1
|
Palmirotta R, Cafiero C, Colella M. Role of high-dose amoxicillin dual therapy for Helicobacter pylori eradication in an Irish cohort: A prospective study. World J Clin Cases 2024; 12:6859-6863. [DOI: 10.12998/wjcc.v12.i35.6859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/24/2024] Open
Abstract
Helicobacter pylori (H. pylori) infections may cause chronic gastritis, peptic ulcer disease, gastric cancers, and other conditions outside of the gastrointestinal tract. Hence, it is important to diagnose and treat it early. H. pylori is resistant to certain drugs in traditional eradication therapy, so alternative therapy protocols are needed, such as high-dose amoxicillin dual therapy (HDADT). This article aims to comment on a recent paper by Costigan et al in the World Journal of Clinical Cases. In this study, the authors recruited 139 patients diagnosed with H. pylori, all treated with HDADT. Of these, 93 were treatment-naïve and 46 had received at least one alternative treatment in the past. Four weeks after the end of the treatment, the urea breath test was administered to estimate the eradication rate. The total eradication rate was 56% (78/139), 62% for the treatment-naïve arm and 43% for the previous treatment arm, thus indicating a lower success rate for the arm that had previously received a different treatment regimen. In conclusion, a therapeutic approach with first-line HDADT may potentially be a better treatment, but the results are not sufficient to recommend the use of this regimen in a country with high levels of dual resistance.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
2
|
Samarasinghe BSW, Millar R, Exworthy M. Bridging the divide? Why the integration of standardisation and individualisation of care remains paramount during turbulent times. BMJ LEADER 2024:leader-2023-000920. [PMID: 39443127 DOI: 10.1136/leader-2023-000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Buddhika S W Samarasinghe
- Health Services Management Centre, College of Social Sciences, University of Birmingham, Birmingham, Edgbaston, UK
| | - Ross Millar
- Health Services Management Centre, College of Social Sciences, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mark Exworthy
- Health Services Management Centre, College of Social Sciences, University of Birmingham, Birmingham, Edgbaston, UK
| |
Collapse
|
3
|
Baskovich B, Baras A, Seethala RR, Fitzgibbons PL, Schneider F, Harris BT, Khoury J. The Journey to Improve the College of American Pathologists Cancer Biomarker Reporting Protocols. Arch Pathol Lab Med 2024; 148:1105-1109. [PMID: 38375737 DOI: 10.5858/arpa.2023-0235-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 02/21/2024]
Abstract
CONTEXT.— Biomarker reporting has increasingly become a key component of pathology reporting, providing diagnostic, prognostic, and actionable therapeutic data for patient care. OBJECTIVE.— To expand and improve the College of American Pathologists (CAP) biomarker protocols. DESIGN.— We surveyed CAP members to better understand the limitations they experienced when reporting cancer biomarker results. A Biomarker Workgroup reviewed the survey results and developed a strategy to improve and standardize biomarker reporting. Drafts of new and revised biomarker protocols were reviewed in both print and electronic template formats during interactive webinars presented to the CAP House of Delegates. Feedback was collected, and appropriate revisions were made to finalize the protocols. RESULTS.— The first phase of the CAP Biomarker Workgroup saw the development of (1) a new stand-alone general Immunohistochemistry Biomarker Protocol that includes reporting for ER (estrogen receptor), PR (progesterone receptor), Ki-67, HER2 (human epidermal growth factor receptor 2), PD-L1 (programmed death ligand-1), and mismatch repair; (2) a new Head and Neck Biomarker Protocol that updates the prior 2017 paper-only version into an electronic template, adding new diagnostic and theranostic markers; (3) a major revision to the Lung Biomarker Protocol to streamline it and add in pan-cancer markers; and (4) a revision to the Colon and Rectum Biomarker Protocol to add HER2 reporting. CONCLUSIONS.— We have taken a multipronged approach to improving biomarker reporting in the CAP cancer protocols. We continue to review current biomarker reporting protocols to reduce and eliminate unnecessary methodologic details and update with new markers as needed. The biomarker templates will serve as standardized modular units that can be inserted into cancer-reporting protocols.
Collapse
Affiliation(s)
- Brett Baskovich
- From the Department of Pathology, Icahn School of Medicine at Mount Sinai Health Systems, New York, New York (Baskovich)
| | - Alexander Baras
- the Department of Pathology, John Hopkins University School of Medicine, Baltimore, Maryland (Baras)
| | - Raja R Seethala
- the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (Seethala)
| | - Patrick L Fitzgibbons
- the Department of Pathology, Providence St Jude Medical Center, Fullerton, California (Fitzgibbons)
| | - Frank Schneider
- the Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Schneider)
| | - Brent T Harris
- the Department of Pathology, Georgetown University School of Medicine, Washington, District of Columbia (Harris)
| | - Joseph Khoury
- the Department of Pathology, University of Nebraska Medical Center College of Medicine, Omaha (Khoury)
| |
Collapse
|
4
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Basu AP, Low K, Ratnaike T, Rowitch D. Genetic investigations in cerebral palsy. Dev Med Child Neurol 2024. [PMID: 39208295 DOI: 10.1111/dmcn.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The original description of cerebral palsy (CP) contained case histories suggesting that perinatal environmental stressors resulted in brain injury and neurodevelopmental disability. While there are clear associations between environmental impact on brain development and CP, recent studies indicate an 11% to 40% incidence of monogenic conditions in patients given a diagnosis of CP. A genetic diagnosis supports the delivery of personalized medicine. In this review, we describe how the Wnt pathway exemplifies our understanding of pathophysiology related to a gene variant (CTNNB1) found in some children diagnosed with CP. We cover studies undertaken to establish the baseline prevalence of monogenic conditions in populations attending CP clinics. We list factors indicating increased likelihood of a genomic diagnosis; and we highlight the need for a comprehensive, accurate, genotype-phenotype reference data set to aid variant interpretation in CP cohorts. We also consider the wider societal implications of genomic management of CP including significance of the diagnostic label, benefits and pitfalls of a genetic diagnosis, logistics, and cost.
