1
|
Karpowicz BM, Bhaduri B, Nason-Tomaszewski SR, Jacques BG, Ali YH, Flint RD, Bechefsky PH, Hochberg LR, AuYong N, Slutzky MW, Pandarinath C. Reducing power requirements for high-accuracy decoding in iBCIs. J Neural Eng 2024; 21:066001. [PMID: 39423832 PMCID: PMC11528220 DOI: 10.1088/1741-2552/ad88a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Objective.Current intracortical brain-computer interfaces (iBCIs) rely predominantly on threshold crossings ('spikes') for decoding neural activity into a control signal for an external device. Spiking data can yield high accuracy online control during complex behaviors; however, its dependence on high-sampling-rate data collection can pose challenges. An alternative signal for iBCI decoding is the local field potential (LFP), a continuous-valued signal that can be acquired simultaneously with spiking activity. However, LFPs are seldom used alone for online iBCI control as their decoding performance has yet to achieve parity with spikes.Approach.Here, we present a strategy to improve the performance of LFP-based decoders by first training a neural dynamics model to use LFPs to reconstruct the firing rates underlying spiking data, and then decoding from the estimated rates. We test these models on previously-collected macaque data during center-out and random-target reaching tasks as well as data collected from a human iBCI participant during attempted speech.Main results.In all cases, training models from LFPs enables firing rate reconstruction with accuracy comparable to spiking-based dynamics models. In addition, LFP-based dynamics models enable decoding performance exceeding that of LFPs alone and approaching that of spiking-based models. In all applications except speech, LFP-based dynamics models also facilitate decoding accuracy exceeding that of direct decoding from spikes.Significance.Because LFP-based dynamics models operate on lower bandwidth and with lower sampling rate than spiking models, our findings indicate that iBCI devices can be designed to operate with lower power requirements than devices dependent on recorded spiking activity, without sacrificing high-accuracy decoding.
Collapse
Affiliation(s)
- Brianna M Karpowicz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Bareesh Bhaduri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Samuel R Nason-Tomaszewski
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Brandon G Jacques
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Yahia H Ali
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
| | - Payton H Bechefsky
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- Robert J. & Nancy D. Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI, United States of America
| | - Nicholas AuYong
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
- Department of Cell Biology, Emory University, Atlanta, GA, United States of America
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
2
|
Ottenhoff MC, Verwoert M, Goulis S, Wagner L, van Dijk JP, Kubben PL, Herff C. Global motor dynamics - Invariant neural representations of motor behavior in distributed brain-wide recordings. J Neural Eng 2024; 21:056034. [PMID: 39383883 DOI: 10.1088/1741-2552/ad851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.Motor-related neural activity is more widespread than previously thought, as pervasive brain-wide neural correlates of motor behavior have been reported in various animal species. Brain-wide movement-related neural activity have been observed in individual brain areas in humans as well, but it is unknown to what extent global patterns exist.Approach.Here, we use a decoding approach to capture and characterize brain-wide neural correlates of movement. We recorded invasive electrophysiological data from stereotactic electroencephalographic electrodes implanted in eight epilepsy patients who performed both an executed and imagined grasping task. Combined, these electrodes cover the whole brain, including deeper structures such as the hippocampus, insula and basal ganglia. We extract a low-dimensional representation and classify movement from rest trials using a Riemannian decoder.Main results.We reveal global neural dynamics that are predictive across tasks and participants. Using an ablation analysis, we demonstrate that these dynamics remain remarkably stable under loss of information. Similarly, the dynamics remain stable across participants, as we were able to predict movement across participants using transfer learning.Significance.Our results show that decodable global motor-related neural dynamics exist within a low-dimensional space. The dynamics are predictive of movement, nearly brain-wide and present in all our participants. The results broaden the scope to brain-wide investigations, and may allow combining datasets of multiple participants with varying electrode locations or calibrationless neural decoder.
