythromycin (ERY) and tetracycline (TET), while the LA and NaCl treatments were collaterally susceptible to chloramphenicol (CHL), ciprofloxacin (CIP), piperacillin (PIP), and TET. The results provide new insight into the fate of antibiotic-resistant S. Typhimurium during food processing and preservation.
Collapse
Affiliation(s)
- Jiseok Yi
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
| |
Collapse
|
12
|
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 2023; 21:772-788. [PMID: 37491458 DOI: 10.1038/s41579-023-00933-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Wang Z, Zhang N, Li C, Shao L. Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Front Microbiol 2023; 14:1291599. [PMID: 37928655 PMCID: PMC10623414 DOI: 10.3389/fmicb.2023.1291599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.
Collapse
Affiliation(s)
- Zhuoran Wang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Na Zhang
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Chunming Li
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Liang Shao
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| |
Collapse
|
14
|
Ousmane S, Kollo IA, Jambou R, Boubacar R, Arzika AM, Maliki R, Amza A, Liu Z, Lebas E, Colby E, Zhong L, Chen C, Hinterwirth A, Doan T, Lietman TM, O’Brien KS. Wastewater-Based Surveillance of Antimicrobial Resistance in Niger: An Exploratory Study. Am J Trop Med Hyg 2023; 109:725-729. [PMID: 37640288 PMCID: PMC10551091 DOI: 10.4269/ajtmh.23-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Wastewater-based surveillance is increasingly recognized as an important approach to monitoring population-level antimicrobial resistance (AMR). In this exploratory study, we examined the use of metagenomics to evaluate AMR using untreated wastewater samples routinely collected by the Niger national polio surveillance program. Forty-eight stored samples from two seasons each year over 4 years (2016-2019) in three regions were selected for inclusion in this study and processed using unbiased DNA deep sequencing. Normalized number of reads of genetic determinants for different antibiotic classes were compared over time, by season, and by location. Correlations in resistance were examined among classes. Changes in reads per million per year were demonstrated for several classes, including decreases over time in resistance determinants for phenicols (-3.3, 95% CI: -8.7 to -0.1, P = 0.029) and increases over time for aminocoumarins (3.8, 95% CI: 0.0 to 11.4, P = 0.043), fluoroquinolones (6.8, 95% CI: 0.0 to 20.5, P = 0.048), and beta-lactams (0.85, 95% CI: 0.1 to 1.7, P = 0.006). Sulfonamide resistance was higher in the post-rainy season compared with the dry season (5.2-fold change, 95% CI: 3.4 to 7.9, P < 0.001). No differences were detected when comparing other classes by season or by site for any antibiotic class. Positive correlations were identified in genetic determinants of resistance among several antibiotic classes. These results demonstrate the potential utility of leveraging existing wastewater sample collection in this setting for AMR surveillance.
Collapse
Affiliation(s)
- Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | | | - Ronan Jambou
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Rakia Boubacar
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Ahmed M. Arzika
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Ramatou Maliki
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Abdou Amza
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | - Zijun Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Elodie Lebas
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Emily Colby
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| | - Kieran S. O’Brien
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| |
Collapse
|
15
|
Hu JN, Hu SQ, Li ZL, Bao C, Liu Q, Liu C, Xu SY. Risk factors of multidrug-resistant bacteria infection in patients with ventilator-associated pneumonia: A systematic review and meta-analysis. J Infect Chemother 2023; 29:942-947. [PMID: 37321291 DOI: 10.1016/j.jiac.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria-induced VAP often has high lethality. We present this systematic review and meta-analysis to assess the risk factors for MDR bacterial infection in patients with VAP. METHODS PubMed, EMBASE, Web of Science, and Cochrane Library were searched for studies regarding MDR bacterial infection in VAP patients, from Jan 1996 to Aug 2022. Study selection, data extraction, and quality assessment of included studies were conducted by two reviewers independently, and potential risk factors for MDR bacterial infection were identified. RESULTS Meta-analysis showed that the score of the Acute Physiology and Chronic Health Evaluation II (APACHE-II) [OR = 1.009, 95% (CI 0.732, 1.287)], Simplified Acute Physiology Score II (SAPS-II) [OR = 2.805, 95%CI (0.854, 4.755)], length of hospital-stay before VAP onset (days) [OR = 2.639, 95%CI (0.387, 4.892)], in-ICU duration [OR = 3.958, 95%CI (0.894, 7.021)], Charlson index [OR = 1.000, 95%CI (0.889, 1.111)], overall hospital-stay [OR = 20.742, 95%CI (18.894, 22.591)], Medication of Quinolones [OR = 2.017, 95%CI (1.339, 3.038)], medication of carbapenems [OR = 3.527, 95%CI (2.476, 5.024)], combination of more than 2 prior antibiotics [OR = 3.181, 95%CI (2.102, 4.812)], and prior use of antibiotics [OR 2.971, 95%CI (2.001, 4.412)] were independent risk factors of MDR bacterial infection in VAP patients. Diabetes and mechanical ventilation duration before VAP onset showed no association with risk for MDR bacterial infection. CONCLUSIONS This study has identified 10 risk factors associated with MDR bacterial infection in VAP patients. Identification of these factors would be able to facilitate the treatment and prevention of MDR bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Jian-Nan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Sheng-Qi Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430030, Hubei Province, PR China.
| | - Zi-Ling Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qian Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shu-Yun Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Guillamet MCV, Damulira C, Atkinson A, Fraser VJ, Micek S, Kollef MH. Addition of aminoglycosides reduces recurrence of infections with multidrug-resistant Gram-negative bacilli in patients with sepsis and septic shock. Int J Antimicrob Agents 2023; 62:106913. [PMID: 37422096 PMCID: PMC11221431 DOI: 10.1016/j.ijantimicag.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES Aminoglycosides and β-lactams have been recommended for treatment of sepsis/septic shock despite a lack of mortality benefit. Previous studies have examined resistance emergence for the same bacterial isolate using old dosing regimens and during a narrow follow-up window. We hypothesised that combination regimens employing aminoglycosides will decrease the cumulative incidence of infections due to multidrug-resistant (MDR) Gram-negative bacilli (GNB) compared with β-lactams alone. METHODS All adult patients admitted to Barnes Jewish Hospital between 2010 and 2017 with a diagnosis of sepsis/septic shock were included in this retrospective cohort study. Patients were divided into two treatment groups, with and without aminoglycosides. Patient demographics, severity of presentation, administered antibiotics, follow-up cultures with susceptibility results for a period of 4-60 days, and mortality were extracted. After propensity score matching, a Fine-Gray subdistribution proportional hazards model summarised the estimated incidence of subsequent infections with MDR-GNB in the presence of all-cause death as a competing risk. RESULTS A total of 10 212 septic patients were included, with 1996 (19.5%) treated with at least two antimicrobials including one aminoglycoside. After propensity score matching, the cumulative incidence of MDR-GNB infections between 4-60 days was lower in the combination group (incidence at 60 days 0.073, 95% CI 0.062-0.085) versus patients not receiving aminoglycosides (0.116, 95% CI 0.102-0.130). Patients aged ≤65 years and with haematological malignancies had a larger treatment effect in subgroup analyses. CONCLUSION Addition of aminoglycosides to β-lactams may protect against subsequent infections due to MDR-GNB in patients with sepsis/septic shock.
Collapse
Affiliation(s)
- M Cristina Vazquez Guillamet
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | | | - Andrew Atkinson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Victoria J Fraser
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Scott Micek
- St Louis College of Pharmacy, St Louis, MO, USA
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Ong JJ, Lim A, Bradshaw C, Taylor-Robinson D, Unemo M, Horner PJ, Vickerman P, Zhang L. Cost-effectiveness of testing for Mycoplasma genitalium among men who have sex with men in Australia. Sex Transm Infect 2023; 99:398-403. [PMID: 36958826 DOI: 10.1136/sextrans-2022-055611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 03/25/2023] Open
Abstract
OBJECTIVES Mycoplasma genitalium (MG) disproportionately affects men who have sex with men (MSM). We determined the cost-effectiveness of different testing strategies for MG in MSM, taking a healthcare provider perspective. METHODS We used inputs from a dynamic transmission model of MG among MSM living in Australia in a decision tree model to evaluate the impact of four testing scenarios on MG incidence: (1) no one tested; (2) symptomatic MSM; (3) symptomatic and high-risk asymptomatic MSM; (4) all MSM. We calculated the incremental cost-effectiveness ratios (ICERs) using a willingness-to-pay threshold of $A30 000 per quality-adjusted life year (QALY) gained. We explored the impact of adding an antimicrobial resistance (AMR) tax (ie, additional cost per antibiotic consumed) to identify the threshold, whereby any testing for MG is no longer cost-effective. RESULTS Testing only symptomatic MSM is the most cost-effective (ICER $3677 per QALY gained) approach. Offering testing to all MSM is dominated (ie, higher costs and lower QALYs gained compared with other strategies). When the AMR tax per antibiotic given was above $150, any testing for MG was no longer cost-effective. CONCLUSION Testing only symptomatic MSM is the most cost-effective option, even when the potential costs associated with AMR are accounted for (up to $150 additional cost per antibiotic given). For pathogens like MG, where there are anticipated future costs related to AMR, we recommend models that test the impact of incorporating an AMR tax as they can change the results and conclusions of cost-effectiveness studies.