Collapse
Affiliation(s)
- Anna P Basu
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Neurology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Karen Low
- Centre for Academic Child Health, University of Bristol, Bristol, UK
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - Thiloka Ratnaike
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Paediatrics, Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, UK
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Chi CS, Tsai CR, Lee HF. Resolving unsolved whole-genome sequencing data in paediatric neurological disorders: a cohort study. Arch Dis Child 2024; 109:730-735. [PMID: 38789118 PMCID: PMC11347223 DOI: 10.1136/archdischild-2024-326985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE To resolve unsolved whole-genome sequencing (WGS) data in individuals with paediatric neurological disorders. DESIGN A cohort study method using updated bioinformatic tools, new analysis targets, clinical information and literature databases was employed to reanalyse existing unsolved genome data. PARTICIPANTS From January 2016 to September 2023, a total of 615 individuals who aged under 18 years old, exhibited neurological disorders and received singleton WGS were recruited. 364 cases were unsolved during initial WGS analysis, in which 102 consented to reanalyse existing singleton WGS data. RESULTS Median duration for reanalysis after initial negative WGS results was 2 years and 4 months. The diagnostic yield was 29 of 102 individuals (28.4%) through reanalysis. New disease gene discovery and new target acquisitions contributed to 13 of 29 solved cases (44.8%). The reasons of non-detected causative variants during initial WGS analysis were variant reclassification in 9 individuals (31%), analytical issue in 9 (31%), new emerging disease-gene association in 8 (27.6%) and clinical update in 3 (10.3%). The 29 new diagnoses increased the cumulative diagnostic yield of clinical WGS in the entire study cohort to 45.5% after reanalysis. CONCLUSIONS Unsolved paediatric WGS individuals with neurological disorders could obtain molecular diagnoses through reanalysis within a timeframe of 2-2.5 years. New disease gene, structural variations and deep intronic splice variants make a significant contribution to diagnostic yield. This approach can provide precise genetic counselling to positive reanalysis results and end a diagnostic odyssey.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Mc Cartney AM, Scholz AH, Groussin M, Staunton C. Benefit-Sharing by Design: A Call to Action for Human Genomics Research. Annu Rev Genomics Hum Genet 2024; 25:369-395. [PMID: 38608642 DOI: 10.1146/annurev-genom-021623-104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a "benefit-sharing by design" framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.
Collapse
Affiliation(s)
- Ann M Mc Cartney
- Genomics Institute, University of California, Santa Cruz, California, USA;
| | - Amber Hartman Scholz
- Department of Science Policy and Internationalisation, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany;
| | - Mathieu Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany;
| | - Ciara Staunton
- School of Law, University of KwaZulu-Natal, Durban, South Africa
- Institute for Biomedicine, Eurac Research, Bolzano, Italy;
| |
Collapse
|
8
|
Liu Y, Liu J, Zhang S, Wang J, Sun Z, Sun H, Yang Y, Zheng G, Huang Y, Li M, Zhang Z, Xiao J, Zeng C, Sun C, Qu H, Fang X. A panel sequencing dataset of peripheral blood gene variations in pan-cancer. Sci Data 2024; 11:805. [PMID: 39033182 PMCID: PMC11271301 DOI: 10.1038/s41597-024-03620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Circulating cell-free DNA (cfDNA) in the peripheral blood is a promising biomarker for cancer diagnosis and prognosis. Somatic mutations identified in cancers have been used to detect therapeutic targets for clinical transformation and individualize drug selection, while germline variants can predict a patient's risk of developing cancer and drug sensitivity. However, no platform has been developed to analyze, calculate, integrate, and friendly visualize these pan-cancer cfDNA mutations deeply. In this work, we performed panel sequencing encompassing 1,115 cancer-related genes across 16,659 cancer patients, spanning 27 cancer types. We detected 496 germline variants in leukocytes and 11,232 somatic mutations in the cfDNA of all patients. CPGV (Cancer Peripheral blood Gene Variations), a database constructed from this dataset, is the first pan-cancer cfDNA database that encompasses somatic mutations, germline variants, and further comparative analyses of mutations across different cancer types. It bears great promise to serve as a valuable resource for cancer research.
Collapse
Affiliation(s)
- Yanxia Liu
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liu
- Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Shouwei Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Jinyue Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Guangmin Zheng
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Huang
- Genecast Biotechnology Co., Ltd, Wuxi, 214104, China
| | - Meng Li
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Zhaojun Zhang
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Jingfa Xiao
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changqing Zeng
- China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Hongzhu Qu
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
9
|
Levenson RM, Singh Y, Rieck B, Hathaway QA, Farrelly C, Rozenblit J, Prasanna P, Erickson B, Choudhary A, Carlsson G, Sarkar D. Advancing Precision Medicine: Algebraic Topology and Differential Geometry in Radiology and Computational Pathology. J Transl Med 2024; 104:102060. [PMID: 38626875 DOI: 10.1016/j.labinv.2024.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
Precision medicine aims to provide personalized care based on individual patient characteristics, rather than guideline-directed therapies for groups of diseases or patient demographics. Images-both radiology- and pathology-derived-are a major source of information on presence, type, and status of disease. Exploring the mathematical relationship of pixels in medical imaging ("radiomics") and cellular-scale structures in digital pathology slides ("pathomics") offers powerful tools for extracting both qualitative and, increasingly, quantitative data. These analytical approaches, however, may be significantly enhanced by applying additional methods arising from fields of mathematics such as differential geometry and algebraic topology that remain underexplored in this context. Geometry's strength lies in its ability to provide precise local measurements, such as curvature, that can be crucial for identifying abnormalities at multiple spatial levels. These measurements can augment the quantitative features extracted in conventional radiomics, leading to more nuanced diagnostics. By contrast, topology serves as a robust shape descriptor, capturing essential features such as connected components and holes. The field of topological data analysis was initially founded to explore the shape of data, with functional network connectivity in the brain being a prominent example. Increasingly, its tools are now being used to explore organizational patterns of physical structures in medical images and digitized pathology slides. By leveraging tools from both differential geometry and algebraic topology, researchers and clinicians may be able to obtain a more comprehensive, multi-layered understanding of medical images and contribute to precision medicine's armamentarium.
Collapse
Affiliation(s)
- Richard M Levenson
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, California.
| | - Yashbir Singh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.
| | - Bastian Rieck
- Helmholtz Munich and Technical University of Munich, Munich, Germany
| | - Quincy A Hathaway
- Department of Medical Education, West Virginia University, Morgantown, West Virginia
| | | | | | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York
| | | | | | - Gunnar Carlsson
- Department of Mathematics, Stanford University, Stanford, California
| | - Deepa Sarkar
- Institute of Genomic Health, Ichan school of Medicine, Mount Sinai, New York
| |
Collapse
|
10
|
Zahra MA, Al-Taher A, Alquhaidan M, Hussain T, Ismail I, Raya I, Kandeel M. The synergy of artificial intelligence and personalized medicine for the enhanced diagnosis, treatment, and prevention of disease. Drug Metab Pers Ther 2024; 39:47-58. [PMID: 38997240 DOI: 10.1515/dmpt-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION The completion of the Human Genome Project in 2003 marked the beginning of a transformative era in medicine. This milestone laid the foundation for personalized medicine, an innovative approach that customizes healthcare treatments. CONTENT Central to the advancement of personalized medicine is the understanding of genetic variations and their impact on drug responses. The integration of artificial intelligence (AI) into drug response trials has been pivotal in this domain. These technologies excel in handling large-scale genomic datasets and patient histories, significantly improving diagnostic accuracy, disease prediction and drug discovery. They are particularly effective in addressing complex diseases such as cancer and genetic disorders. Furthermore, the advent of wearable technology, when combined with AI, propels personalized medicine forward by offering real-time health monitoring, which is crucial for early disease detection and management. SUMMARY The integration of AI into personalized medicine represents a significant advancement in healthcare, promising more accurate diagnoses, effective treatment plans and innovative drug discoveries. OUTLOOK As technology continues to evolve, the role of AI in enhancing personalized medicine and transforming the healthcare landscape is expected to grow exponentially. This synergy between AI and healthcare holds great promise for the future, potentially revolutionizing the way healthcare is delivered and experienced.
