1
|
Chen M, Wang X, Li Y, Gao D, Ma Y, Ma T, Zhang Y, Chen L, Liu J, Ma Q, Cui M, Wang X, Guo T, Yuan W, Dong Y, Ma J. Identifying joint association between body fat distribution with high blood pressure among 7 ∼ 17 years using the BKMR model: findings from a cross-sectional study in China. BMC Public Health 2025; 25:14. [PMID: 39748370 PMCID: PMC11697894 DOI: 10.1186/s12889-024-20702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND To investigate the joint associations between various body fat distribution parameters and high blood pressure (HBP) using the Bayesian Kernel Machine Regression (BKMR) model in school-aged children. METHODS A diverse sample of 7 ∼ 17 years old (N = 1423; 50.25% boys) was recruited for this study. Fat distribution parameters for multiple body parts, including trunk, legs, android region, and gynoid region fat percentage were measured. HBP was defined as either systolic or diastolic blood pressure exceeded age-, sex- and height-specific 95th percentiles. The chi-square test was utilized to compare differences between groups. The BKMR model was employed to analyze the joint effects of body fat indicators on HBP while accounting for potential confounders. Weighted Quantile Sum (WQS) model was used to characterize the relative weights of each body fat distribution parameter for HBP. Additionally, stratified analyses were performed by sexes and overweight/non overweight groups. RESULTS HBP prevalence was 46.86% and 35.10% for overweight and obese (OB) boys and girls, and was 17.96% and 17.28% for non-overweight and obese (non-OB) boys and girls, respectively. Increased fat percentages of trunk, android, and gynoid parts are associated with a higher risk of HBP, while increased fat percentage of the leg was associated with lower HBP risk. Android fat percentage contributed the most HBP risk in OB boys (weight = 0.34), OB girls (weight = 0.39), and non-OB girls (weight = 0.56). Leg fat percentage had significant protective effect on HBP for non-OB boys (weight=-0.22) and OB boys (weight=-0.44), while gynoid fat percentage had significant protective effect for OB girls (weight=-0.27). CONCLUSIONS Fat distribution of various body parts have inconsistent roles and directions in their association with HBP risk in children of different sex and weight status. We recommend that children of different sexes and weight statuses be provided with body-part-specific exercise recommendations for optimal chronic disease prevention and control benefits.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xijie Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China.
- Institute for Healthy China, Tsinghua University, Beijing, China.
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Di Gao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University and Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
2
|
Mihaly E, Chellu N, Iyer SR, Su EY, Altamirano DE, Dias ST, Grayson WL. Neuromuscular Regeneration of Volumetric Muscle Loss Injury in Response to Agrin-Functionalized Tissue Engineered Muscle Grafts and Rehabilitative Exercise. Adv Healthc Mater 2024:e2403028. [PMID: 39523723 DOI: 10.1002/adhm.202403028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Neuromuscular deficits compound the loss of contractile tissue in volumetric muscle loss (VML). Two avenues for promoting recovery are neuromuscular junction (NMJ)-promoting substrates (e.g., agrin) and endurance exercise. Although mechanical stimulation enhances agrin-induced NMJ formation, the two modalities have yet to be evaluated combinatorially. It is hypothesized that the implantation of human myogenic progenitor-seeded tissue-engineered muscle grafts (hTEMGs) in combination with agrin treatment and/or exercise will enhance neuromuscular recovery after VML. The hTEMGs alone transplant into VML defects promote significant regeneration with minimal scarring. A sex-appropriate, low-intensity continuous running exercise paradigm increases acetylcholine receptor (AChR) cluster density in male mice twofold relative to hTEMG alone after 7 weeks of treadmill training (p < 0.05). To further promote neuromuscular recovery, agrin is incorporated into the scaffolds via covalent tethering. In vitro, agrin increases the proliferation of hMPs, and trends toward greater myogenic maturity and AChR clustering. Upon transplantation, both hTEMGs + agrin and hTEMGs + exercise induce near 100% recovery of muscle mass and increase twitch and tetanic force output (p > 0.05). However, agrin treatment in combination with exercise produces no additional benefit. These data highlight the unprecedented regenerative potential of using hTEMGs together with either agrin or exercise supplementation to treat VML injuries.