Collapse
Affiliation(s)
- Jason J Ong
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | - Aaron Lim
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catriona Bradshaw
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Orebro, Sweden
- Institute for Global Health, University College London, London, UK
| | - Paddy J Horner
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Vickerman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lei Zhang
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- China-Australia Joint Research Center for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
18
|
Wattles BA, Smith MJ, Feygin Y, Jawad K, Flinchum A, Corley B, Spicer KB. Inappropriate Prescribing of Antibiotics to Pediatric Patients Receiving Medicaid: Comparison of High-Volume and Non-High-Volume Antibiotic Prescribers-Kentucky, 2019. Healthcare (Basel) 2023; 11:2307. [PMID: 37628504 PMCID: PMC10454144 DOI: 10.3390/healthcare11162307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Inappropriate antibiotic prescribing to pediatric Medicaid patients was compared among high-volume and non-high-volume prescribers. High-volume prescribers had a higher percentage of inappropriate prescriptions than non-high-volume prescribers (17.2% versus 15.8%, p = 0.005). Targeting high-volume prescribers for stewardship efforts is a practical approach to reducing outpatient antibiotic prescribing that also captures inappropriate use.
Collapse
Affiliation(s)
- Bethany A. Wattles
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Michael J. Smith
- Department of Pediatrics, Duke University Medical Center and Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC 27710, USA
| | - Yana Feygin
- Department of Pediatrics, Norton Children’s and University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kahir Jawad
- Department of Pediatrics, Norton Children’s and University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Andrea Flinchum
- Healthcare-Associated Infection/Antibiotic Resistance Prevention Program, Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
| | - Brittany Corley
- Healthcare-Associated Infection/Antibiotic Resistance Prevention Program, Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
| | - Kevin B. Spicer
- Healthcare-Associated Infection/Antibiotic Resistance Prevention Program, Division of Epidemiology and Health Planning, Kentucky Department for Public Health, Frankfort, KY 40621, USA
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
19
|
Rahbe E, Watier L, Guillemot D, Glaser P, Opatowski L. Determinants of worldwide antibiotic resistance dynamics across drug-bacterium pairs: a multivariable spatial-temporal analysis using ATLAS. Lancet Planet Health 2023; 7:e547-e557. [PMID: 37437996 DOI: 10.1016/s2542-5196(23)00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Antibiotic resistance (ABR) is a major concern for global health. However, factors driving its emergence and dissemination are not fully understood. Identification of such factors is crucial to explain heterogeneity in ABR rates observed across space, time, and species and antibiotics. METHODS We analysed count data of clinical isolates from 51 countries over 2006-19 for thirteen drug-bacterium pairs taken from the ATLAS database. We characterised ABR spatial and temporal patterns and used a mixed-effect negative binomial model, accounting for country-year dependences with random effects, to investigate associations with potential drivers, including antibiotic sales, economic and health indicators, meteorological data, population density, and tourism. FINDINGS ABR patterns were strongly country and drug-bacterium pair dependent. In 2019, median ABR rates ranged from 6·3% (IQR 19·7% [0·5-20·2]) for carbapenem-resistant Klebsiella pneumoniae to 80·7% (41·8% [50·4-92·2]) for fluoroquinolone-resistant Acinetobacter baumannii, with heterogeneity across countries. From 2006 to 2019, carbapenem resistance increased in more than 60% of investigated countries; no global trend was observed for other resistances. Multivariable analyses identified significant associations of ABR with country-level selecting antibiotic sales, but only in fluoroquinolone-resistant-Escherichia coli, fluoroquinolone-resistant-Pseudomonas aeruginosa, and carbapenem-resistant-A baumannii. We also found a correlation between temperature and resistance in Enterobacteriaceae and with the health system quality for all drug-bacterium pairs except Enterococci and Streptococcus pneumoniae pairs. Despite wide consideration of possible explanatory variables, drug-bacterium pair ABR rates still showed unexplained spatial random effects variance. INTERPRETATION Our findings reflect the diversity of mechanisms driving global antibiotic resistance across pathogens and stress the need for tailored interventions to tackle bacterial resistance. FUNDING Independent research Pfizer Global Medical Grant and ANR Labex IBEID.
Collapse
Affiliation(s)
- Eve Rahbe
- Epidemiology and Modelling of Antimicrobials Evasion Research Unit, Institut Pasteur, Paris, France; Université de Versailles Saint-Quentin-en-Yvelines, INSERM, Centre de Recherche en Epidémiologie et Santé des Populations, Anti-infective evasion and pharmacoepidemiology Research Team, Universiteé Paris-Saclay Montigny-Le-Bretonneux, France; Université Paris Cité, Paris, France.
| | - Laurence Watier
- Epidemiology and Modelling of Antimicrobials Evasion Research Unit, Institut Pasteur, Paris, France; Université de Versailles Saint-Quentin-en-Yvelines, INSERM, Centre de Recherche en Epidémiologie et Santé des Populations, Anti-infective evasion and pharmacoepidemiology Research Team, Universiteé Paris-Saclay Montigny-Le-Bretonneux, France; Université Paris Cité, Paris, France
| | - Didier Guillemot
- Epidemiology and Modelling of Antimicrobials Evasion Research Unit, Institut Pasteur, Paris, France; Université de Versailles Saint-Quentin-en-Yvelines, INSERM, Centre de Recherche en Epidémiologie et Santé des Populations, Anti-infective evasion and pharmacoepidemiology Research Team, Universiteé Paris-Saclay Montigny-Le-Bretonneux, France; Université Paris Cité, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Research Unit, Institut Pasteur, Paris, France; Université Paris Cité, Paris, France
| | - Lulla Opatowski
- Epidemiology and Modelling of Antimicrobials Evasion Research Unit, Institut Pasteur, Paris, France; Université de Versailles Saint-Quentin-en-Yvelines, INSERM, Centre de Recherche en Epidémiologie et Santé des Populations, Anti-infective evasion and pharmacoepidemiology Research Team, Universiteé Paris-Saclay Montigny-Le-Bretonneux, France; Université Paris Cité, Paris, France
| |
Collapse
|
20
|
Alnimr A. Antimicrobial Resistance in Ventilator-Associated Pneumonia: Predictive Microbiology and Evidence-Based Therapy. Infect Dis Ther 2023:10.1007/s40121-023-00820-2. [PMID: 37273072 DOI: 10.1007/s40121-023-00820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is a serious intensive care unit (ICU)-related infection in mechanically ventilated patients that is frequent, as more than half of antibiotics prescriptions in ICU are due to VAP. Various risk factors and diagnostic criteria for VAP have been referred to in different settings. The estimated attributable mortality of VAP can go up to 50%, which is higher in cases of antimicrobial-resistant VAP. When the diagnosis of pneumonia in a mechanically ventilated patient is made, initiation of effective antimicrobial therapy must be prompt. Microbiological diagnosis of VAP is required to optimize timely therapy since effective early treatment is fundamental for better outcomes, with controversy continuing regarding optimal sampling and testing. Understanding the role of antimicrobial resistance in the context of VAP is crucial in the era of continuously evolving antimicrobial-resistant clones that represent an urgent threat to global health. This review is focused on the risk factors for antimicrobial resistance in adult VAP and its novel microbiological tools. It aims to summarize the current evidence-based knowledge about the mechanisms of resistance in VAP caused by multidrug-resistant bacteria in clinical settings with focus on Gram-negative pathogens. It highlights the evidence-based antimicrobial management and prevention of drug-resistant VAP. It also addresses emerging concepts related to predictive microbiology in VAP and sheds lights on VAP in the context of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Amani Alnimr
- Department of Microbiology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Luchen CC, Chibuye M, Spijker R, Simuyandi M, Chisenga C, Bosomprah S, Chilengi R, Schultsz C, Mende DR, Harris VC. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med 2023; 20:e1004235. [PMID: 37368871 PMCID: PMC10298773 DOI: 10.1371/journal.pmed.1004235] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. METHODS AND FINDINGS In this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations. CONCLUSION In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.
