1
|
Weyher AH, Katinta M, Mubemba B, Petersdorf M, Kamilar JM, Schneider-Crease IA, Chiou KL. A Friendlier "Kinda" Social System: Male Kinda Baboons Invest in Long-Term Social Bonds With Females. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25056. [PMID: 39835480 DOI: 10.1002/ajpa.25056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Certain group-living mammals-including many primates-exhibit affiliative relationships between sexes that persist past copulation. Relationships between females and males in baboons (Papio sp.) are particularly well-characterized. These relationships tend to revolve around the female reproductive cycle and are generally female-initiated and female-maintained. Kinda baboons (P. kindae) appear to diverge phylogenetically and behaviorally from other baboons. Here, we assess how Kinda baboons differ socially by characterizing female-male relationships using 9 years of data on a population in Kasanka National Park, Zambia. METHODS We used generalized linear mixed models to assess grooming rates and directionality for individuals and among female/male dyads, patterns of between-sex proximity, and rates of agonistic behavior. We examined these patterns across female reproductive states and evaluated the degree to which dyadic affiliations persisted over time. RESULTS We find that female-male relationships in Kinda baboons are characterized by a high degree of male investment with low aggression that persists across female reproductive states and years. We find that females have strong affiliations with a single male while males have strong affiliations with multiple females at a time. Males are largely responsible for initiation, grooming, and proximity in affiliative relationships with females, and dyads often persist across years. DISCUSSION Our results suggest that Kinda baboons represent a mosaic of baboon social features and, paired with recent genomic evidence about their population history, may resemble the ancestral baboon phenotype. This expands our understanding of the "baboon model" for comparative socioecology and emphasizes the high variability and evolvability of social phenotypes.
Collapse
Affiliation(s)
- Anna H Weyher
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
- Kasanka Baboon Project, Serenje, Zambia
| | | | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Megan Petersdorf
- Department of Anthropology, Tulane University, New Orleans, Louisiana, USA
| | - Jason M Kamilar
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - India A Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Beardmore-Herd M, Palmer MS, Gaynor KM, Carvalho S. Effects of an Extreme Weather Event on Primate Populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25049. [PMID: 39760209 DOI: 10.1002/ajpa.25049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVES With contemporary, human-induced climate change at a crisis point, extreme weather events (e.g., cyclones, heatwaves, floods) are becoming more frequent, intense, and difficult to predict. These events can wreak rapid and significant changes on ecosystems; thus, it is imperative to understand how wildlife communities respond to these disruptions. Primates are perceived as being a largely adaptable order, but we often lack the quantitative data to rigorously assess how they are impacted by extreme environmental change. Leveraging detections from a long-term camera trap survey, this opportunistic study reports the effects of an extreme weather event on a little-studied population of free-ranging primates in Gorongosa National Park, Mozambique. MATERIALS AND METHODS We examined shifts in gray-footed chacma baboon (Papio ursinus griseipes) and vervet monkey (Chlorocebus pygerythrus) spatial distribution and relative abundance following Cyclone Idai-a category four tropical cyclone that struck Mozambique in March 2019. RESULTS Baboon spatial distributions were impacted in the first month after the cyclone, with more detections in areas where flooding was less severe. Spatial distributions renormalized once floodwaters began to recede. We describe vervet monkey spatial distribution trends, though sample size limitations inhibited statistical analysis. Primate relative abundance did not appear to substantially decrease following the cyclone, suggesting troops were able to adopt behavioral adjustments to evade rising floodwaters. DISCUSSION These findings highlight the behavioral flexibility of Gorongosa's primates and their ability to adapt to extreme-if temporary-disruptions, with implications for primate conservation in the Anthropocene and research into how rapid climatic events may have shaped primate evolution.
Collapse
Affiliation(s)
- Megan Beardmore-Herd
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Meredith S Palmer
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
| | - Kaitlyn M Gaynor
- Department of Zoology and Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susana Carvalho
- Primate Models for Behavioural Evolution Lab, Institute of Human Sciences, University of Oxford, Oxford, UK
- Interdisciplinary Centre for Archaeology and the Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal
- Department of Science, Gorongosa National Park, Sofala, Mozambique
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
3
|
Grebe CD, Mathewson PD, Porter WP, McFarland R. Evaluating the physiological benefits of behavioral flexibility in chacma baboons (Papio ursinus) using a biophysical model. J Therm Biol 2025; 127:104042. [PMID: 39798543 DOI: 10.1016/j.jtherbio.2024.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
As opportunistic generalists occupying a range of ecological niches, chacma baboons (Papio ursinus) are considered a highly flexible species of relatively low conservation priority. Underlying their ecological flexibility is a repertoire of behavioral strategies observed in response to ecological stressors. Although these strategies are relatively well-documented, we know very little about how they impact upon an individual's thermal and energetic physiology, which can influence population-level reproductive potential in the face of climatic warming. Here, we used Niche Mapper™ to construct a biophysical model that integrates morphometric, autonomic, and behavioral inputs to predict the core body temperature of chacma baboons in response to varied microclimate conditions. The predictive integrity of the model was confirmed by comparing model outputs with the core body temperature of a free-living chacma baboon equipped with an intra-abdominal temperature-sensitive data logger. When behavioral thermoregulation was incorporated, our model predicted body temperature within 1.5 °C of the observed temperature for 94% of hours. Of the tested behavioral thermoregulatory responses, shade-seeking provided the greatest thermal benefit, reducing predicted core body temperature by an average of 0.9 °C during daytime hours. Evaporative heat-dissipation strategies (sweating or swimming) were also highly effective in circumventing hyperthermia in our modeled individual, with an average body temperature reduction of 0.6 °C. Our findings underscore the critical importance of behavioral thermoregulatory strategies coupled with access to essential microhabitat features, water and shade, to achieve homeothermy in a warming climate.
Collapse
Affiliation(s)
- Christine D Grebe
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Paul D Mathewson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Richard McFarland
- NTU Psychology, Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom; Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, South Africa
| |
Collapse
|
4
|
Woodman JP, Gokcekus S, Beck KB, Green JP, Nussey DH, Firth JA. The ecology of ageing in wild societies: linking age structure and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220464. [PMID: 39463244 PMCID: PMC11513650 DOI: 10.1098/rstb.2022.0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 10/29/2024] Open
Abstract
The age of individuals has consequences not only for their fitness and behaviour but also for the functioning of the groups they form. Because social behaviour often changes with age, population age structure is expected to shape the social organization, the social environments individuals experience and the operation of social processes within populations. Although research has explored changes in individual social behaviour with age, particularly in controlled settings, there is limited understanding of how age structure governs sociality in wild populations. Here, we synthesize previous research into age-related effects on social processes in natural populations, and discuss the links between age structure, sociality and ecology, specifically focusing on how population age structure might influence social structure and functioning. We highlight the potential for using empirical data from natural populations in combination with social network approaches to uncover pathways linking individual social ageing, population age structure and societal functioning. We discuss the broader implications of these insights for understanding the social impacts of anthropogenic effects on animal population demography and for building a deeper understanding of societal ageing in general.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Joe P. Woodman
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Samin Gokcekus
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Kristina B. Beck
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Jonathan P. Green
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Dan H. Nussey
- Institute of Ecology & Evolution, The University of Edinburgh, EdinburghEH9 3JT, UK
| | - Josh A. Firth
- Edward Grey Institute of Field Ornithology, Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Meewis F, Barezzi I, Fagot J, Claidière N, Dautriche I. A comparative study of causal perception in Guinea baboons (Papio papio) and human adults. PLoS One 2024; 19:e0311294. [PMID: 39666642 PMCID: PMC11637404 DOI: 10.1371/journal.pone.0311294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024] Open
Abstract
In humans, simple 2D visual displays of launching events ("Michottean launches") can evoke the impression of causality. Direct launching events are regarded as causal, but similar events with a temporal and/or spatial gap between the movements of the two objects, as non-causal. This ability to distinguish between causal and non-causal events is perceptual in nature and develops early and preverbally in infancy. In the present study we investigated the evolutionary origins of this phenomenon and tested whether Guinea baboons (Papio papio) perceive causality in launching events. We used a novel paradigm which was designed to distinguish between the use of causality and the use of spatiotemporal properties. Our results indicate that Guinea baboons successfully discriminate between different Michottean events, but we did not find a learning advantage for a categorisation based on causality as was the case for human adults. Our results imply that, contrary to humans, baboons focused on the spatial and temporal gaps to achieve accurate categorisation, but not on causality per se. Understanding how animals perceive causality is important to figure out whether non-human animals comprehend events similarly to humans. Our study hints at a different manner of processing physical causality for Guinea baboons and human adults.
