1
|
Kring EK, Stallknecht DE, D'Angelo GJ, Kohl MT, Bahnson C, Cleveland CA, Salvador LCM, Ruder MG. Patterns of Hemorrhagic Disease in White-Tailed Deer (Odocoileus virginianus) in the Great Plains of the USA, 1982-2020. J Wildl Dis 2024; 60:670-682. [PMID: 38722548 DOI: 10.7589/jwd-d-23-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/13/2024] [Indexed: 07/09/2024]
Abstract
Hemorrhagic disease (HD) of deer is caused by epizootic hemorrhagic disease virus (EHDV) or bluetongue virus (BTV) and is considered one of the most important viral diseases of white-tailed deer (Odocoileus virginianus). Despite evidence of changing patterns of HD in the northeastern and upper midwestern US, the historical and current patterns of HD in the Great Plains remain poorly described. We used results from an annual survey documenting HD mortality to characterize historic and current patterns of HD in the northern and central Great Plains (North Dakota, South Dakota, Nebraska, Kansas, and Oklahoma), US, between 1982 and 2020. Further, we assessed temporal change using linear regression to determine change in annual reporting intensity (percentage of counties in a state with reported HD) and change in reporting frequency (the number of years a county or state reported HD) during each decade between 1982 and 2020. Across the 38-yr study period, HD reports expanded northeast across latitude and longitude. Intensity of HD reports significantly increased during this period for three (North Dakota, South Dakota, Kansas) of five states examined. Frequency of reports also increased for all five states. Such changes in northern latitudes might lead to increased deer mortality in regions where HD epizootics have been historically less frequent. Understanding how patterns of HD are changing on the landscape is important when considering future deer management in the face of other mortality factors.
Collapse
Affiliation(s)
- Emma K Kring
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
- Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, Georgia 30602, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
| | - Gino J D'Angelo
- Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, Georgia 30602, USA
| | - Michel T Kohl
- Warnell School of Forestry and Natural Resources, 180 E. Green St., University of Georgia, Athens, Georgia 30602, USA
| | - Charlie Bahnson
- North Dakota Game and Fish Department, 100 N. Bismarck Expressway, Bismarck, North Dakota 58501, USA
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
| | - Liliana C M Salvador
- Department of Infectious Diseases, College of Veterinary Medicine, Institute of Bioinformatics, 501 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
- Current address: School of Animal and Comparative Biomedical Sciences, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1117 E. Lowell St., Room 222, Tucson, Arizona 85721, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
2
|
Becker M, Gentry G, Husseneder C, Foil L. Seven-year prospective study on yearly incidence of Orbivirus infection of captive white-tailed deer and potential Culicoides vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:465-472. [PMID: 38297491 DOI: 10.1093/jme/tjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are arthropod-borne viruses that are transmitted by biting midges in the genus Culicoides (Diptera: Ceratopogonidae) and can cause hemorrhagic disease in certain ruminants. The objectives of this study were to measure the incidence of BTV and EHDV infections in captive white-tailed deer herd as well as tissues and corresponding presence of Culicoides midges at a location near Clinton, LA. During a 7-yr study with yearly outbreaks of hemorrhagic disease in the deer herd, 15 species of Culicoides were captured using Centers for Disease Control (CDC) black light traps. Reverse transcriptase quantitative polymerase chain reaction (PCR) was performed to screen for BTV and EHDV in pools of midges and tissues of deer. From 2012 to 2018, 1,711 pools of midges representing 24,859 specimens were tested, and specimens from 5 of the 15 collected species (Culicoides debilipalpis, Culicoides stellifer, Culicoides venustus, Culicoides haematopotus, and Culicoides crepuscularis) were found to be PCR positive for BTV and EHDV. Most of the BTV-positive pools of biting midges were from specimens of C. debilipalpis and C. stellifer, and most of the EHDV-positive pools were from specimens of C. venustus and C. stellifer. During the 7-yr period, 112 white-tailed deer that died at the study location were PCR positive for BTV or EHDV: detected BTV serotypes were 10 and 12 and EHDV serotypes were 1, 2, and 6. There was a significant increase in BTV/EHDV antibody prevalence in white-tailed deer during the study; antibody-positive rates increased from 15% to 78% in the deer herd of approximately 100 animals.