Collapse
Affiliation(s)
- Mohammad Abu Zahra
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohamed Alquhaidan
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Izzeldin Ismail
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Indah Raya
- Department of Chemistry, Faculty of Mathematics, and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Mahmoud Kandeel
- Department of Biomolecular Sciences, College of Veterinary Medicine, 114800 King Faisal University , Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| |
Collapse
|
11
|
Samsom KG, Bosch LJW, Schipper LJ, Schout D, Roepman P, Boelens MC, Lalezari F, Klompenhouwer EG, de Langen AJ, Buffart TE, van Linder BMH, van Deventer K, van den Burg K, Unmehopa U, Rosenberg EH, Koster R, Hogervorst FBL, van den Berg JG, Riethorst I, Schoenmaker L, van Beek D, de Bruijn E, van der Hoeven JJM, van Snellenberg H, van der Kolk LE, Cuppen E, Voest EE, Meijer GA, Monkhorst K. Optimized whole-genome sequencing workflow for tumor diagnostics in routine pathology practice. Nat Protoc 2024; 19:700-726. [PMID: 38092944 DOI: 10.1038/s41596-023-00933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/19/2023] [Indexed: 03/10/2024]
Abstract
Two decades after the genomics revolution, oncology is rapidly transforming into a genome-driven discipline, yet routine cancer diagnostics is still mainly microscopy based, except for tumor type-specific predictive molecular tests. Pathology laboratories struggle to quickly validate and adopt biomarkers identified by genomics studies of new targeted therapies. Consequently, clinical implementation of newly approved biomarkers suffers substantial delays, leading to unequal patient access to these therapies. Whole-genome sequencing (WGS) can successfully address these challenges by providing a stable molecular diagnostic platform that allows detection of a multitude of genomic alterations in a single cost-efficient assay and facilitating rapid implementation, as well as by the development of new genomic biomarkers. Recently, the Whole-genome sequencing Implementation in standard Diagnostics for Every cancer patient (WIDE) study demonstrated that WGS is a feasible and clinically valid technique in routine clinical practice with a turnaround time of 11 workdays. As a result, WGS was successfully implemented at the Netherlands Cancer Institute as part of routine diagnostics in January 2021. The success of implementing WGS has relied on adhering to a comprehensive protocol including recording patient information, sample collection, shipment and storage logistics, sequencing data interpretation and reporting, integration into clinical decision-making and data usage. This protocol describes the use of fresh-frozen samples that are necessary for WGS but can be challenging to implement in pathology laboratories accustomed to using formalin-fixed paraffin-embedded samples. In addition, the protocol outlines key considerations to guide uptake of WGS in routine clinical care in hospitals worldwide.
Collapse
Affiliation(s)
- Kris G Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda J W Bosch
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Luuk J Schipper
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
| | - Daoin Schout
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferry Lalezari
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Adrianus J de Langen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tineke E Buffart
- Department of Medical Oncology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Berit M H van Linder
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kelly van Deventer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kay van den Burg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Unga Unmehopa
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof Koster
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - José G van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Immy Riethorst
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Lieke Schoenmaker
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Daphne van Beek
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | - Ewart de Bruijn
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
| | | | | | | | - Edwin Cuppen
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Hartwig Medical Foundation, Science Park, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Utrecht, the Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Kuo FH, Tudor BH, Gray GM, Ahumada LM, Rehman MA, Watkins SC. Precision Anesthesia in 2050. Anesth Analg 2024; 138:326-336. [PMID: 38215711 DOI: 10.1213/ane.0000000000006688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Over the last few decades, the field of anesthesia has advanced far beyond its humble beginnings. Today's anesthetics are better and safer than ever, thanks to innovations in drugs, monitors, equipment, and patient safety.1-4 At the same time, we remain limited by our herd approach to medicine. Each of our patients is unique, but health care today is based on a one-size-fits-all approach, while our patients grow older and more medically complex every year. By 2050, we believe that precision medicine will play a central role across all medical specialties, including anesthesia. In addition, we expect that health care and consumer technology will continually evolve to improve and simplify the interactions between patients, providers, and the health care system. As demonstrated by 2 hypothetical patient experiences, these advancements will enable more efficient and safe care, earlier and more accurate diagnoses, and truly personalized treatment plans.
Collapse
Affiliation(s)
| | - Brant H Tudor
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Geoffrey M Gray
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Luis M Ahumada
- Center for Pediatric Data Science and Analytic Methodology, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | | | | |
Collapse
|
13
|
Roberts AM, DiStefano MT, Riggs ER, Josephs KS, Alkuraya FS, Amberger J, Amin M, Berg JS, Cunningham F, Eilbeck K, Firth HV, Foreman J, Hamosh A, Hay E, Leigh S, Martin CL, McDonagh EM, Perrett D, Ramos EM, Robinson PN, Rath A, Sant DW, Stark Z, Whiffin N, Rehm HL, Ware JS. Toward robust clinical genome interpretation: Developing a consistent terminology to characterize Mendelian disease-gene relationships-allelic requirement, inheritance modes, and disease mechanisms. Genet Med 2024; 26:101029. [PMID: 37982373 PMCID: PMC11039201 DOI: 10.1016/j.gim.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
Collapse
Affiliation(s)
- Angharad M Roberts
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom.
| | - Marina T DiStefano
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Katherine S Josephs
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, KFSHRC, Riyadh, Saudi Arabia
| | - Joanna Amberger
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT
| | - Helen V Firth
- Dept of Medical Genetics, Cambridge University Hospitals, Cambridge, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eleanor Hay
- Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London, United Kingdom
| | - Sarah Leigh
- Genomics England, Queen Mary University of London, Dawson Hall, London, United Kingdom
| | | | - Ellen M McDonagh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom; Open Targets, Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Daniel Perrett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Erin M Ramos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Ana Rath
- INSERM, US14-Orphanet, Paris, France
| | - David W Sant
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT
| | - Zornitza Stark
- Australian Genomics, Melbourne 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne 3052, Australia; University of Melbourne, Melbourne 3052, Australia
| | - Nicola Whiffin
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Dordunoo D, Limoges J, Chiu P, Puddester R, Carlsson L, Pike A. Genomics-informed nursing strategies and health equity: A scoping review protocol. PLoS One 2023; 18:e0295914. [PMID: 38100433 PMCID: PMC10723661 DOI: 10.1371/journal.pone.0295914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE The objective of this scoping review is to map the available evidence on strategies that nurses can use to facilitate genomics-informed healthcare to address health disparities. INTRODUCTION Advancements in genomics over the last two decades have led to an increase in the delivery of genomics-informed health care. Although the integration of genomics into health care services continues to enhance patient outcomes, access to genomic technologies is not equitable, exacerbating existing health disparities amongst certain populations. As the largest portion of the health workforce, nurses play a critical role in the delivery of equitable genomics-informed care. However, little is known about how nurses can help address health disparities within the context of genomics-informed health care. A review of the literature will provide the necessary foundation to identify promising practices, policy, and knowledge gaps for further areas of inquiry. INCLUSION CRITERIA We will include papers that explore strategies that nurses can undertake to facilitate genomics-informed care to address health disparities. METHODS This review will be conducted using JBI methodology for scoping reviews. We will search electronic databases including MEDLINE (OVID), EMBASE, Cochrane Library, PsychInfo, and CINAHL for quantitative and qualitative studies, systematic reviews and grey literature. Theses, books, and unavailable full-text papers will be excluded. The search will be limited to papers from 2013 and beyond. Two reviewers will screen titles and abstracts followed by full-text and disagreements will be resolved by a third reviewer. We will use a data extraction tool using Microsoft Excel and analyse data using descriptive statistics and conventional content analysis. Findings will be presented in the form of evidence tables and a narrative summary. We will report findings using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). DISCUSSION Genomics will continue to transform all aspects of health care across the wellness continuum from prevention, assessment, diagnosis, management, treatment, and palliative care. The identification of nursing strategies to address health disparities will build the foundation for policy and practice to ensure that the integration of genomic technologies benefits everyone.
