1
|
Xie P, Li Y, Lamon G, Kuang H, Wang DN, Traaseth NJ. A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM. Nat Commun 2025; 16:7. [PMID: 39746942 PMCID: PMC11695964 DOI: 10.1038/s41467-024-54986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty. Here, we describe a strategy for introducing a rigid fiducial marker (BRIL domain) at the C-terminus of membrane transporters from the Major Facilitator Superfamily (MFS) with AlphaFold2. This approach involves fusion of the last transmembrane domain helix of the target protein with the first helix of BRIL through a short poly-alanine linker to promote helicity. Combining this strategy with a BRIL-specific Fab, we elucidated four cryo-EM structures of the 42 kDa Staphylococcus aureus transporter NorA, three of which were derived from a single sample corresponding to inward-open, inward-occluded, and occluded conformations. Hence, this fusion construct facilitated experiments to characterize the conformational landscape of NorA and validated our design to position the BRIL/antibody pair in an orientation that avoids steric clash with the transporter. The latter was enabled through AlphaFold2 predictions, which minimized guesswork and reduced the need for screening several constructs. We further validated the suitability of the method to three additional MFS transporters (GlpT, Bmr, and Blt), results that supported a rigid linker between the transporter and BRIL. The successful application to four MFS proteins, the largest family of secondary transporters in nature, and analysis of predicted structures for the family indicates this strategy will be a valuable tool for studying other MFS members using cryo-EM.
Collapse
Affiliation(s)
- Pujun Xie
- Department of Chemistry, New York University, New York, NY, USA
| | - Yan Li
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gaëlle Lamon
- Department of Chemistry, New York University, New York, NY, USA
| | - Huihui Kuang
- Cryo-EM Core Laboratory, New York University School of Medicine, New York, NY, USA
| | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
2
|
Kinsolving J, Grätz L, Voss JH, Löw B, Shorter E, Jude B, Lanner JT, Löber S, Gmeiner P, Schulte G. A Putative Frizzled 7-Targeting Compound Acts as a Firefly Luciferase Inhibitor. J Med Chem 2024; 67:22332-22341. [PMID: 39670643 DOI: 10.1021/acs.jmedchem.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Frizzled family (FZD1-10) of G protein-coupled receptors regulates WNT signaling mediating proliferative input. Dysregulation of FZD7 and exaggerated WNT/β-catenin signaling is frequently observed in intestinal cancers. Therefore, it is attractive to develop therapeutics targeting FZD7 for cancer treatment. Structure-based virtual screening has identified compound 28, which inhibited WNT/β-catenin signaling based on the luciferase-based reporter gene TOPFlash assay. However, upon pharmacological validation, compound 28 rather acts as a potent Firefly luciferase (Fluc) inhibitor (IC50 = 30 nM), matching the reported IC50 for compound 28-mediated inhibition in the TOPFlash assay. Moreover, we employed Fluc-independent assays, a FZD7-focused bioluminescence resonance energy transfer biosensor and quantitative PCR, to emphasize the inability of compound 28 to inhibit the WNT-3A-induced conformational dynamics in FZD7 and transcription of Axin2, a WNT target gene. Thus, we underline the importance of counter screens to validate compounds that interfere with the detection technology used for compound screening.
Collapse
Affiliation(s)
- Julia Kinsolving
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| | - Bente Löw
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | | | | | | | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, Stockholm S-171 77, Sweden
| |
Collapse
|
3
|
Kumari P, Dvorácskó S, Enos MD, Ramesh K, Lim D, Hassan SA, Kunos G, Cinar R, Iyer MR, Rosenbaum DM. Structural mechanism of CB 1R binding to peripheral and biased inverse agonists. Nat Commun 2024; 15:10694. [PMID: 39695122 DOI: 10.1038/s41467-024-54206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
The cannabinoid receptor 1 (CB1R) regulates synaptic transmission in the central nervous system, but also has important roles in the peripheral organs controlling cellular metabolism. While earlier generations of brain penetrant CB1R antagonists advanced to the clinic for their effective treatment of obesity, such molecules were ultimately shown to exhibit negative effects on central reward pathways that thwarted their further therapeutic development. The peripherally restricted CB1R inverse agonists MRI-1867 and MRI-1891 represent a new generation of compounds that retain the metabolic benefits of CB1R inhibitors while sparing the negative psychiatric effects. To understand the mechanism of binding and inhibition of CB1R by peripherally restricted antagonists, we developed a nanobody/fusion protein strategy for high-resolution cryo-EM structure determination of the GPCR inactive state, and used this method to determine structures of CB1R bound to either MRI-1867 or MRI-1891. These structures reveal how these compounds retain high affinity and specificity for CB1R's hydrophobic orthosteric site despite incorporating polar functionalities that lead to peripheral restriction. Further, the structure of the MRI-1891 complex along with accompanying molecular dynamics simulations shows how differential engagement with transmembrane helices and the proximal N-terminus can propagate through the receptor to contribute to biased inhibition of β-arrestin signaling.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Szabolcs Dvorácskó
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Biomolecular Structure and Pharmacology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Michael D Enos
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karthik Ramesh
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darrix Lim
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Skiba MA, Sterling SM, Rawson S, Zhang S, Xu H, Jiang H, Nemeth GR, Gilman MSA, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Rockman HA, Barth P, Wingler LM, Kruse AC. Antibodies expand the scope of angiotensin receptor pharmacology. Nat Chem Biol 2024; 20:1577-1585. [PMID: 38744986 PMCID: PMC11561159 DOI: 10.1038/s41589-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah M Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Cryo-EM Facility at MIT.nano, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shuhao Zhang
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Genevieve R Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph D Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Septerna, South San Francisco, CA, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Sanofi, Large Molecule Research, Cambridge, MA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
6
|
Wasilko DJ, Gerstenberger BS, Farley KA, Li W, Alley J, Schnute ME, Unwalla RJ, Victorino J, Crouse KK, Ding R, Sahasrabudhe PV, Vincent F, Frisbie RK, Dermenci A, Flick A, Choi C, Chinigo G, Mousseau JJ, Trujillo JI, Nuhant P, Mondal P, Lombardo V, Lamb D, Hogan BJ, Minhas GS, Segala E, Oswald C, Windsor IW, Han S, Rappas M, Cooke RM, Calabrese MF, Berstein G, Thorarensen A, Wu H. Structural basis for CCR6 modulation by allosteric antagonists. Nat Commun 2024; 15:7574. [PMID: 39217154 PMCID: PMC11365967 DOI: 10.1038/s41467-024-52045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Jennifer Alley
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Jorge Victorino
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Kimberly K Crouse
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | - Ru Ding
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Fabien Vincent
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | | | | | | | - Daniel Lamb
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Barbara J Hogan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Elena Segala
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Christine Oswald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Ian W Windsor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
- Nxera Pharma UK Limited, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Gabriel Berstein
- Inflammation and Immunology Research, Pfizer Inc., Cambridge, MA, USA
| | | | - Huixian Wu
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
7
|
Bous J, Kinsolving J, Grätz L, Scharf MM, Voss JH, Selcuk B, Adebali O, Schulte G. Structural basis of frizzled 7 activation and allosteric regulation. Nat Commun 2024; 15:7422. [PMID: 39198452 PMCID: PMC11358414 DOI: 10.1038/s41467-024-51664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Frizzleds (ten paralogs: FZD1-10) belong to the class F of G protein-coupled receptors (GPCRs), which remains poorly understood despite its crucial role in multiple key biological functions including embryonic development, stem cell regulation, and homeostasis in the adult. FZD7, one of the most studied members of the family, is more specifically involved in the migration of mesendoderm cells during the development and renewal of intestinal stem cells in adults. Moreover, FZD7 has been highlighted for its involvement in tumor development predominantly in the gastrointestinal tract. This study reports the structure of inactive FZD7, without any stabilizing mutations, determined by cryo-electron microscopy (cryo-EM) at 1.9 Å resolution. We characterize a fluctuating water pocket in the core of the receptor important for FZD7 dynamics. Molecular dynamics simulations are used to investigate the temporal distribution of those water molecules and their importance for potential conformational changes in FZD7. Moreover, we identify lipids interacting with the receptor core and a conserved cholesterol-binding site, which displays a key role in FZD7 association with a transducer protein, Disheveled (DVL), and initiation of downstream signaling and signalosome formation.