Collapse
Affiliation(s)
- Floor Meewis
- Centre de Recherche en Psychologie et Neurosciences, UMR7077, Aix-Marseille University, CNRS, Marseille, France
- Station de Primatologie-Celphedia, CNRS UAR846, Rousset, France
| | - Iris Barezzi
- Centre de Recherche en Psychologie et Neurosciences, UMR7077, Aix-Marseille University, CNRS, Marseille, France
| | - Joël Fagot
- Centre de Recherche en Psychologie et Neurosciences, UMR7077, Aix-Marseille University, CNRS, Marseille, France
- Station de Primatologie-Celphedia, CNRS UAR846, Rousset, France
| | - Nicolas Claidière
- Centre de Recherche en Psychologie et Neurosciences, UMR7077, Aix-Marseille University, CNRS, Marseille, France
- Station de Primatologie-Celphedia, CNRS UAR846, Rousset, France
| | - Isabelle Dautriche
- Centre de Recherche en Psychologie et Neurosciences, UMR7077, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
6
|
Loftus JC, Harel R, Ashbury AM, Núñez CL, Omondi GP, Muttinda M, Matsumoto-Oda A, Isbell LA, Crofoot MC. Sharing sleeping sites disrupts sleep but catalyses social tolerance and coordination between groups. Proc Biol Sci 2024; 291:20241330. [PMID: 39501885 PMCID: PMC11538986 DOI: 10.1098/rspb.2024.1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024] Open
Abstract
Sleeping refuges-like other important, scarce and shareable resources-can serve as hotspots for animal interaction, shaping patterns of attraction and avoidance. Where sleeping sites are shared, individuals balance the opportunity for interaction with new social partners against their need for sleep. By expanding the network of connections within animal populations, such night-time social interactions may have important, yet largely unexplored, impacts on critical behavioural and ecological processes. Here, using GPS and tri-axial accelerometry to track the movements and sleeping patterns of wild olive baboon groups (Papio anubis), we show that sharing sleeping sites disrupts sleep but appears to catalyse social tolerance and coordinated movement between groups. Individual baboons experienced shorter and more fragmented sleep when groups shared a sleeping site. After sharing sleeping sites, however, otherwise independent groups showed a strong pattern of spatial attraction, moving cohesively for up to 3 days. Our findings highlight the influence of night-time social interactions on daytime social relationships and demonstrate how a population's reliance on, and need to share, limiting resources can drive the emergence of intergroup tolerance.
Collapse
Affiliation(s)
- J. Carter Loftus
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Alison M. Ashbury
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
| | - Chase L. Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - George P. Omondi
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN55108, USA
- Department of Clinical Studies, Animal Health Innovation Laboratory, University of Nairobi, NairobiP.O. Box 30197-00100, Kenya
| | - Mathew Muttinda
- Department of Veterinary and Capture Services, Kenya Wildlife Service, NairobiP.O. Box 40241 - 00100, Kenya
| | - Akiko Matsumoto-Oda
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
- Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa903-0213, Japan
| | - Lynne A. Isbell
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| | - Margaret C. Crofoot
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Radolfzell78467, Germany
- Department of Biology, University of Konstanz, Konstanz78457, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78457, Germany
- Department of Anthropology, University of California, Davis, CA95616, USA
- Animal Behavior Graduate Group, University of California, Davis, CA95616, USA
- Mpala Research Centre, NanyukiP.O. Box 555 - 10400, Kenya
| |
Collapse
|
7
|
Caldon M, Mutti G, Mondanaro A, Imai H, Shotake T, Oteo Garcia G, Belay G, Morata J, Trotta JR, Montinaro F, Gippoliti S, Capelli C. Gelada genomes highlight events of gene flow, hybridisation and local adaptation that track past climatic changes. Mol Ecol 2024; 33:e17514. [PMID: 39206888 DOI: 10.1111/mec.17514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Theropithecus gelada, the last surviving species of this genus, occupy a unique and highly specialised ecological niche in the Ethiopian highlands. A subdivision into three geographically defined populations (Northern, Central and Southern) has been tentatively proposed for this species on the basis of genetic analyses, but genomic data have been investigated only for two of these groups (Northern and Central). Here we combined newly generated whole genome sequences of individuals sampled from the population living south of the East Africa Great Rift Valley with available data from the other two gelada populations to reconstruct the evolutionary history of the species. Integrating genomic and paleoclimatic data we found that gene-flow across populations and with Papio species tracked past climate changes. The isolation and climatic conditions experienced by Southern geladas during the Holocene shaped local diversity and generated diet-related genomic signatures.
Collapse
Affiliation(s)
- Matteo Caldon
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giacomo Mutti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Hiroo Imai
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| | | | - Gonzalo Oteo Garcia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jordi Morata
- Centre Nacional d'Anàlisi Genòmica, Barcelona, Spain
| | | | - Francesco Montinaro
- Department of Biology-Genetics, University of Bari, Bari, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Spartaco Gippoliti
- IUCN/SSC Primate Specialist Group, Rome, Italy
- Società Italiana per la Storia Della Fauna "G. Altobello", Rome, Italy
| | - Cristian Capelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Winans JC, Learn NH, Siodi IL, Warutere JK, Archie EA, Tung J, Alberts SC, Markham AC. High early lactational synchrony within baboon groups predicts increased infant mortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611196. [PMID: 39314289 PMCID: PMC11419025 DOI: 10.1101/2024.09.09.611196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Social group composition can have fitness implications for group members by determining opportunities for affiliative and competitive interactions. Female-female competition may be particularly acute when many groupmates have young infants at the same time, with potential consequences for infant survival. Here, we used decades of data on wild baboons (Papio sp.) in Amboseli, Kenya, to examine the effects of 'early lactational synchrony' (here, the proportion of females in a group with an infant <90 days old) on female-female agonistic interactions and infant survival. Because early lactation is an energetically demanding time for mothers and a risky time for infants, we expected early lactational synchrony to produce intensified competition for food and/or male protectors, resulting in more frequent female-female agonistic interactions and high infant mortality. In support of these predictions, we found that the frequency of female-female agonistic interactions increased with increasing early lactational synchrony. Reproductive state affected this relationship: while females in all states (cycling, pregnant, and postpartum amenorrhea) initiated more agonistic interactions when early lactational synchrony was high, only females in postpartum amenorrhea (including, but not limited to, females in early lactation) received more agonistic interactions. Furthermore, while high early lactational synchrony was rare, it strongly predicted infant mortality. This association may result from both aggression among adult females and infanticidal behavior by peripubertal females. These findings provide novel evidence that social dynamics may shape reproductive phenology in a nonseasonal breeder. Specifically, both competition among reproductive females and harassment from nonreproductive females may select against synchronous reproduction.
Collapse
Affiliation(s)
- Jack C. Winans
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Niki H. Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - I. Long’ida Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Kajiado, Kenya
| | - J. Kinyua Warutere
- Amboseli Baboon Research Project, Amboseli National Park, Kajiado, Kenya
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jenny Tung
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Duke University, Durham, NC, USA
- Canadian Institute of Advanced Research, Toronto, Canada
- Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Duke University, Durham, NC, USA
| | | |
Collapse
|
9
|
Petersdorf M, Weyher AH, Heistermann M, Gunson JL, Govaerts A, Siame S, Mustill RL, Hillegas ME, Winters S, Dubuc C, Higham JP. Multimodal sexual signals are not precise indicators of fertility in female Kinda baboons. Horm Behav 2024; 165:105632. [PMID: 39244874 DOI: 10.1016/j.yhbeh.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Female fertility signals are found across taxa, and the precision of such signals may be influenced by the relative strength of different sexual selection mechanisms. Among primates, more precise signals may be found in species with stronger direct male-male competition and indirect female mate choice, and less precise signals in species with stronger indirect male-male competition (e.g. sperm competition) and direct female mate choice. We tested this hypothesis in a wild population of Kinda baboons in Zambia, combining data on female signals with reproductive hormones (estrogen and progesterone metabolites) and intra- and inter-cycle fertility. We predicted that Kinda baboons will exhibit less precise fertility signals than other baboon species, as they experience weaker direct and stronger indirect male-male competition. The frequency of copulation calls and proceptive behavior did not vary with hormones or intra- or inter-cycle fertility in almost all models. Sexual swelling size was predicted by the ratio of estrogen to progesterone metabolites, and was largest in the fertile phase, but differences in size across days were small. Additionally, there was variability in the timing of ovulation relative to the day of sexual swelling detumescence across cycles and swelling size did not vary with inter-cycle fertility. Our results suggest that female Kinda baboon sexual swellings are less precise indicators of fertility compared to other baboon species, while signals in other modalities do not reflect variation in intra- and inter-cycle fertility. Female Kinda baboon sexual signals may have evolved as a strategy to reduce male monopolizability, allowing for more female control over reproduction by direct mate choice.