Collapse
Affiliation(s)
- Dzifa Dordunoo
- University of Victoria, School of Nursing, Director, Centre for Evidence informed Nursing and Health Care: JBI Centre of Excellence, Victoria, Canada
| | - Jacqueline Limoges
- Athabasca University, Chair, Ontario Cancer Research Ethics Board, Toronto, Canada
| | | | - Rebecca Puddester
- Memorial University of Newfoundland, Faculty of Nursing, St. John’s, Canada
| | | | - April Pike
- Memorial University of Newfoundland, Faculty of Nursing, St. John’s, Canada
| |
Collapse
|
15
|
French EL, Kader L, Young EE, Fontes JD. Physician Perception of the Importance of Medical Genetics and Genomics in Medical Education and Clinical Practice. MEDICAL EDUCATION ONLINE 2023; 28:2143920. [PMID: 36345884 PMCID: PMC9648379 DOI: 10.1080/10872981.2022.2143920] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE The objective of this study was to determine physician perceptions regarding the importance of and comfort with the use of medical genetics and genomics in medical education and practice, as well as physician expectations for medical trainees. METHODS A retrospective survey was sent to physicians employed by a health system associated with a public medical school to assess their perceived training in medical genetics and genomics and their comfort level with ordering genetic testing. METHODS Despite reporting formal genetics training in medical schools, clinicians' comfort with and knowledge in this content area does not meet personal expectations of competency. Though physicians report some discomfort with the use of medical genetics and genomics, the majority also believe that its impact on practice will increase in the next five years. Survey recipients were also asked about their expectations for preparation in the same domains for medical students and incoming residents. The surveyed physicians expect a high level of competency for medical students and incoming residents. METHODS Our study revealed that practicing physicians feel current medical curricula do not produce physicians with the necessary competency in medical genetics and genomics. This is despite physicians' perceived importance of this domain in medical practice. Our findings suggest a need for re-evaluation of medical genetics and genomics education at all levels of training.
Collapse
Affiliation(s)
| | - Leena Kader
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Erin E. Young
- Department of Anesthesiology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Joseph D. Fontes
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
16
|
Crespo-Lopez ME, Barthelemy JL, Lopes-Araújo A, Santos-Sacramento L, Leal-Nazaré CG, Soares-Silva I, Macchi BM, do Nascimento JLM, Arrifano GDP, Augusto-Oliveira M. Revisiting Genetic Influence on Mercury Exposure and Intoxication in Humans: A Scoping Review. TOXICS 2023; 11:967. [PMID: 38133368 PMCID: PMC10747380 DOI: 10.3390/toxics11120967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore, this review aimed to systematically overview the most recent evidence on the genetic influence (using single nucleotide polymorphisms, SNPs) on human mercury poisoning. Three different databases (PubMed/Medline, Web of Science and Scopus) were searched, and 380 studies were found that were published from 2015 to 2022. After applying inclusion/exclusion criteria, 29 studies were selected and data on characteristics (year, country, profile of participants) and results (mercury biomarkers and quantitation, SNPs, main findings) were extracted and analyzed. The largest number of studies was performed in Brazil, mainly involving traditional populations of the Tapajós River basin. Most studies evaluated the influence of the SNPs related to genes of the glutathione system (GST, GPx, etc.), the ATP-binding cassette transporters and the metallothionein proteins. The recent findings regarding other SNPs, such as those of apolipoprotein E and brain-derived neurotrophic factor genes, are also highlighted. The importance of the exposure level is discussed considering the possible biphasic behavior of the genetic modulation phenomena that could explain some SNP associations. Overall, recommendations are provided for future studies based on the analysis obtained in this scoping review.
Collapse
Affiliation(s)
- Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Barbarella M. Macchi
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (J.L.M.d.N.)
| | - José Luiz M. do Nascimento
- Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (J.L.M.d.N.)
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, PA, Brazil (L.S.-S.); (C.G.L.-N.)