Collapse
Affiliation(s)
- Charlie C. Luchen
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mwelwa Chibuye
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rene Spijker
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
- Republic of Zambia State House, Lusaka, Zambia
| | - Constance Schultsz
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Daniel R. Mende
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Vanessa C. Harris
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Kastrin T, Mioč V, Mahnič A, Čižman M. Impact of the COVID-19 Pandemic on Community Consumption of Antibiotics for Systemic Use and Resistance of Invasive Streptococcus pneumoniae in Slovenia. Antibiotics (Basel) 2023; 12:945. [PMID: 37370264 PMCID: PMC10295396 DOI: 10.3390/antibiotics12060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aims to investigate the impact of the COVID-19 pandemic on community antibiotic consumption and the resistance of invasive Streptococcus pneumoniae (2015-2022) to penicillin in Slovenia. During the pandemic in 2020 and 2021, the total use of antibiotics for systemic use decreased by 23.5% and 24.3%, expressed in defined daily doses per 1000 inhabitants per day (DID), while the use of penicillins, macrolides and broad-spectrum penicillins decreased by 30%, 20% and by 17.5%, respectively, and that of broad-spectrum macrolides fell by 17.1%. The incidence of invasive pneumococcal diseases (IPD) in Slovenia had a large decline during the pandemic. Decreased resistance to macrolides was significantly associated with decreased use of macrolides, while for penicillins the correlation could not be statistically confirmed. The proportion of PCV13 serotypes in IPD in Slovenia decreased after the introduction of the vaccine in the national programme, falling from 81.6% in 2015 to 45.5% in 2022. We noticed a decrease in the serotypes 1, 14, 9V, 7F, 4, 6A and an increase in the serotypes 3, 8, 22F, 11A, 23A and 15A. National interventions during the COVID-19 pandemic substantially decreased outpatients' antibiotic consumption, as well as incidence and resistance of invasive S. pneumoniae.
Collapse
Affiliation(s)
- Tamara Kastrin
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, 1000 Ljubljana, Slovenia;
| | - Verica Mioč
- Department for Public Health Microbiology, National Laboratory of Health, Environment and Food, 1000 Ljubljana, Slovenia;
| | - Aleksander Mahnič
- Department for Microbiological Research, National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia;
| | - Milan Čižman
- Department of Infectious Diseases, University Medical Centre, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
23
|
Geyer J, Krupa KA, Harris ZM, Sun Y, Sharma L, Würstle S, Hu B, Stanley G, Rajagopalan G, Pellot E, Koff JL, Robinson JB. A Novel Zinc (II) Porphyrin Is Synergistic with PEV2 Bacteriophage against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2023; 12:735. [PMID: 37107097 PMCID: PMC10135120 DOI: 10.3390/antibiotics12040735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pseudomonas aeruginosa (PsA) is an opportunistic bacterial pathogen that causes life-threatening infections in individuals with compromised immune systems and exacerbates health concerns for those with cystic fibrosis (CF). PsA rapidly develops antibiotic resistance; thus, novel therapeutics are urgently needed to effectively combat this pathogen. Previously, we have shown that a novel cationic Zinc (II) porphyrin (ZnPor) has potent bactericidal activity against planktonic and biofilm-associated PsA cells, and disassembles the biofilm matrix via interactions with eDNA In the present study, we report that ZnPor caused a significant decrease in PsA populations in mouse lungs within an in vivo model of PsA pulmonary infection. Additionally, when combined with an obligately lytic phage PEV2, ZnPor at its minimum inhibitory concentration (MIC) displayed synergy against PsA in an established in vitro lung model resulting in greater protection of H441 lung cells versus either treatment alone. Concentrations above the minimum bactericidal concentration (MBC) of ZnPor were not toxic to H441 cells; however, no synergy was observed. This dose-dependent response is likely due to ZnPor's antiviral activity, reported herein. Together, these findings show the utility of ZnPor alone, and its synergy with PEV2, which could be a tunable combination used in the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jessica Geyer
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Kristen A. Krupa
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| | - Zachary M. Harris
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ying Sun
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Silvia Würstle
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gail Stanley
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Govindarajan Rajagopalan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erin Pellot
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Jonathan L. Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jayne B. Robinson
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
24
|
Pei S, Blumberg S, Vega JC, Robin T, Zhang Y, Medford RJ, Adhikari B, Shaman J. Challenges in Forecasting Antimicrobial Resistance. Emerg Infect Dis 2023; 29:679-685. [PMID: 36958029 PMCID: PMC10045679 DOI: 10.3201/eid2904.221552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective, we discuss the utility of AMRO forecasting at different scales, highlight the challenges in this field, and suggest future research priorities. We also discuss challenges in scientific understanding, access to high-quality data, model calibration, and implementation and evaluation of forecasting models. We further highlight the need to initiate research on AMRO forecasting using currently available data and resources to galvanize the research community and address initial practical questions.
Collapse
|
25
|
Bogri A, Otani S, Aarestrup FM, Brinch C. Interplay between strain fitness and transmission frequency determines prevalence of antimicrobial resistance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.981377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The steep rise of infections caused by bacteria that are resistant to antimicrobial agents threatens global health. However, the association between antimicrobial use and the prevalence of resistance is not straightforward. Therefore, it is necessary to quantify the importance of additional factors that affect this relationship. We theoretically explore how the prevalence of resistance is affected by the combination of three factors: antimicrobial use, bacterial transmission, and fitness cost of resistance. We present a model that combines within-host, between-hosts and between-populations dynamics, built upon the competitive Lotka-Volterra equations. We developed the model in a manner that allows future experimental validation of the findings with single isolates in the laboratory. Each host may carry two strains (susceptible and resistant) that represent the host’s commensal microbiome and are not the target of the antimicrobial treatment. The model simulates a population of hosts who are treated periodically with antibiotics and transmit bacteria to each other. We show that bacterial transmission results in strain co-existence. Transmission disseminates resistant bacteria in the population, increasing the levels of resistance. Counterintuitively, when the cost of resistance is low, high transmission frequencies reduce resistance prevalence. Transmission between host populations leads to more similar resistance levels, increasing the susceptibility of the population with higher antimicrobial use. Overall, our results indicate that the interplay between bacterial transmission and strain fitness affects the prevalence of resistance in a non-linear way. We then place our results within the context of ecological theory, particularly on temporal niche partitioning and metapopulation rescue, and we formulate testable experimental predictions for future research.
Collapse
|
26
|
Lee K, Raguideau S, Sirén K, Asnicar F, Cumbo F, Hildebrand F, Segata N, Cha CJ, Quince C. Population-level impacts of antibiotic usage on the human gut microbiome. Nat Commun 2023; 14:1191. [PMID: 36864029 PMCID: PMC9981903 DOI: 10.1038/s41467-023-36633-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
The widespread usage of antimicrobials has driven the evolution of resistance in pathogenic microbes, both increased prevalence of antimicrobial resistance genes (ARGs) and their spread across species by horizontal gene transfer (HGT). However, the impact on the wider community of commensal microbes associated with the human body, the microbiome, is less well understood. Small-scale studies have determined the transient impacts of antibiotic consumption but we conduct an extensive survey of ARGs in 8972 metagenomes to determine the population-level impacts. Focusing on 3096 gut microbiomes from healthy individuals not taking antibiotics we demonstrate highly significant correlations between both the total ARG abundance and diversity and per capita antibiotic usage rates across ten countries spanning three continents. Samples from China were notable outliers. We use a collection of 154,723 human-associated metagenome assembled genomes (MAGs) to link these ARGs to taxa and detect HGT. This reveals that the correlations in ARG abundance are driven by multi-species mobile ARGs shared between pathogens and commensals, within a highly connected central component of the network of MAGs and ARGs. We also observe that individual human gut ARG profiles cluster into two types or resistotypes. The less frequent resistotype has higher overall ARG abundance, is associated with certain classes of resistance, and is linked to species-specific genes in the Proteobacteria on the periphery of the ARG network.
Collapse
Affiliation(s)
- Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17546, Republic of Korea
- CJ Bioscience, Seoul, 04527, Republic of Korea
| | | | - Kimmo Sirén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Fabio Cumbo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Falk Hildebrand
- Organisms and Ecosystems, Earlham Institute, Norwich, NR4 7UZ, UK
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Christopher Quince
- Organisms and Ecosystems, Earlham Institute, Norwich, NR4 7UZ, UK.