Collapse
Affiliation(s)
- Megan Petersdorf
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States.
| | - Anna H Weyher
- Department of Anthropology, University of Massachusetts Amherst, 240 Hicks Way, Amherst, MA 01003, United States
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany.
| | - Jessica L Gunson
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States.
| | - Alison Govaerts
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Simon Siame
- Kasanka National Park, P.O. Box 850073, Serenje, Zambia
| | - Ruby L Mustill
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States; Department of Anthropology, Columbia University, 1200 Amsterdam Ave, Schermerhorn Extension, New York, NY 10027, United States.
| | - Madison E Hillegas
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States.
| | - Sandra Winters
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom.
| | - Constance Dubuc
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States
| | - James P Higham
- Department of Anthropology, New York University, 25 Waverly Pl., New York, NY 10003, United States.
| |
Collapse
|
10
|
Fowler KJ, Potratz EJ, Malone M, Halloway A, Peplinski J, Brown JS. Looking at the bid picture: A framework for identifying reverse auctions in ecological systems. J Anim Ecol 2024; 93:774-783. [PMID: 38679917 DOI: 10.1111/1365-2656.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Biological market theory can be used to explain intraspecific cooperation, interspecific mutualism, and sexual selection through models of game theory. These models describe the interactions between organisms as two classes of traders (buyers/sellers) exchanging commodities in the form of goods (e.g. food, shelter, matings) and services (e.g. warning calls, protection). Here, we expand biological market theory to include auction theory where bidding serves to match buyers and sellers. In a reverse auction, the seller increases the value of the item or decreases the cost until a buyer steps forward. We provide several examples of ecological systems that may have reverse auctions as underlying mechanisms to form mutualistic relationships. We focus on the yellow baboon (Papio cynocephalus) mating system as a case study to propose how the mechanisms of a reverse auction, which have the unintended but emergent consequence of producing a mutually beneficial outcome that improves collective reproductive benefits of the troop in this multi-female multi-male polygynandrous social system. For the yellow baboon, we posit that the "seller" is the reproductively cycling female, and the "buyer" is a male looking to mate with a cycling female. To the male, the "item for the sale" is the opportunity to sire an offspring, the price is providing safety and foraging time (via consortship) to the female. The "increasing value of the item for sale" is the chance of conception, which increases with each cycle since a female has resumed cycling post-partum. The female's sexual swelling is an honest indicator of that cycle's probability of conception, and since resident males can track a female's cycle since resumption, there is transparency. The males presumably know the chance of conception when choosing to bid by offering consortship. Across nature, this reverse auction game likely exists in other inter- and intraspecific social relationships. Considering an ecological system as a reverse auction broadens our view of social evolution and adaptations through the lens of human economic structures.
Collapse
Affiliation(s)
- Katherine J Fowler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emily J Potratz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Margaret Malone
- Florida Institute of Environment & Department of Biological Sciences, Florida International University, North Miami, Florida, USA
| | - Abdel Halloway
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joy Peplinski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Integrated Mathematical Oncology, Moffit Cancer Center, Tampa, Florida, USA
| |
Collapse
|
11
|
Lin W, Wall JD, Li G, Newman D, Yang Y, Abney M, VandeBerg JL, Olivier M, Gilad Y, Cox LA. Genetic regulatory effects in response to a high-cholesterol, high-fat diet in baboons. CELL GENOMICS 2024; 4:100509. [PMID: 38430910 PMCID: PMC10943580 DOI: 10.1016/j.xgen.2024.100509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Steady-state expression quantitative trait loci (eQTLs) explain only a fraction of disease-associated loci identified through genome-wide association studies (GWASs), while eQTLs involved in gene-by-environment (GxE) interactions have rarely been characterized in humans due to experimental challenges. Using a baboon model, we found hundreds of eQTLs that emerge in adipose, liver, and muscle after prolonged exposure to high dietary fat and cholesterol. Diet-responsive eQTLs exhibit genomic localization and genic features that are distinct from steady-state eQTLs. Furthermore, the human orthologs associated with diet-responsive eQTLs are enriched for GWAS genes associated with human metabolic traits, suggesting that context-responsive eQTLs with more complex regulatory effects are likely to explain GWAS hits that do not seem to overlap with standard eQTLs. Our results highlight the complexity of genetic regulatory effects and the potential of eQTLs with disease-relevant GxE interactions in enhancing the understanding of GWAS signals for human complex disease using non-human primate models.
Collapse
Affiliation(s)
- Wenhe Lin
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Deborah Newman
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA
| | - Yunqi Yang
- Committee on Genetics, Genomics and System Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Abney
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - John L VandeBerg
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura A Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Ramos Sarmiento K, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory provides a plausible explanation for why larger vertebrates and taller humans have more diverse gut microbiomes. THE ISME JOURNAL 2024; 18:wrae114. [PMID: 38904949 PMCID: PMC11253425 DOI: 10.1093/ismejo/wrae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SARs) in many other ecosystems. Here, we expand these observations to several large datasets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using a gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA 98109, United States
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Kenneth J Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
- Science Institute, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
13
|
Sarmiento KR, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory and the gut: why taller people tend to harbor more diverse gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552554. [PMID: 37609334 PMCID: PMC10441360 DOI: 10.1101/2023.08.08.552554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | - Kenneth J. Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Hawley CR, Patterson SK, Silk JB. Tradeoffs between mating effort and parenting effort in a polygynandrous mammal. iScience 2023; 26:106991. [PMID: 37534148 PMCID: PMC10391602 DOI: 10.1016/j.isci.2023.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Reproductive strategies are defined by expenditures of time and energy devoted to mating effort, which increases mating opportunities, and parenting effort, which enhances the survival of offspring. We examine tradeoffs between mating effort and parenting effort in male olive baboons, Papio anubis, a species in which males compete for mating opportunities, but also form ties to lactating females (primary associations) that represent a form of parenting effort. Males that are involved in more primary associations invest less in mating effort than males who are involved in fewer primary associations. Males that are involved in more primary associations play a smaller role in establishing proximity to their primary associates than other males, suggesting that males operate under temporal constraints. There is also some evidence that involvement in primary associations negatively affects paternity success. Taken together, the data suggest that males face tradeoffs between mating effort and parenting effort.
Collapse
Affiliation(s)
- Caitlin R. Hawley
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Sam K. Patterson
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Joan B. Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
- Institute for Human Origins, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
15
|
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, Storer JM, Kuhlwilm M, Fontsere C, Seshadri L, Bergey CM, Burrell AS, Bergman J, Phillips-Conroy JE, Shiferaw F, Chiou KL, Chuma IS, Keyyu JD, Fischer J, Gingras MC, Salvi S, Doddapaneni H, Schierup MH, Batzer MA, Jolly CJ, Knauf S, Zinner D, Farh KKH, Marques-Bonet T, Munch K, Roos C, Rogers J. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. Science 2023; 380:eabn8153. [PMID: 37262153 DOI: 10.1126/science.abn8153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/27/2022] [Indexed: 06/03/2023]
Abstract
Baboons (genus Papio) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high-coverage whole-genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and interspecies gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes.
Collapse
Affiliation(s)
- Erik F Sørensen
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Artificial Intelligence Lab, Illumina Inc., San Diego, CA 92122, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Claudia Fontsere
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Christina M Bergey
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew S Burrell
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jane E Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Marie-Claude Gingras
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sejal Salvi
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harshavardhan Doddapaneni
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Kyle K-H Farh
- Artificial Intelligence Lab, Illumina Inc., San Diego, CA 92122, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluis Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, cl Columnes s/n, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus, Denmark
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Sørensen EF, Harris RA, Zhang L, Raveendran M, Kuderna LFK, Walker JA, Storer JM, Kuhlwilm M, Fontsere C, Seshadri L, Bergey CM, Burrell AS, Bergmann J, Phillips-Conroy JE, Shiferaw F, Chiou KL, Chuma IS, Keyyu JD, Fischer J, Gingras MC, Salvi S, Doddapaneni H, Schierup MH, Batzer MA, Jolly CJ, Knauf S, Zinner D, Farh KKH, Marques-Bonet T, Munch K, Roos C, Rogers J. Genome-wide coancestry reveals details of ancient and recent male-driven reticulation in baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539112. [PMID: 37205419 PMCID: PMC10187195 DOI: 10.1101/2023.05.02.539112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Baboons (genus Papio ) are a morphologically and behaviorally diverse clade of catarrhine monkeys that have experienced hybridization between phenotypically and genetically distinct phylogenetic species. We used high coverage whole genome sequences from 225 wild baboons representing 19 geographic localities to investigate population genomics and inter-species gene flow. Our analyses provide an expanded picture of evolutionary reticulation among species and reveal novel patterns of population structure within and among species, including differential admixture among conspecific populations. We describe the first example of a baboon population with a genetic composition that is derived from three distinct lineages. The results reveal processes, both ancient and recent, that produced the observed mismatch between phylogenetic relationships based on matrilineal, patrilineal, and biparental inheritance. We also identified several candidate genes that may contribute to species-specific phenotypes. One-Sentence Summary Genomic data for 225 baboons reveal novel sites of inter-species gene flow and local effects due to differences in admixture.