Collapse
Affiliation(s)
- Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Julia Kinsolving
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena M Scharf
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Berkay Selcuk
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Hillier J, Zhao Y, Carrique L, Malinauskas T, Ruza RR, Chang TH, Yi G, Duyvesteyn HME, Yu J, Lu W, Pardon E, Steyaert J, Zhu Y, Ni T, Jones EY. Structural insights into Frizzled3 through nanobody modulators. Nat Commun 2024; 15:7228. [PMID: 39174501 PMCID: PMC11341715 DOI: 10.1038/s41467-024-51451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
The Wnt receptor Frizzled3 (FZD3) is important for brain axonal development and cancer progression. We report structures of FZD3 in complex with extracellular and intracellular binding nanobodies (Nb). The crystal structure of Nb8 in complex with the FZD3 cysteine-rich domain (CRD) reveals that the nanobody binds at the base of the lipid-binding groove and can compete with Wnt5a. Nb8 fused with the Dickkopf-1 C-terminal domain behaves as a FZD3-specific Wnt surrogate, activating β-catenin signalling. The cryo-EM structure of FZD3 in complex with Nb9 reveals partially resolved density for the CRD, which exhibits positional flexibility, and a transmembrane conformation that resembles active GPCRs. Nb9 binds to the cytoplasmic region of FZD3 at the putative Dishevelled (DVL) or G protein-binding site, competes with DVL binding, and inhibits GαS coupling. In combination, our FZD3 structures with nanobody modulators map extracellular and intracellular interaction surfaces of functional, and potentially therapeutic, relevance.
Collapse
Affiliation(s)
- James Hillier
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Reinis R Ruza
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tao-Hsin Chang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jing Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Centre for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Centre for Structural Biology, VIB, Brussels, Belgium
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551527. [PMID: 37577460 PMCID: PMC10418163 DOI: 10.1101/2023.08.01.551527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P. Knejski
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
- Present address: Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Satchal K. Erramilli
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Present address: Meso Scale Diagnostics, LLC, Rockville, Maryland 20850, USA
| | - Anthony A. Kossiakoff
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Zheng S, Sheng R. The emerging understanding of Frizzled receptors. FEBS Lett 2024; 598:1939-1954. [PMID: 38744670 DOI: 10.1002/1873-3468.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The Wnt signaling pathway is a huge network governing development and homeostasis, dysregulation of which is associated with a myriad of human diseases. The Frizzled receptor (FZD) family comprises receptors for Wnt ligands, which indispensably mediate Wnt signaling jointly with a variety of co-receptors. Studies of FZDs have revealed that 10 FZD subtypes play diverse roles in physiological processes. At the same time, dysregulation of FZDs is also responsible for various diseases, in particular human cancers. Enormous attention has been paid to the molecular understanding and targeted therapy of FZDs in the past decade. In this review, we summarize the latest research on FZD structure, function, regulation and targeted therapy, providing a basis for guiding future research in this field.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| |
Collapse
|
11
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
12
|
Chuan J, Li W, Pan S, Jiang Z, Shi J, Yang Z. Progress in the development of modulators targeting Frizzleds. Pharmacol Res 2024; 206:107286. [PMID: 38936522 DOI: 10.1016/j.phrs.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.
Collapse
Affiliation(s)
- Junlan Chuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Shengliu Pan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Zhongliang Jiang
- Hematology Department, Miller School of Medicine, University of Miami, USA
| | - Jianyou Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenglin Yang
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
13
|
Hou J, Liu S, Zhang X, Tu G, Wu L, Zhang Y, Yang H, Li X, Liu J, Jiang L, Tan Q, Bai F, Liu Z, Miao C, Hua T, Luo Z. Structural basis of antagonist selectivity in endothelin receptors. Cell Discov 2024; 10:79. [PMID: 39075075 PMCID: PMC11286772 DOI: 10.1038/s41421-024-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Endothelins and their receptors, ETA and ETB, play vital roles in maintaining vascular homeostasis. Therapeutically targeting endothelin receptors, particularly through ETA antagonists, has shown efficacy in treating pulmonary arterial hypertension (PAH) and other cardiovascular- and renal-related diseases. Here we present cryo-electron microscopy structures of ETA in complex with two PAH drugs, macitentan and ambrisentan, along with zibotentan, a selective ETA antagonist, respectively. Notably, a specialized anti-ETA antibody facilitated the structural elucidation. These structures, together with the active-state structures of ET-1-bound ETA and ETB, and the agonist BQ3020-bound ETB, in complex with Gq, unveil the molecular basis of agonist/antagonist binding modes in endothelin receptors. Key residues that confer antagonist selectivity to endothelin receptors were identified along with the activation mechanism of ETA. Furthermore, our results suggest that ECL2 in ETA can serve as an epitope for antibody-mediated receptor antagonism. Collectively, these insights establish a robust theoretical framework for the rational design of small-molecule drugs and antibodies with selective activity against endothelin receptors.
Collapse
Affiliation(s)
- Junyi Hou
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yijie Zhang
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Critical Care Medicine, Shanghai Xuhui Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China.
