1
|
Lott MJ, Frankham GJ, Eldridge MDB, Alquezar‐Planas DE, Donnelly L, Zenger KR, Leigh KA, Kjeldsen SR, Field MA, Lemon J, Lunney D, Crowther MS, Krockenberger MB, Fisher M, Neaves LE. Reversing the decline of threatened koala ( Phascolarctos cinereus) populations in New South Wales: Using genomics to enhance conservation outcomes. Ecol Evol 2024; 14:e11700. [PMID: 39091325 PMCID: PMC11289790 DOI: 10.1002/ece3.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Genetic management is a critical component of threatened species conservation. Understanding spatial patterns of genetic diversity is essential for evaluating the resilience of fragmented populations to accelerating anthropogenic threats. Nowhere is this more relevant than on the Australian continent, which is experiencing an ongoing loss of biodiversity that exceeds any other developed nation. Using a proprietary genome complexity reduction-based method (DArTSeq), we generated a data set of 3239 high quality Single Nucleotide Polymorphisms (SNPs) to investigate spatial patterns and indices of genetic diversity in the koala (Phascolarctos cinereus), a highly specialised folivorous marsupial that is experiencing rapid and widespread population declines across much of its former range. Our findings demonstrate that current management divisions across the state of New South Wales (NSW) do not fully represent the distribution of genetic diversity among extant koala populations, and that care must be taken to ensure that translocation paradigms based on these frameworks do not inadvertently restrict gene flow between populations and regions that were historically interconnected. We also recommend that koala populations should be prioritised for conservation action based on the scale and severity of the threatening processes that they are currently faced with, rather than placing too much emphasis on their perceived value (e.g., as reservoirs of potentially adaptive alleles), as our data indicate that existing genetic variation in koalas is primarily partitioned among individual animals. As such, the extirpation of koalas from any part of their range represents a potentially critical reduction of genetic diversity for this iconic Australian species.
Collapse
Affiliation(s)
- Matthew J. Lott
- Australian Museum Research InstituteSydneyNew South WalesAustralia
| | | | | | | | - Lily Donnelly
- Molecular Ecology and Evolutionary Laboratory, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kyall R. Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kellie A. Leigh
- Science for Wildlife LtdMount VictoriaNew South WalesAustralia
| | - Shannon R. Kjeldsen
- Molecular Ecology and Evolutionary Laboratory, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Matt A. Field
- Centre for Tropical Bioinformatics and Molecular BiologyJames Cook UniversityTownsvilleQueenslandAustralia
- Immunogenomics LabGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | - John Lemon
- JML Environmental ConsultantsArmidaleNew South WalesAustralia
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Daniel Lunney
- Australian Museum Research InstituteSydneyNew South WalesAustralia
- Department of Planning and EnvironmentParramattaNew South WalesAustralia
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Mathew S. Crowther
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Mark B. Krockenberger
- Sydney School of Veterinary ScienceUniversity of SydneyCamperdownNew South WalesAustralia
| | - Mark Fisher
- 3D Ecology MappingEmerald BeachNew South WalesAustralia
| | - Linda E. Neaves
- Fenner School of Environment and SocietyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
2
|
Dungan AM, Thomas JL. Fecal bacterial communities of the platypus (Ornithorhynchus anatinus) reflect captivity status-Implications for conservation and management. Integr Zool 2024. [PMID: 39075976 DOI: 10.1111/1749-4877.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The duck-billed platypus (Ornithorhynchus anatinus) is currently listed as near-threatened. A key part of the conservation strategy for this species is its captive maintenance; however, captive animals often have dysbiotic gut bacterial microbiomes. Here, for the first time, we characterize the gut microbiome of wild platypus via fecal samples using high-throughput sequencing of the bacterial 16S rRNA gene and identify microbial biomarkers of captivity in this species. At the phylum level, Firmicutes (50.4%) predominated among all platypuses, followed by Proteobacteria (28.7%), Fusobacteria (13.4%), and Bacteroidota (6.9%), with 21 "core" bacteria identified. Captive individuals did not differ in their microbial α-diversity compared to wild platypus but had significantly different community composition (β-diversity) and exhibited higher abundances of Enterococcus, which are potential pathogenic bacteria. Four taxa were identified as biomarkers of wild platypus, including Rickettsiella, Epulopiscium, Clostridium, and Cetobacterium. This contrast in gut microbiome composition between wild and captive platypus is an essential insight for guiding conservation management, as the rewilding of captive animal microbiomes is a new and emerging tool to improve captive animal health, maximize captive breeding efforts, and give reintroduced or translocated animals the best chance of survival.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
3
|
Johnston SD, Hulse L, Keeley T, Mucci A, Seddon J, Maynard S. The Utility of the Koala Scat: A Scoping Review. BIOLOGY 2024; 13:523. [PMID: 39056716 PMCID: PMC11273466 DOI: 10.3390/biology13070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
The use of samples or scats to provide important ecological, genetic, disease and physiology details on free-range populations is gaining popularity as an alternative non-invasive methodology. Koala populations in SE Queensland and NSW have recently been listed as endangered and continue to face anthropomorphic and stochastic environmental impacts that could potentially lead to their extinction. This scoping review examines the current and potential utility of the koala scat to contribute data relevant to the assessment of koala conservation status and decision making. Although we demonstrate that there is great potential for this methodology in providing details for both individual wild animal and population biology (distribution, abundance, sex ratio, immigration/emigration, genetic diversity, evolutionary significant unit, disease epidemiology, nutrition, reproductive status and stress physiology), the calibre of this information is likely to be a function of the quality of the scat that is sampled.
Collapse
Affiliation(s)
- Stephen D. Johnston
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Lyndal Hulse
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Tamara Keeley
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Albano Mucci
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
- Research Division, James Cook University, Townsville 4811, Australia
| | - Sam Maynard
- Saunders Havill Group, Bowen Hills 4006, Australia;
| |
Collapse
|
4
|
Radaelli E, Palladino G, Nanetti E, Scicchitano D, Rampelli S, Airoldi S, Candela M, Marangi M. Meta-analysis of the Cetacea gut microbiome: Diversity, co-evolution, and interaction with the anthropogenic pathobiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172943. [PMID: 38714258 DOI: 10.1016/j.scitotenv.2024.172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Despite their critical roles in marine ecosystems, only few studies have addressed the gut microbiome (GM) of cetaceans in a comprehensive way. Being long-living apex predators with a carnivorous diet but evolved from herbivorous ancestors, cetaceans are an ideal model for studying GM-host evolutionary drivers of symbiosis and represent a valuable proxy of overall marine ecosystem health. Here, we investigated the GM of eight different cetacean species, including both Odontocetes (toothed whales) and Mysticetes (baleen whales), by means of 16S rRNA-targeted amplicon sequencing. We collected faecal samples from free-ranging cetaceans circulating within the Pelagos Sanctuary (North-western Mediterranean Sea) and we also included publicly available cetacean gut microbiome sequences. Overall, we show a clear GM trajectory related to host phylogeny and taxonomy (i.e., phylosymbiosis), with remarkable GM variations which may reflect adaptations to different diets between baleen and toothed whales. While most samples were found to be infected by protozoan parasites of potential anthropic origin, we report that this phenomenon did not lead to severe GM dysbiosis. This study underlines the importance of both host phylogeny and diet in shaping the GM of cetaceans, highlighting the role of neutral processes as well as environmental factors in the establishment of this GM-host symbiosis. Furthermore, the presence of potentially human-derived protozoan parasites in faeces of free-ranging cetaceans emphasizes the importance of these animals as bioindicators of anthropic impact on marine ecosystems.