Collapse
Affiliation(s)
- Michael Becker
- Department of Entomology, Louisiana State University Agricultural Center, Agricultural Experiment Station, Baton Rouge, LA, USA
| | - Glen Gentry
- Louisiana State University Agricultural Center, Agricultural Experiment Station, Bob R Jones Idlewild Research Station, Clinton, LA, USA
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Agricultural Experiment Station, Baton Rouge, LA, USA
| | - Lane Foil
- Department of Entomology, Louisiana State University Agricultural Center, Agricultural Experiment Station, Baton Rouge, LA, USA
- Louisiana State University Agricultural Center, Agricultural Experiment Station, Bob R Jones Idlewild Research Station, Clinton, LA, USA
| |
Collapse
|
3
|
Torii EH, Wünschmann A, Torchetti MK, Koster L, van Geelen A, Atchison R, Rivas A. Outbreak of epizootic hemorrhagic disease in captive reindeer ( Rangifer tarandus). Vet Pathol 2024; 61:298-302. [PMID: 37650249 DOI: 10.1177/03009858231196797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In September 2020, an outbreak of epizootic hemorrhagic disease occurred in captive reindeer (Rangifer tarandus) and was associated with neurological signs and mortality. Four reindeer died or were euthanized after acute illness over a 12-day period. Affected reindeer displayed abnormal behavior, neurologic signs, lethargy, and/or lameness. The most consistent gross finding was dark red streaks throughout the adrenal gland cortices (4/4). One animal had acute hemorrhage involving the subcutis and skeletal muscles over the ventrolateral body wall and back, and abomasal serosa. Histologically, the most common lesions were adrenal gland cortical hemorrhage (4/4) with necrosis (3/4) and lymphoplasmacytic meningoencephalitis with gliosis, glial nodules, satellitosis, and nonsuppurative perivascular cuffing (4/4). The brain lesions were most frequent in the gray matter of the cerebrum, hippocampus, and thalamus but also involved the cerebellum and brainstem. Epizootic hemorrhagic disease virus serotype 6 was detected through PCR and sequencing of the spleen in all cases.
Collapse
|
4
|
He Y, Meng J, Li N, Li Z, Wang D, Kou M, Yang Z, Li Y, Zhang L, Wang J. Isolation of Epizootic Hemorrhagic Disease Virus Serotype 10 from Culicoides tainanus and Associated Infections in Livestock in Yunnan, China. Viruses 2024; 16:175. [PMID: 38399951 PMCID: PMC10892452 DOI: 10.3390/v16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.
Collapse
Affiliation(s)
- Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhao Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Dongmei Wang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Meiling Kou
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Yunhui Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Laxi Zhang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| |
Collapse
|
5
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
6
|
Clarke LL, Mead DG, Ruder MG, Howerth EW, Stallknecht D. North American Arboviruses and White-Tailed Deer ( Odocoileus virginianus): Associated Diseases and Role in Transmission. Vector Borne Zoonotic Dis 2022; 22:425-442. [PMID: 35867036 DOI: 10.1089/vbz.2022.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Arboviral disease is of increasing concern to human and animal health professionals as emerging and re-emerging arboviruses are more frequently recognized. Wildlife species are known to play a role in the transmission and maintenance of arboviruses and infections can result in morbidity and mortality in wildlife hosts. Materials and Methods: In this review, we detail existing evidence of white-tailed deer (Odocoileus virginianus) as an important host to a diverse collection of arboviruses and evaluate the utility of this species as a resource to better understand the epidemiology of related viral diseases. Results: Relevant veterinary and zoonotic viral pathogens endemic to North America include epizootic hemorrhagic disease virus, bluetongue virus, orthobunyaviruses, vesicular stomatitis virus, Eastern equine encephalitis virus, West Nile virus, and Powassan virus. Exotic viral pathogens that may infect white-tailed deer are also identified with an emphasis on zoonotic disease risks. The utility of this species is attributed to the high degree of contact with humans and domestic livestock and evidence of preferential feeding by various insect vectors. Conclusions: There is mounting evidence that white-tailed deer are a useful, widely available source of information regarding arboviral circulation, and that surveillance and monitoring of deer populations would be of value to the understanding of certain viral transmission dynamics, with implications for improving human and domestic animal health.