- Shanghai Key Lab of Pulmonary Inflammation and Injury, Shanghai, China.
| |
Collapse
|
14
|
Shihoya W, Iwama A, Sano FK, Nureki O. Cryo-EM advances in GPCR structure determination. J Biochem 2024; 176:1-10. [PMID: 38498911 DOI: 10.1093/jb/mvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute a prominent superfamily in humans and are categorized into six classes (A-F) that play indispensable roles in cellular communication and therapeutics. Nonetheless, their structural comprehension has been limited by challenges in high-resolution data acquisition. This review highlights the transformative impact of cryogenic electron microscopy (cryo-EM) on the structural determinations of GPCR-G-protein complexes. Specific technologies, such as nanobodies and mini-G-proteins, stabilize complexes and facilitate structural determination. We discuss the structural alterations upon receptor activation in different GPCR classes, revealing their diverse mechanisms. This review highlights the robust foundation for comprehending GPCR function and pave the way for future breakthroughs in drug discovery and therapeutic targeting.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Liu C, Zhou D, Dijokaite-Guraliuc A, Supasa P, Duyvesteyn HME, Ginn HM, Selvaraj M, Mentzer AJ, Das R, de Silva TI, Ritter TG, Plowright M, Newman TAH, Stafford L, Kronsteiner B, Temperton N, Lui Y, Fellermeyer M, Goulder P, Klenerman P, Dunachie SJ, Barton MI, Kutuzov MA, Dushek O, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A structure-function analysis shows SARS-CoV-2 BA.2.86 balances antibody escape and ACE2 affinity. Cell Rep Med 2024; 5:101553. [PMID: 38723626 PMCID: PMC11148769 DOI: 10.1016/j.xcrm.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | | | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Helen M Ginn
- Centre for Free Electron Laser Science, Hamburg, Germany
| | - Muneeswaran Selvaraj
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas G Ritter
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Lizzie Stafford
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Barbara Kronsteiner
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and University of Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Yuan Lui
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Michael I Barton
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mikhail A Kutuzov
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Omer Dushek
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK; Sir William Dunn School of Pathology, Oxford, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Shen J, Su J, Chu X, Yu X, Gao X. DNMT3A-mediated DNA methylation and transcription inhibition of FZD5 suppresses lung carcinogenesis. Heliyon 2024; 10:e29733. [PMID: 38707304 PMCID: PMC11066612 DOI: 10.1016/j.heliyon.2024.e29733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Background Based on the bioinformatics prediction, this study investigates the correlation between aberrant transcription factor Frizzled 5 (FZD5) expression and the establishment of non-small cell lung cancer (NSCLC). Methods A mouse model with regard to primary NSCLC was encouraged by intraperitoneal injection of urethane. Lentivirus-based FZD5 silencing was then administrated to examine its role in tumorigenesis in the mouse lung. Silencing of FZD5 was induced in two NSCLC cell lines to examine its function in the malignant behavior pertaining to cells in vitro. Quantitative methylation-specific PCR was employed to assess the DNA methylation level within the NSCLC cells. DNA methyltransferases (DNMTs) that administer FZD5 were assessed by chromatin immunoprecipitation assay. Consequently, overexpression of DNMT3A was introduced in mice and NSCLC cells to verify its regulation on FZD and its biological roles in NSCLC development. Results In NSCLC, FZD5 expression is elevated, and its knockdown reduced tumor incidence rate in the urethane-challenged mice. The FZD5 silencing also inhibited proliferation, migration, as well as invasion with regard to Calu-3 and NCI-H1299 cells in vitro. The aberrant upregulation with regard to FZD5 in NSCLC was due to at least partly by reduced promoter methylation level. DNMT3A, which bound to FZD5 promoter to suppress its transcription, was poorly expressed in NSCLC. Artificial upregulation of DNMT3A suppressed urethane-induced lung carcinogenesis in mice and suppressed the malignant phenotype pertaining to NSCLC cells in vitro. Conclusion This research demonstrates that the lack of DNA methylation level-induced activation of FZD5 is correlated with NSCLC's onset and progression.
Collapse
Affiliation(s)
- Jiqiao Shen
- Department of Respiratory and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, 201100, China
| | - Jinchen Su
- School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiangling Chu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Xin Yu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Xiwen Gao
- Department of Respiratory and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai, 201100, China
| |
Collapse
|
17
|
Li X, Chen Y, Lu R, Hu M, Gu L, Huang Q, Meng W, Zhu H, Fan C, Zhou Z, Mo X. Colorectal cancer cells secreting DKK4 transform fibroblasts to promote tumour metastasis. Oncogene 2024; 43:1506-1521. [PMID: 38519641 PMCID: PMC11090838 DOI: 10.1038/s41388-024-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Wnt/β-catenin signalling is aberrantly activated in most colorectal cancer (CRC) and is one key driver involved in the initiation and progression of CRC. However, mutations of APC gene in CRC patients retain certain activity of APC protein with decreased β-catenin signalling and DKK4 expression significantly upregulates and represses Wnt/β-catenin signalling in human CRC tissues, suggesting that a precisely modulated activation of the Wnt/β-catenin pathway is essential for CRC formation and progression. The underlying reasons why a specifically reduced degree, not a fully activating degree, of β-catenin signalling in CRC are unclear. Here, we showed that a soluble extracellular inhibitor of Wnt/β-catenin signalling, DKK4, is an independent factor for poor outcomes in CRC patients. DKK4 secreted from CRC cells inactivates β-catenin in fibroblasts to induce the formation of stress fibre-containing fibroblasts and myofibroblasts in culture conditions and in mouse CRC xenograft tissues, resulting in restricted expansion in tumour masses at primary sites and enhanced CRC metastasis in mouse models. Reduced β-catenin activity by a chemical inhibitor MSAB promoted the CRC metastasis. Our findings demonstrate why reduced β-catenin activity is needed for CRC progression and provide a mechanism by which interactions between CRC cells and stromal cells affect disease promotion.