Collapse
|
17
|
Fogel AS, Oduor PO, Nyongesa AW, Kimwele CN, Alberts SC, Archie EA, Tung J. Ecology and age, but not genetic ancestry, predict fetal loss in a wild baboon hybrid zone. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:618-632. [PMID: 38445762 DOI: 10.1002/ajpa.24686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Pregnancy failure represents a major fitness cost for any mammal, particularly those with slow life histories such as primates. Here, we quantified the risk of fetal loss in wild hybrid baboons, including genetic, ecological, and demographic sources of variance. We were particularly interested in testing the hypothesis that hybridization increases fetal loss rates. Such an effect would help explain how baboons may maintain genetic and phenotypic integrity despite interspecific gene flow. MATERIALS AND METHODS We analyzed outcomes for 1020 pregnancies observed over 46 years in a natural yellow baboon-anubis baboon hybrid zone. Fetal losses and live births were scored based on records of female reproductive state and the appearance of live neonates. We modeled the probability of fetal loss as a function of a female's genetic ancestry (the proportion of her genome estimated to be descended from anubis [vs. yellow] ancestors), age, number of previous fetal losses, dominance rank, group size, climate, and habitat quality using binomial mixed effects models. RESULTS Female genetic ancestry did not predict fetal loss. Instead, the risk of fetal loss is elevated for very young and very old females. Fetal loss is most robustly predicted by ecological factors, including poor habitat quality prior to a home range shift and extreme heat during pregnancy. DISCUSSION Our results suggest that gene flow between yellow and anubis baboons is not impeded by an increased risk of fetal loss for hybrid females. Instead, ecological conditions and female age are key determinants of this component of female reproductive success.
Collapse
Affiliation(s)
- Arielle S Fogel
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Peter O Oduor
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Albert W Nyongesa
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Charles N Kimwele
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Susan C Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biology, Duke University, Durham, North Carolina, USA
- Duke Population Research Institute, Duke University, Durham, North Carolina, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
| |
Collapse
|
18
|
Kopp GH, Sithaldeen R, Trede F, Grathwol F, Roos C, Zinner D. A Comprehensive Overview of Baboon Phylogenetic History. Genes (Basel) 2023; 14:614. [PMID: 36980887 PMCID: PMC10048742 DOI: 10.3390/genes14030614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Baboons (genus Papio) are an intriguing study system to investigate complex evolutionary processes and the evolution of social systems. An increasing number of studies over the last 20 years has shown that considerable incongruences exist between phylogenies based on morphology, mitochondrial, and nuclear sequence data of modern baboons, and hybridization and introgression have been suggested as the main drivers of these patterns. Baboons, therefore, present an excellent opportunity to study these phenomena and their impact on speciation. Advances both in geographic and genomic coverage provide increasing details on the complexity of the phylogeography of baboons. Here, we compile the georeferenced genetic data of baboons and review the current knowledge on baboon phylogeny, discuss the evolutionary processes that may have shaped the patterns that we observe today, and propose future avenues for research.
Collapse
Affiliation(s)
- Gisela H. Kopp
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
| | - Riashna Sithaldeen
- Academic Development Programme, Centre for Higher Education and Development, University of Cape Town, Cape Town 7700, South Africa
| | - Franziska Trede
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Franziska Grathwol
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-University, 37073 Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Brasil MF, Monson TA, Taylor CE, Yohler RM, Hlusko LJ. A Pleistocene assemblage of near-modern Papio hamadryas from the Middle Awash study area, Afar Rift, Ethiopia. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:48-76. [PMID: 36790648 DOI: 10.1002/ajpa.24634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this study is to assess a new assemblage of papionin fossils (n = 143) recovered from later Pleistocene sediments in the Middle Awash study area in the Afar Rift of Ethiopia. MATERIALS AND METHODS We collected metric and qualitative data to compare the craniodental and postcranial anatomy of the papionin fossils with subspecies of modern Papio hamadryas and with Plio-Pleistocene African papionins. We also estimated sex and ontogenetic age. RESULTS The new fossils fit well within the range of morphological variation observed for extant P. hamadryas, overlapping most closely in dental size and proportions with the P. h. cynocephalus individuals in our extant samples, and well within the ranges of P. h. anubis and P. h. hamadryas. The considerable overlap in craniodental anatomy with multiple subspecies precludes subspecific diagnosis. We therefore referred 143 individuals to P. hamadryas ssp. The majority of the individuals assessed for ontogenetic age fell into middle- and old-adult age categories based on the degree of dental wear. Males (26%) were better represented than females (12%) among individuals preserving the canine-premolar honing complex. DISCUSSION These new near-modern P. hamadryas fossils provide a window into population-level variation in the later Pleistocene. Our findings echo previous suggestions from genomic studies that the papionin family tree may have included a ghost population and provide a basis for future testing of hypotheses regarding hybridization in the recent evolutionary history of this taxon.
Collapse
Affiliation(s)
- Marianne F Brasil
- Berkeley Geochronology Center, Berkeley, California, USA.,Human Evolution Research Center, University of California Berkeley, Berkeley, California, USA
| | - Tesla A Monson
- Department of Anthropology, Western Washington University, Bellingham, Washington, USA
| | - Catherine E Taylor
- Human Evolution Research Center, University of California Berkeley, Berkeley, California, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Ryan M Yohler
- Human Evolution Research Center, University of California Berkeley, Berkeley, California, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Leslea J Hlusko
- Human Evolution Research Center, University of California Berkeley, Berkeley, California, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| |
Collapse
|
20
|
King GE. Baboon perspectives on the ecology and behavior of early human ancestors. Proc Natl Acad Sci U S A 2022; 119:e2116182119. [PMID: 36279425 PMCID: PMC9659385 DOI: 10.1073/pnas.2116182119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For more than 70 y researchers have looked to baboons (monkeys of the genus Papio) as a source of hypotheses about the ecology and behavior of early hominins (early human ancestors and their close relatives). This approach has undergone a resurgence in the last decade as a result of rapidly increasing knowledge from experimental and field studies of baboons and from archeological and paleontological studies of hominins. The result is a rich array of analogies, scenarios, and other stimuli to thought about the ecology and behavior of early hominins. The main intent here is to illustrate baboon perspectives on early hominins, with emphasis on recent developments. This begins with a discussion of baboons and hominins as we know them currently and explains the reasons for drawing comparisons between them. These include occupation of diverse environments, combination of arboreal and terrestrial capabilities, relatively large body size, and sexual dimorphism. The remainder of the paper illustrates the main points with a small number of examples drawn from diverse areas of interest: diet (grasses and fish), danger (leopards and crocodiles), social organization (troops and multilevel societies), social relationships (male-male, male-female, female-female), communication (possible foundations of language), cognition (use of social information, comparison of self to others), and bipedalism (a speculative developmental hypothesis about the neurological basis). The conclusion is optimistic about the future of baboon perspectives on early hominins.
Collapse
Affiliation(s)
- Glenn E. King
- Department of History and Anthropology, Monmouth University, West Long Branch, NJ 07764
| |
Collapse
|
21
|
Carboni S, Dezeure J, Cowlishaw G, Huchard E, Marshall HH. Stable isotopes reveal the effects of maternal rank and infant age on weaning dynamics in wild chacma baboons. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Petersen RM, Bergey CM, Roos C, Higham JP. Relationship between genome-wide and MHC class I and II genetic diversity and complementarity in a nonhuman primate. Ecol Evol 2022; 12:e9346. [PMID: 36311412 PMCID: PMC9596323 DOI: 10.1002/ece3.9346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Although mate choice is expected to favor partners with advantageous genetic properties, the relative importance of genome-wide characteristics, such as overall heterozygosity or kinship, versus specific loci, is unknown. To disentangle genome-wide and locus-specific targets of mate choice, we must first understand congruence in global and local variation within the same individual. This study compares genetic diversity, both absolute and relative to other individuals (i.e., complementarity), assessed across the genome to that found at the major histocompatibility complex (MHC), a hyper-variable gene family integral to immune system function and implicated in mate choice across species. Using DNA from 22 captive olive baboons (Papio anubis), we conducted double digest restriction site-associated DNA sequencing to estimate genome-wide heterozygosity and kinship, and sequenced two class I and two class II MHC loci. We found that genome-wide diversity was not associated with MHC diversity, and that diversity at class I MHC loci was not correlated with diversity at class II loci. Additionally, kinship was a significant predictor of the number of MHC alleles shared between dyads at class II loci. Our results provide further evidence of the strong selective pressures maintaining genetic diversity at the MHC in comparison to other randomly selected sites throughout the genome. Furthermore, our results indicate that class II MHC disassortative mate choice may mediate inbreeding avoidance in this population. Our study suggests that mate choice favoring genome-wide genetic diversity is not always synonymous with mate choice favoring MHC diversity, and highlights the importance of controlling for kinship when investigating MHC-associated mate choice.