Collapse
Affiliation(s)
- Lorelei L Clarke
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
8
|
Rodrigues TCS, Viadanna PHO, Subramaniam K, Hawkins IK, Jeon AB, Loeb JC, Krauer JMC, Lednicky JA, Wisely SM, Waltzek TB. Characterization of a Novel Reassortant Epizootic Hemorrhagic Disease Virus Serotype 6 Strain Isolated from Diseased White-Tailed Deer ( Odocoileus virginianus) on a Florida Farm. Viruses 2022; 14:1012. [PMID: 35632753 PMCID: PMC9146129 DOI: 10.3390/v14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We report an outbreak of a novel reassortant epizootic hemorrhagic disease virus serotype 6 (EHDV-6) in white-tailed deer (WTD) on a Florida farm in 2019. At necropsy, most animals exhibited hemorrhagic lesions in the lung and heart, and congestion in the lung, liver, and spleen. Histopathology revealed multi-organ hemorrhage and congestion, and renal tubular necrosis. Tissues were screened by RT-qPCR and all animals tested positive for EHDV. Tissues were processed for virus isolation and next-generation sequencing was performed on cDNA libraries generated from the RNA extracts of cultures displaying cytopathic effects. Six isolates yielded nearly identical complete genome sequences of a novel U.S. EHDV-6 strain. Genetic and phylogenetic analyses revealed the novel strain to be most closely related to a reassortant EHDV-6 strain isolated from cattle in Trinidad and both strains received segment 4 from an Australian EHDV-2 strain. The novel U.S. EHDV-6 strain is unique in that it acquired segment 8 from an Australian EHDV-8 strain. An RNAscope® in situ hybridization assay was developed against the novel U.S. EHDV-6 strain and labeling was detected within lesions of the heart, kidney, liver, and lung. These data support the novel U.S. reassortant EHDV-6 strain as the cause of disease in the farmed WTD.
Collapse
Affiliation(s)
- Thaís C. S. Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Pedro H. O. Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Ian K. Hawkins
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Albert B. Jeon
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Juan M. C. Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| |
Collapse
|
9
|
Dorak SJ, Varga C, Ruder MG, Gronemeyer P, Rivera NA, Dufford DR, Skinner DJ, Roca AL, Novakofski J, Mateus-Pinilla NE. Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer. Sci Rep 2022; 12:6888. [PMID: 35477968 PMCID: PMC9046210 DOI: 10.1038/s41598-022-10694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) and bluetongue (BT) are vector-borne viral diseases that affect wild and domestic ruminants. Clinical signs of EHD and BT are similar; thus, the syndrome is referred to as hemorrhagic disease (HD). Syndromic surveillance and virus detection in North America reveal a northern expansion of HD. High mortalities at northern latitudes suggest recent incursions of HD viruses into northern geographic areas. We evaluated the occurrence of HD in wild Illinois white-tailed deer from 1982 to 2019. Our retrospective space-time analysis identified high-rate clusters of HD cases from 2006 to 2019. The pattern of northward expansion indicates changes in virus-host-vector interactions. Serological evidence from harvested deer revealed prior infection with BTV. However, BTV was not detected from virus isolation in dead deer sampled during outbreaks. Our findings suggest the value of capturing the precise geographic location of outbreaks, the importance of virus isolation to confirm the cause of an outbreak, and the importance of expanding HD surveillance to hunter-harvested wild white-tailed deer. Similarly, it assists in predicting future outbreaks, allowing for targeted disease and vector surveillance, helping wildlife agencies communicate with the public the cause of mortality events and viral hemorrhagic disease outcomes at local and regional scales.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Nelda A Rivera
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Douglas R Dufford
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Daniel J Skinner
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jan Novakofski
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses 2021; 13:v13112268. [PMID: 34835074 PMCID: PMC8618044 DOI: 10.3390/v13112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.