| |
Collapse
|
17
|
Pagnamenta AT, Camps C, Giacopuzzi E, Taylor JM, Hashim M, Calpena E, Kaisaki PJ, Hashimoto A, Yu J, Sanders E, Schwessinger R, Hughes JR, Lunter G, Dreau H, Ferla M, Lange L, Kesim Y, Ragoussis V, Vavoulis DV, Allroggen H, Ansorge O, Babbs C, Banka S, Baños-Piñero B, Beeson D, Ben-Ami T, Bennett DL, Bento C, Blair E, Brasch-Andersen C, Bull KR, Cario H, Cilliers D, Conti V, Davies EG, Dhalla F, Dacal BD, Dong Y, Dunford JE, Guerrini R, Harris AL, Hartley J, Hollander G, Javaid K, Kane M, Kelly D, Kelly D, Knight SJL, Kreins AY, Kvikstad EM, Langman CB, Lester T, Lines KE, Lord SR, Lu X, Mansour S, Manzur A, Maroofian R, Marsden B, Mason J, McGowan SJ, Mei D, Mlcochova H, Murakami Y, Németh AH, Okoli S, Ormondroyd E, Ousager LB, Palace J, Patel SY, Pentony MM, Pugh C, Rad A, Ramesh A, Riva SG, Roberts I, Roy N, Salminen O, Schilling KD, Scott C, Sen A, Smith C, Stevenson M, Thakker RV, Twigg SRF, Uhlig HH, van Wijk R, Vona B, Wall S, Wang J, Watkins H, Zak J, Schuh AH, Kini U, Wilkie AOM, Popitsch N, Taylor JC. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med 2023; 15:94. [PMID: 37946251 PMCID: PMC10636885 DOI: 10.1186/s13073-023-01240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Human Technopole, Viale Rita Levi Montalcini 1, 20157, Milan, Italy
| | - John M Taylor
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mona Hashim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eduardo Calpena
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Pamela J Kaisaki
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Akiko Hashimoto
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jing Yu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edward Sanders
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ron Schwessinger
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- University Medical Center Groningen, Groningen University, PO Box 72, 9700 AB, Groningen, The Netherlands
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Matteo Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Lukas Lange
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Yesim Kesim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Vassilis Ragoussis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Dimitrios V Vavoulis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Holger Allroggen
- Neurosciences Department, UHCW NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Benito Baños-Piñero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Tal Ben-Ami
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Celeste Bento
- Hematology Department, Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Edward Blair
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katherine R Bull
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Eythstrasse 24, 89075, Ulm, Germany
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Fatima Dhalla
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7TY, UK
| | - Beatriz Diez Dacal
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Yin Dong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - James E Dunford
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jane Hartley
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Georg Hollander
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kassim Javaid
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Maureen Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North, Room 731, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Dominic Kelly
- Children's Hospital, OUH NHS Foundation Trust, NIHR Oxford BRC, Headley Way, Oxford, OX3 9DU, UK
| | - Samantha J L Knight
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Alexandra Y Kreins
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Erika M Kvikstad
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, 211 E Chicago Avenue, Chicago, IL, MS37, USA
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kate E Lines
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Department of Oncology, University of Oxford, Cancer and Haematology Centre, Level 2 Administration Area, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Xin Lu
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, Blackshore Road, Tooting, London, SW17 0QT, UK
| | - Adnan Manzur
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Brian Marsden
- Nuffield Department of Medicine, Kennedy Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Joanne Mason
- Yourgene Health Headquarters, Skelton House, Lloyd Street North, Manchester Science Park, Manchester, M15 6SH, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Hana Mlcochova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Steven Okoli
- Imperial College NHS Trust, Department of Haematology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Lilian Bomme Ousager
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Smita Y Patel
- Clinical Immunology, John Radcliffe Hospital, Level 4A, Oxford, OX3 9DU, UK
| | - Melissa M Pentony
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Chris Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Archana Ramesh
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Simone G Riva
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Irene Roberts
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Noémi Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Level 4, Haematology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Outi Salminen
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Kyleen D Schilling
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mark Stevenson
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Rajesh V Thakker
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Holm H Uhlig
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard van Wijk
- UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Steven Wall
- Oxford Craniofacial Unit, John Radcliffe Hospital, Level LG1, West Wing, Oxford, OX3 9DU, UK
| | - Jing Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hugh Watkins
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Jaroslav Zak
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Usha Kini
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Andrew O M Wilkie
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Niko Popitsch
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter(VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Fürtjes AE. Lessons from complex trait genetics may help us overcome the neuroimaging replication crisis. Cortex 2023; 168:76-81. [PMID: 37672842 DOI: 10.1016/j.cortex.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/18/2023] [Accepted: 08/06/2023] [Indexed: 09/08/2023]
Abstract
The research fields of Complex Trait (or Statistical) Genetics and Neuroimaging face similar challenges in identifying reliable biological correlates of common traits and diseases. This Viewpoint focuses on five major lessons that allowed population-level genetics research to overcome many of its issues of replicability and may be directly applicable to inter-individual neuroimaging research. First, the failure of candidate gene studies inspires abandoning overly simplistic studies mapping individual brain regions onto traits and diseases. Second, developments in genetics research demonstrate that robust study results can be achieved by increasing sample sizes. Third and fourth, the success of genome-wide association studies motivates the use of mass-univariate testing and sharing summary-level association data to boost large-scale collaboration and meta-analysis. Finally, applying genetics methods dealing with complex data structures to vertex-wise (or voxel-wise) neuroimaging data promises more robust discoveries without the need to develop novel neuroimaging-specific methods. Those practices - that are firmly established in genetics research - should either be further endorsed, or newly adopted by the neuroimaging community, promising to accelerate the evolution of Neuroimaging through robust discovery.
Collapse
|
19
|
Hunter JE, Riddle L, Joseph G, Amendola LM, Gilmore MJ, Zepp JM, Shuster E, Bulkley JE, Muessig KR, Anderson KP, Goddard KAB, Wilfond BS, Leo MC. Most people share genetic test results with relatives even if the findings are normal: Family communication in a diverse population. Genet Med 2023; 25:100923. [PMID: 37421176 PMCID: PMC10766857 DOI: 10.1016/j.gim.2023.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
PURPOSE With increasing utilization of genetic testing, sharing genetic information can become part of general family health communication while providing biological relatives with important information about their own genetic risk. Importantly, little is known about motivations for and barriers to family communication of genetic information in historically underserved populations. METHODS Using mixed methods, we explored patient experiences with family communication in a study population of English- and Spanish-speaking adults aged 18 to 49 years, enriched for participants from historically underserved backgrounds. Risk screening for hereditary cancer guided genetic testing for cancer risk genes and other medically actionable findings. RESULTS Most participants overall (91%), including most with normal findings (89%), shared or planned to share their results with relatives. Common motivations for sharing results were to give relatives information about their genetic risk and because the participant thought the results were interesting. Reasons for not sharing were limited contact with relatives, perceptions of limited clinical utility for relatives, and concern that discussion of genetic information was stigmatized or taboo. CONCLUSION Results demonstrate high rates of sharing genetic information, indicate motivations for sharing go beyond facilitating genetic testing for relatives, and suggest general willingness to share genetic information as part of family health communication.
Collapse
Affiliation(s)
- Jessica Ezzell Hunter
- Genomics, Ethics, and Translational Research Program, RTI International, Research Triangle Park, NC; Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR.
| | - Leslie Riddle
- Department of Humanities and Social Sciences, University of California, San Francisco, San Francisco, CA
| | - Galen Joseph
- Department of Humanities and Social Sciences, University of California, San Francisco, San Francisco, CA
| | | | - Marian J Gilmore
- Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR
| | - Jamilyn M Zepp
- Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR
| | | | - Joanna E Bulkley
- Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR
| | - Kristin R Muessig
- Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR
| | - Katherine P Anderson
- Department of Family Medicine, Ambulatory Care Services, Denver Health, Denver, CO
| | - Katrina A B Goddard
- Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR
| | - Benjamin S Wilfond
- Treuman Katz Center for Pediatric Bioethics, Seattle Children's Research Institute, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Michael C Leo
- Kaiser Permanente Center for Health Research, Portland, OR
| |
Collapse
|
20
|
Vijayakumar S, Lee VV, Leong QY, Hong SJ, Blasiak A, Ho D. Physicians' Perspectives on AI in Clinical Decision Support Systems: Interview Study of the CURATE.AI Personalized Dose Optimization Platform. JMIR Hum Factors 2023; 10:e48476. [PMID: 37902825 PMCID: PMC10644191 DOI: 10.2196/48476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Physicians play a key role in integrating new clinical technology into care practices through user feedback and growth propositions to developers of the technology. As physicians are stakeholders involved through the technology iteration process, understanding their roles as users can provide nuanced insights into the workings of these technologies that are being explored. Therefore, understanding physicians' perceptions can be critical toward clinical validation, implementation, and downstream adoption. Given the increasing prevalence of clinical decision support systems (CDSSs), there remains a need to gain an in-depth understanding of physicians' perceptions and expectations toward their downstream implementation. This paper explores physicians' perceptions of integrating CURATE.AI, a novel artificial intelligence (AI)-based and clinical stage personalized dosing CDSSs, into clinical practice. OBJECTIVE This study aims to understand physicians' perspectives of integrating CURATE.AI for clinical work and to gather insights on considerations of the implementation of AI-based CDSS tools. METHODS A total of 12 participants completed semistructured interviews examining their knowledge, experience, attitudes, risks, and future course of the personalized combination therapy dosing platform, CURATE.AI. Interviews were audio recorded, transcribed verbatim, and coded manually. The data were thematically analyzed. RESULTS Overall, 3 broad themes and 9 subthemes were identified through thematic analysis. The themes covered considerations that physicians perceived as significant across various stages of new technology development, including trial, clinical implementation, and mass adoption. CONCLUSIONS The study laid out the various ways physicians interpreted an AI-based personalized dosing CDSS, CURATE.AI, for their clinical practice. The research pointed out that physicians' expectations during the different stages of technology exploration can be nuanced and layered with expectations of implementation that are relevant for technology developers and researchers.