Collapse
Affiliation(s)
- Xue Li
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yulin Chen
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ran Lu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Hu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaorong Huang
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wentong Meng
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanwen Fan
- Department of Gastrointestinal, Bariatric and Metabolic Surgery, Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Digestive Surgery and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Schulte G, Scharf MM, Bous J, Voss JH, Grätz L, Kozielewicz P. Frizzleds act as dynamic pharmacological entities. Trends Pharmacol Sci 2024; 45:419-429. [PMID: 38594145 DOI: 10.1016/j.tips.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
The Frizzled family of transmembrane receptors (FZD1-10) belongs to the class F of G protein-coupled receptors (GPCRs). FZDs bind to and are activated by Wingless/Int1 (WNT) proteins. The WNT/FZD signaling system regulates crucial aspects of developmental biology and stem-cell regulation. Dysregulation of WNT/FZD communication can lead to developmental defects and diseases such as cancer and fibrosis. Recent insight into the activation mechanisms of FZDs has underlined that protein dynamics and conserved microswitches are essential for FZD-mediated information flow and build the basis for targeting these receptors pharmacologically. In this review, we summarize recent advances in our understanding of FZD activation, and how novel concepts merge and collide with existing dogmas in the field.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Magdalena M Scharf
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julien Bous
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Tran NL, Senko S, Lucier KW, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G, Catalano C. High-Resolution Cryo-Electron Microscopy Structure Determination of Haemophilus influenzae Tellurite-Resistance Protein A via 200 kV Transmission Electron Microscopy. Int J Mol Sci 2024; 25:4528. [PMID: 38674110 PMCID: PMC11050165 DOI: 10.3390/ijms25084528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Membrane proteins constitute about 20% of the human proteome and play crucial roles in cellular functions. However, a complete understanding of their structure and function is limited by their hydrophobic nature, which poses significant challenges in purification and stabilization. Detergents, essential in the isolation process, risk destabilizing or altering the proteins' native conformations, thus affecting stability and functionality. This study leverages single-particle cryo-electron microscopy to elucidate the structural nuances of membrane proteins, focusing on the SLAC1 bacterial homolog from Haemophilus influenzae (HiTehA) purified with diverse detergents, including n-dodecyl β-D-maltopyranoside (DDM), glycodiosgenin (GDN), β-D-octyl-glucoside (OG), and lauryl maltose neopentyl glycol (LMNG). This research not only contributes to the understanding of membrane protein structures but also addresses detergent effects on protein purification. By showcasing that the overall structural integrity of the channel is preserved, our study underscores the intricate interplay between proteins and detergents, offering insightful implications for drug design and membrane biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA; (N.L.T.); (K.W.L.); (A.C.F.)
| |
Collapse
|
20
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. Structure 2024; 32:411-423.e6. [PMID: 38325368 PMCID: PMC10997469 DOI: 10.1016/j.str.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P Knejski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
22
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
23
|
Mao C, Zhao RJ, Dong YJ, Gao M, Chen LN, Zhang C, Xiao P, Guo J, Qin J, Shen DD, Ji SY, Zang SK, Zhang H, Wang WW, Shen Q, Sun JP, Zhang Y. Conformational transitions and activation of the adhesion receptor CD97. Mol Cell 2024; 84:570-583.e7. [PMID: 38215752 DOI: 10.1016/j.molcel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.
Collapse
Affiliation(s)
- Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
24
|
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, Xu F. A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov 2024; 10:3. [PMID: 38182578 PMCID: PMC10770037 DOI: 10.1038/s41421-023-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
The ten Frizzled receptors (FZDs) are essential in Wnt signaling and play important roles in embryonic development and tumorigenesis. Among these, FZD6 is closely associated with lens development. Understanding FZD activation mechanism is key to unlock these emerging targets. Here we present the cryo-EM structures of FZD6 and FZD3 which are known to relay non-canonical planar cell polarity (PCP) signaling pathways as well as FZD1 in their G protein-coupled states and in the apo inactive states, respectively. Comparison of the three inactive/active pairs unveiled a shared activation framework among all ten FZDs. Mutagenesis along with imaging and functional analysis on the human lens epithelial tissues suggested potential crosstalk between the G-protein coupling of FZD6 and the PCP signaling pathways. Together, this study provides an integrated understanding of FZD structure and function, and lays the foundation for developing therapeutic modulators to activate or inhibit FZD signaling for a range of disorders including cancers and cataracts.
Collapse
Affiliation(s)
- Zhibin Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaohu Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
25
|
Bernhard SM, Che T. Capturing receptor states with glue. Nat Chem Biol 2024; 20:6-7. [PMID: 37580553 DOI: 10.1038/s41589-023-01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Sarah M Bernhard
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Guo Q, He B, Zhong Y, Jiao H, Ren Y, Wang Q, Ge Q, Gao Y, Liu X, Du Y, Hu H, Tao Y. A method for structure determination of GPCRs in various states. Nat Chem Biol 2024; 20:74-82. [PMID: 37580554 DOI: 10.1038/s41589-023-01389-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a class of integral membrane proteins that detect environmental cues and trigger cellular responses. Deciphering the functional states of GPCRs induced by various ligands has been one of the primary goals in the field. Here we developed an effective universal method for GPCR cryo-electron microscopy structure determination without the need to prepare GPCR-signaling protein complexes. Using this method, we successfully solved the structures of the β2-adrenergic receptor (β2AR) bound to antagonistic and agonistic ligands and the adhesion GPCR ADGRL3 in the apo state. For β2AR, an intermediate state stabilized by the partial agonist was captured. For ADGRL3, the structure revealed that inactive ADGRL3 adopts a compact fold and that large unusual conformational changes on both the extracellular and intracellular sides are required for activation of adhesion GPCRs. We anticipate that this method will open a new avenue for understanding GPCR structure‒function relationships and drug development.
Collapse
Affiliation(s)
- Qiong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Binbin He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yixuan Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Yinhang Ren
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qinggong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiangqiang Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiangyu Liu
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| | - Yuyong Tao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-Disciplinary Sciences, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
27
|
Choi C, Bae J, Kim S, Lee S, Kang H, Kim J, Bang I, Kim K, Huh WK, Seok C, Park H, Im W, Choi HJ. Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family. Nat Commun 2023; 14:8105. [PMID: 38062020 PMCID: PMC10703812 DOI: 10.1038/s41467-023-43983-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Structural and mechanistic studies on human odorant receptors (ORs), key in olfactory signaling, are challenging because of their low surface expression in heterologous cells. The recent structure of OR51E2 bound to propionate provided molecular insight into odorant recognition, but the lack of an inactive OR structure limited understanding of the activation mechanism of ORs upon odorant binding. Here, we determined the cryo-electron microscopy structures of consensus OR52 (OR52cs), a representative of the OR52 family, in the ligand-free (apo) and octanoate-bound states. The apo structure of OR52cs reveals a large opening between transmembrane helices (TMs) 5 and 6. A comparison between the apo and active structures of OR52cs demonstrates the inward and outward movements of the extracellular and intracellular segments of TM6, respectively. These results, combined with molecular dynamics simulations and signaling assays, shed light on the molecular mechanisms of odorant binding and activation of the OR52 family.