Collapse
|
11
|
A Mortality-Based Description of EHDV and BTV Prevalence in Farmed White-Tailed Deer ( Odocoileus virginianus) in Florida, USA. Viruses 2021; 13:v13081443. [PMID: 34452309 PMCID: PMC8402819 DOI: 10.3390/v13081443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
Hemorrhagic disease (HD) caused by bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) is the most important viral disease of farmed and wild white-tailed deer (WTD; Odocoileus virginianus) and can cause substantial mortality in susceptible hosts. Captive cervid farming is an emerging industry in Florida, an HD-enzootic region. Morbidity and mortality due to HD are major concerns among deer farmers, but the impact of HD on Florida’s cervid farming industry is unknown. Our primary objective was to determine the prevalence of epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) among WTD submitted to the University of Florida Institute of Food and Agricultural Sciences Cervidae Health Research Initiative (CHeRI) for post-mortem diagnostics. Our secondary objectives were to identify the predominant circulating EHDV serotypes during each sampling year and to determine the age class with the greatest proportion of EHDV- and BTV-positive post-mortem specimens. From 2016 to 2020, spleen samples from 539 farmed WTD with unexplained mortality were tested for the presence of EHDV and BTV by RT-qPCR. Overall, the prevalence of EHDV, BTV, or EHDV/BTV coinfection was 26%, 16%, and 10%, respectively, and 44% of deer (237/539) were diagnosed with HD by RT-qPCR. The predominant circulating EHDV serotype varied by year. Overall, EHDV-2 was the most commonly identified serotype (55% of PCR-positive cases), and EHDV-1 was the least frequently identified serotype (16% of PCR-positive cases). The greatest proportion of EHDV/BTV positives among mortality cases was observed in young WTD aged 3–6 months (50%–82% positive). There was a significant difference in the prevalence of EHDV/BTV by age when comparing specimens from WTD over 1 year old (p = 0.029, n = 527). Among these samples, the number of reported mortalities and the prevalence of EHDV/BTV were highest in yearling animals (56%). These data provide the first estimate of EHDV and BTV prevalence and virus serotypes among farmed WTD in Florida, identify the WTD age groups with the greatest proportions of EHDV- and BTV-positive specimens, and suggest that HD caused by these two viruses may be a major source of mortality challenging the captive cervid farming industry in Florida.
Collapse
|
12
|
Rivera NA, Varga C, Ruder MG, Dorak SJ, Roca AL, Novakofski JE, Mateus-Pinilla NE. Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife-Livestock Interface. Pathogens 2021; 10:915. [PMID: 34451380 PMCID: PMC8402076 DOI: 10.3390/pathogens10080915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue (BT) and epizootic hemorrhagic disease (EHD) cases have increased worldwide, causing significant economic loss to ruminant livestock production and detrimental effects to susceptible wildlife populations. In recent decades, hemorrhagic disease cases have been reported over expanding geographic areas in the United States. Effective BT and EHD prevention and control strategies for livestock and monitoring of these diseases in wildlife populations depend on an accurate understanding of the distribution of BT and EHD viruses in domestic and wild ruminants and their vectors, the Culicoides biting midges that transmit them. However, national maps showing the distribution of BT and EHD viruses and the presence of Culicoides vectors are incomplete or not available at all. Thus, efforts to accurately describe the potential risk of these viruses on ruminant populations are obstructed by the lack of systematic and routine surveillance of their hosts and vectors. In this review, we: (1) outline animal health impacts of BT and EHD in the USA; (2) describe current knowledge of the distribution and abundance of BT and EHD and their vectors in the USA; and (3) highlight the importance of disease (BT and EHD) and vector surveillance for ruminant populations.
Collapse
Affiliation(s)
- Nelda A. Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Sheena J. Dorak
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA;
| | - Jan E. Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| | - Nohra E. Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Shults P, Cohnstaedt LW, Adelman ZN, Brelsfoard C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasit Vectors 2021; 14:31. [PMID: 33413518 PMCID: PMC7788963 DOI: 10.1186/s13071-020-04524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.
Collapse
Affiliation(s)
- Phillip Shults
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA.
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Zach N Adelman
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA
| | | |
Collapse
|
14
|
Diseases of the hematologic, immunologic, and lymphatic systems (multisystem diseases). SHEEP, GOAT, AND CERVID MEDICINE 2021. [PMCID: PMC7169350 DOI: 10.1016/b978-0-323-62463-3.00025-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Jia B, Colling A, Stallknecht DE, Blehert D, Bingham J, Crossley B, Eagles D, Gardner IA. Validation of laboratory tests for infectious diseases in wild mammals: review and recommendations. J Vet Diagn Invest 2020; 32:776-792. [PMID: 32468923 DOI: 10.1177/1040638720920346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evaluation of the diagnostic sensitivity (DSe) and specificity (DSp) of tests for infectious diseases in wild animals is challenging, and some of the limitations may affect compliance with the OIE-recommended test validation pathway. We conducted a methodologic review of test validation studies for OIE-listed diseases in wild mammals published between 2008 and 2017 and focused on study design, statistical analysis, and reporting of results. Most published papers addressed Mycobacterium bovis infection in one or more wildlife species. Our review revealed limitations or missing information about sampled animals, identification criteria for positive and negative samples (case definition), representativeness of source and target populations, and species in the study, as well as information identifying animals sampled for calculations of DSe and DSp as naturally infected captive, free-ranging, or experimentally challenged animals. The deficiencies may have reflected omissions in reporting rather than design flaws, although lack of random sampling might have induced bias in estimates of DSe and DSp. We used case studies of validation of tests for hemorrhagic diseases in deer and white-nose syndrome in hibernating bats to demonstrate approaches for validation when new pathogen serotypes or genotypes are detected and diagnostic algorithms are changed, and how purposes of tests evolve together with the evolution of the pathogen after identification. We describe potential benefits of experimental challenge studies for obtaining DSe and DSp estimates, methods to maintain sample integrity, and Bayesian latent class models for statistical analysis. We make recommendations for improvements in future studies of detection test accuracy in wild mammals.