- Gut Microbes and Health, Quadram Institute, Norwich, NR4 7UQ, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK.
| |
Collapse
|
27
|
Langford BJ, So M, Simeonova M, Leung V, Lo J, Kan T, Raybardhan S, Sapin ME, Mponponsuo K, Farrell A, Leung E, Soucy JPR, Cassini A, MacFadden D, Daneman N, Bertagnolio S. Antimicrobial resistance in patients with COVID-19: a systematic review and meta-analysis. THE LANCET. MICROBE 2023; 4:e179-e191. [PMID: 36736332 PMCID: PMC9889096 DOI: 10.1016/s2666-5247(22)00355-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Frequent use of antibiotics in patients with COVID-19 threatens to exacerbate antimicrobial resistance. We aimed to establish the prevalence and predictors of bacterial infections and antimicrobial resistance in patients with COVID-19. METHODS We did a systematic review and meta-analysis of studies of bacterial co-infections (identified within ≤48 h of presentation) and secondary infections (>48 h after presentation) in outpatients or hospitalised patients with COVID-19. We searched the WHO COVID-19 Research Database to identify cohort studies, case series, case-control trials, and randomised controlled trials with populations of at least 50 patients published in any language between Jan 1, 2019, and Dec 1, 2021. Reviews, editorials, letters, pre-prints, and conference proceedings were excluded, as were studies in which bacterial infection was not microbiologically confirmed (or confirmed via nasopharyngeal swab only). We screened titles and abstracts of papers identified by our search, and then assessed the full text of potentially relevant articles. We reported the pooled prevalence of bacterial infections and antimicrobial resistance by doing a random-effects meta-analysis and meta-regression. Our primary outcomes were the prevalence of bacterial co-infection and secondary infection, and the prevalence of antibiotic-resistant pathogens among patients with laboratory-confirmed COVID-19 and bacterial infections. The study protocol was registered with PROSPERO (CRD42021297344). FINDINGS We included 148 studies of 362 976 patients, which were done between December, 2019, and May, 2021. The prevalence of bacterial co-infection was 5·3% (95% CI 3·8-7·4), whereas the prevalence of secondary bacterial infection was 18·4% (14·0-23·7). 42 (28%) studies included comprehensive data for the prevalence of antimicrobial resistance among bacterial infections. Among people with bacterial infections, the proportion of infections that were resistant to antimicrobials was 60·8% (95% CI 38·6-79·3), and the proportion of isolates that were resistant was 37·5% (26·9-49·5). Heterogeneity in the reported prevalence of antimicrobial resistance in organisms was substantial (I2=95%). INTERPRETATION Although infrequently assessed, antimicrobial resistance is highly prevalent in patients with COVID-19 and bacterial infections. Future research and surveillance assessing the effect of COVID-19 on antimicrobial resistance at the patient and population level are urgently needed. FUNDING WHO.
Collapse
Affiliation(s)
- Bradley J Langford
- Public Health Ontario, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Miranda So
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | | | - Valerie Leung
- Public Health Ontario, Toronto, ON, Canada; Toronto East Health Network, Toronto, ON, Canada
| | - Jennifer Lo
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tiffany Kan
- North York General Hospital, Toronto, ON, Canada
| | | | - Mia E Sapin
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kwadwo Mponponsuo
- University of Calgary, Calgary, AB, Canada; Alberta Health Services, Calgary, AB, Canada
| | | | - Elizabeth Leung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Unity Health Toronto, Toronto, ON, UK
| | - Jean-Paul R Soucy
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Derek MacFadden
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital, Ottawa, ON, Canada
| | - Nick Daneman
- Public Health Ontario, Toronto, ON, Canada; Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Shi K, Wang J, Yin L, Xu Y, Kong D, Li H, Zhang Y, He H, Yang S, Ni L, Li S, Zhu F. Photocatalysis Combined with Microalgae to Promote the Degradation and Detoxification of Tetracycline Hydrochloride. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:43. [PMID: 36652010 DOI: 10.1007/s00128-023-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The continuous discharge of antibiotics into the environment poses a serious threat to the ecological environment and human health. In this study, photocatalysis and microalgae were combined to study the removal of tetracycline hydrochloride (TCH) and its photodegradation intermediates in water. The results showed that after photocatalytic treatment, the removal rate of TCH reached 80%, but the mineralization rate was only 17.7%. While Chlorella sp. alone had poor tolerance to high concentrations of TCH, the combined treatment of photocatalysis and microalgae completely removed TCH and increased the mineralization efficiency to 35.0%. Increased cell density was observed, indicating that TCH and the intermediates produced in the photocatalysis process could be utilized by algae for growth. Meanwhile, TCH degradation pathways were proposed based on Liquid Chromatograph Mass Spectrometer analysis, and the toxicity of intermediates detected was predicted using ECOSAR software, which showed that the type and quantity of highly toxic intermediates decreased significantly after subsequent algal treatment. The results demonstrate that photocatalysis and microalgae combined treatment is an efficient and eco-friendly method for the removal of antibiotics in water.
Collapse
Affiliation(s)
- Kaipian Shi
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Li Yin
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Ying Xu
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Desheng Kong
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, 35487, Tuscaloosa, AL, USA
| | - Huan He
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, 210098, Nanjing, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210023, Nanjing, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 210023, Nanjing, China.
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
29
|
Albano GD, Midiri M, Zerbo S, Matteini E, Passavanti G, Curcio R, Curreri L, Albano S, Argo A, Cadelo M. Implementation of A Year-Long Antimicrobial Stewardship Program in A 227-Bed Community Hospital in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:996. [PMID: 36673754 PMCID: PMC9859386 DOI: 10.3390/ijerph20020996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Healthcare-Acquired Infections (HAIs) are serious healthcare complications affecting hospital stay, in-hospital mortality, and costs. Root cause analysis has identified the inappropriate use of antibiotics as the main causative factor in the expansion of multi-drug-resistant organisms (MDRO) in our hospital. An Antimicrobial Stewardship (AMS) program was implemented to optimize antibiotic use, limit the development of resistance, improve therapeutic efficacy and clinical outcomes, and reduce costs. METHODS The stewardship strategies were: antimicrobial oversight on "critical" antibiotics; the development of hospital guidelines on antibiotic selection with the production of a consensus document; the implementation of clinical and management control algorithms with visual impact and Business Intelligence methods; training and updating; and the monitoring of outcome measures and process indicators. RESULTS Clinical outcomes: length of stay reduced by 0.23 days, hospital readmission/first month rates decreased by 19%, and mortality for infections reduced by 8.8%. Microbiological Outcomes: Clostridium Difficile colitis incidence reduced by 9.1%.Economic Outcomes: Reduction in antimicrobial costs by 35% on average fee/discharged patient. CONCLUSIONS The systematic application of the AMS program in a small hospital led to multiple improvements in clinical, microbiological, and economic outcome measures. The analysis of the core indicators for our hospital AMS program showed a significant adherence to the model and hospital recommendations.
Collapse
Affiliation(s)
- Giuseppe Davide Albano
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Mauro Midiri
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Stefania Zerbo
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Emanuele Matteini
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| | - Giulia Passavanti
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| | - Rosario Curcio
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| | - Lidia Curreri
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| | - Salvatore Albano
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| | - Antonina Argo
- Section of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Marcello Cadelo
- Fondazione Istituto G. Giglio, Contrada Pietra PollastraPisciotto, 90015 Cefalù, Italy
| |
Collapse
|
30
|
Kazaal MA, Hamad WA, Atiya WH, Saeed BJ, Abd-Alsatar AN. Impact of antibiotic resistance on sustainable development goals. 1ST INTERNATIONAL CONFERENCE ON ACHIEVING THE SUSTAINABLE DEVELOPMENT GOALS 2023. [DOI: 10.1063/5.0137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Wattles BA, Smith MJ, Feygin Y, Jawad KS, Bhadury S, Sun J, Kong M, Woods CR. Recurrent Antibiotic Use in Kentucky Children With 6 Years of Continuous Medicaid Enrollment. J Pediatric Infect Dis Soc 2022; 11:492-497. [PMID: 35964236 DOI: 10.1093/jpids/piac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Little is known about the distribution of antibiotic use in individual children over time. The amoxicillin index is a recently proposed metric to assess first-line antibiotic prescribing to children. METHODS We constructed a cohort of continuously enrolled Medicaid children using enrollment claims from 2012 to 2017. Pharmacy claims were used to identify antibiotic prescription data. RESULTS Among 169 724 children with 6 years of Medicaid enrollment, 10 804 (6.4%) had no antibiotic prescription claims during the study period; 43 473 (25.6%) had 1-3 antibiotics; 34 318 (20.2%) had 4-6 antibiotics; 30 994 (18.3%) had 7-10; 35 018 (20.6%) had 11-20; and 15 117 (8.9%) children had more than 20 antibiotic prescriptions. Overall, the population had a median total of 6 antibiotic prescriptions during the study period, but use was higher in certain patient groups: younger age (8 antibiotic fills over the 6-year period, [IQR 4-14]), White children (7 [IQR 3-13], compared to 3 [IQR 1-6] in Black children), rural settings (9 [IQR 4-15]) and chronic conditions (8 [IQR 4-15]). Higher-use groups also had lower rates of amoxicillin fills, reported as amoxicillin indices. CONCLUSIONS Antibiotic use is common among most children insured by Kentucky Medicaid. A number of fills over time were higher in younger children, and in White children, children living in rural settings and children with chronic conditions. Patients with higher recurrent antibiotic use are important targets for designing high-impact antibiotic stewardship efforts.