Collapse
Affiliation(s)
- Rachel M. Petersen
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Christina M. Bergey
- Department of Genetics and the Human Genetics Institute of New JerseyRutgers UniversityPiscatawayNew JerseyUSA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - James P. Higham
- Department of AnthropologyNew York UniversityNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| |
Collapse
|
23
|
Kifle Z, Beehner JC. Distribution and diversity of primates and threats to their survival in the Awi Zone, northwestern Ethiopia. Primates 2022; 63:637-645. [PMID: 36018444 DOI: 10.1007/s10329-022-01010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Habitat loss and fragmentation affect the diversity and distribution of primates in a human-modified landscape. Ethiopia has a high diversity of primates, but increasing human pressure has negatively impacted their distribution and abundance across the country, primarily due to deforestation. To date, the diversity and distribution of primate species are poorly known in northwestern Ethiopia. From October 2020 until September 2021, we assessed the diversity and distribution of primate species in 26 forest patches in the Awi Zone, Northwestern Ethiopia using line transect surveys, and we examined the potential conservation threats to the survival of these taxa. Across transects, we encountered 459 groups of four primate taxa: olive baboons (Papio anubis), grivet monkeys (Chlorocebus aethiops), Boutourlini's blue monkeys (Cercopithecus mitis boutourlinii), and black-and-white colobus monkeys (Colobus guereza spp. guereza). The latter two are endemic to Ethiopia. We observed black-and-white colobus monkeys in all surveyed forest patches, while we observed Boutourlini's blue monkeys in 18 patches. Black-and-white colobus monkeys were the most frequently observed (n = 325 sighting; relative encounter frequency = 70.8%), while grivet monkeys (Chlorocebus aethiops) were the least (n = 34 sighting; relative encounter frequency = 7.4%) in the region. Similarly, the relative encounter frequency of olive baboons was 9.2% (n = 42 sighting). The overall mean group size for each species was: Boutourlini's blue monkeys (26.1 individuals), black-and-white colobus monkeys (8.8 individuals), grivet monkeys (34.1 individuals), and olive baboons (41.4 individuals). We identified agricultural expansions, exotic tree plantations, deforestations, firewood collections, livestock grazing, and killings over their crop-feeding behaviors as the main threats to primates and their habitats in the region. This study provides crucial information on an area likely to support primate species that we know very little about. Assigning protected connecting forest patches should be an urgent priority for the conservation of the primates in this region.
Collapse
Affiliation(s)
- Zewdu Kifle
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Vilgalys TP, Fogel AS, Anderson JA, Mututua RS, Warutere JK, Siodi IL, Kim SY, Voyles TN, Robinson JA, Wall JD, Archie EA, Alberts SC, Tung J. Selection against admixture and gene regulatory divergence in a long-term primate field study. Science 2022; 377:635-641. [PMID: 35926022 PMCID: PMC9682493 DOI: 10.1126/science.abm4917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.
Collapse
Affiliation(s)
- Tauras P. Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Arielle S. Fogel
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | | | - Sang Yoon Kim
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Jeffrey D. Wall
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA,Canadian Institute for Advanced Research, Toronto, Canada,Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany,Corresponding author
| |
Collapse
|
25
|
Kappeler PM, Huchard E, Baniel A, Canteloup C, Charpentier MJE, Cheng L, Davidian E, Duboscq J, Fichtel C, Hemelrijk CK, Höner OP, Koren L, Micheletta J, Prox L, Saccà T, Seex L, Smit N, Surbeck M, van de Waal E, Girard-Buttoz C. Sex and dominance: How to assess and interpret intersexual dominance relationships in mammalian societies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.918773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The causes and consequences of being in a particular dominance position have been illuminated in various animal species, and new methods to assess dominance relationships and to describe the structure of dominance hierarchies have been developed in recent years. Most research has focused on same-sex relationships, however, so that intersexual dominance relationships and hierarchies including both sexes have remained much less studied. In particular, different methods continue to be employed to rank males and females along a dominance hierarchy, and sex biases in dominance are still widely regarded as simple byproducts of sexual size dimorphism. However, males and females regularly compete over similar resources when living in the same group, and sexual conflict takes a variety of forms across societies. These processes affect the fitness of both sexes, and are mitigated by intersexual hierarchies. In this study, we draw on data from free-ranging populations of nine species of mammals that vary in the degree to which members of one sex dominate members of the other sex to explore the consequences of using different criteria and procedures for describing intra- and intersexual dominance relationships in these societies. Our analyses confirmed a continuum in patterns of intersexual dominance, from strictly male-dominated species to strictly female-dominated species. All indices of the degree of female dominance were well correlated with each other. The rank order among same-sex individuals was highly correlated between the intra- and intersexual hierarchies, and such correlation was not affected by the degree of female dominance. The relative prevalence of aggression and submission was sensitive to variation in the degree of female dominance across species, with more submissive signals and fewer aggressive acts being used in societies where female dominance prevails. Thus, this study provides important insights and key methodological tools to study intersexual dominance relationships in mammals.
Collapse
|
26
|
Cooper EB, Brent LJN, Snyder-Mackler N, Singh M, Sengupta A, Khatiwada S, Malaivijitnond S, Qi Hai Z, Higham JP. The natural history of model organisms: the rhesus macaque as a success story of the Anthropocene. eLife 2022; 11:78169. [PMID: 35801697 PMCID: PMC9345599 DOI: 10.7554/elife.78169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Of all the non-human primate species studied by researchers, the rhesus macaque (Macaca mulatta) is likely the most widely used across biological disciplines. Rhesus macaques have thrived during the Anthropocene and now have the largest natural range of any non-human primate. They are highly social, exhibit marked genetic diversity, and display remarkable niche flexibility (which allows them to live in a range of habitats and survive on a variety of diets). These characteristics mean that rhesus macaques are well-suited for understanding the links between sociality, health and fitness, and also for investigating intra-specific variation, adaptation and other topics in evolutionary ecology.
Collapse
Affiliation(s)
- Eve B Cooper
- Department of Anthropology, New York University, New York, United States
| | | | | | - Mewa Singh
- Biopsychology Laboratory, University of Mysore, Mysuru, India
| | | | - Sunil Khatiwada
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Garbatka, Poland
| | | | - Zhou Qi Hai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, China
| | - James P Higham
- Department of Anthropology, New York University, New York, United States
| |
Collapse
|
27
|
Dal Pesco F, Trede F, Zinner D, Fischer J. Male-male social bonding, coalitionary support and reproductive success in wild Guinea baboons. Proc Biol Sci 2022; 289:20220347. [PMID: 35611539 PMCID: PMC9130795 DOI: 10.1098/rspb.2022.0347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Male-male bonds may confer substantial fitness benefits. The adaptive value of these relationships is often attributed to coalitionary support, which aids in rank ascension and female defence, ultimately resulting in greater reproductive success. We investigated the link between male-male sociality and both coalitionary support and reproductive success in wild Guinea baboons. This species lives in a tolerant multi-level society with reproductive units comprising a male and 1-6 females at the core. Males are philopatric, form differentiated, stable and equitable affiliative relationships (strong bonds) with other males, and lack a clear rank hierarchy. Here, we analysed behavioural and paternity data for 30 males and 50 infants collected over 4 years in the Niokolo-Koba National Park, Senegal. Strongly bonded males supported each other more frequently during conflicts, but strong bonds did not promote reproductive success. Instead, males that spent less time socializing with other males were associated with a higher number of females and sired more offspring. Notably, reproductively active males still maintained bonds with other males, but adjusted their social investment in relation to life-history stage. Long-term data will be needed to test if the adaptive value of male bonding lies in longer male tenure and/or in promoting group cohesion.
Collapse
Affiliation(s)
- Federica Dal Pesco
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany,Leibniz ScienceCampus Primate Cognition, Göttingen, Germany,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
| | - Franziska Trede
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany,Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany,Leibniz ScienceCampus Primate Cognition, Göttingen, Germany,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Santander C, Molinaro L, Mutti G, Martínez FI, Mathe J, Ferreira da Silva MJ, Caldon M, Oteo-Garcia G, Aldeias V, Archer W, Bamford M, Biro D, Bobe R, Braun DR, Hammond P, Lüdecke T, Pinto MJ, Meira Paulo L, Stalmans M, Regala FT, Bertolini F, Moltke I, Raveane A, Pagani L, Carvalho S, Capelli C. Genomic variation in baboons from central Mozambique unveils complex evolutionary relationships with other Papio species. BMC Ecol Evol 2022; 22:44. [PMID: 35410131 PMCID: PMC8996594 DOI: 10.1186/s12862-022-01999-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. Results We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the “northern” Papio clade, and signal the presence of population structure within P. ursinus. Conclusions The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01999-7.