Collapse
Affiliation(s)
- Maarten C Ottenhoff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Maxime Verwoert
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Sophocles Goulis
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Louis Wagner
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
| | - Johannes P van Dijk
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
- Department of Orthodontics, Ulm University, Ulm, Germany
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter L Kubben
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Herff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Magazù S, Caccamo MT. Parametric resonance brain model. Sci Rep 2024; 14:24657. [PMID: 39428435 PMCID: PMC11491444 DOI: 10.1038/s41598-024-76610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
The paper introduces a parametric resonance model for characterizing some features of the brain's electrical activity. This activity is assumed to be a fundamental aspect of brain functionality underpinning functions from basic sensory processing to complex cognitive operations such as memory, reasoning, and emotion. A pivotal element of the proposed parametric model is neuron synchronization which is crucial for generating detectable brain waves. The analysis of the frequency content of brain waves, categorized as delta (0÷4 Hz), theta (4÷7 Hz), alpha (8÷12 Hz), beta (13÷30 Hz), and gamma (30÷100 Hz) reveals, notably, that the mean frequency of each of these brain wave classes is, in sequence, approximately the double of that of the previous one. Based on this observation, the proposed parametric resonance model suggests a cascade of amplification effects. Following the proposed model, in the transition from wakefulness to sleep, the brain wave bands are energized at double frequency by higher frequency neighboring bands; on the contrary, in the sleep to awake transition, brain waves are energized at a half frequency by their lower frequency neighbor waves. Finally, the trend of increasing amplitude values from higher to lower frequencies lends empirical support to the parametric resonant brain model validity.
Collapse
Affiliation(s)
- Salvatore Magazù
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, Messina University, Viale Ferdinando Stagno D'Alcontres n°31, S. Agata, Messina, 98166, Italy.
- Interuniversity Consortium of Applied Physical Sciences (CISFA), Viale Ferdinando Stagno D'Alcontres n°31, S. Agata, Messina, 98166, Italy.
| | - Maria Teresa Caccamo
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, Messina University, Viale Ferdinando Stagno D'Alcontres n°31, S. Agata, Messina, 98166, Italy
- Interuniversity Consortium of Applied Physical Sciences (CISFA), Viale Ferdinando Stagno D'Alcontres n°31, S. Agata, Messina, 98166, Italy
| |
Collapse
|
4
|
Aucoin A, Lin KK, Gothard KM. Detection of latent brain states from baseline neural activity in the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598974. [PMID: 38915563 PMCID: PMC11195171 DOI: 10.1101/2024.06.14.598974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals neural activity is expected to return to a stable and relatively featureless baseline. Context, such as the presence of a social partner, or the similarity of trials in a blocked design, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the baseline firing rate of neurons. Indeed, the baseline firing rates of neurons in the amygdala change between blocks of trials of gentle grooming touch, delivered by a trusted social partner, and non-social airflow stimuli, delivered by a computer-controlled air valve. In this experimental paradigm, the presence of the groomer alone was sufficient to induce small but significant changes in baseline firing rates. Here, we examine local field potentials (LFP) recorded during these baseline periods to determine whether context was encoded by network dynamics that emerge in the local field potentials from the activity of large ensembles of neurons. We found that machine learning techniques can reliably decode social vs. non-social context from spectrograms of baseline local field potentials. Notably, decoding accuracy improved significantly with access to broad-band information. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs that signal the sympathetic- vs. parasympathetic-dominated states characterizing non-social and social blocks, respectively.