Collapse
Affiliation(s)
- Bethany A Wattles
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael J Smith
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yana Feygin
- Norton Children's Research Institute Affiliated with University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kahir S Jawad
- Norton Children's Research Institute Affiliated with University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Sagnik Bhadury
- School of Public Health and Information Sciences, Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Jingchao Sun
- School of Public Health and Information Sciences, Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Maiying Kong
- School of Public Health and Information Sciences, Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Charles R Woods
- Department of Pediatrics, University of Tennessee College of Medicine-Chattanooga, Children's Hospital at Erlanger, Chattanooga, Tennessee, USA
| |
Collapse
|
32
|
Davis MD, Lohm D, Flowers P, Whittaker A. Antibiotic assemblages and their implications for the prevention of antimicrobial resistance. Soc Sci Med 2022; 315:115550. [PMID: 36410136 DOI: 10.1016/j.socscimed.2022.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Individual antibiotic use for common infections is a focus for public health efforts seeking to prevent antimicrobial resistance (AMR). These approaches employ a binary opposition of responsible and irresponsible antibiotic use with a focus on the knowledge, behaviours and intentions of the individual. To overcome these unhelpful tendencies and reveal new entry points for AMR prevention, we adopted assemblage theory to analyse personal experience narratives on individual antibiotic use in community settings. Antibiotic use was irregular, situationally diverse and shaped by factors not always under personal control. Individuals were focussed on preventing, moderating and treating infections that threatened their health. Our analysis shows that antibiotic assemblages are both cause and effect of individual efforts to manage infections. We suggest that AMR prevention needs to look beyond the antibiotic as object and the (ir)responsible use binary to engage with the antibiotic effects individuals seek in order to manage infectious diseases. This antibiotic assemblage orientation is likely to be more meaningful for individuals seeking out methods for promoting their health in the face of common infections.
Collapse
Affiliation(s)
- Mark Dm Davis
- School of Social Sciences, Monash University, Australia.
| | - Davina Lohm
- School of Social Sciences, Monash University, Australia
| | - Paul Flowers
- School of Psychological Sciences and Health, University of Strathclyde, UK
| | | |
Collapse
|
33
|
Griskaitis M, Furuya-Kanamori L, Allel K, Stabler R, Harris P, Paterson DL, Yakob L. β-Lactam-Resistant Streptococcus pneumoniae Dynamics Following Treatment: A Dose-Response Meta-analysis. Clin Infect Dis 2022; 75:1962-1970. [PMID: 35438765 PMCID: PMC9710638 DOI: 10.1093/cid/ciac293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Patient exposure to antibiotics promotes the emergence of drug-resistant pathogens. The aim of this study was to identify whether the temporal dynamics of resistance emergence at the individual-patient level were predictable for specific pathogen-drug classes. METHODS Following a systematic review, a novel robust error meta-regression method for dose-response meta-analysis was used to estimate the odds ratio (OR) for carrying resistant bacteria during and following treatment compared to baseline. Probability density functions fitted to the resulting dose-response curves were then used to optimize the period during and/or after treatment when resistant pathogens were most likely to be identified. RESULTS Studies of Streptococcus pneumoniae treatment with β-lactam antibiotics demonstrated a peak in resistance prevalence among patients 4 days after completing treatment with a 3.32-fold increase in odds (95% confidence interval [CI], 1.71-6.46). Resistance waned more gradually than it emerged, returning to preexposure levels 1 month after treatment (OR, 0.98 [95% CI, .55-1.75]). Patient isolation during the peak dose-response period would be expected to reduce the risk that a transmitted pathogen is resistant equivalently to a 50% longer isolation window timed from the first day of treatment. CONCLUSIONS Predictable temporal dynamics of resistance levels have implications both for surveillance and control.
Collapse
Affiliation(s)
- Matas Griskaitis
- Institute for Medical Biometry, Epidemiology and Computer Science, Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Kasim Allel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Richard Stabler
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Patrick Harris
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Laith Yakob
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
34
|
Rangel-Núñez C, Molina-Pinilla I, Ramírez-Trujillo C, Suárez-Cruz A, Martínez SB, Bueno-Martínez M. Tackling Antibiotic Resistance: Influence of Aliphatic Branches on Broad-Spectrum Antibacterial Polytriazoles against ESKAPE Group Pathogens. Pharmaceutics 2022; 14:pharmaceutics14112518. [PMID: 36432710 PMCID: PMC9692804 DOI: 10.3390/pharmaceutics14112518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most important threats to public health is the appearance of multidrug-resistant pathogenic bacteria, since they are the cause of a high number of deaths worldwide. Consequently, the preparation of new effective antibacterial agents that do not generate antimicrobial resistance is urgently required. We report on the synthesis of new linear cationic antibacterial polytriazoles that could be a potential source of new antibacterial compounds. These polymers were prepared by thermal- or copper-catalyzed click reactions of azide and alkyne functions. The antibacterial activity of these materials can be modulated by varying the size or nature of their side chains, as this alters the hydrophilic/hydrophobic balance. Antibacterial activity was tested against pathogens of the ESKAPE group. The P3TD polymer, which has butylated side chains, was found to have the highest bactericidal activity. The toxicity of selected polytriazoles was investigated using human red blood cells and a human gingival fibroblast cell line. The propensity of prepared polytriazoles to induce resistance in certain bacteria was studied. Some of them were found to not produce resistance in methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The interaction of these polytriazoles with the Escherichia coli membrane produces both depolarization and disruption of the membrane.
Collapse
Affiliation(s)
- Cristian Rangel-Núñez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Inmaculada Molina-Pinilla
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Cristina Ramírez-Trujillo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Adrián Suárez-Cruz
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | - Manuel Bueno-Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
35
|
Evolving antibiotic resistance in Group B Streptococci causing invasive infant disease: 1970-2021. Pediatr Res 2022:10.1038/s41390-022-02375-3. [PMID: 36352262 PMCID: PMC10166762 DOI: 10.1038/s41390-022-02375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND We sought to define the frequency of antibiotic resistance over time in a collection of invasive GBS isolates derived from infant early-onset disease (EOD), late-onset disease (LOD), and late-late onset disease (LLOD). METHODS A multicenter retrospective review of infants born from 1970 to 2021 with GBS isolated from blood, cerebrospinal fluid, synovial fluid, cellulitis, or bone. All isolates were serotyped and antimicrobial susceptibility testing performed using disk diffusion. RESULTS The most common serotypes in our 2017 isolates were III (n = 1112, 55.1%), Ia (n = 445, 22%), Ib (n = 182, 9%) and II (n = 146, 7.2%). A total of 945 (46.8%) isolates were from infants with EOD, 976 (48.3%) from LOD, and 96 (4.75%) from LLOD. All isolates were penicillin-susceptible. Compared to strains isolated <2000, strains isolated ≥2000 showed significantly greater frequency of erythromycin (4.0% to 32.3%, P < 0.0001) and clindamycin (1.5% to 17.5%, P < 0.0001) resistance. Year of isolation (≥2000) and serotype V were significantly associated with erythromycin and/or clindamycin resistance. CONCLUSIONS We document a rapid and significant increase in clindamycin and erythromycin resistance. As clindamycin may be considered in severely penicillin-allergic women needing GBS intrapartum prophylaxis, obstetricians, pediatricians, and neonatologist should be aware of this disturbing trend. IMPACT Group B streptococcal strains isolated from infants with invasive infection have become more resistant to second-line antibiotics over time. In this epidemiologic study of 2017 group B streptococci isolated from 1970 to 2021, penicillin susceptibility remained uniform; however, resistance to erythromycin and clindamycin increased significantly over time across all capsular serotypes. Clindamycin resistance exceeded 20% by 2010 in most serotypes. While penicillin remains the treatment of choice for group B streptococcal infant disease, pediatricians and neonatologists should be aware of the high prevalence of resistance to clindamycin, a recommended alternative drug used for intrapartum-antibiotic prophylaxis in penicillin-allergic women.