Collapse
Affiliation(s)
- Beibei Jia
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Axel Colling
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - David E Stallknecht
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - David Blehert
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - John Bingham
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Beate Crossley
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Debbie Eagles
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| | - Ian A Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada (Jia, Gardner).,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (Colling, Bingham, Eagles).,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA (Stallknecht).,U.S. Geological Survey, National Wildlife Health Center, Madison, WI (Blehert).,California Animal Health and Food Safety Laboratory, University of California-Davis, Davis, CA (Crossley)
| |
Collapse
|
16
|
Evaluation of A Baculovirus-Expressed VP2 Subunit Vaccine for the Protection of White-Tailed Deer ( Odocoileus virginianus) from Epizootic Hemorrhagic Disease. Vaccines (Basel) 2020; 8:vaccines8010059. [PMID: 32023812 PMCID: PMC7157196 DOI: 10.3390/vaccines8010059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is an arthropod-transmitted RNA virus and the causative agent of epizootic hemorrhagic disease (EHD) in wild and domestic ruminants. In North America, white-tailed deer (WTD) experience the highest EHD-related morbidity and mortality, although clinical disease is reported in cattle during severe epizootics. No commercially licensed EHDV vaccine is available in North America. The objective of this study was to develop and evaluate a subunit vaccine candidate to control EHD in WTD. Recombinant VP2 (rVP2) outer capsid proteins of EHDV serotypes 2 (EHDV-2) and 6 (EHDV-6) were produced in a baculovirus-expression system. Mice and cattle vaccinated with EHDV-2 or EHDV-6 rVP2 produced homologous virus-neutralizing antibodies. In an immunogenicity/efficacy study, captive-bred WTD received 2 doses of EHDV-2 rVP2 or sham vaccine, then were challenged with wild-type EHDV-2 at 30 d post vaccination. None of the rVP2-vaccinated deer developed clinical disease, no viral RNA was detected in their blood or tissues (liver, lung, spleen, kidney), and no EHDV-induced lesions were observed. Sham-vaccinated deer developed clinical disease with viremia and typical EHD vascular lesions. Here, we demonstrate a rVP2 subunit vaccine that can provide protective immunity from EHDV infection and which may serve as an effective tool in preventing clinical EHD and reducing virus transmission.