Collapse
Affiliation(s)
- Smrithi Vijayakumar
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - V Vien Lee
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Qiao Ying Leong
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Soo Jung Hong
- Department of Communications and New Media, National University of Singapore, Singapore, Singapore
| | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers LELM, de Vries BBA. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat Genet 2023; 55:1598-1607. [PMID: 37550531 PMCID: PMC11414844 DOI: 10.1038/s41588-023-01469-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.
Collapse
Affiliation(s)
- Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Max Hinne
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kim M G Truijen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lia Goltstein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Illja J Diets
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jet Coenen-van der Spek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Noraly Jonis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke T Vulto-van Silfhout
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Elizabeth E Palmer
- Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Gholson J Lyon
- Department of Human Genetics and George A. Jervis Clinic, Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York City, NY, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marcel A J van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Pasella M, Pisano F, Cannas B, Fanni A, Cocco E, Frau J, Lai F, Mocci S, Littera R, Giglio SR. Decision trees to evaluate the risk of developing multiple sclerosis. Front Neuroinform 2023; 17:1248632. [PMID: 37649987 PMCID: PMC10465164 DOI: 10.3389/fninf.2023.1248632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a persistent neurological condition impacting the central nervous system (CNS). The precise cause of multiple sclerosis is still uncertain; however, it is thought to arise from a blend of genetic and environmental factors. MS diagnosis includes assessing medical history, conducting neurological exams, performing magnetic resonance imaging (MRI) scans, and analyzing cerebrospinal fluid. While there is currently no cure for MS, numerous treatments exist to address symptoms, decelerate disease progression, and enhance the quality of life for individuals with MS. Methods This paper introduces a novel machine learning (ML) algorithm utilizing decision trees to address a key objective: creating a predictive tool for assessing the likelihood of MS development. It achieves this by combining prevalent demographic risk factors, specifically gender, with crucial immunogenetic risk markers, such as the alleles responsible for human leukocyte antigen (HLA) class I molecules and the killer immunoglobulin-like receptors (KIR) genes responsible for natural killer lymphocyte receptors. Results The study included 619 healthy controls and 299 patients affected by MS, all of whom originated from Sardinia. The gender feature has been disregarded due to its substantial bias in influencing the classification outcomes. By solely considering immunogenetic risk markers, the algorithm demonstrates an ability to accurately identify 73.24% of MS patients and 66.07% of individuals without the disease. Discussion Given its notable performance, this system has the potential to support clinicians in monitoring the relatives of MS patients and identifying individuals who are at an increased risk of developing the disease.
Collapse
Affiliation(s)
- Manuela Pasella
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Fabio Pisano
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Barbara Cannas
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Alessandra Fanni
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Department of Medical Science and Public Health, Centro Sclerosi Multipla, University of Cagliari, Cagliari, Italy
| | - Francesco Lai
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Mocci
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
| | - Roberto Littera
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Sabrina Rita Giglio
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Centre for Research University Services, University of Cagliari, Monserrato, Italy
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| |
Collapse
|
23
|
Bodard S, Liu Y, Guinebert S, Yousra K, Asselah T. Prognostic value of genotyping in hepatocellular carcinoma: A systematic review. J Viral Hepat 2023; 30:582-587. [PMID: 36922710 DOI: 10.1111/jvh.13833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Primary liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death. Advances in sequencing technology are opening genomics to widespread application for diagnosis and research. The poor prognosis of advanced HCC warrants a personalized approach. The objective was to assess the value of genotyping for risk stratification and prognostication of HCC. We performed a systematic review of manuscripts published on MEDLINE from 1 January 2009 to 1 January 2022, addressing the value of genotyping for HCC risk stratification and prognostication. Publication information for each has been collected using a standardized data extraction form. Twenty-five articles were analysed. This study showed that various genomics approaches (i.e., NGS, SNP, CASP or polymorphisms in circadian genes' association) provided predictive and prognostic information, such as disease control rate, median progression-free survival, and shorter median overall survival. Genotyping, which advances in understanding the molecular origin, could be a solution to predict prognosis or treatment response in patients with HCC.
Collapse
Affiliation(s)
- Sylvain Bodard
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
- Sorbonne Université, CNRS UMR, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, F-75006, France
| | - Yan Liu
- Faculty of Life Science and Medicine, King's College London, London, UK
- Median Technologies, 1800 Route des Crêtes, Valbonne, F-06560, France
| | - Sylvain Guinebert
- AP-HP-centre, Service d'Imagerie Adulte, Hôpital Necker Enfants Malades, Paris, F-75015, France
- Université de Paris Cité, Paris, F-75006, France
| | | | - Tarik Asselah
- Université de Paris Cité, Paris, F-75006, France
- APHP.Nord, Service d'hépatologie, INSERM, Hôpital Beaujon, Clichy, F-92110, France
| |
Collapse
|
24
|
Lantos JD, Brunelli L, Hayeems RZ. Understanding the Clinical Utility of Genome Sequencing in Critically Ill Newborns. J Pediatr 2023; 258:113438. [PMID: 37088180 DOI: 10.1016/j.jpeds.2023.113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Diagnostic genome sequencing (GS) in newborns may have many benefits. More accurate diagnosis could spur the development of innovative genomic therapies. A precise diagnosis could help doctors and parents anticipate clinical problems and inform a family's future reproductive choices. However, the integration of GS into neonatal care remains associated with a variety of ethical controversies, including concerns about informed consent, about interpreting uncertain results, about resource allocation and whether access to genomic services could exacerbate health disparities, and about the effect of genome diagnostics on people with disabilities. There also remains significant uncertainty about which babies should be tested and when and how the potential benefits of GS ought to be measured. Probably related to these challenges, some payors have been reluctant to cover the cost of GS for critically ill newborns. Much of the reluctance appears to turn on questions about the clinical benefit associated with GS and whether and for whom GS will be cost-effective. These situations point to the urgent need for careful assessments of the clinical utility of GS in critically ill infants. In this paper, we critically examine the ways in which the clinical utility of GS has been evaluated in this patient population. We focus on "change of management" (COM), a widely used measure of clinical utility for diagnostic GS. We suggest that this measure is often ambiguous because not all COMs can be attributed to genomic results and because not all COMs lead to patient benefit. Finally, we suggest ways that measurement of clinical utility could be improved.