Collapse
|
36
|
Zhang X, Wu N. Adsorption characteristics of N-rGO for multiple representative trace antibiotics in water. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1298-1309. [PMID: 36174971 DOI: 10.1002/jeq2.20415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have attracted considerable attention as pollutants; however, they have not been controlled because they cannot be effectively treated via conventional water treatment. In this study, nitrogen-doped reduced graphene oxide (N-rGO) was prepared, and its adsorption performance on multiple trace antibiotics in water was investigated by considering sulfamethoxazole, levofloxacin, clindamycin, tetracycline, penicillin, and chloramphenicol as target pollutants. The results demonstrated that the adsorption process was completed within 60 min at a removal rate exceeding 80%. The adsorption process was in line with the first-order kinetic equation and the Langmuir isothermal adsorption model, with a theoretical maximum adsorption capacity of 1,265.82 mg g-1 . Meanwhile, the effect of pH value was related to the structure of antibiotics. Simulation studies showed that anions and cations in natural water matrix did not inhibit the adsorption process, whereas humic acid adversely affected the adsorption effect. Characterizations revealed that the N-rGO surface was wrinkled with abundant and diverse oxygen-containing functional groups, which provided suitable conditions for efficient adsorption. The results indicated that N-rGO rapidly and effectively adsorbed trace antibiotics in water, thus providing a basis for constructing an adsorption-catalytic oxidation system. Overall, the proposed method is excellent for treating trace antibiotics in a water environment.
Collapse
Affiliation(s)
- Xue Zhang
- School of Petrochemical Engineering, Lanzhou Petrochemical Univ. of Vocational Technology, Lanzhou, 730060, China
| | - Nan Wu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong Univ., Lanzhou, 730070, China
| |
Collapse
|
37
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
38
|
Olesen SW. Uses of mathematical modeling to estimate the impact of mass drug administration of antibiotics on antimicrobial resistance within and between communities. Infect Dis Poverty 2022; 11:75. [PMID: 35773748 PMCID: PMC9245243 DOI: 10.1186/s40249-022-00997-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Antibiotics are a key part of modern healthcare, but their use has downsides, including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in the community at large. When evaluating the benefits and costs of mass administration of azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are important but difficult to measure, especially when evaluating resistance that "spills over" from antibiotic-treated individuals to other members of their community. The aim of this scoping review was to identify how the existing literature on antibiotic resistance modeling could be better leveraged to understand the effect of mass drug administration (MDA) on antibiotic resistance. MAIN TEXT Mathematical models of antibiotic use and resistance may be useful for estimating the expected effects of different MDA implementations on different populations, as well as aiding interpretation of existing data and guiding future experimental design. Here, strengths and limitations of models of antibiotic resistance are reviewed, and possible applications of those models in the context of mass drug administration with azithromycin are discussed. CONCLUSIONS Statistical models of antibiotic use and resistance may provide robust and relevant estimates of the possible effects of MDA on resistance. Mechanistic models of resistance, while able to more precisely estimate the effects of different implementations of MDA on resistance, may require more data from MDA trials to be accurately parameterized.
Collapse
Affiliation(s)
- Scott W Olesen
- Department of Immunology and Infectious Diseases, Harvard Chan School, Boston, MA, USA.
| |
Collapse
|
39
|
Salerno B, Cornaggia M, Sabatino R, Di Cesare A, Furlan M, Barco L, Orsini M, Cordioli B, Mantovani C, Bano L, Losasso C. Calves as Main Reservoir of Antibiotic Resistance Genes in Dairy Farms. Front Public Health 2022; 10:918658. [PMID: 35795698 PMCID: PMC9251204 DOI: 10.3389/fpubh.2022.918658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
A side effect of antibiotic usage is the emergence and dissemination of antibiotic resistance genes (ARGs) within microbial communities. The spread of ARGs among pathogens has emerged as a public health concern. While the distribution of ARGs is documented on a global level, their routes of transmission have not been clarified yet; for example, it is not clear whether and to what extent the emergence of ARGs originates in farms, following the selective pressure exerted by antibiotic usage in animal husbandry, and if they can spread into the environment. Here we address this cutting edge issue by combining data regarding antimicrobial usage and quantitative data from selected ARGs (blaTEM, blaCTXM, ermB, vanA, qnrS, tetA, sul2, and mcr-1) encoding for resistance to penicillins, macrolides-lincosamides-streptogramins, glycopeptides, quinolones, tetracyclines, sulfonamides, and colistin at the farm level. Results suggest that dairy farms could be considered a hotspot of ARGs, comprising those classified as the highest risk for human health and that a correlation existed between the usage of penicillins and blaTEM abundances, meaning that, although the antibiotic administration is not exclusive, it remains a certain cause of the ARGs' selection and spread in farms. Furthermore, this study identified the role of calves as the main source of ARGs spread in dairy farms, claiming the need for targeted actions in this productive category to decrease the load of ARGs along the production chain.
Collapse
Affiliation(s)
- Barbara Salerno
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Matteo Cornaggia
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raffaella Sabatino
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Maddalena Furlan
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Lisa Barco
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Massimiliano Orsini
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Benedetta Cordioli
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudio Mantovani
- National Research Council of Italy-Water Research Institute (CNR-IRSA), Verbania, Italy
- Laboratory of Science Communication, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Luca Bano
- Laboratory of Clinical Diagnostics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
- *Correspondence: Carmen Losasso
| |
Collapse
|
40
|
Nhung NT, Yen NTP, Dung NTT, Nhan NTM, Phu DH, Kiet BT, Thwaites G, Geskus RB, Baker S, Carrique-Mas J, Choisy M. Antimicrobial resistance in commensal Escherichia coli from humans and chickens in the Mekong Delta of Vietnam is driven by antimicrobial usage and potential cross-species transmission. JAC Antimicrob Resist 2022; 4:dlac054. [PMID: 35663829 PMCID: PMC9154321 DOI: 10.1093/jacamr/dlac054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To investigate phenotypic antimicrobial resistance (AMR) in relation to antimicrobial use (AMU) and potential inter-species transmission among Escherichia coli from humans and chickens located in the same households in the Mekong Delta of Vietnam. Methods We collected data on AMU and faecal swabs from humans (N = 426) and chickens (N = 237) from 237 small-scale farms. From each sample, one E. coli strain was isolated and tested for its susceptibility against 11 antimicrobials by Sensititre AST. The association between AMR and AMU was investigated by logistic regression modelling. Using randomization, we compared the degree of similarity in AMR patterns between human and chicken E. coli from the same farms compared with isolates from different farms. Results The AMU rate was ∼19 times higher in chickens (291.1 per 1000 chicken-days) than in humans (15.1 per 1000 person-days). Isolates from chickens also displayed a higher prevalence of multidrug resistance (63.3%) than those of human origin (55.1%). AMU increased the probability of resistance in isolates from human (ORs between 2.1 and 5.3) and chicken (ORs between 1.9 and 4.8). E. coli from humans and chickens living on same farms had a higher degree of similarity in their AMR patterns than isolates from humans and chicken living on different farms. Conclusions We demonstrated the co-influence of AMU and potential transmission on observed phenotypic AMR patterns among E. coli isolates from food-producing animals and in-contact humans. Restricting unnecessary AMU alongside limiting interspecies contact (i.e. increasing hygiene and biocontainment) are essential for reducing the burden of AMR.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Doan Hoang Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Bach Tuan Kiet
- Sub-Department of Animal Health and Production, Dong Thap Province, Vietnam
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ronald B. Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
42
|
Bjerrum A, García-Sangenís A, Modena D, Córdoba G, Bjerrum L, Chalkidou A, Lykkegaard J, Hansen MP, Søndergaard J, Nexøe J, Rebnord I, Sebjørnsen I, Jensen JN, Hansen MB, Taxis K, Lambert M, Benko R, González López-Valcárcel B, Raynal F, Barragán N, Touboul P, Bruno P, Radzeviciene R, Jaruseviciene L, Bandzaite A, Godycki-Cwirko M, Kowalczyk A, Lionis C, Karkana MN, Anastasaki M, Coleman J, Glasová H, van Agtmael M, Tattevin P, Borràs A, Llor C. Health alliance for prudent prescribing and yield of antibiotics in a patient-centred perspective (HAPPY PATIENT): a before-and-after intervention and implementation study protocol. BMC PRIMARY CARE 2022; 23:102. [PMID: 35501712 PMCID: PMC9063370 DOI: 10.1186/s12875-022-01710-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Excessive and inappropriate use of antibiotics is the most important driver of antimicrobial resistance. The aim of the HAPPY PATIENT project is to evaluate the adaptation of European Union (EU) recommendations on the prudent use of antimicrobials in human health by evaluating the impact of a multifaceted intervention targeting different categories of healthcare professionals (HCPs) on common community-acquired infectious diseases, especially respiratory and urinary tract infections. METHODS/DESIGN HAPPY PATIENT was initiated in January 2021 and is planned to end in December 2023. The partners of this project include 15 organizations from 9 countries. Diverse HCPs (doctors, nurses, pharmacists, and pharmacy technicians) will be audited by the Audit Project Odense (APO) method before and after an intervention in four different settings: general practice, out of hours services, nursing homes and community pharmacies in four high antibiotic prescribing countries (France, Poland, Greece, and Spain) and one low prescribing country (Lithuania). About 25 individuals from each professional group will be recruited in each country, who will register at least 25 patients with community-acquired infections during each audit period. Shortly before the second registration participants will undertake a multifaceted intervention and will receive the results from the first registration to allow the identification of possible quality problems. At these meetings participants will receive training courses on enhancement of communication skills, dissemination of clinical guidelines with recommendations for diagnosis and treatment, posters for the waiting rooms, and leaflets for patients. The results of the second registration will be compared with those obtained in the first audit. DISCUSSION HAPPY PATIENT is an EU-funded project aimed at contributing to the battle against antibiotic resistance through improvement of the quality of management of common community-acquired infections based on interventions by different types of HCPs. It is hypothesized that the use of multifaceted strategies combining active intervention will be effective in reducing inappropriate prescribing and dispensing of antibiotics. STUDY REGISTRATION EU Health programmes project database https://webgate.ec.europa.eu/chafea_pdb/health/projects/900024/summary ; date of registration: 1 January 2021.