Collapse
Affiliation(s)
- Alexa Aucoin
- Program in Applied Mathematics, University of Arizona
| | - Kevin K Lin
- Program in Applied Mathematics, University of Arizona
- Department of Mathematics, University of Arizona
| | | |
Collapse
|
5
|
Mooziri M, Samii Moghaddam A, Mirshekar MA, Raoufy MR. Olfactory bulb-medial prefrontal cortex theta synchronization is associated with anxiety. Sci Rep 2024; 14:12101. [PMID: 38802558 PMCID: PMC11130310 DOI: 10.1038/s41598-024-63101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Anxiety is among the most fundamental mammalian behaviors. Despite the physiological and pathological importance, its underlying neural mechanisms remain poorly understood. Here, we recorded the activity of olfactory bulb (OB) and medial prefrontal cortex (mPFC) of rats, which are critical structures to brain's emotional processing network, while exploring different anxiogenic environments. Our results show that presence in anxiogenic contexts increases the OB and mPFC regional theta activities. Also, these local activity changes are associated with enhanced OB-mPFC theta power- and phase-based functional connectivity as well as OB-to-mPFC information transfer. Interestingly, these effects are more prominent in the unsafe zones of the anxiogenic environments, compared to safer zones. This consistent trend of changes in diverse behavioral environments as well as local and long-range neural activity features suggest that the dynamics of OB-mPFC circuit theta oscillations might underlie different types of anxiety behaviors, with possible implications for anxiety disorders.
Collapse
Affiliation(s)
- Morteza Mooziri
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Samii Moghaddam
- Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Mirshekar
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Falaki A, Quessy S, Dancause N. Differential Modulation of Local Field Potentials in the Primary and Premotor Cortices during Ipsilateral and Contralateral Reach to Grasp in Macaque Monkeys. J Neurosci 2024; 44:e1161232024. [PMID: 38589229 PMCID: PMC11112639 DOI: 10.1523/jneurosci.1161-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and β activity increased during contralateral grasp. In contrast, β oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.
Collapse
Affiliation(s)
- Ali Falaki
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Center interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
7
|
Chang JC, Perich MG, Miller LE, Gallego JA, Clopath C. De novo motor learning creates structure in neural activity that shapes adaptation. Nat Commun 2024; 15:4084. [PMID: 38744847 PMCID: PMC11094149 DOI: 10.1038/s41467-024-48008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.
Collapse
Affiliation(s)
- Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Mila, Québec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
8
|
Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA. Nonlinear manifolds underlie neural population activity during behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549575. [PMID: 37503015 PMCID: PMC10370078 DOI: 10.1101/2023.07.18.549575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
Collapse
Affiliation(s)
- Cátia Fortunato
- Department of Bioengineering, Imperial College London, London UK
| | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Joanna C. Chang
- Department of Bioengineering, Imperial College London, London UK
| | - Lee E. Miller
- Department of Neurosciences, Northwestern University, Chicago IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Matthew G. Perich
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Québec Artificial Intelligence Institute (MILA), Montréal, Québec, Canada
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London UK
| |
Collapse
|
9
|
Ahmadipour P, Sani OG, Pesaran B, Shanechi MM. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity. J Neural Eng 2024; 21:026001. [PMID: 38016450 PMCID: PMC10913727 DOI: 10.1088/1741-2552/ad1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Objective.Learning dynamical latent state models for multimodal spiking and field potential activity can reveal their collective low-dimensional dynamics and enable better decoding of behavior through multimodal fusion. Toward this goal, developing unsupervised learning methods that are computationally efficient is important, especially for real-time learning applications such as brain-machine interfaces (BMIs). However, efficient learning remains elusive for multimodal spike-field data due to their heterogeneous discrete-continuous distributions and different timescales.Approach.Here, we develop a multiscale subspace identification (multiscale SID) algorithm that enables computationally efficient learning for modeling and dimensionality reduction for multimodal discrete-continuous spike-field data. We describe the spike-field activity as combined Poisson and Gaussian observations, for which we derive a new analytical SID method. Importantly, we also introduce a novel constrained optimization approach to learn valid noise statistics, which is critical for multimodal statistical inference of the latent state, neural activity, and behavior. We validate the method using numerical simulations and with spiking and local field potential population activity recorded during a naturalistic reach and grasp behavior.Main results.We find that multiscale SID accurately learned dynamical models of spike-field signals and extracted low-dimensional dynamics from these multimodal signals. Further, it fused multimodal information, thus better identifying the dynamical modes and predicting behavior compared to using a single modality. Finally, compared to existing multiscale expectation-maximization learning for Poisson-Gaussian observations, multiscale SID had a much lower training time while being better in identifying the dynamical modes and having a better or similar accuracy in predicting neural activity and behavior.Significance.Overall, multiscale SID is an accurate learning method that is particularly beneficial when efficient learning is of interest, such as for online adaptive BMIs to track non-stationary dynamics or for reducing offline training time in neuroscience investigations.