Collapse
Affiliation(s)
- Elena Radaelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Enrico Nanetti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy
| | - Sabina Airoldi
- Tethys Research Institute, Viale G.B. Gadio 2, 20121 Milano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1, 61032, Fano, Italy.
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy.
| |
Collapse
|
5
|
Mafra D, Borges NA, Baptista BG, Martins LF, Borland G, Shiels PG, Stenvinkel P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024; 16:1789. [PMID: 38892721 PMCID: PMC11174762 DOI: 10.3390/nu16111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota performs several crucial roles in a holobiont with its host, including immune regulation, nutrient absorption, synthesis, and defense against external pathogens, significantly influencing host physiology. Disruption of the gut microbiota has been linked to various chronic conditions, including cardiovascular, kidney, liver, respiratory, and intestinal diseases. Studying how animals adapt their gut microbiota across their life course at different life stages and under the dynamics of extreme environmental conditions can provide valuable insights from the natural world into how the microbiota modulates host biology, with a view to translating these into treatments or preventative measures for human diseases. By modulating the gut microbiota, opportunities to address many complications associated with chronic diseases appear. Such a biomimetic approach holds promise for exploring new strategies in healthcare and disease management.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Natália A. Borges
- Graduate Program in Food, Nutrition, and Health, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro 21941-909, Brazil;
| | - Beatriz G. Baptista
- Graduate Program in Medical Sciences and Graduate Program in Nutrition Sciences, Federal Fluminense University (UFF), Niterói 24020-141, Brazil;
| | - Layla F. Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-220, Brazil;
| | - Gillian Borland
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Paul G. Shiels
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK; (G.B.); (P.G.S.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden;
| |
Collapse
|
6
|
Kondo K, Suzuki M, Amadaira M, Araki C, Watanabe R, Murakami K, Ochiai S, Ogura T, Hayakawa T. Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas. PeerJ 2024; 12:e17385. [PMID: 38818452 PMCID: PMC11138522 DOI: 10.7717/peerj.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Koalas, an Australian arboreal marsupial, depend on eucalypt tree leaves for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. However, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. We aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods Foraging data were collected from six koalas and a total of 62 feces were collected from 15 koalas of two zoos in Japan. The mitochondrial phylogenetic analysis was conducted to estimate the mitochondrial maternal origin of each koala. In addition, the 16S-based gut microbiome of 15 koalas was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among mitochondrial maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both mitochondrial maternal origin and eucalypt foraging patterns. Bacteria found to be associated with mitochondrial maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. Conclusion We showed that the characteristics (composition and diversity) of the gut microbiome and eucalypt diet selection of koalas differ by individuals and regional origins as we expected. In addition, some gut bacteria that could influence eucalypt foraging of koalas showed the relationships with both mitochondrial maternal origin and eucalypt foraging pattern. These differences in the gut microbiome between regional origins may make a difference in eucalypt selection. Given the importance of the gut microbiome to koalas foraging on eucalypts and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.
Collapse
Affiliation(s)
- Kotaro Kondo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mirei Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Amadaira
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Chiharu Araki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Rie Watanabe
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | | | - Tadatoshi Ogura
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Jones AL, Pratt CJ, Meili CH, Soo RM, Hugenholtz P, Elshahed MS, Youssef NH. Anaerobic gut fungal communities in marsupial hosts. mBio 2024; 15:e0337023. [PMID: 38259066 PMCID: PMC10865811 DOI: 10.1128/mbio.03370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.
Collapse
Affiliation(s)
- Adrienne L. Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Carrie J. Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Casey H. Meili
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rochelle M. Soo
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Queensland, Australia
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Buthgamuwa I, Fenelon JC, Roser A, Meer H, Johnston SD, Dungan AM. Gut microbiota in the short-beaked echidna (Tachyglossus Aculeatus) shows stability across gestation. Microbiologyopen 2023; 12:e1392. [PMID: 38129978 PMCID: PMC10721944 DOI: 10.1002/mbo3.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Indigenous gut microbial communities (microbiota) play critical roles in health and may be especially important for the mother and fetus during pregnancy. Monotremes, such as the short-beaked echidna, have evolved to lay and incubate an egg, which hatches in their pouch where the young feeds. Since both feces and eggs pass through the cloaca, the fecal microbiota of female echidnas provides an opportunity for vertical transmission of microbes to their offspring. Here, we characterize the gut/fecal microbiome of female short-beaked echidnas and gain a better understanding of the changes that may occur in their microbiome as they go through pregnancy. Fecal samples from four female and five male echidnas were obtained from the Currumbin Wildlife Sanctuary in Queensland and sequenced to evaluate bacterial community structure. We identified 25 core bacteria, most of which were present in male and female samples. Genera such as Fusobacterium, Bacteroides, Escherichia-Shigella, and Lactobacillus were consistently abundant, regardless of sex or gestation stage, accounting for 58.00% and 56.14% of reads in male and female samples, respectively. The echidna microbiome remained stable across the different gestation stages, though there was a significant difference in microbiota composition between male and female echidnas. This study is the first to describe the microbiome composition of short-beaked echidnas across reproductive phases and allows the opportunity for this novel information to be used as a metric of health to aid in the detection of diseases triggered by microbiota dysbiosis.