Collapse
Affiliation(s)
- Anders Bjerrum
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol, Barcelona, Spain
| | - Ana García-Sangenís
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol, Barcelona, Spain
| | - Daniela Modena
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol, Barcelona, Spain
| | | | | | | | - Jesper Lykkegaard
- Department of Public Health, Research Unit for General Practice, University of Southern Denmark, Odense, Denmark
| | - Malene Plejdrup Hansen
- Department of Public Health, Research Unit for General Practice, University of Southern Denmark, Odense, Denmark
| | - Jens Søndergaard
- Department of Public Health, Research Unit for General Practice, University of Southern Denmark, Odense, Denmark
| | - Jørgen Nexøe
- Department of Public Health, Research Unit for General Practice, University of Southern Denmark, Odense, Denmark
| | | | | | - Jette Nygaard Jensen
- The Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Matilde Bøgelund Hansen
- The Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Katja Taxis
- Rijksuniversiteit Groningen, Groningen, The Netherlands
| | | | - Ria Benko
- Rijksuniversiteit Groningen, Groningen, The Netherlands
| | | | - Fabiana Raynal
- University of Las Palmas de Gran Canaria and Fundación Canaria Parque Científico Tecnológico, Las Palmas, Spain
| | - Nieves Barragán
- Spanish Society for Family and Community Medicine, Barcelona, Spain
| | - Pia Touboul
- Department of Public Health, Nice University Hospital, Nice, France
| | - Pascale Bruno
- Department of Public Health, Nice University Hospital, Nice, France
| | | | | | | | - Maciek Godycki-Cwirko
- Centre for Family and Community Medicine, the Faculty of Health Sciences, The Medical University of Lodz, Lodz, Poland
| | - Anna Kowalczyk
- Centre for Family and Community Medicine, the Faculty of Health Sciences, The Medical University of Lodz, Lodz, Poland
| | - Christos Lionis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Rethymno, Greece
| | - Maria-Nefeli Karkana
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Rethymno, Greece
| | - Marilena Anastasaki
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Rethymno, Greece
| | - Jamie Coleman
- European Association for Clinical Pharmacology and Therapeutics, London, UK
| | - Helena Glasová
- European Association for Clinical Pharmacology and Therapeutics, London, UK
| | | | | | - Alicia Borràs
- University Institute for Patient Care, Barcelona, Spain
| | - Carl Llor
- Institut Català de la Salut, Via Roma Health Centre, c. Manso, 19, 3rd floor, 08015, Barcelona, Spain.
| |
Collapse
|
43
|
Li M, Li Z, Zhong Q, Liu J, Han G, Li Y, Li C. Antibiotic resistance of fecal carriage of Escherichia coli from pig farms in China: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22989-23000. [PMID: 34797542 DOI: 10.1007/s11356-021-17339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fecal carriage of bacteria is a major source of antibiotic resistance genes (ARGs) and a public health risk, but the antibiotic resistance of Escherichia coli (E. coli) in Chinese pig farms remains a major gap in the available literature. Our goal was to conduct a meta-analysis of studies reporting antibiotic resistance of fecal carriage of E. coli from pig farms in China, calculating the pooled resistance rates and summarizing factors associated with it. We searched PubMed and Web of Science for studies published in English up to February 28, 2021. We also searched bibliographic indices and corresponded with the authors. We chose ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol from five major types of antibiotics to comprehensively evaluate the resistance rate of E. coli. We used a random-effects model and Freeman-Tukey double arcsine transformation to calculate the resistance rate and 95% confidence interval. Among the 120 retrieved manuscripts, 16 studies (1985 E. coli isolates) were deemed eligible for our analysis. The combined resistance rate of E. coli from feces was 58.8% (95% CI: 45.3-71.7%) to ciprofloxacin, 54.3% (95% CI: 35.3-72.6%) to gentamicin, 91.0% (95% CI: 83.1-96.7%) to tetracycline, 81.4% (95% CI: 62.0-95.1%) to ampicillin, and 65.4% (95% CI: 33.9-90.9%) to florfenicol. In conclusion, fecal carriage of E. coli in Chinese pig farms shows high resistance to ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol. Subgroup analysis showed that the resistance of E. coli to antibiotics was closely related to the sample size and the health condition of the pigs. Specifically, ESBL-producing E. coli has a higher ratio of resistance to other antibiotics. Future collection of antibiotic resistance and other information in pig farms should be more precise and depend on local surveys.
Collapse
Affiliation(s)
- Mingyang Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhi Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Qiuming Zhong
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junze Liu
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guofeng Han
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yansen Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chunmei Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
44
|
Macrolide Treatment Failure due to Drug–Drug Interactions: Real-World Evidence to Evaluate a Pharmacological Hypothesis. Pharmaceutics 2022; 14:pharmaceutics14040704. [PMID: 35456537 PMCID: PMC9031623 DOI: 10.3390/pharmaceutics14040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Macrolide antibiotics have received criticism concerning their use and risk of treatment failure. Nevertheless, they are an important class of antibiotics and are frequently used in clinical practice for treating a variety of infections. This study sought to utilize pharmacoepidemiology methods and pharmacology principles to estimate the risk of macrolide treatment failure and quantify the influence of their pharmacokinetics on the risk of treatment failure, using clinically reported drug–drug interaction data. Using a large, commercial claims database (2006–2015), inclusion and exclusion criteria were applied to create a cohort of patients who received a macrolide for three common acute infections. Furthermore, an additional analysis examining only bacterial pneumonia events treated with macrolides was conducted. These criteria were formulated specifically to ensure treatment failure would not be expected nor influenced by intrinsic or extrinsic factors. Treatment failure rates were 6% within the common acute infections and 8% in the bacterial pneumonia populations. Regression results indicated that macrolide AUC changes greater than 50% had a significant effect on treatment failure risk, particularly for azithromycin. In fact, our results show that decreased or increased exposure change can influence failure risk, by 35% or 12%, respectively, for the acute infection scenarios. The bacterial pneumonia results were less significant with respect to the regression analyses. This integration of pharmacoepidemiology and clinical pharmacology provides a framework for utilizing real-world data to provide insight into pharmacokinetic mechanisms and support future study development related to antibiotic treatments.