Collapse
Affiliation(s)
- Parima Ahmadipour
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Omid G Sani
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Bijan Pesaran
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maryam M Shanechi
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Thomas Lord Department of Computer Science, Alfred E. Mann Department of Biomedical Engineering, and the Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
10
|
Kuzmina E, Kriukov D, Lebedev M. Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling. Sci Rep 2024; 14:3566. [PMID: 38347042 PMCID: PMC10861525 DOI: 10.1038/s41598-024-53907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Spatiotemporal properties of neuronal population activity in cortical motor areas have been subjects of experimental and theoretical investigations, generating numerous interpretations regarding mechanisms for preparing and executing limb movements. Two competing models, representational and dynamical, strive to explain the relationship between movement parameters and neuronal activity. A dynamical model uses the jPCA method that holistically characterizes oscillatory activity in neuron populations by maximizing the data rotational dynamics. Different rotational dynamics interpretations revealed by the jPCA approach have been proposed. Yet, the nature of such dynamics remains poorly understood. We comprehensively analyzed several neuronal-population datasets and found rotational dynamics consistently accounted for by a traveling wave pattern. For quantifying rotation strength, we developed a complex-valued measure, the gyration number. Additionally, we identified parameters influencing rotation extent in the data. Our findings suggest that rotational dynamics and traveling waves are typically the same phenomena, so reevaluation of the previous interpretations where they were considered separate entities is needed.
Collapse
Affiliation(s)
- Ekaterina Kuzmina
- Skolkovo Institute of Science and Technology, Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia, 121205.
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia.
| | - Dmitrii Kriukov
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia, 121205
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119992
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia, 194223
| |
Collapse
|
11
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-Gamma Activity Is Coupled to Low-Gamma Oscillations in Precentral Cortices and Modulates with Movement and Speech. eNeuro 2024; 11:ENEURO.0163-23.2023. [PMID: 38242691 PMCID: PMC10867721 DOI: 10.1523/eneuro.0163-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger-flexion or word-reading tasks. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
Affiliation(s)
- Jeffrey Z Nie
- Southern Illinois University School of Medicine, Springfield 62794, Illinois
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Robert D Flint
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Prashanth Prakash
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Jason K Hsieh
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Emily M Mugler
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Matthew C Tate
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
| | - Joshua M Rosenow
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
| | - Marc W Slutzky
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Neuroscience, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston 60201, Illinois
| |
Collapse
|
12
|
Ganjali M, Mehridehnavi A, Rakhshani S, Khorasani A. Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals. Int J Neural Syst 2024; 34:2450006. [PMID: 38063378 DOI: 10.1142/s0129065724500060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and R-squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI stabilizer. The results offer benefits for the automatic determination of movement intents in long-term BMI decoding. Overall, the proposed method offers a promising automatic solution for achieving stable and accurate movement decoding in BMI applications.
Collapse
Affiliation(s)
- Mohammadali Ganjali
- Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mehridehnavi
- Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajed Rakhshani
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abed Khorasani
- Department of Neurology, Northwestern University, Chicago, IL, 60611, USA
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Safaie M, Chang JC, Park J, Miller LE, Dudman JT, Perich MG, Gallego JA. Preserved neural dynamics across animals performing similar behaviour. Nature 2023; 623:765-771. [PMID: 37938772 PMCID: PMC10665198 DOI: 10.1038/s41586-023-06714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.