Collapse
Affiliation(s)
- Isini Buthgamuwa
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jane C. Fenelon
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Colossal Laboratories and BiosciencesDallasTexasUSA
| | - Alice Roser
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Haley Meer
- Currumbin Wildlife SanctuaryCurrumbinQueenslandAustralia
| | - Stephen D. Johnston
- School of EnvironmentThe University of QueenslandGattonQueenslandAustralia
- School of Veterinary ScienceThe University of QueenslandGattonQueenslandAustralia
| | - Ashley M. Dungan
- School of BioSciencesUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
9
|
Clough J, Schwab S, Mikac K. Gut Microbiome Profiling of the Endangered Southern Greater Glider ( Petauroides volans) after the 2019-2020 Australian Megafire. Animals (Basel) 2023; 13:3583. [PMID: 38003202 PMCID: PMC10668662 DOI: 10.3390/ani13223583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Studying the gut microbiome can provide valuable insights into animal health and inform the conservation management of threatened wildlife. Gut microbiota play important roles in regulating mammalian host physiology, including digestion, energy metabolism and immunity. Dysbiosis can impair such physiological processes and compromise host health, so it is essential that the gut microbiome be considered in conservation planning. The southern greater glider (Petauroides volans) is an endangered arboreal marsupial that faced widespread habitat fragmentation and population declines following the 2019-2020 Australian bushfire season. This study details baseline data on the gut microbiome of this species. The V3-V4 region of the 16S rRNA gene was amplified from scats collected from individuals inhabiting burnt and unburnt sites across southeastern Australia and sequenced to determine bacterial community composition. Southern greater glider gut microbiomes were characterised by high relative abundances of Firmicutes and Bacteroidota, which is consistent with that reported for other marsupial herbivores. Significant differences in gut microbial diversity and community structure were detected among individuals from different geographic locations. Certain microbiota and functional orthologues were also found to be significantly differentially abundant between locations. The role of wildfire in shaping southern greater glider gut microbiomes was shown, with some significant differences in the diversity and abundance of microbiota detected between burnt and unburnt sites. Overall, this study details the first data on greater glider (Petauroides) gut microbiomes, laying the foundation for future studies to further explore relationships between microbial community structure, environmental stressors and host health.
Collapse
Affiliation(s)
- Jordyn Clough
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Sibylle Schwab
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katarina Mikac
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
10
|
Oliveros A, Terraube J, Levengood AL, Powell D, Frère CH. Influence of scat ageing on the gut microbiome: how old is too old? BMC Genomics 2023; 24:427. [PMID: 37525141 PMCID: PMC10388479 DOI: 10.1186/s12864-023-09520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The study of the host-microbiome by the collection of non-invasive samples has the potential to become a powerful tool for conservation monitoring and surveillance of wildlife. However, multiple factors can bias the quality of data recovered from scats, particularly when field-collected samples are used given that the time of defecation is unknown. Previous studies using scats have shown that the impact of aerobic exposure on the microbial composition is species-specific, leading to different rates of change in microbial communities. However, the impact that this aging process has on the relationship between the bacterial and fungal composition has yet to be explored. In this study, we measured the effects of time post-defecation on bacterial and fungal compositions in a controlled experiment using scat samples from the endangered koala (Phascolarctos cinereus). RESULTS We found that the bacterial composition remained stable through the scat aging process, while the fungal composition did not. The absence of an increase in facultative anaerobes and the stable population of obligate anaerobic bacteria were likely due to our sampling from the inner portion of the scat. We report a cluster of fungal taxa that colonises scats after defecation which can dilute the genetic material from the autochthonous mycoflora and inhibit recovery. CONCLUSION We emphasize the need to preserve the integrity of scat samples collected in the wild and combat the effects of time and provide strategies for doing so.
Collapse
Affiliation(s)
- Alejandro Oliveros
- The School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
| | - Julien Terraube
- Vulture Conservation Foundation, Wuhrstrasse 12, Zürich, CH-8003, Switzerland
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Alexis L Levengood
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Céline H Frère
- The School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
11
|
Maidment TI, Bryan ER, Pyne M, Barnes M, Eccleston S, Cunningham S, Whitlock E, Redman K, Nicolson V, Beagley KW, Pelzer E. Characterisation of the koala (Phascolarctos cinereus) pouch microbiota in a captive population reveals a dysbiotic compositional profile associated with neonatal mortality. MICROBIOME 2023; 11:75. [PMID: 37060097 PMCID: PMC10105441 DOI: 10.1186/s40168-023-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Captive koala breeding programmes are essential for long-term species management. However, breeding efficacy is frequently impacted by high neonatal mortality rates in otherwise healthy females. Loss of pouch young typically occurs during early lactation without prior complications during parturition and is often attributed to bacterial infection. While these infections are thought to originate from the maternal pouch, little is known about the microbial composition of koala pouches. As such, we characterised the koala pouch microbiome across the reproductive cycle and identified bacteria associated with mortality in a cohort of 39 captive animals housed at two facilities. RESULTS Using 16S rRNA gene amplicon sequencing, we observed significant changes in pouch bacterial composition and diversity between reproductive time points, with the lowest diversity observed following parturition (Shannon entropy - 2.46). Of the 39 koalas initially sampled, 17 were successfully bred, after which seven animals lost pouch young (overall mortality rate - 41.18%). Compared to successful breeder pouches, which were largely dominated by Muribaculaceae (phylum - Bacteroidetes), unsuccessful breeder pouches exhibited persistent Enterobacteriaceae (phylum - Proteobacteria) dominance from early lactation until mortality occurred. We identified two species, Pluralibacter gergoviae and Klebsiella pneumoniae, which were associated with poor reproductive outcomes. In vitro antibiotic susceptibility testing identified resistance in both isolates to several antibiotics commonly used in koalas, with the former being multidrug resistant. CONCLUSIONS This study represents the first cultivation-independent characterisation of the koala pouch microbiota, and the first such investigation in marsupials associated with reproductive outcomes. Overall, our findings provide evidence that overgrowth of pathogenic organisms in the pouch during early development is associated with neonatal mortality in captive koalas. Our identification of previously unreported, multidrug resistant P. gergoviae strains linked to mortality also underscores the need for improved screening and monitoring procedures aimed at minimising neonatal mortality in future. Video Abstract.
Collapse
Affiliation(s)
- Toby I Maidment
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia.
| | - Emily R Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Michele Barnes
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Sarah Eccleston
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Samantha Cunningham
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Emma Whitlock
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Kelsie Redman
- Billabong Zoo Koala and Wildlife Park, 61 Billabong Drive, Port Macquarie, NSW, 2444, Australia
| | - Vere Nicolson
- Paradise Country, Production Drive, Oxenford, QLD, 4210, Australia
| | - Kenneth W Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Elise Pelzer
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| |
Collapse
|
12
|
Animal Age Affects the Gut Microbiota and Immune System in Captive Koalas ( Phascolarctos cinereus). Microbiol Spectr 2023; 11:e0410122. [PMID: 36602319 PMCID: PMC9927321 DOI: 10.1128/spectrum.04101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gut microbiota is one of the major elements in the control of host health. However, the composition of gut microbiota in koalas has rarely been investigated. Here, we performed 16S rRNA gene sequencing to determine the individual and environmental determinants of gut microbiota diversity and function in 35 fecal samples collected from captive koalas. Meanwhile, blood immune-related cytokine levels were examined by quantitative reverse transcription-PCR to initially explore the relationship between the gut microbiota and the immune system in koalas. The relative abundance of many bacteria, such as Lonepinella koalarum, varies at different ages in koalas and decreases with age. Conversely, Ruminococcus flavefaciens increases with age. Moreover, bacterial pathways involved in lipid metabolism, the biosynthesis of other secondary metabolites, and infectious disease show a significant correlation with age. Age affects the relationship between the microbiota and the host immune system. Among them, the gut microbiota of subadult and aged koalas was closely correlated with CD8β and CD4, whereas adult koalas were correlated with CLEC4E. We also found that sex, reproductive status, and living environment have little impact on the koala gut microbiota and immune system. These results shed suggest age is a key factor affecting gut microbiota and immunity in captive koalas and thus provide new insight into its role in host development and the host immune system. IMPORTANCE Although we have a preliminary understanding of the gut microbiota of koalas, we lack insight into which factors potentially impact captive koalas. This study creates the largest koala gut microbiota data set in China to date and describes several factors that may affect gut microbiota and the immune system in captive koalas, highlighting that age may be a key factor affecting captive koalas. Moreover, this study is the first to characterize the correlation between gut microbiota and cytokines in koalas. Better treatment strategies for infectious disorders may be possible if we can better understand the interactions between the immune system and the microbiota.