Collapse
Affiliation(s)
- Cindy Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Department of Zoology, University of Oxford, Oxford, UK.
| | - Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Giacomo Mutti
- Department of Biosciences, University of Milan, Milan, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Felipe I Martínez
- Escuela de Antropología, Facultad de Ciencias Sociales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jacinto Mathe
- School of Anthropology, University of Oxford, Oxford, UK
| | - Maria Joana Ferreira da Silva
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,ONE - Organisms and Environment Group, School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, UK
| | - Matteo Caldon
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gonzalo Oteo-Garcia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Vera Aldeias
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Will Archer
- Department of Archaeology, National Museum, Bloemfontein, South Africa
| | - Marion Bamford
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dora Biro
- Department of Zoology, University of Oxford, Oxford, UK
| | - René Bobe
- School of Anthropology, University of Oxford, Oxford, UK.,Gorongosa National Park, Sofala, Mozambique
| | - David R Braun
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, USA
| | | | - Tina Lüdecke
- School of Anthropology, University of Oxford, Oxford, UK.,Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany
| | - Maria José Pinto
- AESDA - Associação de Estudos Subterrâneos e Defesa do Ambiente, Lisbon, Portugal
| | - Luis Meira Paulo
- AESDA - Associação de Estudos Subterrâneos e Defesa do Ambiente, Lisbon, Portugal
| | - Marc Stalmans
- Department of Scientific Services, Gorongosa National Park, Chitengo, Sofala Province, Mozambique
| | - Frederico Tátá Regala
- Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biology, University of Padua, Padua, Italy
| | - Susana Carvalho
- School of Anthropology, University of Oxford, Oxford, UK. .,Gorongosa National Park, Sofala, Mozambique.
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, UK. .,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
29
|
Galezo AA, Nolas MA, Fogel AS, Mututua RS, Warutere JK, Siodi IL, Altmann J, Archie EA, Tung J, Alberts SC. Mechanisms of inbreeding avoidance in a wild primate. Curr Biol 2022; 32:1607-1615.e4. [PMID: 35216670 PMCID: PMC9007874 DOI: 10.1016/j.cub.2022.01.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
Abstract
Inbreeding often imposes net fitness costs,1-5 leading to the expectation that animals will engage in inbreeding avoidance when the costs of doing so are not prohibitive.4-9 However, one recent meta-analysis indicates that animals of many species do not avoid mating with kin in experimental settings,6 and another reports that behavioral inbreeding avoidance generally evolves only when kin regularly encounter each other and inbreeding costs are high.9 These results raise questions about the processes that separate kin, how these processes depend on kin class and context, and whether kin classes differ in how effectively they avoid inbreeding via mate choice-in turn, demanding detailed demographic and behavioral data within individual populations. Here, we address these questions in a wild mammal population, the baboons of the Amboseli ecosystem in Kenya. We find that death and dispersal are very effective at separating opposite-sex pairs of close adult kin. Nonetheless, adult kin pairs do sometimes co-reside, and we find strong evidence for inbreeding avoidance via mate choice in kin classes with relatedness ≥0.25. Notably, maternal kin avoid inbreeding more effectively than paternal kin despite having identical coefficients of relatedness, pointing to kin discrimination as a potential constraint on effective inbreeding avoidance. Overall, demographic and behavioral processes ensure that inbred offspring are rare in undisturbed social groups (1% of offspring). However, in an anthropogenically disturbed social group with reduced male dispersal, we find inbreeding rates 10× higher. Our study reinforces the importance of demographic and behavioral contexts for understanding the evolution of inbreeding avoidance.9.
Collapse
Affiliation(s)
- Allison A Galezo
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Melina A Nolas
- Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA; Center for Animals and Public Policy, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Arielle S Fogel
- Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Box 103855, Durham, NC 27705, USA
| | - Raphael S Mututua
- Amboseli Baboon Research Project, Amboseli National Park, Box 18, Namanga, Kenya
| | - J Kinyua Warutere
- Amboseli Baboon Research Project, Amboseli National Park, Box 18, Namanga, Kenya
| | - I Long'ida Siodi
- Amboseli Baboon Research Project, Amboseli National Park, Box 18, Namanga, Kenya
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, 401 Guyot Hall, Princeton, NJ 08544, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Jenny Tung
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA; Duke University Population Research Institute, Duke University, Box 90989, Durham, NC 27708, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Evolutionary Anthropology, Duke University, Box 90383, Durham, NC 27708, USA; Duke University Population Research Institute, Duke University, Box 90989, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Rosenbaum S, Silk JB. Pathways to paternal care in primates. Evol Anthropol 2022; 31:245-262. [PMID: 35289027 DOI: 10.1002/evan.21942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/01/2021] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Abstract
Natural selection will favor male care when males have limited alternative mating opportunities, can invest in their own offspring, and when care enhances males' fitness. These conditions are easiest to fulfill in pair-bonded species, but neither male care nor stable "breeding bonds" that facilitate it are limited to pair-bonded species. We review evidence of paternal care and extended breeding bonds in owl monkeys, baboons, Assamese macaques, mountain gorillas, and chimpanzees. The data, which span social/mating systems and ecologies, suggest that there are multiple pathways by which conditions conducive to male care can arise. This diversity highlights the difficulty of making inferences about the emergence of male care in early hominins based on single traits visible in the fossil record. We discuss what types of data are most needed and the questions yet to be answered about the evolution of male care and extended breeding bonds in the primate order.
Collapse
Affiliation(s)
- Stacy Rosenbaum
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joan B Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Institute of Human Origins, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
31
|
Siracusa ER, Higham JP, Snyder-Mackler N, Brent LJN. Social ageing: exploring the drivers of late-life changes in social behaviour in mammals. Biol Lett 2022; 18:20210643. [PMID: 35232274 PMCID: PMC8889194 DOI: 10.1098/rsbl.2021.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Social interactions help group-living organisms cope with socio-environmental challenges and are central to survival and reproductive success. Recent research has shown that social behaviour and relationships can change across the lifespan, a phenomenon referred to as 'social ageing'. Given the importance of social integration for health and well-being, age-dependent changes in social behaviour can modulate how fitness changes with age and may be an important source of unexplained variation in individual patterns of senescence. However, integrating social behaviour into ageing research requires a deeper understanding of the causes and consequences of age-based changes in social behaviour. Here, we provide an overview of the drivers of late-life changes in sociality. We suggest that explanations for social ageing can be categorized into three groups: changes in sociality that (a) occur as a result of senescence; (b) result from adaptations to ameliorate the negative effects of senescence; and/or (c) result from positive effects of age and demographic changes. Quantifying the relative contribution of these processes to late-life changes in sociality will allow us to move towards a more holistic understanding of how and why these patterns emerge and will provide important insights into the potential for social ageing to delay or accelerate other patterns of senescence.
Collapse
Affiliation(s)
- Erin R Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lauren J N Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| |
Collapse
|
32
|
Montanari D, O'Hearn WJ, Hambuckers J, Fischer J, Zinner D. Coordination during group departures and progressions in the tolerant multi-level society of wild Guinea baboons (Papio papio). Sci Rep 2021; 11:21938. [PMID: 34754018 PMCID: PMC8578668 DOI: 10.1038/s41598-021-01356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
Collective movement of social groups requires coordination between individuals. When cohesion is imperative, consensus must be reached, and specific individuals may exert disproportionate influence during decision-making. Animals living in multi-level societies, however, often split into consistent social subunits during travel, which may impact group coordination processes. We studied collective movement in the socially tolerant multi-level society of Guinea baboons (Papio papio). Using 146 group departures and 100 group progressions from 131 Guinea baboons ranging in Senegal's Niokolo-Koba National Park, we examined individual success at initiating group departures and position within progressions. Two-thirds of attempted departures were initiated by adult males and one third by adult females. Both sexes were equally successful at initiating departures (> 80% of initiations). During group progressions, bachelor males were predominantly found in front, while reproductively active 'primary' males and females were observed with similar frequency across the whole group. The pattern of collective movement in Guinea baboons was more similar to those described for baboons living in uni-level societies than to hamadryas baboons, the only other multi-level baboon species, where males initiate and decide almost all group departures. Social organization alone therefore does not determine which category of individuals influence group coordination.
Collapse
Affiliation(s)
- Davide Montanari
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - William J O'Hearn
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany.
| | | | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Fogel AS, McLean EM, Gordon JB, Archie EA, Tung J, Alberts SC. Genetic ancestry predicts male-female affiliation in a natural baboon hybrid zone. Anim Behav 2021; 180:249-268. [PMID: 34866638 PMCID: PMC8635413 DOI: 10.1016/j.anbehav.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Opposite-sex social relationships are important predictors of fitness in many animals, including several group-living mammals. Consequently, understanding sources of variance in the tendency to form opposite-sex relationships is important for understanding social evolution. Genetic contributions are of particular interest due to their importance in long-term evolutionary change, but little is known about genetic effects on male-female relationships in social mammals, especially outside of the mating context. Here, we investigate the effects of genetic ancestry on male-female affiliative behaviour in a hybrid zone between the yellow baboon, Papio cynocephalus, and the anubis baboon, Papio anubis, in a population in which male-female social bonds are known predictors of life span. We place our analysis within the context of other social and demographic predictors of affiliative behaviour in baboons. Genetic ancestry was the most consistent predictor of opposite-sex affiliative behaviour we observed, with the exception of strong effects of dominance rank. Our results show that increased anubis genetic ancestry is associated with a subtle, but significantly higher, probability of opposite-sex affiliative behaviour, in both males and females. Additionally, pairs of anubis-like males and anubis-like females were the most likely to socially affiliate, resulting in moderate assortativity in grooming and proximity behaviour as a function of genetic ancestry. Our findings indicate that opposite-sex affiliative behaviour partially diverged during baboon evolution to differentiate yellow and anubis baboons, despite overall similarities in their social structures and mating systems. Furthermore, they suggest that affiliative behaviour may simultaneously promote and constrain baboon admixture, through additive and assortative effects of ancestry, respectively.