Collapse
Affiliation(s)
- Eszter Mihaly
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Neha Chellu
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shama R Iyer
- School of Science, Mathematics & Engineering, Marymount University, Arlington, VA, 22207, USA
| | - Eileen Y Su
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dallas E Altamirano
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Shaquielle T Dias
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, 21231, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Materials Science & Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical & Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD, 21218, USA
| |
Collapse
|
3
|
Osmancevic A, Allison M, Miljkovic I, Vella CA, Ouyang P, Trimpou P, Daka B. Levels of Sex Hormones and Abdominal Muscle Composition in Men from The Multi-Ethnic Study of Atherosclerosis. Sci Rep 2024; 14:16114. [PMID: 38997435 PMCID: PMC11245501 DOI: 10.1038/s41598-024-66948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Information on the associations of testosterone levels with abdominal muscle volume and density in men is limited, while the role of estradiol and SHBG on these muscle characteristics are unclear. Therefore, this study aimed to investigate the association between fasting serum sex hormones and CT-derived abdominal muscle area and radiodensity in adult men. Conducted as a cross sectional observational study using data from the Multi-Ethnic Study of Atherosclerosis, our analyses focused on a community-based sample of 907 men aged 45-84 years, with 878 men having complete data. CT scans of the abdomen were interrogated for muscle characteristics, and multivariable linear regressions were used to test the associations. After adjustment for relevant factors, higher levels of both total testosterone and estradiol were associated with higher abdominal muscle area (1.74, 0.1-3.4, and 1.84, 0.4-3.3, respectively). In the final analyses, levels of total testosterone showed a positive association, while an inverse relationship was observed for SHBG with abdominal muscle radiodensity (0.3, 0.0-0.6, and - 0.33, - 0.6 to - 0.1, respectively). Our results indicate a complex association between sex hormones and abdominal muscle characteristics in men. Specifically, total testosterone and estradiol were associated with abdominal muscle area, while only total testosterone was associated with muscle radiodensity and SHBG was inversely associated with muscle radiodensity.Clinical Trial: NCT00005487.
Collapse
Grants
- 75N92020D00005 NHLBI NIH HHS
- N01HC95160 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 NCATS NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- ALFGBG-966255 VGR Regional Research and Development Council Grants
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 NHLBI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- The Local Research and Development Council Göteborg och Södra Bohuslän
- National Heart, Lung, and Blood Institute
- National Center for Advancing Translational Sciences
- University of Gothenburg
Collapse
Affiliation(s)
- Amar Osmancevic
- General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Matthew Allison
- Division of Preventive Medicine, School of Medicine, UC San Diego, San Diego, CA, USA
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chantal A Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID, USA
| | - Pamela Ouyang
- Institute for Clinical and Translational Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Penelope Trimpou
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bledar Daka
- General Practice / Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Osmancevic A, Allison M, Miljkovic I, Vella CA, Ouyang P, Trimpou P, Daka B. Sex Hormones and Abdominal Muscle Area and Radiodensity in Men: The Multi-Ethnic Study of Atherosclerosis. RESEARCH SQUARE 2024:rs.3.rs-3909259. [PMID: 38410430 PMCID: PMC10896404 DOI: 10.21203/rs.3.rs-3909259/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Information on the associations of testosterone levels with abdominal muscle volume and quality in men is limited, while the role of estradiol and SHBG on these muscle characteristics are unclear. To investigate the association between fasting serum sex hormones and CT-derived abdominal muscle area and radiodensity in adult men. Cross sectional observational study using data from the Multi-Ethnic Study of Atherosclerosis. A community-based sample of 907 men aged 45-84 years; 878 men with complete data were included in the analysis. CT scans of the abdomen were interrogated for muscle characteristics. Multivariable linear regressions were used to test the associations. After adjustment, higher levels of both total testosterone and estradiol were associated with higher abdominal muscle area (1.79, 0.1-3.4, & 1.79, 0.4-3.2, respectively). In the final analyses, levels of total testosterone showed a positive association, while an inverse relationship was observed for SHBG with abdominal muscle radiodensity (0.3, 0.0-0.6, & -0.34, -0.6 - -0.1, respectively). Our results indicate a complex association between sex hormones and abdominal muscle characteristics in men. Specifically, total testosterone and estradiol were associated with abdominal muscle area, while only total testosterone was associated with muscle radiodensity and SHBG was inversely associated with muscle radiodensity.