Collapse
|
13
|
Eisenhofer R, Brice KL, Blyton MDJ, Bevins SE, Leigh K, Singh BK, Helgen KM, Hough I, Daniels CB, Speight N, Moore BD. Individuality and stability of the koala ( Phascolarctos cinereus) faecal microbiota through time. PeerJ 2023; 11:e14598. [PMID: 36710873 PMCID: PMC9879153 DOI: 10.7717/peerj.14598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/29/2022] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie L. Brice
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Michaela DJ Blyton
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Queensland, Australia
| | - Scott E. Bevins
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kellie Leigh
- Science for Wildlife Ltd, Sydney, New South Wales, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia,Global Centre for Land Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Kristofer M. Helgen
- Australian Museum Research Institute, Sydney, New South Wales, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, New South Wales, Australia,Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Ian Hough
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Christopher B. Daniels
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
14
|
Blyton MDJ, Pascoe J, Hynes E, Soo RM, Hugenholtz P, Moore BD. The koala gut microbiome is largely unaffected by host translocation but rather influences host diet. Front Microbiol 2023; 14:1085090. [PMID: 36937253 PMCID: PMC10018171 DOI: 10.3389/fmicb.2023.1085090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.
Collapse
Affiliation(s)
- Michaela D. J. Blyton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, St Lucia, QLD, Australia
- *Correspondence: Michaela D. J. Blyton,
| | - Jack Pascoe
- Conservation Ecology Centre, Cape Otway, VIC, Australia
- School of Ecosystem and Forest Science, University of Melbourne, Parkville, VIC, Australia
| | | | - Rochelle M. Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
15
|
Kapsetaki SE, Marquez Alcaraz G, Maley CC, Whisner CM, Aktipis A. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 2022; 11:508-525. [PMID: 35704266 PMCID: PMC9197725 DOI: 10.1007/s13668-022-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA.
| | - Gissel Marquez Alcaraz
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Goldenberg SZ, Parker JM, Chege SM, Greggor AL, Hunt M, Lamberski N, Leigh KA, Nollens HH, Ruppert KA, Thouless C, Wittemyer G, Owen MA. Revisiting the 4 R’s: Improving post-release outcomes for rescued mammalian wildlife by fostering behavioral competence during rehabilitation. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.910358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rescue, rehabilitation, and release (‘rescue-rehab-release’) of wildlife is an increasingly widespread practice across ecosystems, largely driven by habitat loss, wildlife exploitation and a changing climate. Despite this, its conservation value has not been realized, in part due to the scarcity of what has been termed “the 4th R”, research. Similar to conservation breeding and headstarting, rescue and rehabilitation entails close association of humans and the wildlife in their care over impressionable and extended periods. However, unlike these interventions, rescue and rehabilitation require an initial, and sometimes sustained, focus on crisis management and veterinary needs which can impede the development of natural behaviors and promote habituation to humans, both of which can compromise post-release survival and recruitment. In this perspective, we discuss the pathways toward, and implications of, behavioral incompetence and highlight opportunities for testable interventions to curtail negative outcomes post-release, without compromising the health or welfare of rescued individuals. We propose that practitioners ‘switch gears’ from triage to fostering behavioral competence as early in the rehabilitation process as is possible, and that research be implemented in order to develop an evidence-base for best practices that can be shared amongst practitioners. We focus on four mammalian species to illustrate specific contexts and considerations for fostering behavioral competence by building on research in the conservation translocation literature. Finally, we discuss a way forward that calls for greater cross-pollination among translocation scenarios involving extended time under human care during developmentally sensitive periods.
Collapse
|
17
|
Perry T, West E, Eisenhofer R, Stenhouse A, Wilson I, Laming B, Rismiller P, Shaw M, Grützner F. Characterising the Gut Microbiomes in Wild and Captive Short-Beaked Echidnas Reveals Diet-Associated Changes. Front Microbiol 2022; 13:687115. [PMID: 35847103 PMCID: PMC9279566 DOI: 10.3389/fmicb.2022.687115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome plays a vital role in health and wellbeing of animals, and an increasing number of studies are investigating microbiome changes in wild and managed populations to improve conservation and welfare. The short-beaked echidna (Tachyglossus aculeatus) is an iconic Australian species, the most widespread native mammal, and commonly held in zoos. Echidnas are cryptic animals, and much is still unknown about many aspects of their biology. Furthermore, some wild echidna populations are under threat, while echidnas held in captivity can have severe gastric health problems. Here, we used citizen science and zoos to collect echidna scats from across Australia to perform the largest gut microbiome study on any native Australian animal. Using 16S rRNA gene metabarcoding of scat samples, we characterised and compared the gut microbiomes of echidnas in wild (n = 159) and managed (n = 44) populations, which were fed four different diets. Wild echidna samples were highly variable, yet commonly dominated by soil and plant-fermenting bacteria, while echidnas in captivity were dominated by gut commensals and plant-fermenting bacteria, suggesting plant matter may play a significant role in echidna diet. This work demonstrates significant differences between zoo held and wild echidnas, as well as managed animals on different diets, revealing that diet is important in shaping the gut microbiomes in echidnas. This first analysis of echidna gut microbiome highlights extensive microbial diversity in wild echidnas and changes in microbiome composition in managed populations. This is a first step towards using microbiome analysis to better understand diet, gastrointestinal biology, and improve management in these iconic animals.