Collapse
Affiliation(s)
| | - Luca Brunelli
- University of Utah/Primary Children's Hospital, Salt Lake City, UT
| | - Robin Z Hayeems
- The Hospital for Sick Children/University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Roberts AM, DiStefano MT, Riggs ER, Josephs KS, Alkuraya FS, Amberger J, Amin M, Berg JS, Cunningham F, Eilbeck K, Firth HV, Foreman J, Hamosh A, Hay E, Leigh S, Martin CL, McDonagh EM, Perrett D, Ramos EM, Robinson PN, Rath A, van Sant D, Stark Z, Whiffin N, Rehm HL, Ware JS. Towards robust clinical genome interpretation: developing a consistent terminology to characterize disease-gene relationships - allelic requirement, inheritance modes and disease mechanisms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.30.23287948. [PMID: 37066232 PMCID: PMC10104222 DOI: 10.1101/2023.03.30.23287948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
PURPOSE The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework. METHODS Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition (GenCC) members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both sequence ontology (SO) and human phenotype ontology (HPO) ontologies. GenCC member groups intend to use or map to these terms in their respective resources. CONCLUSION The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.
Collapse
Affiliation(s)
- Angharad M Roberts
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London. WC1N 3JH, UK
| | - Marina T DiStefano
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Rooney Riggs
- Geisinger Autism & Developmental Medicine Institute, Danville, PA, USA
| | - Katherine S Josephs
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, KFSHRC, Riyadh, Saudi Arabia
| | - Joanna Amberger
- Online Mendelian Inheritance in Man (OMIM), Johns Hopkins University School of Medicine, USA
| | | | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Helen V Firth
- Dept of Medical Genetics, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Ada Hamosh
- Online Mendelian Inheritance in Man (OMIM), Johns Hopkins University School of Medicine, USA
| | - Eleanor Hay
- Dept of Medical Genetics, Great Ormond Street Hospital, Great Ormond Street, London. WC1N 3JH, UK
| | - Sarah Leigh
- Genomics England, Queen Mary University of London, Dawson Hall, London, EC1M 6BQ, UK
| | | | - Ellen M McDonagh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
- Open Targets, Cambridge, UK
| | - Daniel Perrett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Erin M Ramos
- National Human Genome Research Institute, National Institutes of Health, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington CT 06032, USA
| | - Ana Rath
- INSERM, US14-Orphanet, Paris, France
| | - David van Sant
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah
| | - Zornitza Stark
- Australian Genomics, Melbourne 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne 3052, Australia
- University of Melbourne, Melbourne 3052, Australia
| | - Nicola Whiffin
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute and Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Heidi L Rehm
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James S Ware
- National Heart & Lung Institute & MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| |
Collapse
|
26
|
Breast Cancer Risk Assessment Tools for Stratifying Women into Risk Groups: A Systematic Review. Cancers (Basel) 2023; 15:cancers15041124. [PMID: 36831466 PMCID: PMC9953796 DOI: 10.3390/cancers15041124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The benefits and harms of breast screening may be better balanced through a risk-stratified approach. We conducted a systematic review assessing the accuracy of questionnaire-based risk assessment tools for this purpose. METHODS Population: asymptomatic women aged ≥40 years; Intervention: questionnaire-based risk assessment tool (incorporating breast density and polygenic risk where available); Comparison: different tool applied to the same population; Primary outcome: breast cancer incidence; Scope: external validation studies identified from databases including Medline and Embase (period 1 January 2008-20 July 2021). We assessed calibration (goodness-of-fit) between expected and observed cancers and compared observed cancer rates by risk group. Risk of bias was assessed with PROBAST. RESULTS Of 5124 records, 13 were included examining 11 tools across 15 cohorts. The Gail tool was most represented (n = 11), followed by Tyrer-Cuzick (n = 5), BRCAPRO and iCARE-Lit (n = 3). No tool was consistently well-calibrated across multiple studies and breast density or polygenic risk scores did not improve calibration. Most tools identified a risk group with higher rates of observed cancers, but few tools identified lower-risk groups across different settings. All tools demonstrated a high risk of bias. CONCLUSION Some risk tools can identify groups of women at higher or lower breast cancer risk, but this is highly dependent on the setting and population.
Collapse
|
27
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
28
|
Dong X, Huang J, Yi Y, Zhang L, Li T, Chen Y. Factors Associated with the Uptake of Genetic Testing for Cancer Risks: A Pathway Analysis Using the Health Information National Trends Survey Data. Life (Basel) 2022; 12:2024. [PMID: 36556389 PMCID: PMC9786267 DOI: 10.3390/life12122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Our study aimed to identify pathways from the source of information to the uptake of cancer genetic testing, with consideration of intermediate variables including perceptional, attitudinal and psychosocial factors. We used the Health Information National Trends Survey (2020 database) and constructed a structural equation model for pathway analysis (using SPSS version 24). Variables for socio-demographic, lifestyle and health information were also collected and used for confounding adjustment. A total of 2941 participants were analyzed (68.5%, non-Hispanic white; 59.7%, females; 58 years, median age; and 142 (4.8%) had undertaken genetic testing for cancer risk previously). Our pathway analysis found that only information from particular sources (i.e., healthcare providers and genetic counsellors) had positive and significant effects on people’s perceptions of cancer regarding its prevention, detection and treatment (standardized β range, 0.15−0.31, all p-values < 0.01). Following the paths, these perceptional variables (cancer prevention, detection and treatment) showed considerable positive impacts on the uptake of genetic testing (standardized β (95% CIs): 0.25 (0.20, 0.30), 0.28 (0.23, 0.33) and 0.12 (0.06, 0.17), respectively). Pathways involving attitudinal and psychosocial factors showed much smaller or insignificant effects on the uptake of genetic testing. Our study brings several novel perspectives to the behavior model and may underpin certain issues regarding cancer risk genetic testing.
Collapse
Affiliation(s)
- Xiangning Dong
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Jingxian Huang
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Yanze Yi
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Lanwei Zhang
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Tenglong Li
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| | - Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China
| |
Collapse
|
29
|
Foguet C, Xu Y, Ritchie SC, Lambert SA, Persyn E, Nath AP, Davenport EE, Roberts DJ, Paul DS, Di Angelantonio E, Danesh J, Butterworth AS, Yau C, Inouye M. Genetically personalised organ-specific metabolic models in health and disease. Nat Commun 2022; 13:7356. [PMID: 36446790 PMCID: PMC9708841 DOI: 10.1038/s41467-022-35017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how genetic variants influence disease risk and complex traits (variant-to-function) is one of the major challenges in human genetics. Here we present a model-driven framework to leverage human genome-scale metabolic networks to define how genetic variants affect biochemical reaction fluxes across major human tissues, including skeletal muscle, adipose, liver, brain and heart. As proof of concept, we build personalised organ-specific metabolic flux models for 524,615 individuals of the INTERVAL and UK Biobank cohorts and perform a fluxome-wide association study (FWAS) to identify 4312 associations between personalised flux values and the concentration of metabolites in blood. Furthermore, we apply FWAS to identify 92 metabolic fluxes associated with the risk of developing coronary artery disease, many of which are linked to processes previously described to play in role in the disease. Our work demonstrates that genetically personalised metabolic models can elucidate the downstream effects of genetic variants on biochemical reactions involved in common human diseases.