Collapse
|
45
|
Abstract
INTRODUCTION OR BACKGROUND Antibiotic resistance raises ethical issues due to the severe and inequitably distributed consequences caused by individual actions and policies. SOURCES OF DATA Synthesis of ethical, scientific and clinical literature. AREAS OF AGREEMENT Ethical analyses have focused on the moral responsibilities of patients to complete antibiotic courses, resistance as a tragedy of the commons and attempts to limit use through antibiotic stewardship. AREAS OF CONTROVERSY Each of these analyses has significant limitations and can result in self-defeating or overly narrow implications for policy. GROWING POINTS More complex analyses focus on ethical implications of ubiquitous asymptomatic carriage of resistant bacteria, non-linear outcomes within and between patients over time and global variation in resistant disease burdens. AREAS TIMELY FOR DEVELOPING RESEARCH Neglected topics include the harms of antibiotic use, including off-target effects on the human microbiome, and the lack of evidence guiding most antibiotic prescription decisions.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- The Ethox Centre and Wellcome Centre for Ethics and Humanities, Nuffield Department of Population Health, University of Oxford. Old Road Campus, Oxford OX3 7LF, UK
- Monash Bioethics Centre, Monash University, Wellington Rd, Clayton, 3800, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, 300 Grattan St, Parkville, 3050, Victoria, Australia
| | - George S Heriot
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, 300 Grattan St, Parkville, 3050, Victoria, Australia
| |
Collapse
|
46
|
Sun DS, Kissler SM, Kanjilal S, Olesen SW, Lipsitch M, Grad YH. Analysis of multiple bacterial species and antibiotic classes reveals large variation in the association between seasonal antibiotic use and resistance. PLoS Biol 2022; 20:e3001579. [PMID: 35263322 PMCID: PMC8936496 DOI: 10.1371/journal.pbio.3001579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/21/2022] [Accepted: 02/21/2022] [Indexed: 01/24/2023] Open
Abstract
Understanding how antibiotic use drives resistance is crucial for guiding effective strategies to limit the spread of resistance, but the use-resistance relationship across pathogens and antibiotics remains unclear. We applied sinusoidal models to evaluate the seasonal use-resistance relationship across 3 species (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) and 5 antibiotic classes (penicillins, macrolides, quinolones, tetracyclines, and nitrofurans) in Boston, Massachusetts. Outpatient use of all 5 classes and resistance in inpatient and outpatient isolates in 9 of 15 species-antibiotic combinations showed statistically significant amplitudes of seasonality (false discovery rate (FDR) < 0.05). While seasonal peaks in use varied by class, resistance in all 9 species-antibiotic combinations peaked in the winter and spring. The correlations between seasonal use and resistance thus varied widely, with resistance to all antibiotic classes being most positively correlated with use of the winter peaking classes (penicillins and macrolides). These findings challenge the simple model of antibiotic use independently selecting for resistance and suggest that stewardship strategies will not be equally effective across all species and antibiotics. Rather, seasonal selection for resistance across multiple antibiotic classes may be dominated by use of the most highly prescribed antibiotic classes, penicillins and macrolides.
Collapse
Affiliation(s)
- Daphne S. Sun
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen M. Kissler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sanjat Kanjilal
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott W. Olesen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marc Lipsitch
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Veličković-Radovanović R, Stefanović N, Damnjanović I, Kocić B, Mladenović-Antić S, Dinić M, Petrović J, Mitić R, Catić-Đorđević A. Antibiotic utility and susceptibility changes of multidrug-resistant Escherichia coli and Klebsiella spp: 5-year experience in a tertiary healthcare centre. Eur J Hosp Pharm 2022; 29:84-89. [PMID: 34907033 PMCID: PMC8899649 DOI: 10.1136/ejhpharm-2021-002758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Multiple studies have identified cross-sectional relationships between antibiotic use and bacterial resistance. The aim of this study was to analyse the susceptibility of multidrug-resistant (MDR) and non-MDR (nMDR) isolates of Escherichia coli and Klebsiella spp to cephalosporins: ceftazidime (CTZ), ceftriaxone (CTX), cefepime (CEF) and fluoroquinolones: ciprofloxacin (CIP) and levofloxacin (LEV) in a tertiary healthcare centre from 2014 to 2018. In addition, we aimed to evaluate a correlation between the antibiotic utility and susceptibility of the selected enterobacteria. METHODS Antibiotics consumption and antimicrobial resistance were monitored in a tertiary care university hospital from 2014 to 2018. Utilisation of antibiotics in the observed period was expressed as defined daily dose (DDD) per 100 bed/days (DBD). Bacterial susceptibility was reported as the percentage of susceptible results among all tested isolates from all patient samples. In further analysis, bacterial strains were considered as MDR or nMDR species. An MDR bacterial strain was defined as one with acquired non-susceptibility to at least one agent in three or more antimicrobial categories. RESULTS Our results suggest that cephalosporins were the most used antibiotics, followed by fluoroquinolones, during the entire observed period 2014-2018. Our findings show that MDR isolates of E. coli had an increasing trend in susceptibility in relation to CTX (p=0.005), whereas a decreasing trend was observed for MDR isolates of E. coli susceptibility towards CIP and LEV (p<0.001). Klebsiella spp susceptibility for MDR isolates showed a decreasing trend in relation to CEF (p<0.001) and both fluoroquinolones (p<0.001). A significant negative association between CEF consumption and Klebsiella spp MDR isolates susceptibility was observed (p=0.045). CONCLUSION Implementation of antimicrobial stewardship programmes with early detection and close monitoring of MDR bacterial strains of E. coli and Klebsiella spp may be a crucial step in reducing the menace of antimicrobial resistance, which is now a global problem.
Collapse
Affiliation(s)
| | | | | | - Branislava Kocić
- Faculty of Medicine, University of Niš, Niš, Serbia,Institute for Public Health, Niš, Serbia
| | | | - Marina Dinić
- Faculty of Medicine, University of Niš, Niš, Serbia,Institute for Public Health, Niš, Serbia
| | | | | | | |
Collapse
|
48
|
Epidemiology and prediction of multidrug-resistant bacteria based on hospital level. J Glob Antimicrob Resist 2022; 29:155-162. [DOI: 10.1016/j.jgar.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
|
49
|
Booth A, Wester AL. A multivariable analysis of the contribution of socioeconomic and environmental factors to blood culture Escherichia Coli resistant to fluoroquinolones in high- and middle-income countries. BMC Public Health 2022; 22:354. [PMID: 35183144 PMCID: PMC8857829 DOI: 10.1186/s12889-022-12776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a public health concern. We wanted to determine if various environmental and socioeconomic variables as well as markers of antimicrobial use impacted on the level of AMR in countries of different income levels. METHODS We performed cross-national univariate and multivariable analyses using the national proportion of quinolone-resistant Escherichia coli (QREC) in blood culture as the dependent variable. Access to safe water and sanitation, other socioeconomic variables, and human and animal antimicrobial consumption were analysed. RESULTS In middle-income countries, unsafely managed sanitation, corruption and healthcare access and quality were significantly associated with the national proportion of blood culture QREC (%) in univariate analyses, whereas no variables remained significant in the multivariable models. For the multivariable high-income country model, corruption and healthcare access and quality were significantly associated with blood culture QREC (%) levels. For the model including all countries, human fluoroquinolone use, corruption level, livestock and crop production index were significantly associated with blood culture QREC (%) levels in the univariate analyses. CONCLUSION Corruption is a strong predictor of AMR, likely reflecting a multitude of socioeconomic factors. Sanitation quality contributed to increased blood culture QREC (%) levels in middle-income countries, although was not an independent factor, highlighting the need to also focus on infrastructure such as sanitation services in the context of AMR.
Collapse
Affiliation(s)
- Amy Booth
- Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| | - Astrid Louise Wester
- Centre for Antimicrobial Resistance Research, and Division of Infection Control, Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| |
Collapse
|
50
|
Abbara S, Guillemot D, Brun-Buisson C, Watier L. From Pathophysiological Hypotheses to Case-Control Study Design: Resistance from Antibiotic Exposure in Community-Onset Infections. Antibiotics (Basel) 2022; 11:201. [PMID: 35203803 PMCID: PMC8868523 DOI: 10.3390/antibiotics11020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance is a global public health concern, at least partly due to the misuse of antibiotics. The increasing prevalence of antibiotic-resistant infections in the community has shifted at-risk populations into the general population. Numerous case-control studies attempt to better understand the link between antibiotic use and antibiotic-resistant community-onset infections. We review the designs of such studies, focusing on community-onset bloodstream and urinary tract infections. We highlight their methodological heterogeneity in the key points related to the antibiotic exposure, the population and design. We show the impact of this heterogeneity on study results, through the example of extended-spectrum β-lactamases producing Enterobacteriaceae. Finally, we emphasize the need for the greater standardization of such studies and discuss how the definition of a pathophysiological hypothesis specific to the bacteria-resistance pair studied is an important prerequisite to clarify the design of future studies.
Collapse
Affiliation(s)
- Salam Abbara
- Anti-Infective Evasion and Pharmacoepidemiology Team, Inserm, UVSQ, University Paris-Saclay, CESP, 78180 Montigny-Le-Bretonneux, France; (S.A.); (D.G.); (C.B.-B.)
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015 Paris, France
| | - Didier Guillemot
- Anti-Infective Evasion and Pharmacoepidemiology Team, Inserm, UVSQ, University Paris-Saclay, CESP, 78180 Montigny-Le-Bretonneux, France; (S.A.); (D.G.); (C.B.-B.)
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015 Paris, France
- Public Health, Medical Information, Clinical Research, AP-HP, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Christian Brun-Buisson
- Anti-Infective Evasion and Pharmacoepidemiology Team, Inserm, UVSQ, University Paris-Saclay, CESP, 78180 Montigny-Le-Bretonneux, France; (S.A.); (D.G.); (C.B.-B.)
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015 Paris, France
| | - Laurence Watier
- Anti-Infective Evasion and Pharmacoepidemiology Team, Inserm, UVSQ, University Paris-Saclay, CESP, 78180 Montigny-Le-Bretonneux, France; (S.A.); (D.G.); (C.B.-B.)
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015 Paris, France
| |
Collapse
|