Collapse
Affiliation(s)
- Tahlia Perry
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| | - Ella West
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Raphael Eisenhofer
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| | - Alan Stenhouse
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Isabella Wilson
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Peggy Rismiller
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Pelican Lagoon Research and Wildlife Centre, Penneshaw, SA, Australia
| | - Michelle Shaw
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Taronga Wildlife Nutrition Centre, Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Frank Grützner
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
de Jonge N, Carlsen B, Christensen MH, Pertoldi C, Nielsen JL. The Gut Microbiome of 54 Mammalian Species. Front Microbiol 2022; 13:886252. [PMID: 35783446 PMCID: PMC9246093 DOI: 10.3389/fmicb.2022.886252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiome plays a critical role in many aspects of host life, and the microbial community composition is heavily influenced by the prevailing conditions in the gut environment. Community composition has been suggested to have large implications for conservation efforts, and gut health has become of interest for optimizing animal care in captivity. In this study, we explore the gut microbiome of a wide range of animals in the context of conservation biology. The composition of the gut microbial community of 54 mammalian animal species was investigated using 16S rRNA gene amplicon sequencing. The composition of the gut microbiota clearly reflects diet and the structure of the gastrointestinal system, and it is to a certain degree more similar between closely related animals. Specific clusters of taxa were observed across animals of the same species, diet, and gut morphology. The microbiota retained regardless of captivity status is hypothesized to cover important symbiotic relationships with the host, while the remaining part reflects the artificial living conditions and can therefore be used as a future tool for conservation biologists. For five animal species (giraffes, horses, baboons, elephants, and zebras), it was possible to compare the microbiota of wild and captive individuals. Differences were observed in the proportion of microbiota detected between wild and captive specimens of the same animal species. We propose that the gut microbiota harbours important species, which can potentially serve as indicators for the well-being of the animal and the effect of living in captivity.
Collapse
Affiliation(s)
- Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Benjamin Carlsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- *Correspondence: Jeppe Lund Nielsen
| |
Collapse
|
19
|
Littleford-Colquhoun BL, Weyrich LS, Hohwieler K, Cristescu R, Frère CH. How microbiomes can help inform conservation: landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Anim Microbiome 2022; 4:12. [PMID: 35101152 PMCID: PMC8802476 DOI: 10.1186/s42523-021-00122-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The koala (Phascolarctos cinereus), an iconic yet endangered specialised folivore experiencing widespread decline across Australia, is the focus of many conservation programs. Whilst animal translocation and progressive conservation strategies such as faecal inoculations may be required to bring this species back from the brink of extinction, insight into the variation of host-associated gut microbiota and the factors that shape this variation are fundamental for their success. Despite this, very little is known about the landscape variability and factors affecting koala gut microbial community dynamics. We used large scale field surveys to evaluate the variation and diversity of koala gut microbiotas and compared these diversity patterns to those detected using a population genetics approach. Scat samples were collected from five locations across South East Queensland with microbiota analysed using 16S rRNA gene amplicon sequencing. RESULTS Across the landscape koala gut microbial profiles showed large variability, with location having a large effect on bacterial community composition and bacterial diversity. Certain bacteria were found to be significantly differentially abundant amongst locations; koalas from Noosa showed a depletion in two bacterial orders (Gastranaerophilales and Bacteroidales) which have been shown to provide beneficial properties to their host. Koala gut microbial patterns were also not found to mirror population genetic patterns, a molecular tool often used to design conservation initiatives. CONCLUSIONS Our data shows that koala gut microbiotas are extremely variable across the landscape, displaying complex micro- and macro- spatial variation. By detecting locations which lack certain bacteria we identified koala populations that may be under threat from future microbial imbalance or dysbiosis. Additionally, the mismatching of gut microbiota and host population genetic patterns exposed important population structure that has previously gone undetected across South East Queensland. Overall, this baseline data highlights the importance of integrating microbiota research into conservation biology in order to guide successful conservation programs such as species translocation and the implementation of faecal inoculations.
Collapse
Affiliation(s)
- B. L. Littleford-Colquhoun
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
- Institute at Brown for Environment and Society, Brown University, Providence, RI 02912 USA
| | - L. S. Weyrich
- Department of Anthropology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - K. Hohwieler
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - R. Cristescu
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - C. H. Frère
- Global Change Ecology, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| |
Collapse
|
20
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
21
|
Blyton MDJ, Soo RM, Hugenholtz P, Moore BD. Characterization of the juvenile koala gut microbiome across wild populations. Environ Microbiol 2022; 24:4209-4219. [PMID: 35018700 DOI: 10.1111/1462-2920.15884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
In this study we compared the faecal microbiomes of wild joey koalas (Phascolarctos cinereus) to those of adults, including their mothers, to establish whether gut microbiome maturation and inheritance in the wild is comparable to that seen in captivity. Our findings suggest that joey koala microbiomes slowly shift towards an adult assemblage between 6 and 12 months of age, as the microbiomes of 9-month-old joeys were more similar to those of adults than those of 7-month-olds, but still distinct. At the phylum level, differences between joeys and adults were broadly consistent with those in captivity, with Firmicutes increasing in relative abundance over the joeys' development and Proteobacteria decreasing. Of the fibre-degrading genes that increased in abundance over the development of captive joeys, those involved in hemicellulose and cellulose degradation, but not pectin degradation, were also generally found in higher abundance in adult wild koalas compared to 7-month-olds. Greater maternal inheritance of the faecal microbiome was seen in wild than in captive koalas, presumably due to the more solitary nature of wild koalas. This strong maternal inheritance of the gut microbiome could contribute to the development of localized differences in microbiome composition, population health and diet through spatial clustering of relatives.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Rochelle M Soo
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
22
|
Blyton MDJ, Soo RM, Hugenholtz P, Moore BD. Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development. Environ Microbiol 2021; 24:475-493. [PMID: 34863030 DOI: 10.1111/1462-2920.15858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/20/2021] [Indexed: 11/27/2022]
Abstract
The acquisition and maturation of the gastrointestinal microbiome is a crucial aspect of mammalian development, particularly for specialist herbivores such as the koala (Phascolarctos cinereus). Joey koalas are thought to be inoculated with microorganisms by feeding on specialized maternal faeces (pap). We found that compared to faeces, pap has higher microbial density, higher microbial evenness and a higher proportion of rare taxa, which may facilitate the establishment of those taxa in joey koalas. We show that the microbiomes of captive joey koalas were on average more similar to those of their mothers than to other koalas, indicating strong maternal inheritance of the faecal microbiome, which can lead to intergenerational gut dysbiosis when the mother is ill. Directly after pap feeding, the joey koalas' microbiomes were enriched for milk-associated bacteria including Bacteroides fragilis, suggesting a conserved role for this species across mammalian taxa. The joeys' microbiomes then changed slowly over 5 months to resemble those of adults by 1 year of age. The relative abundance of fibrolytic bacteria and genes involved in the degradation of plant cell walls also increased in the infants over this time, likely in response to an increased proportion of Eucalyptus leaves in their diets.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, Qld, St Lucia, 4072, Australia
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Qld, St Lucia, 4072, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Qld, St Lucia, 4072, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
23