Collapse
Affiliation(s)
- Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghan Kim
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Seho Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Injin Bang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Kiheon Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahnbeom Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Wonpil Im
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
29
|
Lees JA, Dias JM, Rajamohan F, Fortin JP, O'Connor R, Kong JX, Hughes EAG, Fisher EL, Tuttle JB, Lovett G, Kormos BL, Unwalla RJ, Zhang L, Dechert Schmitt AM, Zhou D, Moran M, Stevens KA, Fennell KF, Varghese AE, Maxwell A, Cote EE, Zhang Y, Han S. An inverse agonist of orphan receptor GPR61 acts by a G protein-competitive allosteric mechanism. Nat Commun 2023; 14:5938. [PMID: 37741852 PMCID: PMC10517971 DOI: 10.1038/s41467-023-41646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
GPR61 is an orphan GPCR related to biogenic amine receptors. Its association with phenotypes relating to appetite makes it of interest as a druggable target to treat disorders of metabolism and body weight, such as obesity and cachexia. To date, the lack of structural information or a known biological ligand or tool compound has hindered comprehensive efforts to study GPR61 structure and function. Here, we report a structural characterization of GPR61, in both its active-like complex with heterotrimeric G protein and in its inactive state. Moreover, we report the discovery of a potent and selective small-molecule inverse agonist against GPR61 and structural elucidation of its allosteric binding site and mode of action. These findings offer mechanistic insights into an orphan GPCR while providing both a structural framework and tool compound to support further studies of GPR61 function and modulation.
Collapse
Affiliation(s)
- Joshua A Lees
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - João M Dias
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | - Rebecca O'Connor
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Jimmy X Kong
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Emily A G Hughes
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ethan L Fisher
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Jamison B Tuttle
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Gabrielle Lovett
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Bethany L Kormos
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Lei Zhang
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Dahui Zhou
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Michael Moran
- Internal Medicine, Medicine Design, Pfizer Inc., Groton, CT, USA
| | | | | | | | - Andrew Maxwell
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Emmaline E Cote
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA
| | - Yuan Zhang
- Internal Medicine, Medicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
30
|
Skiba MA, Sterling SM, Rawson S, Gilman MS, Xu H, Nemeth GR, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Wingler LM, Kruse AC. Antibodies Expand the Scope of Angiotensin Receptor Pharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554128. [PMID: 37662341 PMCID: PMC10473732 DOI: 10.1101/2023.08.23.554128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah M. Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Genevieve R. Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D. Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dean P. Staus
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria K. Lehtinen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Laura M. Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Grätz L, Kowalski-Jahn M, Scharf MM, Kozielewicz P, Jahn M, Bous J, Lambert NA, Gloriam DE, Schulte G. Pathway selectivity in Frizzleds is achieved by conserved micro-switches defining pathway-determining, active conformations. Nat Commun 2023; 14:4573. [PMID: 37516754 PMCID: PMC10387068 DOI: 10.1038/s41467-023-40213-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
The class Frizzled of G protein-coupled receptors (GPCRs), consisting of ten Frizzled (FZD1-10) paralogs and Smoothened, remains one of the most enigmatic GPCR families. This class mediates signaling predominantly through Disheveled (DVL) or heterotrimeric G proteins. However, the mechanisms underlying pathway selection are elusive. Here we employ a structure-driven mutagenesis approach in combination with an extensive panel of functional signaling readouts to investigate the importance of conserved state-stabilizing residues in FZD5 for signal specification. Similar data were obtained for FZD4 and FZD10 suggesting that our findings can be extrapolated to other members of the FZD family. Comparative molecular dynamics simulations of wild type and selected FZD5 mutants further support the concept that distinct conformational changes in FZDs specify the signal outcome. In conclusion, we find that FZD5 and FZDs in general prefer coupling to DVL rather than heterotrimeric G proteins and that distinct active state micro-switches in the receptor are essential for pathway selection arguing for conformational changes in the receptor protein defining transducer selectivity.
Collapse
Affiliation(s)
- Lukas Grätz
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Maria Kowalski-Jahn
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Pawel Kozielewicz
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Michael Jahn
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, S-17121, Solna, Sweden
- Max Planck Unit for the Science of Pathogens, Bioinformatics platform, Charitéplatz 1, D-10117, Berlin, Germany
| | - Julien Bous
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Biomedicum, S-17165, Stockholm, Sweden.
| |
Collapse
|
32
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
33
|
Liu P, Wang S, Li K, Yang Y, Man Y, Du F, Wang L, Tian J, Su G. Exosomal microRNA‑4516, microRNA‑203 and SFRP1 are potential biomarkers of acute myocardial infarction. Mol Med Rep 2023; 27:124. [PMID: 37203392 PMCID: PMC10206682 DOI: 10.3892/mmr.2023.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
Acute myocardial infarction (AMI) is a serious disease which threatens public health. Exosomes (exos) contain certain genetic information and are important communication vehicles between cells. In the present study, different exosomal microRNAs (miRs), which exhibit a notable association between expression levels in plasma and AMI were assessed to support the development of new diagnostic and clinical assessment markers of patients with AMI. In total, 93 individuals, including 31 healthy controls and 62 patients with AMI, were recruited for the present study. Data on age, blood pressure, glucose levels, lipid levels and coronary angiography images were collected from the enrolled individuals, and plasma samples were collected. Plasma exos were extracted and verified using ultracentrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Exo‑miR‑4516 and exo‑miR‑203 in plasma exos were identified by exosomal miRNA sequencing analysis, reverse transcription‑quantitative PCR was performed to detect the levels of exo‑miR‑4516 and exo‑miR‑203 in plasma exos, and ELISA was performed to detect the levels of secretory frizzled‑related protein 1 (SFRP1) in samples. The correlation analysis between exo‑miR‑4516, exo‑miR‑203 and SFRP1 in plasma exos and AMI was presented as receiver operating characteristic curves (ROCs) of the SYNTAX score, cardiac troponin I (cTnI), low‑density lipoprotein (LDL) and each indicator separately. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to predict relevant enrichment pathways. Exos were successfully isolated from plasma by ultracentrifugation, which was confirmed by TEM, NTA and WB. Exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels in plasma were significantly higher in the AMI group compared with the healthy control group. ROCs demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels had a high diagnostic efficiency in predicting AMI. Exo‑miR‑4516 was positively correlated with SYNTAX score, and plasma SFRP1 was positively correlated with plasma cTnI and LDL. In conclusion, the data demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels could be used in combination to diagnose and assess the severity of AMI. The present study was retrospectively registered (TRN, NCT02123004).
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Kaiyuan Li
- Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yang Yang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yilong Man
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Fengli Du
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
- Department of Cardiovascular Medicine, Shandong Provincial Public Health Centre, Jinan, Shandong 250000, P.R. China
| | - Lei Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Jing Tian
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
34
|
Gusach A, García-Nafría J, Tate CG. New insights into GPCR coupling and dimerisation from cryo-EM structures. Curr Opin Struct Biol 2023; 80:102574. [PMID: 36963163 PMCID: PMC10423944 DOI: 10.1016/j.sbi.2023.102574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
Over the past three years (2020-2022) more structures of GPCRs have been determined than in the previous twenty years (2000-2019), primarily of GPCR complexes that are large enough for structure determination by single-particle cryo-EM. This review will present some structural highlights that have advanced our molecular understanding of promiscuous G protein coupling, how a G protein receptor kinase and β-arrestins couple to GPCRs, and GPCR dimerisation. We will also discuss advances in the use of gene fusions, nanobodies, and Fab fragments to facilitate the structure determination of GPCRs in the inactive state that, on their own, are too small for structure determination by single-particle cryo-EM.