Collapse
|
5
|
Zhou M, Tamburini I, Van C, Molendijk J, Nguyen CM, Chang IYY, Johnson C, Velez LM, Cheon Y, Yeo R, Bae H, Le J, Larson N, Pulido R, Nascimento-Filho CHV, Jang C, Marazzi I, Justice J, Pannunzio N, Hevener AL, Sparks L, Kershaw EE, Nicholas D, Parker BL, Masri S, Seldin MM. Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues. eLife 2024; 12:RP88863. [PMID: 38224289 PMCID: PMC10945578 DOI: 10.7554/elife.88863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ian Tamburini
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Cassandra Van
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - Christy M Nguyen
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | | | - Casey Johnson
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Leandro M Velez
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Youngseo Cheon
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Reichelle Yeo
- Translational Research Institute, AdventHealthOrlandoUnited States
| | - Hosung Bae
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Johnny Le
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Natalie Larson
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ron Pulido
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Carlos HV Nascimento-Filho
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Cholsoon Jang
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ivan Marazzi
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Jamie Justice
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC)Los AngelesUnited States
| | - Nicholas Pannunzio
- Divison of Hematology/Oncology, Department of Medicine, UC Irvine HealthIrvineUnited States
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine at UCLALos AngelesUnited States
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Lauren Sparks
- Translational Research Institute, AdventHealthOrlandoUnited States
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of PittsburgPittsburghUnited States
| | - Dequina Nicholas
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California IrvineIrvineUnited States
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - Selma Masri
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| |
Collapse
|
6
|
Chen F, Sarver DC, Saqib M, Zhou M, Aja S, Seldin MM, Wong GW. CTRP13 ablation improves systemic glucose and lipid metabolism. Mol Metab 2023; 78:101824. [PMID: 37844630 PMCID: PMC10598410 DOI: 10.1016/j.molmet.2023.101824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Tissue crosstalk mediated by secreted hormones underlies the integrative control of metabolism. We previously showed that CTRP13/C1QL3, a secreted protein of the C1q family, can improve glucose metabolism and insulin action in vitro and reduce food intake and body weight in mice when centrally delivered. A role for CTRP13 in regulating insulin secretion in isolated islets has also been demonstrated. It remains unclear, however, whether the effects of CTRP13 on cultured cells and in mice reflect the physiological function of the protein. Here, we use a loss-of-function mouse model to address whether CTRP13 is required for metabolic homeostasis. METHODS WT and Ctrp13 knockout (KO) mice fed a standard chow or a high-fat diet were subjected to comprehensive metabolic phenotyping. Transcriptomic analyses were carried out on visceral and subcutaneous fat, liver, and skeletal muscle to identify pathways altered by CTRP13 deficiency. RNA-seq data was further integrated with the Metabolic Syndrome in Man (METSIM) cohort data. Adjusted regression analysis was used to demonstrate that genetic variation of CTRP13 expression accounts for a significant proportion of variance between differentially expressed genes (DEGs) in adipose tissue and metabolic traits in humans. RESULTS Contrary to expectation, chow-fed Ctrp13-KO male mice had elevated physical activity, lower body weight, and improved lipid handling. On a high-fat diet (HFD), Ctrp13-KO mice of either sex were consistently more active and leaner. Loss of CTRP13 reduced hepatic glucose output and improved glucose tolerance, insulin sensitivity, and triglyceride clearance, though with notable sex differences. Consistent with the lean phenotype, transcriptomic analyses revealed a lower inflammatory profile in visceral fat and liver. Reduced hepatic steatosis was correlated with the suppression of lipid synthesis and enhanced lipid catabolism gene expression. Visceral fat had the largest number of DEGs and mediation analyses on the human orthologs of the DEGs suggested the potential causal contribution of CTRP13 to human metabolic syndrome. CONCLUSIONS Our results suggest that CTRP13 is a negative metabolic regulator, and its deficiency improves systemic metabolic profiles. Our data also suggest the reduction in circulating human CTRP13 levels seen in obesity and diabetes may reflect a compensatory physiologic response to counteract insulin resistance.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also show sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
McNeish BL, Miljkovic I, Zhu X, Cawthon PM, Newman AB, Goodpaster B, Yaffe K, Rosano C. Associations Between Circulating Levels of Myostatin and Plasma β-Amyloid 42/40 in a Biracial Cohort of Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:2077-2082. [PMID: 37220890 PMCID: PMC10613004 DOI: 10.1093/gerona/glad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Myostatin, a cytokine produced by skeletal muscle, may influence Alzheimer's disease (AD) pathogenesis, but sparse evidence exists in humans. We assessed the association between circulating levels of myostatin at Year 1 and plasma levels of β-amyloid 42/40 at Year 2, a marker of AD pathology, in a biracial cohort of older adults. METHODS We studied 403 community-dwelling older adults enrolled in the Health, Aging and Body Composition Study from Memphis, Tennessee, and Pittsburgh, PA. Mean age was 73.8 ± 3 years; 54% were female; and 52% were Black. Serum myostatin levels were measured at Year 1, plasma β-amyloid 42/40 levels in Year 2 (higher ratio indicating lower amyloid load). Multivariable linear regression analyses tested the association of serum myostatin with plasma levels of β-amyloid 42/40 adjusted for computed-tomography-derived thigh muscle cross-sectional area, demographics, APOe4 allele, and risk factors for dementia. We tested for 2-way.interactions between myostatin and race or sex; results were stratified by race and sex. RESULTS In multivariable models, myostatin was positively associated with plasma levels of β-amyloid 42/40 (standardized regression coefficient: 0.145, p = .004). Results were significant for white men and women (0.279, p = .009, and 0.221, p = .035, respectively) but not for Black men or women; interactions by race and gender were not statistically significant. CONCLUSIONS Higher serum myostatin was associated with lower amyloid burden, independently of APOe4 alleles, muscle area and other established risk factors for dementia. The role of myostatin in AD pathogenesis and the influence of race should be further investigated.