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Zhu D, Delgado-Baquerizo M, Ding J, Gillings MR, Zhu YG. Trophic level drives the host microbiome of soil invertebrates at a continental scale. MICROBIOME 2021; 9:189. [PMID: 34544484 PMCID: PMC8454154 DOI: 10.1186/s40168-021-01144-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Increasing our knowledge of soil biodiversity is fundamental to forecast changes in ecosystem functions under global change scenarios. All multicellular organisms are now known to be holobionts, containing large assemblages of microbial species. Soil fauna is now known to have thousands of species living within them. However, we know very little about the identity and function of host microbiome in contrasting soil faunal groups, across different terrestrial biomes, or at a large spatial scale. Here, we examined the microbiomes of multiple functionally important soil fauna in contrasting terrestrial ecosystems across China. RESULTS Different soil fauna had diverse and unique microbiomes, which were also distinct from those in surrounding soils. These unique microbiomes were maintained within taxa across diverse sampling sites and in contrasting terrestrial ecosystems. The microbiomes of nematodes, potworms, and earthworms were more difficult to predict using environmental data, compared to those of collembolans, oribatid mites, and predatory mites. Although stochastic processes were important, deterministic processes, such as host selection, also contributed to the assembly of unique microbiota in each taxon of soil fauna. Microbial biodiversity, unique microbial taxa, and microbial dark matter (defined as unidentified microbial taxa) all increased with trophic levels within the soil food web. CONCLUSIONS Our findings demonstrate that soil animals are important as repositories of microbial biodiversity, and those at the top of the food web harbor more diverse and unique microbiomes. This hidden source of biodiversity is rarely considered in biodiversity and conservation debates and stresses the importance of preserving key soil invertebrates. Video abstract.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Michael R Gillings
- Department of Biological Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
25
|
Unveiling the Gut Microbiota and Resistome of Wild Cotton Mice, Peromyscus gossypinus, from Heavy Metal- and Radionuclide-Contaminated Sites in the Southeastern United States. Microbiol Spectr 2021; 9:e0009721. [PMID: 34431703 PMCID: PMC8552609 DOI: 10.1128/spectrum.00097-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prevalence of antibiotic resistance genes (ARGs) can be driven by direct selection from antibiotic use and indirect selection from substances such as heavy metals (HMs). While significant progress has been made to characterize the influence of HMs on the enrichment and dissemination of ARGs in the environment, there is still much we do not know. To fill this knowledge gap, we present a comprehensive analysis of gut bacteria associated with wild cotton mice (Peromyscus gossypinus) trapped from several areas affected by legacies of HM and radionuclide contamination. We explore how these contaminants affect gut microbial community (GMC) composition and diversity and the enrichment of antibiotic, biocide, and metal resistance genes. Although we were able to identify that a myriad of co-occurring antimicrobial and HM resistance genes appear in mice from all areas, including those without a history of contamination, the proportions of co-occurring ARGs and metal resistance genes (MRGs) are higher in sites with radionuclide contamination. These results support those from several previous studies and enhance our understanding of the coselection process, while providing new insights into the ubiquity of antimicrobial resistance in the resistome of wild animals. IMPORTANCE Antimicrobial resistance is a serious global public health concern because of its prevalence and ubiquitous distribution. The rapid dissemination of antibiotic resistance genes is thought to be the result of the massive overuse of antibiotics in agriculture and therapeutics. However, previous studies have demonstrated that the spread of antibiotic resistance genes can also be influenced by heavy metal contamination. This coselection phenomenon, whereby different resistance determinants are genetically linked on the same genetic element (coresistance) or a single genetic element provides resistance to multiple antimicrobial agents (cross-resistance), has profound clinical and environmental implications. In contrast to antibiotics, heavy metals can persist in the environment as a selection pressure for long periods of time. Thus, it is important to understand how antibiotic resistance genes are distributed in the environment and to what extent heavy metal contaminants may be driving their selection, which we have done in one environmental setting.
Collapse
|
26
|
Martínez‐Romero E, Aguirre‐Noyola JL, Bustamante‐Brito R, González‐Román P, Hernández‐Oaxaca D, Higareda‐Alvear V, Montes‐Carreto LM, Martínez‐Romero JC, Rosenblueth M, Servín‐Garcidueñas LE. We and herbivores eat endophytes. Microb Biotechnol 2021; 14:1282-1299. [PMID: 33320440 PMCID: PMC8313258 DOI: 10.1111/1751-7915.13688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.
Collapse
Affiliation(s)
| | | | | | - Pilar González‐Román
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | | | | | | | | - Mónica Rosenblueth
- Programa de Ecología GenómicaCentro de Ciencias GenómicasUNAMCuernavacaMorelosMexico
| | | |
Collapse
|
27
|
Fundamental dietary specialisation explains differential use of resources within a koala population. Oecologia 2021; 196:795-803. [PMID: 34142232 DOI: 10.1007/s00442-021-04962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/31/2021] [Indexed: 12/23/2022]
Abstract
The diets of individual animals within populations can differ, but few studies determine whether this is due to fundamental differences in preferences or capacities to eat specific foods, or to external influences such as dominance hierarchies or spatial variation in food availability. The distinction is important because different drivers of dietary specialisation are likely to have different impacts on the way in which animal populations respond to, for example, habitat modification. We used a captive feeding study to investigate the mechanisms driving individual dietary specialisation in a population of wild koalas (Phascolarctos cinereus) in which individuals predominantly ate either Eucalyptus viminalis or Eucalyptus obliqua foliage. All six koalas that primarily ate E. viminalis in the wild avoided eating E. obliqua for more than 1 month in captivity. In contrast, all seven koalas that primarily ate E. obliqua could be maintained exclusively on this species in captivity, although they ate less from individual trees with higher foliar concentrations of unsubstituted B-ring flavanones (UBFs). Our results show that fundamental differences between individual animals allow some to exploit food resources that are less suitable for others. This could reduce competition for food, increase habitat carrying capacity, and is also likely to buffer the population against extinction in the face of habitat modification. The occurrence of fundamental individual specialisation within animal populations could also affect the perceived conservation value of different habitats, translocation or reintroduction success, and population dynamics. It should therefore be further investigated in other mammalian herbivore species.
Collapse
|
28
|
Eisenhofer R, Helgen KM, Taggart D. Signatures of landscape and captivity in the gut microbiota of Southern Hairy-nosed Wombats (Lasiorhinus latifrons). Anim Microbiome 2021; 3:4. [PMID: 33499985 PMCID: PMC7934541 DOI: 10.1186/s42523-020-00068-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbivorous mammals co-opt microbes to derive energy and nutrients from diets that are recalcitrant to host enzymes. Recent research has found that captive management-an important conservation tool for many species-can alter the gut microbiota of mammals. Such changes could negatively impact the ability of herbivorous mammals to derive energy from their native diets, and ultimately reduce host fitness. To date, nothing is known of how captivity influences the gut microbiota of the Southern Hairy-nosed Wombat (SHNW), a large herbivorous marsupial that inhabits South Australia. Here, using 16S rRNA gene sequencing, we characterized the faecal microbiota of SHNWs in captivity and from three wild populations, two from degraded habitats and one from an intact native grass habitat. RESULTS We found that captive SHNWs had gut microbiota that were compositionally different and less diverse compared to wild SHNWs. There were major differences in gut microbiota community membership between captive and wild animals, both in statistically significant changes in relative abundance of microbes, and in the presence/absence of microbes. We also observed differences in microbial composition between wild populations, with the largest difference associated with native vs. degraded habitat. CONCLUSIONS These results suggest that captivity has a major impact on the gut microbiota of SHNWs, and that different wild populations harbour distinct microbial compositions. Such findings warrant further work to determine what impacts these changes have on the fitness of SHNWs, and whether they could be manipulated to improve future management of the species.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia. .,Australian Research Council Centre for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia.