Collapse
|
17
|
Antibodies to Epizootic Hemorrhagic Disease Virus (EHDV) in Farmed and Wild Florida White-Tailed Deer (Odocoileus virginianus). J Wildl Dis 2020. [DOI: 10.7589/2019-02-034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Rajko-Nenow P, Brown-Joseph T, Tennakoon C, Flannery J, Oura CAL, Batten C. Detection of a novel reassortant epizootic hemorrhagic disease virus serotype 6 in cattle in Trinidad, West Indies, containing nine RNA segments derived from exotic EHDV strains with an Australian origin. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 74:103931. [PMID: 31238112 PMCID: PMC6857627 DOI: 10.1016/j.meegid.2019.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 12/01/2022]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted orbivirus that infects domestic and wild ruminants in many parts of the world. Of the eight proposed serotypes, only EHDV-1, 2 and 6 have been reported to be present in the Americas. Following the identification of a virulent EHD-6 reasssortant virus in the USA in 2007 (EHDV-6 Indiana), with outer coat protein segments derived from an Australian strain of EHDV and all remaining segments derived from a locally circulating EHDV-2 strain, questions have remained about the origin of the Australian parent strain and how it may have arrived in the USA. When EHDV-6 was identified in asymptomatic cattle imported into the Caribbean island of Trinidad in 2013, full genome sequencing was carried out to further characterise the virus. The EHDV-6 Trinidad was a reassortant virus, with 8 of its 10 segments, being derived from the same exotic Australian EHDV-6 strain as the VP2 and VP5 present in the EHDV-6 Indiana strain from the USA. Analyses of the two remaining segments revealed that segment 8 showed the highest nucleotide identity (90.4%) with a USA New Jersey strain of EHDV-1, whereas segment 4 had the highest nucleotide identity (96.5%) with an Australian EHDV-2 strain. This data strongly suggests that the Trinidad EHDV-6 has an Australian origin, receiving its segment 4 from a reassortment event with an EHDV-2 also from Australia. This reassortant virus likely came to the Americas, where it received its segment 8 from a locally-circulating (as yet unknown) EHDV strain. This virus then may have gained entry into the USA, where it further reassorted with a known locally-circulating EHDV-2, the resulting strain being EHDV-6 Indiana. This study therefore identifies, for the first time, the likely minor parent virus of the EHDV-6 currently circulating in the USA.
Collapse
Affiliation(s)
- Paulina Rajko-Nenow
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK.
| | - Tamiko Brown-Joseph
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Chandana Tennakoon
- Integrative Biology & Bioinformatics, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - John Flannery
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| | - Christopher A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Carrie Batten
- Non-vesicular reference laboratory, The Pirbright Institute, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
19
|
Wang L, Lanka S, Cassout D, Mateus-Pinilla NE, Li G, Wilson WC, Yoo D, Shelton P, Fredrickson RL. Inter-serotype reassortment among epizootic haemorrhagic disease viruses in the United States. Transbound Emerg Dis 2019; 66:1809-1820. [PMID: 31131970 DOI: 10.1111/tbed.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
First described in 1955 in New Jersey, epizootic haemorrhagic disease (EHD) causes a severe clinical disease in wild and domestic ruminants worldwide. Epizootic haemorrhagic disease outbreaks occur in deer populations each year from summer to late autumn. The etiological agent is EHD virus (EHDV) which is a double-stranded segmented icosahedral RNA virus. EHD virus utilizes point mutations and reassortment strategies to maintain viral fitness during infection. In 2018, EHDV serotype 2 was predominantly detected in deer in Illinois. Whole genome sequencing was conducted for two 2018 EHDV2 isolates (IL41747 and IL42218) and the sequence analyses indicated that IL42218 was a reassortant between different serotypes whereas IL41747 was a genetically stable strain. Our data suggest that multiple strains contribute to outbreaks each year.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Saraswathi Lanka
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Debbie Cassout
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - William C Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, Manhattan, Kansas
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources, Springfield, Illinois
| | - Richard L Fredrickson
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| |
Collapse
|
20
|
Transcriptome Response of Female Culicoides sonorensis Biting Midges (Diptera: Ceratopogonidae) to Early Infection with Epizootic Hemorrhagic Disease Virus (EHDV-2). Viruses 2019; 11:v11050473. [PMID: 31137627 PMCID: PMC6563219 DOI: 10.3390/v11050473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Female Culicoides sonorensis biting midges are vectors of epizootic hemorrhagic disease virus (EHDV), which causes morbidity and mortality in wild and domesticated ruminants. The aims in this study were to identify key changes in female midge transcriptome profiles occurring during early infection with EHDV-2. Midges were fed either negative control bloodmeals or bloodmeals containing EHDV-2 and transcriptomes were acquired at 36 h through deep sequencing. Reads were de novo assembled into a transcriptome comprised of 18,754 unigenes. Overall, there were 2401 differentially expressed unigenes and ~60% were downregulated in response to the virus (953 up; 1448 down). Downstream Gene Ontology enrichment, KEGG pathway mapping, and manual analyses were used to identify the effect of virus ingestion at both the gene and pathway levels. Downregulated unigenes were predominantly assigned to pathways related to cell/tissue structure and integrity (actin cytoskeleton, adherens junction, focal adhesion, hippo signaling), calcium signaling, eye morphogenesis and axon guidance. Unigenes attributed to sensory functions (especially vision), behavior, learning and memory were largely downregulated. Upregulated unigenes included those coding for innate immune processes, olfaction and photoreceptor pigments. Our results suggest that midges respond to virus infection as soon as 36 h post-ingestion, and that EHDV-2 may have a significant phenotypic effect on sensory and neural tissues.