Collapse
Affiliation(s)
- Mostafa Safaie
- Department of Bioengineering, Imperial College London, London, UK
| | - Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, TX, USA
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, TX, USA
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Mila, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
14
|
Fan J, Li X, Wang P, Yang F, Zhao B, Yang J, Zhao Z, Li X. A Hyperflexible Electrode Array for Long-Term Recording and Decoding of Intraspinal Neuronal Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303377. [PMID: 37870208 PMCID: PMC10667843 DOI: 10.1002/advs.202303377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Neural interfaces for stable access to the spinal cord (SC) electrical activity can benefit patients with motor dysfunctions. Invasive high-density electrodes can directly extract signals from SC neuronal populations that can be used for the facilitation, adjustment, and reconstruction of motor actions. However, developing neural interfaces that can achieve high channel counts and long-term intraspinal recording remains technically challenging. Here, a biocompatible SC hyperflexible electrode array (SHEA) with an ultrathin structure that minimizes mechanical mismatch between the interface and SC tissue and enables stable single-unit recording for more than 2 months in mice is demonstrated. These results show that SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC. Gait analysis and histology show that SHEA implantation induces negligible behavioral effects and Inflammation. Additionally, multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, it is found that the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns. Thus, SHEA can offer an efficient and reliable SC neural interface for monitoring and potentially modulating SC neuronal activity associated with motor dysfunctions.
Collapse
Affiliation(s)
- Jie Fan
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xiaocheng Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Peiyu Wang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Fan Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Bingzhen Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Jianing Yang
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Zhengtuo Zhao
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| | - Xue Li
- Center for Excellence in Brain Science and Intelligence TechnologyInstitute of NeuroscienceChinese Academy of SciencesShanghai200031P. R. China
| |
Collapse
|
15
|
Bhattacherjee A, Zhang C, Watson BR, Djekidel MN, Moffitt JR, Zhang Y. Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain. Nat Neurosci 2023; 26:1880-1893. [PMID: 37845544 PMCID: PMC10620082 DOI: 10.1038/s41593-023-01455-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
The prefrontal cortex (PFC) is a complex brain region that regulates diverse functions ranging from cognition, emotion and executive action to even pain processing. To decode the cellular and circuit organization of such diverse functions, we employed spatially resolved single-cell transcriptome profiling of the adult mouse PFC. Results revealed that PFC has distinct cell-type composition and gene-expression patterns relative to neighboring cortical areas-with neuronal excitability-regulating genes differently expressed. These cellular and molecular features are further segregated within PFC subregions, alluding to the subregion-specificity of several PFC functions. PFC projects to major subcortical targets through combinations of neuronal subtypes, which emerge in a target-intrinsic fashion. Finally, based on these features, we identified distinct cell types and circuits in PFC underlying chronic pain, an escalating healthcare challenge with limited molecular understanding. Collectively, this comprehensive map will facilitate decoding of discrete molecular, cellular and circuit mechanisms underlying specific PFC functions in health and disease.
Collapse
Affiliation(s)
- Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mohamed Nadhir Djekidel
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Athalye VR, Khanna P, Gowda S, Orsborn AL, Costa RM, Carmena JM. Invariant neural dynamics drive commands to control different movements. Curr Biol 2023; 33:2962-2976.e15. [PMID: 37402376 PMCID: PMC10527529 DOI: 10.1016/j.cub.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
It has been proposed that the nervous system has the capacity to generate a wide variety of movements because it reuses some invariant code. Previous work has identified that dynamics of neural population activity are similar during different movements, where dynamics refer to how the instantaneous spatial pattern of population activity changes in time. Here, we test whether invariant dynamics of neural populations are actually used to issue the commands that direct movement. Using a brain-machine interface (BMI) that transforms rhesus macaques' motor-cortex activity into commands for a neuroprosthetic cursor, we discovered that the same command is issued with different neural-activity patterns in different movements. However, these different patterns were predictable, as we found that the transitions between activity patterns are governed by the same dynamics across movements. These invariant dynamics are low dimensional, and critically, they align with the BMI, so that they predict the specific component of neural activity that actually issues the next command. We introduce a model of optimal feedback control (OFC) that shows that invariant dynamics can help transform movement feedback into commands, reducing the input that the neural population needs to control movement. Altogether our results demonstrate that invariant dynamics drive commands to control a variety of movements and show how feedback can be integrated with invariant dynamics to issue generalizable commands.