| | - Kristofer M Helgen
- Australian Museum Research Institute, 1 William St, Sydney, New South Wales, Australia.,Australian Research Council Centre for Australian Biodiversity and Heritage, University of New South Wales, Sydney, New South Wales, Australia
| | - David Taggart
- School of Animal and Veterinary Sciences (Waite), University of Adelaide, Adelaide, South Australia, Australia.,FAUNA Research Alliance, PO Box 5092, Kahibah, NSW, 2290, Australia
| |
Collapse
|
29
|
Guo W, Ren K, Ning R, Li C, Zhang H, Li D, Xu L, Sun F, Dai M. Fecal microbiota transplantation provides new insight into wildlife conservation. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
30
|
Dahlhausen KE, Jospin G, Coil DA, Eisen JA, Wilkins LG. Isolation and sequence-based characterization of a koala symbiont: Lonepinella koalarum. PeerJ 2020; 8:e10177. [PMID: 33150080 PMCID: PMC7583611 DOI: 10.7717/peerj.10177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Koalas (Phascolarctos cinereus) are highly specialized herbivorous marsupials that feed almost exclusively on Eucalyptus leaves, which are known to contain varying concentrations of many different toxic chemical compounds. The literature suggests that Lonepinella koalarum, a bacterium in the Pasteurellaceae family, can break down some of these toxic chemical compounds. Furthermore, in a previous study, we identified L. koalarum as the most predictive taxon of koala survival during antibiotic treatment. Therefore, we believe that this bacterium may be important for koala health. Here, we isolated a strain of L. koalarum from a healthy koala female and sequenced its genome using a combination of short-read and long-read sequencing. We placed the genome assembly into a phylogenetic tree based on 120 genome markers using the Genome Taxonomy Database (GTDB), which currently does not include any L. koalarum assemblies. Our genome assembly fell in the middle of a group of Haemophilus, Pasteurella and Basfia species. According to average nucleotide identity and a 16S rRNA gene tree, the closest relative of our isolate is L. koalarum strain Y17189. Then, we annotated the gene sequences and compared them to 55 closely related, publicly available genomes. Several genes that are known to be involved in carbohydrate metabolism could exclusively be found in L. koalarum relative to the other taxa in the pangenome, including glycoside hydrolase families GH2, GH31, GH32, GH43 and GH77. Among the predicted genes of L. koalarum were 79 candidates putatively involved in the degradation of plant secondary metabolites. Additionally, several genes coding for amino acid variants were found that had been shown to confer antibiotic resistance in other bacterial species against pulvomycin, beta-lactam antibiotics and the antibiotic efflux pump KpnH. In summary, this genetic characterization allows us to build hypotheses to explore the potentially beneficial role that L. koalarum might play in the koala intestinal microbiome. Characterizing and understanding beneficial symbionts at the whole genome level is important for the development of anti- and probiotic treatments for koalas, a highly threatened species due to habitat loss, wildfires, and high prevalence of Chlamydia infections.
Collapse
Affiliation(s)
| | - Guillaume Jospin
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| | - David A. Coil
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| | - Jonathan A. Eisen
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Laetitia G.E. Wilkins
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| |
Collapse
|
31
|
Moeller AH, Sanders JG. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190597. [PMID: 32772670 PMCID: PMC7435157 DOI: 10.1098/rstb.2019.0597] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Every mammalian species harbours a gut microbiota, and variation in the gut microbiota within mammalian species can have profound effects on host phenotypes. In this review, we summarize recent evidence that gut microbiotas have influenced the course of mammalian adaptation and diversification. Associations with gut microbiotas have: (i) promoted the diversification of mammalian species by enabling dietary transitions onto difficult-to-digest carbon sources and toxic food items; (ii) shaped the evolution of adaptive phenotypic plasticity in mammalian species through the amplification of signals from the external environment and from postnatal developmental processes; and (iii) generated selection for host mechanisms, including innate and adaptive immune mechanisms, to control the gut microbiota for the benefit of host fitness. The stability of specific gut microbiotas within host species lineages varies substantially across the mammalian phylogeny, and this variation may alter the ultimate evolutionary outcomes of relationships with gut microbiotas in different mammalian clades. In some mammalian species, including humans, relationships with host species-specific gut microbiotas appear to have led to the evolution of host dependence on the gut microbiota for certain functions. These studies implicate the gut microbiota as a significant environmental factor and selective agent shaping the adaptive evolution of mammalian diet, phenotypic plasticity, gastrointestinal morphology and immunity. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jon G. Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Institute for Host-Microbe Interaction and Disease, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Ashman KR, Page NR, Whisson DA. Ranging Behavior of an Arboreal Marsupial in a Plantation Landscape. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kita R. Ashman
- School of Life and Environmental SciencesDeakin University, Centre for Integrative Ecology 221 Burwood Hwy, Burwood VIC 3125 Australia
| | - Nina R. Page
- School of Life and Environmental SciencesDeakin University, Centre for Integrative Ecology 221 Burwood Hwy, Burwood VIC 3125 Australia
| | - Desley A. Whisson
- School of Life and Environmental SciencesDeakin University, Centre for Integrative Ecology 221 Burwood Hwy, Burwood VIC 3125 Australia
| |
Collapse
|
33
|
Chong R, Cheng Y, Hogg CJ, Belov K. Marsupial Gut Microbiome. Front Microbiol 2020; 11:1058. [PMID: 32547513 PMCID: PMC7272691 DOI: 10.3389/fmicb.2020.01058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The study of the gut microbiome in threatened wildlife species has enormous potential to improve conservation efforts and gain insights into host-microbe coevolution. Threatened species are often housed in captivity, and during this process undergo considerable changes to their gut microbiome. Studying the gut microbiome of captive animals therefore allows identification of dysbiosis and opportunities for improving management practices in captivity and for subsequent translocations. Manipulation of the gut microbiome through methods such as fecal transplant may offer an innovative means of restoring dysbiotic microbiomes in threatened species to provide health benefits. Finally, characterization of the gut microbiome (including the viral components, or virome) provides important baseline health information and may lead to discovery of significant microbial pathogens. Here we summarize our current understanding of microbiomes in Australian marsupial species.