Collapse
|
21
|
Schirtzinger EE, Jasperson DC, Ruder MG, Stallknecht DE, Chase CCL, Johnson DJ, Ostlund EN, Wilson WC. Evaluation of 2012 US EHDV-2 outbreak isolates for genetic determinants of cattle infection. J Gen Virol 2019; 100:556-567. [PMID: 30869580 DOI: 10.1099/jgv.0.001221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following a summer of severe drought and abnormally high temperatures, a major outbreak of EHDV occurred during 2012 in the USA. Although EHDV-1, -2 and -6 were isolated, EHDV-2 was the predominant virus serotype detected during the outbreak. In addition to large losses of white-tailed deer, the Midwest and northern Plains saw a significant amount of clinical disease in cattle. Phylogenetic analyses and sequence comparisons of newly sequenced whole genomes of 2012 EHDV-2 cattle isolates demonstrated that eight of ten EHDV-2 genomic segments show no genetic changes that separate the cattle outbreak sequences from other EHDV-2 isolates. Two segments, VP2 and VP6, did show several unique genetic changes specific to the 2012 cattle outbreak isolates, although the impact of the genetic changes on viral fitness is unknown. The placement of isolates from 2007 and 2011 as sister group to the outbreak isolates, and the similarity between cattle and deer isolates, point to environmental variables as having a greater influence on the severity of the 2012 EHDV outbreak than viral genetic changes.
Collapse
Affiliation(s)
- Erin E Schirtzinger
- 1United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Dane C Jasperson
- 1United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Mark G Ruder
- 1United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS 66502, USA
- 2Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - David E Stallknecht
- 2Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Christopher C L Chase
- 3Department of Veterinary and Biomedical Sciences, South Dakota State University, SAR 125, Box 2175, Brookings, SD 57007, USA
| | - Donna J Johnson
- 4United States Department of Agriculture, Animal-Plant Health Inspection Service, National Veterinary Service Laboratories, Diagnostic Virology Laboratory, PO Box 844, Ames, IA 50010, USA
| | - Eileen N Ostlund
- 4United States Department of Agriculture, Animal-Plant Health Inspection Service, National Veterinary Service Laboratories, Diagnostic Virology Laboratory, PO Box 844, Ames, IA 50010, USA
| | - William C Wilson
- 1United States Department of Agriculture, Agricultural Research Service, Arthropod-borne Animal Diseases Research Unit, 1515 College Avenue, Manhattan, KS 66502, USA
| |
Collapse
|
22
|
Vinueza RL, Cruz M, Bréard E, Viarouge C, Zanella G. Bluetongue virus and epizootic hemorrhagic disease virus survey in cattle of the Galapagos Islands. J Vet Diagn Invest 2019; 31:271-275. [PMID: 30661471 DOI: 10.1177/1040638718824630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) have both been reported in mainland Ecuador, but their occurrence was unknown in the Galapagos Islands, an Ecuadorian province. We aimed to detect BTV or EHDV in cattle from the 3 main cattle-producing Galapagos Islands at a between-herd design prevalence of 20% and a within-herd design prevalence of 15%. Blood samples were collected from 410 cattle in 33 farms and tested for antibodies against BTV and EHDV by competitive ELISAs. All results were negative, suggesting that BTV and EHDV are not present in the Galapagos Islands.