Collapse
Affiliation(s)
- Arielle S. Fogel
- University Program in Genetics and Genomics, Duke University, Durham, NC, U.S.A
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| | - Emily M. McLean
- University Program in Genetics and Genomics, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Division of Natural Sciences and Mathematics, Oxford College of Emory University, Oxford, GA, U.S.A
| | | | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Duke Population Research Institute, Duke University, Durham, NC, U.S.A
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
34
|
Buck LT, Katz DC, Ackermann RR, Hlusko LJ, Kanthaswamy S, Weaver TD. Effects of hybridization on pelvic morphology: A macaque model. J Hum Evol 2021; 159:103049. [PMID: 34455262 DOI: 10.1016/j.jhevol.2021.103049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
Ancient DNA analyses have shown that interbreeding between hominin taxa occurred multiple times. Although admixture is often reflected in skeletal phenotype, the relationship between the two remains poorly understood, hampering interpretation of the hominin fossil record. Direct study of this relationship is often impossible due to the paucity of hominin fossils and difficulties retrieving ancient genetic material. Here, we use a sample of known ancestry hybrids between two closely related nonhuman primate taxa (Indian and Chinese Macaca mulatta) to investigate the effect of admixture on skeletal morphology. We focus on pelvic shape, which has potential fitness implications in hybrids, as mismatches between maternal pelvic and fetal cranial morphology are often fatal to mother and offspring. As the pelvis is also one of the skeletal regions that differs most between Homo sapiens and Neanderthals, investigating the pelvic consequences of interbreeding could be informative regarding the viability of their hybrids. We find that the effect of admixture in M. mulatta is small and proportional to the relatively small morphological difference between the parent taxa. Sexual dimorphism appears to be the main determinant of pelvic shape in M. mulatta. The lack of difference in pelvic shape between Chinese and Indian M. mulatta is in contrast to that between Neanderthals and H. sapiens, despite a similar split time (in generations) between the hybridizing pairs. Greater phenotypic divergence between hominins may relate to adaptations to disparate environments but may also highlight how the unique degree of cultural buffering in hominins allowed for greater neutral divergence. In contrast to some previous work identifying extreme morphologies in first- and second-generation hybrids, here the relationship between pelvic shape and admixture is linear. This linearity may be because most sampled animals have a multigenerational admixture history or because of relatively high constraints on the pelvis compared with other skeletal regions.
Collapse
Affiliation(s)
- Laura T Buck
- School of Biological and Environmental Sciences, Liverpool John Moores University, UK; Department of Anthropology, University of California Davis, USA.
| | - David C Katz
- Department of Anthropology, University of California Davis, USA; University of Calgary, Cumming School of Medicine, Canada
| | - Rebecca Rogers Ackermann
- Department of Archaeology, University of Cape Town, South Africa; Human Evolution Research Institute, University of Cape Town, South Africa
| | - Leslea J Hlusko
- Department of Integrative Biology, University of California Berkeley, USA; Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Sree Kanthaswamy
- School of Natural and Mathematical Sciences, Arizona State University, USA
| | | |
Collapse
|
35
|
Zinner D, Klapproth M, Schell A, Ohrndorf L, Chala D, Ganzhorn J, Fischer J. Comparative ecology of Guinea baboons ( Papio papio). Primate Biol 2021; 8:19-35. [PMID: 34109265 PMCID: PMC8182668 DOI: 10.5194/pb-8-19-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022] Open
Abstract
Thorough knowledge of the ecology of a species or population is an essential prerequisite for understanding the impact of ecology on the evolution of their respective social systems. Because of their diversity of social organizations, baboons (Papio spp.) are a useful model for comparative studies. Comparative ecological information was missing for Guinea baboons (Papio papio), however. Here we provide data on the ecology of Guinea baboons in a comparative analysis on two geographical scales. First, we compare climate variables and land cover among areas of occurrence of all six baboon species. Second, we describe home range size, habitat use, ranging behaviour, and diet from a local population of Guinea baboons ranging near the Centre de Recherche de Primatologie (CRP) Simenti in the Niokolo-Koba National Park, Senegal. Home ranges and daily travel distances at Simenti varied seasonally, yet the seasonal patterns in their daily travel distance did not follow a simple dry vs. rainy season pattern. Chemical food composition falls within the range of other baboon species. Compared to other baboon species, areas occupied by Guinea baboons experience the highest variation in precipitation and the highest seasonality in precipitation. Although the Guinea baboons' multi-level social organization is superficially similar to that of hamadryas baboons (P. hamadryas), the ecologies of the two species differ markedly. Most Guinea baboon populations, including the one at Simenti, live in more productive habitats than hamadryas baboons. This difference in the ecology of the two species contradicts a simple evolutionary relation between ecology and social system and suggests that other factors have played an additional role here.
Collapse
Affiliation(s)
- Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen,
Germany
| | - Matthias Klapproth
- Cognitive Ethology Laboratory, Germany Primate Center, 37077 Göttingen, Germany
| | - Andrea Schell
- Cognitive Ethology Laboratory, Germany Primate Center, 37077 Göttingen, Germany
| | - Lisa Ohrndorf
- Cognitive Ethology Laboratory, Germany Primate Center, 37077 Göttingen, Germany
| | - Desalegn Chala
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern,
0318 Oslo, Norway
| | - Jörg U. Ganzhorn
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, Germany Primate Center, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen,
Germany
| |
Collapse
|
36
|
Dezeure J, Baniel A, Carter A, Cowlishaw G, Godelle B, Huchard E. Birth timing generates reproductive trade-offs in a non-seasonal breeding primate. Proc Biol Sci 2021; 288:20210286. [PMID: 33975480 PMCID: PMC8113908 DOI: 10.1098/rspb.2021.0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The evolutionary benefits of reproductive seasonality are often measured by a single-fitness component, namely offspring survival. Yet different fitness components may be maximized by different birth timings. This may generate fitness trade-offs that could be critical to understanding variation in reproductive timing across individuals, populations and species. Here, we use long-term demographic and behavioural data from wild chacma baboons (Papio ursinus) living in a seasonal environment to test the adaptive significance of seasonal variation in birth frequencies. We identify two distinct optimal birth timings in the annual cycle, located four-month apart, which maximize offspring survival or minimize maternal interbirth intervals (IBIs), by respectively matching the annual food peak with late or early weaning. Observed births are the most frequent between these optima, supporting an adaptive trade-off between current and future reproduction. Furthermore, infants born closer to the optimal timing favouring maternal IBIs (instead of offspring survival) throw more tantrums, a typical manifestation of mother-offspring conflict. Maternal trade-offs over birth timing, which extend into mother-offspring conflict after birth, may commonly occur in long-lived species where development from birth to independence spans multiple seasons. Our findings therefore open new avenues to understanding the evolution of breeding phenology in long-lived animals, including humans.
Collapse
Affiliation(s)
- Jules Dezeure
- Institute of Evolutionary Sciences of Montpellier (ISEM), UMR 5554, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Alice Baniel
- Department of Anthropology, Stony Brook University, Stony Brook, USA
| | - Alecia Carter
- Department of Anthropology, University College London, London, UK
| | - Guy Cowlishaw
- Institute of Zoology, Zoological Society of London, London, UK
| | - Bernard Godelle
- Institute of Evolutionary Sciences of Montpellier (ISEM), UMR 5554, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Elise Huchard
- Institute of Evolutionary Sciences of Montpellier (ISEM), UMR 5554, Université de Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
37
|
Hamilton MI, Fernandez DP, Nelson SV. Using strontium isotopes to determine philopatry and dispersal in primates: a case study from Kibale National Park. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200760. [PMID: 33972840 PMCID: PMC8074638 DOI: 10.1098/rsos.200760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Strontium isotope ratios (87Sr/86Sr) allow researchers to track changes in mobility throughout an animal's life and could theoretically be used to reconstruct sex-biases in philopatry and dispersal patterns in primates. Dispersal patterns are a life-history variable that correlate with numerous aspects of behaviour and socio-ecology that are elusive in the fossil record. The present study demonstrates that the standard archaeological method used to differentiate between 'local' and 'non-local' individuals, which involves comparing faunal isotopic ratios with environmental isotopic minima and maxima, is not always reliable; aspects of primate behaviour, local environments, geologic heterogeneity and the availability of detailed geologic maps may compromise its utility in certain situations. This study instead introduces a different methodological approach: calculating offset values to compare 87Sr/86Sr of teeth with that of bone or local environments. We demonstrate this method's effectiveness using data from five species of primates, including chimpanzees, from Kibale National Park, Uganda. Tooth-to-bone offsets reliably indicate sex-biases in dispersal for primates with small home ranges while tooth-to-environment offset comparisons are more reliable for primates with larger home ranges. Overall, tooth-to-environment offsets yield the most reliable predictions of species' sex-biases in dispersal.