Collapse
Affiliation(s)
- Brendan L McNeish
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Iva Miljkovic
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaonan Zhu
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- VA Medical Center, San Francisco, San Francisco, California, USA
| | - Caterina Rosano
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Zhou M, Tamburini IJ, Van C, Molendijk J, Nguyen CM, Chang IYY, Johnson C, Velez LM, Cheon Y, Yeo RX, Bae H, Le J, Larson N, Pulido R, Filho C, Jang C, Marazzi I, Justice JN, Pannunzio N, Hevener A, Sparks LM, Kershaw EE, Nicholas D, Parker B, Masri S, Seldin M. Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540142. [PMID: 37214953 PMCID: PMC10197628 DOI: 10.1101/2023.05.10.540142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Abstract/IntroductionInter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Beginning with the discovery of insulin over a century ago, characterization of molecules responsible for signal between tissues has required careful and elegant experimentation where these observations have been integral to deciphering physiology and disease. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. For example, physiologic dissection of the actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and glucagon-like peptide 1 (GLP1) have yielded among the most promising therapeutics to treat cardiovascular disease and obesity, respectively1–4. A major obstacle in the characterization of such soluble factors is that defining their tissues and pathways of action requires extensive experimental testing in cells and animal models. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by “brute-force” surveys of all genes within RNA-sequencing measures across tissues within a population5–9. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or HFHS diet. Variation of genes such asFGF21, ADIPOQ, GCGandIL6showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liverPCSK9) as well as genes encoding enzymes producing metabolites (adiposePNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource asGene-DerivedCorrelationsAcrossTissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways and network architectures across metabolic organs.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ian J. Tamburini
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cassandra Van
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Christy M Nguyen
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | | | - Casey Johnson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Leandro M. Velez
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Youngseo Cheon
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Reichelle X. Yeo
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Hosung Bae
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Johnny Le
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Natalie Larson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ron Pulido
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Carlos Filho
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jamie N. Justice
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA
| | - Nicholas Pannunzio
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Andrea Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Erin E. Kershaw
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dequina Nicholas
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Selma Masri
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
| |
Collapse
|
11
|
Interplay between Exercise, Circadian Rhythm, and Cardiac Metabolism and Remodeling. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Massa MG, Scott RL, Cara AL, Cortes LR, Sandoval NP, Park JW, Ali S, Velez LM, Tesfaye B, Reue K, van Veen JE, Seldin M, Correa SM. Feeding Neurons Integrate Metabolic and Reproductive States in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525595. [PMID: 36747631 PMCID: PMC9900829 DOI: 10.1101/2023.01.25.525595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trade-offs between metabolic and reproductive processes are important for survival, particularly in mammals that gestate their young. Puberty and reproduction, as energetically taxing life stages, are often gated by metabolic availability in animals with ovaries. How the nervous system coordinates these trade-offs is an active area of study. We identify somatostatin neurons of the tuberal nucleus (TNSST) as a node of the feeding circuit that alters feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of TNSST neurons increased food intake across sexes, selective ablation decreased food intake only in female mice during proestrus. Interestingly, this ablation effect was only apparent in animals with a low body mass. Fat transplantation and bioinformatics analysis of TNSST neuronal transcriptomes revealed white adipose as a key modulator of the effects of TNSST neurons on food intake. Together, these studies point to a mechanism whereby TNSST hypothalamic neurons modulate feeding by responding to varying levels of circulating estrogens differentially based on energy stores. This research provides insight into how neural circuits integrate reproductive and metabolic signals, and illustrates how gonadal steroid modulation of neuronal circuits can be context-dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Rachel L Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Alexandra L Cara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Laura R Cortes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Norma P Sandoval
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Sahara Ali
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Leandro M Velez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| |
Collapse
|
14
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|