Collapse
Affiliation(s)
- Rommel L Vinueza
- Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).,Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG), Puerto Ayora, Ecuador (Cruz).,ANSES, University Paris Est, Laboratory for Animal Health, Virology Unit (Bréard, Viarouge), Maisons-Alfort, France.,Epidemiology Unit (Zanella), Maisons-Alfort, France
| | - Marilyn Cruz
- Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).,Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG), Puerto Ayora, Ecuador (Cruz).,ANSES, University Paris Est, Laboratory for Animal Health, Virology Unit (Bréard, Viarouge), Maisons-Alfort, France.,Epidemiology Unit (Zanella), Maisons-Alfort, France
| | - Emmanuel Bréard
- Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).,Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG), Puerto Ayora, Ecuador (Cruz).,ANSES, University Paris Est, Laboratory for Animal Health, Virology Unit (Bréard, Viarouge), Maisons-Alfort, France.,Epidemiology Unit (Zanella), Maisons-Alfort, France
| | - Cyril Viarouge
- Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).,Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG), Puerto Ayora, Ecuador (Cruz).,ANSES, University Paris Est, Laboratory for Animal Health, Virology Unit (Bréard, Viarouge), Maisons-Alfort, France.,Epidemiology Unit (Zanella), Maisons-Alfort, France
| | - Gina Zanella
- Universidad San Francisco de Quito (USFQ), Escuela de Medicina Veterinaria, Quito, Ecuador (Vinueza).,Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos (ABG), Puerto Ayora, Ecuador (Cruz).,ANSES, University Paris Est, Laboratory for Animal Health, Virology Unit (Bréard, Viarouge), Maisons-Alfort, France.,Epidemiology Unit (Zanella), Maisons-Alfort, France
| |
Collapse
|
23
|
Navas-Suárez PE, Díaz-Delgado J, Matushima ER, Fávero CM, Sánchez Sarmiento AM, Sacristán C, Ewbank AC, Marques Joppert A, Barbanti Duarte JM, dos Santos-Cirqueira C, Cogliati B, Mesquita L, Maiorka PC, Catão-Dias JL. A retrospective pathology study of two Neotropical deer species (1995-2015), Brazil: Marsh deer (Blastocerus dichotomus) and brown brocket deer (Mazama gouazoubira). PLoS One 2018; 13:e0198670. [PMID: 29879222 PMCID: PMC5991706 DOI: 10.1371/journal.pone.0198670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
This retrospective study describes the biological and epidemiological aspects, gross and microscopical findings, and most likely causes of death (CD) in two species of Neotropical deer in Brazil. The animals were collected between 1995 and 2015 and represented 75 marsh deer (MD) and 136 brown brocket deer (BBD). Summarized, pneumonia was diagnosed microscopically in 48 MD and 52 BBD; 76 deer suffered trauma, involving dog attack (14 BBD) and vehicle-collision (14 BBD). Pulmonary edema (50 MD; 55 BBD) and congestion (57 MD; 78 BBD) were the most common findings for both species. Additionally, we diagnosed ruminal and myocardial mycosis in MD and BBD, respectively; ovarian dysgerminoma and pancreatic trematodiasis in BBD; and lesions suggestive of malignant catarrhal fever and orbiviral hemorrhagic disease in both species. The main CD in MD was: respiratory (41/75), alimentary, nutritional, trauma and euthanasia (3/75 each). Correspondingly, in BBD were: trauma (34/131), respiratory (30/131) and euthanasia (9/131). Respiratory disease was often defined by pulmonary edema and pneumonia. We provide evidence that respiratory disease, mainly pneumonia, is a critical pathological process in these Neotropical deer species. Although no etiological agents were identified, there is evidence of bacterial and viral involvement. Our results show trauma, mainly anthropogenic, as a common ailment in BBD. We propose to prioritize respiratory disease in future research focused on South American deer health aspects. We believe anthropogenic trauma may be a primary threat for populations of BBD.
Collapse
Affiliation(s)
- Pedro Enrique Navas-Suárez
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Reiko Matushima
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Cintia Maria Fávero
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Angélica Maria Sánchez Sarmiento
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriana Marques Joppert
- Divisão Técnica de Medicina Veterinária e Manejo da Fauna Silvestre (DEPAVE-3), São Paulo, Brazil
| | - Jose Mauricio Barbanti Duarte
- Deer Research and Conservation Center (NUPECCE), Department of Animal Science, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Bruno Cogliati
- Laboratory of Morphological and Molecular Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo Mesquita
- Laboratory of Animal Models, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo César Maiorka
- Laboratory of Animal Models, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology - LAPCOM, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Complete Genome Sequence of Epizootic hemorrhagic disease virus Serotype 6, Isolated from Florida White-Tailed Deer (Odocoileus virginianus). GENOME ANNOUNCEMENTS 2018; 6:6/14/e00160-18. [PMID: 29622607 PMCID: PMC5887027 DOI: 10.1128/genomea.00160-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence of Epizootic hemorrhagic disease virus (EHDV) serotype 6 (EHDV-6), isolated from a Florida white-tailed deer (Odocoileus virginianus) in 2016. To our knowledge, this is the first full genome sequence determined for an EHDV-6 isolate from Florida.
Collapse
|