Collapse
Affiliation(s)
- Marian I. Hamilton
- Department of Anthropology, University of Northern Colorado, Greeley, CO, 80639-6900, USA
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87111, USA
| | - Diego P. Fernandez
- Department of Geology and Geochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sherry V. Nelson
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87111, USA
| |
Collapse
|
38
|
Kin bias and male pair-bond status shape male-male relationships in a multilevel primate society. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractMale-male social relationships in group-living mammals vary from fierce competition to the formation of opportunistic coalitions or the development of long-lasting bonds. We investigated male-male relationships in Guinea baboons (Papio papio), a species characterized by male-male tolerance and affiliation. Guinea baboons live in a multi-level society, with units of one reproductively active “primary” male, 1–6 females, and offspring at the core level. Together with “bachelor” males, several units form a party, and 2–3 parties constitute a gang. We aimed to clarify to which degree male relationship patterns varied with relatedness and pair-bond status, i.e., whether males had primary or bachelor status. Data were collected from 24 males in two parties of Guinea baboons near Simenti in the Niokolo-Koba National Park in Senegal. Males maintained differentiated and equitable affiliative relationships (“strong bonds”) with other males that were stable over a 4-year period, irrespective of their pair-bond status. Remarkably, most bachelor males maintained strong bonds with multiple primary males, indicating that bachelor males play an important role in the cohesion of the parties. A clear male dominance hierarchy could not be established due to the high degree of uncertainty in individual rank scores, yet bachelor males were more likely to be found at the low end of the dominance hierarchy. Average relatedness was significantly higher between strongly bonded males, suggesting that kin biases contribute to the social preferences of males. Long-term data will be needed to test how male bonds affect male tenure and ultimately reproductive success.Significance statementMales living in social groups may employ different strategies to increase their reproductive success, from fierce fighting to opportunistic alliance formation or the development of long-term bonds. To shed light on the factors that shape male strategies, we investigated male-male social relationships in the multilevel society of Guinea baboons (Papio papio) where “primary” males are associated with a small number of females and their offspring in “units” while other males are “bachelors.” Strong bonds occurred among and between primary and bachelor males and strongly bonded males were, on average, more closely related. Bachelor males typically had multiple bond partners and thus play an important role in the fabric of Guinea baboon societies. Across primate species, neither dispersal patterns nor social organization clearly map onto the presence of strong bonds in males, suggesting multiple routes to the evolution of male bonds.
Collapse
|
39
|
Campos FA, Villavicencio F, Archie EA, Colchero F, Alberts SC. Social bonds, social status and survival in wild baboons: a tale of two sexes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190621. [PMID: 32951552 PMCID: PMC7540948 DOI: 10.1098/rstb.2019.0621] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2020] [Indexed: 01/25/2023] Open
Abstract
People who are more socially integrated or have higher socio-economic status live longer. Recent studies in non-human primates show striking convergences with this human pattern: female primates with more social partners, stronger social bonds or higher dominance rank all lead longer lives. However, it remains unclear whether social environments also predict survival in male non-human primates, as it does in men. This gap persists because, in most primates, males disperse among social groups, resulting in many males who disappear with unknown fate and have unknown dates of birth. We present a Bayesian model to estimate the effects of time-varying social covariates on age-specific adult mortality in both sexes of wild baboons. We compare how the survival trajectories of both sexes are linked to social bonds and social status over the life. We find that, parallel to females, male baboons who are more strongly bonded to females have longer lifespans. However, males with higher dominance rank for their age appear to have shorter lifespans. This finding brings new understanding to the adaptive significance of heterosexual social bonds for male baboons: in addition to protecting the male's offspring from infanticide, these bonds may have direct benefits to males themselves. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Francisco Villavicencio
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Fernando Colchero
- Interdisciplinary Center on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
40
|
Fürtbauer I, Christensen C, Bracken A, O'Riain MJ, Heistermann M, King AJ. Energetics at the urban edge: Environmental and individual predictors of urinary C-peptide levels in wild chacma baboons (Papio ursinus). Horm Behav 2020; 126:104846. [PMID: 32860833 DOI: 10.1016/j.yhbeh.2020.104846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
As human-modified landscapes encroach into natural habitats, wildlife face a reduction in natural food sources but also gain access to calorie-rich, human-derived foods. However, research into the energetics of wildlife living within and adjacent to urban and rural landscapes is lacking. C-peptide - a proxy for insulin production and a diagnostic tool for assessing pancreatic function in humans and domestic animals - can be quantified non-invasively from urine (uCP) and may provide a way to investigate the energetic correlates of living in human-altered landscapes. UCP is increasingly used in studies of primate energetics, and here we examine predictors of variation in uCP levels in n = 17 wild chacma baboons (Papio ursinus) living at the urban edge on the Cape Peninsula, South Africa. We find that uCP was positively associated with food provisioning and negatively with night fasting. UCP levels were comparable between winter and summer but significantly lower during spring, possibly driven by consumption of energy-rich seeds during summer and more human-derived foods during winter. UCP was elevated in pregnant females and similar for lactating and cycling females. We find no effect of dominance rank on uCP. Samples collected with synthetic Salivettes had significantly lower uCP levels than directly pipetted samples. Overall, our results indicate that uCP is a reliable, non-invasive measure of energy balance and intake in baboons, and suggest potential energetic benefits of living at the urban edge. More broadly, studies of uCP may offer unique insight into the environmental control of hormone-behaviour relationships in species crossing natural and urban environments.
Collapse
Affiliation(s)
- Ines Fürtbauer
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa.
| | - Charlotte Christensen
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Anna Bracken
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Andrew J King
- Department of Biosciences, College of Science, Swansea University, SA2 8PP Swansea, UK; Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
41
|
Dal Pesco F, Fischer J. On the evolution of baboon greeting rituals. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190420. [PMID: 32594879 PMCID: PMC7423252 DOI: 10.1098/rstb.2019.0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 11/12/2022] Open
Abstract
To balance the trade-offs of male co-residence, males living in multi-male groups may exchange ritualized greetings. Although these non-aggressive signals are widespread in the animal kingdom, the repertoire described in the genus Papio is exceptional, involving potentially harmful behaviours such as genital fondling. Such greetings are among the most striking male baboon social interactions, yet their function remains disputed. Drawing on the comprehensive analysis from our own research on wild Guinea baboons, combined with a survey of the literature into other baboon species, we review the form and function of male-male ritualized greetings and their relation to the various social systems present in this genus. These ritualized signals differ between species in their occurrence, form and function. While ritualized greetings are rare in species with the most intense contest competition, the complexity of and risk involved in greeting rituals increase with the degree of male-male tolerance and cooperation. The variety of societies found in this genus, combined with its role as a model for human socioecological evolution, sheds light on the evolution of ritualized behaviour in non-human primates and rituals in humans. This article is part of the theme issue 'Ritual renaissance: new insights into the most human of behaviours'.
Collapse
Affiliation(s)
- Federica Dal Pesco
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Goettingen, Germany
- Department for Primate Cognition, Georg-August-University Goettingen, Kellnerweg 4, 37077 Goettingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077 Goettingen, Germany
- Department for Primate Cognition, Georg-August-University Goettingen, Kellnerweg 4, 37077 Goettingen, Germany
| |
Collapse
|
42
|
Elton S, Dunn J. Baboon biogeography, divergence, and evolution: Morphological and paleoecological perspectives. J Hum Evol 2020; 145:102799. [DOI: 10.1016/j.jhevol.2020.102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
|
43
|
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany; Department for Primate Cognition, Georg-August-University, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany; Department for Primate Cognition, Georg-August-University, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
44
|
Bobe R, Martínez FI, Carvalho S. Primate adaptations and evolution in the Southern African Rift Valley. Evol Anthropol 2020; 29:94-101. [PMID: 32154961 DOI: 10.1002/evan.21826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Affiliation(s)
- René Bobe
- Gorongosa National Park, Sofala, Mozambique.,Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, Oxford, UK.,Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Felipe I Martínez
- Faculty of Social Sciences, School of Anthropology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susana Carvalho
- Gorongosa National Park, Sofala, Mozambique.,Primate Models for Behavioural Evolution Lab, Institute of Cognitive and Evolutionary Anthropology, School of Anthropology, University of Oxford, Oxford, UK.,Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour (ICArEHB), Universidade do Algarve, Faro, Portugal.,Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|