Collapse
Affiliation(s)
- Rowena Chong
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Gao H, Chi X, Li G, Qin W, Song P, Jiang F, Liu D, Zhang J, Zhou X, Li S, Zhang T. Gut microbial diversity and stabilizing functions enhance the plateau adaptability of Tibetan wild ass (Equus kiang). Microbiologyopen 2020; 9:1150-1161. [PMID: 32157819 PMCID: PMC7294314 DOI: 10.1002/mbo3.1025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Interactions between gut microbiota not only regulate physical health, but also form a vital bridge between the environment and the host, thus helping the host to better adapt to the environment. The improvement of modern molecular sequencing techniques enables in‐depth investigations of the gut microbiota of vertebrate herbivores without harming them. By sequencing the 16S rRNA V4‐V5 region of the gut microbiota of both the captive and wild kiang in winter and summer, the diversity and function of the microbiota could be compared. The reasons for observed differences were discussed. The results showed that the dominant phyla of the kiang were Bacteroidetes and Firmicutes, and the structure and abundance of the gut microbiota differed significantly between seasons and environments. However, the relatively stable function of the gut microbiota supplies the host with increased adaptability to the environment. The diversity of the intestinal flora of the kiang is relatively low in captivity, which increases their risk to catch diseases to some extent. Therefore, importance should be attached to the impact of captivity on wildlife.
Collapse
Affiliation(s)
- Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangwen Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangying Li
- Qinghai Provincial Environmental Protection Department, Xining, China
| | - Wen Qin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Daoxin Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Shengqing Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
35
|
Whisson DA, Ashman KR. When an iconic native animal is overabundant: The koala in southern Australia. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Desley A. Whisson
- Deakin University, Geelong, AustraliaSchool of Life and Environmental Sciences, 221 Burwood Highway Burwood Victoria Australia
| | - Kita R. Ashman
- Deakin University, Geelong, AustraliaSchool of Life and Environmental Sciences, 221 Burwood Highway Burwood Victoria Australia
| |
Collapse
|
36
|
Boath JM, Dakhal S, Van TTH, Moore RJ, Dekiwadia C, Macreadie IG. Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut. Microorganisms 2020; 8:E309. [PMID: 32102268 PMCID: PMC7074957 DOI: 10.3390/microorganisms8020309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
The Cedecea genus is comprised of six rarely isolated species within the Enterobacteriaceae family. Representatives are Gram-negative motile bacilli, and are typically oxidase-negative, lipase-positive and resistant to colistin and cephalothin. In this study, a putative novel Cedecea species (designated strain ZA_0188T), isolated from the koala hindgut, was characterised using a polyphasic taxonomic approach. Maximum average nucleotide identity (ANI) and 16S ribosomal RNA (rRNA) similarity scores well below thresholds of species demarcation were reported, at 81.1% and 97.9%, respectively. Multilocus phylogenetic analysis indicated strain ZA_0188T was most similar to but divergent from recognised Cedecea species. The isolate's genomic G+C content was determined as 53.0 mol%, >1% lower than previously reported in Cedecea. Phenotypically, strain ZA_0188T was distinct from recognised Cedecea species such as colistin- and cephalothin-sensitive, lipase-, sorbitol-, sucrose-, and Voges-Proskauer-negative, and melibiose-, arabinose-, arginine-, and rhamnose-positive. In preliminary experiments, strain ZA_0188T exhibited cellulase activity and high-level tolerance to eucalyptus oil compared to other enteric species surveyed. Collectively, these findings suggest that strain ZA_0188T represents a novel enteric species, for which the name Cedecea colo is proposed.
Collapse
Affiliation(s)
- Jarryd M. Boath
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; (J.M.B.); (S.D.); (T.T.H.V.); (R.J.M.)
| | - Sudip Dakhal
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; (J.M.B.); (S.D.); (T.T.H.V.); (R.J.M.)
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; (J.M.B.); (S.D.); (T.T.H.V.); (R.J.M.)
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; (J.M.B.); (S.D.); (T.T.H.V.); (R.J.M.)
| | - Chaitali Dekiwadia
- Australian Microscopy & Microanalysis Research Facility, RMIT University, Melbourne, Victoria 3000, Australia;
| | - Ian G. Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; (J.M.B.); (S.D.); (T.T.H.V.); (R.J.M.)
| |
Collapse
|
37
|
Miller DL, Parish AJ, Newton IL. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr Opin Microbiol 2019; 50:1-7. [PMID: 31563000 DOI: 10.1016/j.mib.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Microbial communities have considerable impacts on animal health. However, only in recent years have the host factors impacting microbiome composition been explored. An increasing wealth of microbiome data in combination with decades of research on behavior, physiology, and development have resulted in the European honey bee (Apis mellifera) as a burgeoning model system for studying the influence of host behavior on the microbiota. Honey bees are eusocial insects which exhibit striking behavioral and physiological differences between castes and life stages. These include changes in social contact, environmental exposure, diet, and physiology: all factors which can affect microbial composition and function. The honey bee system offers an opportunity to tease apart the interactive effects of all these factors on microbiota composition, abundance, and diversity.
Collapse
Affiliation(s)
- Delaney L Miller
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Irene Lg Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States.
| |
Collapse
|
38
|
Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim Microbiome 2019; 1:6. [PMID: 33499955 PMCID: PMC7803123 DOI: 10.1186/s42523-019-0008-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background Differences between individuals in their gastrointestinal microbiomes can lead to variation in their ability to persist on particular diets. Koalas are dietary specialists, feeding almost exclusively on Eucalyptus foliage but many individuals will not feed on particular Eucalyptus species that are adequate food for other individuals, even when facing starvation. We undertook a faecal inoculation experiment to test whether a koala’s gastrointestinal (GI) microbiome influences their diet. Wild-caught koalas that initially fed on the preferred manna gum (Eucalyptus viminalis) were brought into captivity and orally inoculated with encapsulated material derived from faeces from koalas feeding on either the less preferred messmate (E. obliqua; treatment) or manna gum (control). Results The gastrointestinal microbiomes of wild koalas feeding primarily on manna gum were distinct from those feeding primarily on messmate. We found that the gastrointestinal microbiomes of koalas were unresponsive to dietary changes because the control koalas’ GI microbiomes did not change even when the nocturnal koalas were fed exclusively on messmate overnight. We showed that faecal inoculations can assist the GI microbiomes of koalas to change as the treatment koalas’ GI microbiomes became more similar to those of wild koalas feeding on messmate. There was no overall difference between the control and treatment koalas in the quantity of messmate they consumed. However, the greater the change in the koalas’ GI microbiomes, the more messmate they consumed after the inoculations had established. Conclusions The results suggest that dietary changes can only lead to changes in the GI microbiomes of koalas if the appropriate microbial species are present, and/or that the koala gastrointestinal microbiome influences diet selection. Electronic supplementary material The online version of this article (10.1186/s42523-019-0008-0) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Williams CL, Caraballo-Rodríguez AM, Allaband C, Zarrinpar A, Knight R, Gauglitz JM. Wildlife-microbiome interactions and disease: exploring opportunities for disease mitigation across ecological scales. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|