Collapse
Affiliation(s)
- Anastasiia Gusach
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK. https://twitter.com/GusachAnastasia
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain. https://twitter.com/JGarciaNafria
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK.
| |
Collapse
|
35
|
Cao C, Roth BL. The structure, function, and pharmacology of MRGPRs. Trends Pharmacol Sci 2023; 44:237-251. [PMID: 36870785 PMCID: PMC10066734 DOI: 10.1016/j.tips.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Mas-related G protein-coupled receptor (MRGPR) family members play important roles in the sensation of noxious stimuli and represent novel targets for the treatment of itch and pain. MRGPRs recognize a diversity of agonists and display complicated downstream signaling profiles, high sequence diversity across species, and many polymorphisms in humans. The recent structural advances on MRGPRs reveal unique structural features and diverse agonist recognition modes of this receptor family, which should facilitate the structure-based drug discovery at MRGPRs. In addition, the newly discovered ligands also provide valuable tools to explore the function and the therapeutic potential of MRGPRs. In this review, we discuss these progresses in our understanding of MRGPRs and highlight the challenges and potential opportunities for the future drug discovery at these receptors.
Collapse
Affiliation(s)
- Can Cao
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, Eschelman School of Pharmacy and NIMH Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Zhang L, Mobbs JI, May LT, Glukhova A, Thal DM. The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 2023; 79:102560. [PMID: 36848776 DOI: 10.1016/j.sbi.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.
Collapse
Affiliation(s)
- Liudi Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@JesseMobbs
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia. https://twitter.com/@laurentmay
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria 3010, Australia. https://twitter.com/@gl_alisa
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria Australia.
| |
Collapse
|
37
|
Kern DM, Bleier J, Mukherjee S, Hill JM, Kossiakoff AA, Isacoff EY, Brohawn SG. Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels. Nat Struct Mol Biol 2023:10.1038/s41594-023-00944-6. [PMID: 36928458 DOI: 10.1038/s41594-023-00944-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Leucine-rich repeat-containing protein 8 (LRRC8) family members form volume-regulated anion channels activated by hypoosmotic cell swelling. LRRC8 channels are ubiquitously expressed in vertebrate cells as heteromeric assemblies of LRRC8A (SWELL1) and LRRC8B-E subunits. Channels of different subunit composition have distinct properties that explain the functional diversity of LRRC8 currents across cell types. However, the basis for heteromeric LRRC8 channel assembly and function is unknown. Here we leverage a fiducial-tagging strategy to determine single-particle cryo-EM structures of heterohexameric LRRC8A:C channels in multiple conformations. Compared to homomers, LRRC8A:C channels show pronounced differences in architecture due to heterotypic LRR interactions that displace subunits away from the conduction axis and poise the channel for activation. Structures and functional studies further reveal that lipids embedded in the channel pore block ion conduction in the closed state. These results provide insight into determinants for heteromeric LRRC8 channel assembly, activity and gating by lipids.
Collapse
Affiliation(s)
- David M Kern
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
| | - Julia Bleier
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Jennifer M Hill
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Ehud Y Isacoff
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA. .,California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA, USA.
| |
Collapse
|
38
|
Tsutsumi N, Hwang S, Waghray D, Hansen S, Jude KM, Wang N, Miao Y, Glassman CR, Caveney NA, Janda CY, Hannoush RN, Garcia K. Structure of the Wnt-Frizzled-LRP6 initiation complex reveals the basis for coreceptor discrimination. Proc Natl Acad Sci U S A 2023; 120:e2218238120. [PMID: 36893265 PMCID: PMC10089208 DOI: 10.1073/pnas.2218238120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Wnt morphogens are critical for embryonic development and tissue regeneration. Canonical Wnts form ternary receptor complexes composed of tissue-specific Frizzled (Fzd) receptors together with the shared LRP5/6 coreceptors to initiate β-catenin signaling. The cryo-EM structure of a ternary initiation complex of an affinity-matured XWnt8-Frizzled8-LRP6 complex elucidates the basis of coreceptor discrimination by canonical Wnts by means of their N termini and linker domains that engage the LRP6 E1E2 domain funnels. Chimeric Wnts bearing modular linker "grafts" were able to transfer LRP6 domain specificity between different Wnts and enable non-canonical Wnt5a to signal through the canonical pathway. Synthetic peptides comprising the linker domain serve as Wnt-specific antagonists. The structure of the ternary complex provides a topological blueprint for the orientation and proximity of Frizzled and LRP6 within the Wnt cell surface signalosome.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- HHMI, Stanford University School of Medicine, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama700-8530, Japan
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA94080
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Simon Hansen
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA94080
| | - Kevin M. Jude
- HHMI, Stanford University School of Medicine, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Nan Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Caleb R. Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Nathanael A. Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Claudia Y. Janda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
- Princess Máxima Center for Pediatric Oncology, 3584 CSUtrecht, Netherlands
| | - Rami N. Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA94080
| | - K. Christopher Garcia
- HHMI, Stanford University School of Medicine, Stanford, CA94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
39
|
Cui W, Niu Y, Chen L. The Protein Fusion Strategy Facilitates the Structure Determination of Small Membrane Proteins by Cryo-EM. Biochemistry 2023; 62:196-200. [PMID: 35909370 DOI: 10.1021/acs.biochem.2c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the resolution revolution of cryo-EM, structures of small membrane proteins (<80 kDa) are still understudied. These proteins are notoriously reluctant to structure determination by single-particle cryo-EM. Protein fusion might represent a plausible strategy to overcome such difficulties. This Perspective enumerates recent exemplary progress and discusses the future potential of the protein fusion strategy.
Collapse
Affiliation(s)
- Wenhao Cui
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China
| | - Yange Niu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Alvarez-Rodrigo I, Willnow D, Vincent JP. The logistics of Wnt production and delivery. Curr Top Dev Biol 2023; 153:1-60. [PMID: 36967191 DOI: 10.1016/bs.ctdb.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
41
|
Dang Y, Zhou D, Du X, Zhao H, Lee CH, Yang J, Wang Y, Qin C, Guo Z, Zhang Z. Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov 2022; 8:141. [PMID: 36575193 PMCID: PMC9794768 DOI: 10.1038/s41421-022-00508-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Folate (vitamin B9) is the coenzyme involved in one-carbon transfer biochemical reactions essential for cell survival and proliferation, with its inadequacy causing developmental defects or severe diseases. Notably, mammalian cells lack the ability to de novo synthesize folate but instead rely on its intake from extracellular sources via specific transporters or receptors, among which SLC19A1 is the ubiquitously expressed one in tissues. However, the mechanism of substrate recognition by SLC19A1 remains unclear. Here we report the cryo-EM structures of human SLC19A1 and its complex with 5-methyltetrahydrofolate at 3.5-3.6 Å resolution and elucidate the critical residues for substrate recognition. In particular, we reveal that two variant residues among SLC19 subfamily members designate the specificity for folate. Moreover, we identify intracellular thiamine pyrophosphate as the favorite coupled substrate for folate transport by SLC19A1. Together, this work establishes the molecular basis of substrate recognition by this central folate transporter.