Collapse
Affiliation(s)
- Vivek R Athalye
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Suraj Gowda
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amy L Orsborn
- Departments of Bioengineering, Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Jose M Carmena
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Weber J, Iwama G, Solbakk AK, Blenkmann AO, Larsson PG, Ivanovic J, Knight RT, Endestad T, Helfrich R. Subspace partitioning in the human prefrontal cortex resolves cognitive interference. Proc Natl Acad Sci U S A 2023; 120:e2220523120. [PMID: 37399398 PMCID: PMC10334727 DOI: 10.1073/pnas.2220523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost. Our results reveal that this interference between past and present states in the PFC is resolved through coding partitioning into distinct low-dimensional neural states; thereby strongly attenuating behavioral switch costs. In sum, these findings uncover a fundamental coding mechanism that constitutes a central building block of flexible cognitive control.
Collapse
Affiliation(s)
- Jan Weber
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Gabriela Iwama
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, 72076Tübingen, Germany
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, 8657Mosjøen, Norway
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Pal G. Larsson
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Oslo University Hospital, 0372Oslo, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA94720
- Department of Psychology, UC Berkeley, Berkeley, CA94720
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, 0373Oslo, Norway
| | - Randolph Helfrich
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, 72076Tübingen, Germany
| |
Collapse
|
18
|
van Schalkwijk FJ, Weber J, Hahn MA, Lendner JD, Inostroza M, Lin JJ, Helfrich RF. An evolutionary conserved division-of-labor between archicortical and neocortical ripples organizes information transfer during sleep. Prog Neurobiol 2023:102485. [PMID: 37353109 DOI: 10.1016/j.pneurobio.2023.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Systems-level memory consolidation during sleep depends on the temporally precise interplay between cardinal sleep oscillations. Specifically, hippocampal ripples constitute a key substrate of the hippocampal-neocortical dialogue underlying memory formation. Recently, it became evident that ripples are not unique to archicortex, but constitute a wide-spread neocortical phenomenon. To date, little is known about the morphological similarities between archi- and neocortical ripples. Moreover, it remains undetermined if neocortical ripples fulfill distinct functional roles. Leveraging intracranial recordings from the human medial temporal lobe (MTL) and neocortex during sleep, our results reveal region-specific functional specializations, albeit a near-uniform morphology. While MTL ripples synchronize the memory network to trigger directional MTL-to-neocortical information flow, neocortical ripples reduce information flow to minimize interference. At the population level, MTL ripples confined population dynamics to a low-dimensional subspace, while neocortical ripples diversified the population response; thus, constituting an effective mechanism to functionally uncouple the MTL-neocortical network. Critically, we replicated the key findings in rodents, where the same division-of-labor between archi- and neocortical ripples was evident. In sum, these results uncover an evolutionary preserved mechanism where the precisely coordinated interplay between MTL and neocortical ripples temporally segregates MTL information transfer from subsequent neocortical processing during sleep.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Jan Weber
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Germany.
| | - Michael A Hahn
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| | - Janna D Lendner
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tübingen; Hoppe-Seyler-Str 3, 72076 Tübingen, Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Jack J Lin
- Department of Neurology, University of California, Davis, 4860 Y St., Sacramento, CA 95817, USA; The Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA.
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Otfried-Müller Str. 27, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
20
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528325. [PMID: 36824850 PMCID: PMC9949043 DOI: 10.1101/2023.02.13.528325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger movements or speaking words aloud. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
|