Collapse
Affiliation(s)
- Yu Dang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dong Zhou
- grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaojuan Du
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China ,grid.411472.50000 0004 1764 1621Present Address: Peking University First Hospital, Peking University Health Science Center, Beijing, China
| | - Hongtu Zhao
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chia-Hsueh Lee
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jing Yang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Changdong Qin
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhenxi Guo
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Philippi M, Richter CP, Kappen M, Watrinet I, Miao Y, Runge M, Jorde L, Korneev S, Holtmannspötter M, Kurre R, Holthuis JCM, Garcia KC, Plückthun A, Steinhart M, Piehler J, You C. Biofunctional Nanodot Arrays in Living Cells Uncover Synergistic Co-Condensation of Wnt Signalodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203723. [PMID: 36266931 DOI: 10.1002/smll.202203723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Qualitative and quantitative analysis of transient signaling platforms in the plasma membrane has remained a key experimental challenge. Here, biofunctional nanodot arrays (bNDAs) are developed to spatially control dimerization and clustering of cell surface receptors at the nanoscale. High-contrast bNDAs with spot diameters of ≈300 nm are obtained by capillary nanostamping of bovine serum albumin bioconjugates, which are subsequently biofunctionalized by reaction with tandem anti-green fluorescence protein (GFP) clamp fusions. Spatially controlled assembly of active Wnt signalosomes is achieved at the nanoscale in the plasma membrane of live cells by capturing the co-receptor Lrp6 into bNDAs via an extracellular GFP tag. Strikingly, co-recruitment is observed of co-receptor Frizzled-8 as well as the cytosolic scaffold proteins Axin-1 and Disheveled-2 into Lrp6 nanodots in the absence of ligand. Density variation and the high dynamics of effector proteins uncover highly cooperative liquid-liquid phase separation (LLPS)-driven assembly of Wnt "signalodroplets" at the plasma membrane, pinpointing the synergistic effects of LLPS for Wnt signaling amplification. These insights highlight the potential of bNDAs for systematically interrogating nanoscale signaling platforms and condensation at the plasma membrane of live cells.
Collapse
Affiliation(s)
- Michael Philippi
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Isabelle Watrinet
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mercedes Runge
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Lara Jorde
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Sergej Korneev
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Joost C M Holthuis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich, 8057, Switzerland
| | - Martin Steinhart
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
43
|
Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G. Structure determination of inactive-state GPCRs with a universal nanobody. Nat Struct Mol Biol 2022; 29:1188-1195. [PMID: 36396979 DOI: 10.1038/s41594-022-00859-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) has widened the field of structure-based drug discovery by allowing for routine determination of membrane protein structures previously intractable. Despite representing one of the largest classes of therapeutic targets, most inactive-state G protein-coupled receptors (GPCRs) have remained inaccessible for cryo-EM because their small size and membrane-embedded nature impedes projection alignment for high-resolution map reconstructions. Here we demonstrate that the same single-chain camelid antibody (nanobody) recognizing a grafted intracellular loop can be used to obtain cryo-EM structures of inactive-state GPCRs at resolutions comparable or better than those obtained by X-ray crystallography. Using this approach, we obtained structures of neurotensin 1 receptor bound to antagonist SR48692, μ-opioid receptor bound to alvimopan, apo somatostatin receptor 2 and histamine receptor 2 bound to famotidine. We expect this rapid, straightforward approach to facilitate the broad exploration of GPCR inactive states without the need for extensive engineering and crystallization.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin G Meyerowitz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Claudia Peroto
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
44
|
Wentinck K, Gogou C, Meijer DH. Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins. Curr Res Struct Biol 2022; 4:332-337. [PMID: 36248264 PMCID: PMC9562432 DOI: 10.1016/j.crstbi.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithms, small proteins remain elusive for reconstruction due to low signal-to-noise and lack of distinctive structural features. Multiple efforts have therefore been directed at the development of size-increase techniques for small proteins. Here we review the latest methods for increasing effective molecular weight of proteins <100 kDa through target protein binding or target protein fusion - specifically by using nanobody-based assemblies, fusion tags, and symmetric scaffolds. Finally, we summarize these state-of-the-art techniques into a decision-tree to facilitate the design of tailored future approaches, and thus for further exploration of ever-smaller proteins that make up the largest part of the human genome.
Collapse
Key Words
- BRIL, cytochromeb562 RIL
- DARPin, Design Ankyrin Repeat Protein
- Fab, antigen binding fragment
- GFP, Green Fluorecent Protein
- GPCR, G protein-coupled receptor
- MW, molecular weight
- Mb, megabody
- Nb, nanobody
- SNR, signal-to-noise ratio
- SPA, single particle analysis
- TM, transmembrane
- cryo-EM, cryogenic electron microscopy
- kDa, kiloDalton
- κOR ICL3, κ-opiod receptor intracellular loop 3
Collapse
Affiliation(s)
| | | | - Dimphna H. Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
45
|
Zheng S, Lin J, Pang Z, Zhang H, Wang Y, Ma L, Zhang H, Zhang X, Chen M, Zhang X, Zhao C, Qi J, Cao L, Wang M, He X, Sheng R. Aberrant Cholesterol Metabolism and Wnt/β-Catenin Signaling Coalesce via Frizzled5 in Supporting Cancer Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200750. [PMID: 35975457 PMCID: PMC9534957 DOI: 10.1002/advs.202200750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/23/2022] [Indexed: 05/12/2023]
Abstract
Frizzled (Fzd) proteins are Wnt receptors and play essential roles in development, homeostasis, and oncogenesis. How Wnt/Fzd signaling is coupled to physiological regulation remains unknown. Cholesterol is reported as a signaling molecule regulating morphogen such as Hedgehog signaling. Despite the elusiveness of the in-depth mechanism, it is well-established that pancreatic cancer specially requires abnormal cholesterol metabolism levels for growth. In this study, it is unexpectedly found that among ten Fzds, Fzd5 has a unique capacity to bind cholesterol specifically through its conserved extracellular linker region. Cholesterol-binding enables Fzd5 palmitoylation, which is indispensable for receptor maturation and trafficking to the plasma membrane. In Wnt-addicted pancreatic ductal adenocarcinoma (PDAC), cholesterol stimulates tumor growth via Fzd5-mediated Wnt/β-catenin signaling. A natural oxysterol, 25-hydroxylsterol competes with cholesterol and inhibits Fzd5 maturation and Wnt signaling, thereby alleviating PDAC growth. This cholesterol-receptor interaction and ensuing receptor lipidation uncover a novel mechanism by which Fzd5 acts as a cholesterol sensor and pivotal connection coupling lipid metabolism to morphogen signaling. These findings further suggest that cholesterol-targeting may provide new therapeutic opportunities for treating Wnt-dependent cancers.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Jiahui Lin
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Zhongqiu Pang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Hui Zhang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Yinuo Wang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Lanjing Ma
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Haijiao Zhang
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
| | - Xi Zhang
- College of SciencesNortheastern UniversityShenyang110004P. R. China
| | - Maorong Chen
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationNational Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Chao Zhao
- School of Public HealthJilin UniversityChangchun130021P. R. China
| | - Jun Qi
- Department of Cancer BiologyDana‐Farber Cancer InstituteDepartment of MedicineHarvard Medical SchoolBostonMA02215USA
| | - Liu Cao
- Institute of Translational MedicineKey Laboratory of Cell Biology of Ministry of Public Healthand Key Laboratory of Medical Cell Biology of Ministry of EducationLiaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and PreventionChina Medical UniversityShenyang110112P. R. China
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhan430030P. R. China
| | - Xi He
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| | - Ren Sheng
- College of Life and Health ScienceNortheastern UniversityShenyang110819P. R. China
- F.M Kirby Neurobiology CenterBoston Children's HospitalDepartment of NeurologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
46
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
47
|
Angers S. Frizzled does not get bent out of shape by Wnt. Sci Signal 2022; 15:eadd3535. [PMID: 35998230 DOI: 10.1126/scisignal.add3535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ligands of the Wnt family activate the Frizzled-LRP5/6 receptor complex to initiate intracellular signaling. In this issue of Science Signaling, Mahoney et al. reveal a Wnt-stimulated positive feedback loop that involves local production of the lipid phosphatidylinositol(4,5)bisphosphate [PI(4,5)P2], which promotes Dishevelled recruitment and additional PI(4,5)P2 production, to facilitate LRP5/6 phosphorylation.
Collapse
Affiliation(s)
- Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
48
|
Mahoney JP, Bruguera ES, Vasishtha M, Killingsworth LB, Kyaw S, Weis WI. PI(4,5)P 2-stimulated positive feedback drives the recruitment of Dishevelled to Frizzled in Wnt-β-catenin signaling. Sci Signal 2022; 15:eabo2820. [PMID: 35998232 PMCID: PMC9528458 DOI: 10.1126/scisignal.abo2820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the Wnt-β-catenin pathway, Wnt binding to Frizzled (Fzd) and LRP5 or LRP6 (LRP5/6) co-receptors inhibits the degradation of the transcriptional coactivator β-catenin by recruiting the cytosolic effector Dishevelled (Dvl). Polymerization of Dvl at the plasma membrane recruits the β-catenin destruction complex, enabling the phosphorylation of LRP5/6, a key step in inhibiting β-catenin degradation. Using purified Fzd proteins reconstituted in lipid nanodiscs, we investigated the factors that promote the recruitment of Dvl to the plasma membrane. We found that the affinity of Fzd for Dvl was not affected by Wnt ligands, in contrast to other members of the GPCR superfamily for which the binding of extracellular ligands affects the affinity for downstream transducers. Instead, Fzd-Dvl binding was enhanced by increased concentration of the lipid PI(4,5)P2, which is generated by Dvl-associated lipid kinases in response to Wnt and which is required for LRP5/6 phosphorylation. Moreover, binding to Fzd did not promote Dvl DEP domain dimerization, which has been proposed to be required for signaling downstream of Fzd. Our findings suggest a positive feedback loop in which Wnt-stimulated local PI(4,5)P2 production enhances Dvl recruitment and further PI(4,5)P2 production to support Dvl polymerization, LRP5/6 phosphorylation, and β-catenin stabilization.
Collapse
Affiliation(s)
- Jacob P Mahoney
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Elise S Bruguera
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Mansi Vasishtha
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Lauren B Killingsworth
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Saw Kyaw
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - William I Weis
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| |
Collapse
|
49
|
Zhang K, Wu H, Hoppe N, Manglik A, Cheng Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat Commun 2022; 13:4366. [PMID: 35902590 PMCID: PMC9334595 DOI: 10.1038/s41467-022-32125-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Single particle cryogenic-electron microscopy (cryo-EM) is used extensively to determine structures of activated G protein-coupled receptors (GPCRs) in complex with G proteins or arrestins. However, applying it to GPCRs without signaling proteins remains challenging because most receptors lack structural features in their soluble domains to facilitate image alignment. In GPCR crystallography, inserting a fusion protein between transmembrane helices 5 and 6 is a highly successful strategy for crystallization. Although a similar strategy has the potential to broadly facilitate cryo-EM structure determination of GPCRs alone without signaling protein, the critical determinants that make this approach successful are not yet clear. Here, we address this shortcoming by exploring different fusion protein designs, which lead to structures of antagonist bound A2A adenosine receptor at 3.4 Å resolution and unliganded Smoothened at 3.7 Å resolution. The fusion strategies explored here are likely applicable to cryo-EM interrogation of other GPCRs and small integral membrane proteins.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Hao Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
50
|
Chen H, Qi X, Faulkner RA, Schumacher MM, Donnelly LM, DeBose-Boyd RA, Li X. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nat Commun 2022; 13:4273. [PMID: 35879350 PMCID: PMC9314443 DOI: 10.1038/s41467-022-32025-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in cholesterol synthesis and target of cholesterol-lowering statin drugs. Accumulation of sterols in endoplasmic reticulum (ER) membranes accelerates degradation of HMGCR, slowing the synthesis of cholesterol. Degradation of HMGCR is inhibited by its binding to UBIAD1 (UbiA prenyltransferase domain-containing protein-1). This inhibition contributes to statin-induced accumulation of HMGCR, which limits their cholesterol-lowering effects. Here, we report cryo-electron microscopy structures of the HMGCR-UBIAD1 complex, which is maintained by interactions between transmembrane helix (TM) 7 of HMGCR and TMs 2-4 of UBIAD1. Disrupting this interface by mutagenesis prevents complex formation, enhancing HMGCR degradation. TMs 2-6 of HMGCR contain a 170-amino acid sterol sensing domain (SSD), which exists in two conformations-one of which is essential for degradation. Thus, our data supports a model that rearrangement of the TMs in the SSD permits recruitment of proteins that initate HMGCR degradation, a key reaction in the regulatory system that governs cholesterol synthesis.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca A Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda M Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|