Collapse
Affiliation(s)
- Carles Foguet
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Scott C Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Elodie Persyn
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Artika P Nath
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - David J Roberts
- BRC Haematology Theme, Radcliffe Department of Medicine, and NHSBT-Oxford, John Radcliffe Hospital, Oxford, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emanuele Di Angelantonio
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - John Danesh
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Christopher Yau
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK
- Health Data Research UK, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- The Alan Turing Institute, London, UK.
| |
Collapse
|
30
|
Primiero CA, Baker AM, Wallingford CK, Maas EJ, Yanes T, Fowles L, Janda M, Young MA, Nisselle A, Terrill B, Lodge JM, Tiller JM, Lacaze P, Andersen H, McErlean G, Turbitt E, Soyer HP, McInerney-Leo AM. Attitudes of Australian dermatologists on the use of genetic testing: A cross-sectional survey with a focus on melanoma. Front Genet 2022; 13:919134. [PMID: 36353112 PMCID: PMC9638172 DOI: 10.3389/fgene.2022.919134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Melanoma genetic testing reportedly increases preventative behaviour without causing psychological harm. Genetic testing for familial melanoma risk is now available, yet little is known about dermatologists' perceptions regarding the utility of testing and genetic testing ordering behaviours. Objectives: To survey Australasian Dermatologists on the perceived utility of genetic testing, current use in practice, as well as their confidence and preferences for the delivery of genomics education. Methods: A 37-item survey, based on previously validated instruments, was sent to accredited members of the Australasian College of Dermatologists in March 2021. Quantitative items were analysed statistically, with one open-ended question analysed qualitatively. Results: The response rate was 56% (256/461), with 60% (153/253) of respondents between 11 and 30 years post-graduation. While 44% (112/252) of respondents agreed, or strongly agreed, that genetic testing was relevant to their practice today, relevance to future practice was reported significantly higher at 84% (212/251) (t = -9.82, p < 0.001). Ninety three percent (235/254) of respondents reported rarely or never ordering genetic testing. Dermatologists who viewed genetic testing as relevant to current practice were more likely to have discussed (p < 0.001) and/or offered testing (p < 0.001). Respondents indicated high confidence in discussing family history of melanoma, but lower confidence in ordering genetic tests and interpreting results. Eighty four percent (207/247) believed that genetic testing could negatively impact life insurance, while only 26% (63/244) were aware of the moratorium on using genetic test results in underwriting in Australia. A minority (22%, 55/254) reported prior continuing education in genetics. Face-to-face courses were the preferred learning modality for upskilling. Conclusion: Australian Dermatologists widely recognise the relevance of genetic testing to future practice, yet few currently order genetic tests. Future educational interventions could focus on how to order appropriate genetic tests and interpret results, as well as potential implications on insurance.
Collapse
Affiliation(s)
- Clare A. Primiero
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Amy M. Baker
- Discipline of Genetic Counselling, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Courtney K. Wallingford
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Ellie J. Maas
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Tatiane Yanes
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Lindsay Fowles
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Monika Janda
- Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia
| | - Mary-Anne Young
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Amy Nisselle
- Australian Genomics Health Alliance, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Bronwyn Terrill
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jason M. Lodge
- School of Education, The University of Queensland, Brisbane, QLD, Australia
| | - Jane M. Tiller
- Public Health Genomics, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul Lacaze
- Public Health Genomics, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Hayley Andersen
- Melanoma and Skin Cancer Advocacy Network, Carlton, VIC, Australia
| | - Gemma McErlean
- SWS Nursing and Midwifery Research Alliance, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Nursing, University of Wollongong, Wollongong, NSW, Australia
| | - Erin Turbitt
- Discipline of Genetic Counselling, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Aideen M. McInerney-Leo
- The University of Queensland Diamantina Institute, Dermatology Research Centre, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Izatt L, Owens MM, Pierce H, Wilcox S, Park SM. A practical guide to genetic testing in endocrinology. Clin Endocrinol (Oxf) 2022; 97:388-399. [PMID: 34528717 DOI: 10.1111/cen.14596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
Rapid advances in sequencing technology have led to significant improvements in genomic analysis, resulting in increased understanding of the molecular basis of many endocrine conditions. Genomic testing for rare disease is being integrated into everyday clinical practice, as the importance of confirming a genetic diagnosis earlier in a patient's pathway helps direct their clinical care and specialized management. In England, the new nationally commissioned Genomic Medicine Service has started to deliver testing for rare and inherited disease and cancer somatic tissue via seven Genomic Laboratory Hubs. The range of genetic tests, technology employed and eligibility criteria for patient testing are all defined in the National Genomic Test Directory. This review provides practical guidance on how to access genomic testing for endocrine disease, how to interpret and relay results, and details how genetic counselling can help integrate results into ongoing care of the individual and their family. This article discusses general principles as well as specifics related to the process of genomic testing in England. We illustrate mainstream genetic testing with a clinical scenario involving an individual with inherited endocrine neoplasia, followed by a generic description of the different steps involved, including informed consent to proceed to diagnostic testing. Most genetic tests analyse multiple genes simultaneously by next-generation sequencing, and variant interpretation may yield not only pathogenic explanatory results, but also ambiguous outcomes, with variants of unknown significance or incidental findings. Delivery of results and posttest genetic counselling are therefore key components of integrating genetic testing into routine endocrine care.
Collapse
Affiliation(s)
- Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Martina M Owens
- Exeter Genomics Laboratory, South West Genomic Laboratory Hub, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Heather Pierce
- Department of Clinical Genetics, Cambridge University Hospital, NHS Foundation Trust, Cambridge, UK
| | - Sarah Wilcox
- Department of Clinical Genetics, Cambridge University Hospital, NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital, NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
32
|
Kiflen M, Le A, Mao S, Lali R, Narula S, Xie F, Paré G. Cost-Effectiveness of Polygenic Risk Scores to Guide Statin Therapy for Cardiovascular Disease Prevention. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003423. [PMID: 35904973 DOI: 10.1161/circgen.121.003423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases (CVDs) are leading causes of death despite effective therapies and result in unnecessary morbidity and mortality throughout the world. We aimed to investigate the cost-effectiveness of polygenic risk scores (PRS) to guide statin therapy for Canadians with intermediate CVD risk and model its economic outlook. METHODS This cost-utility analysis was conducted using UK Biobank prospective cohort study participants, with recruitment from 2006 to 2010, and at least 10 years of follow-up. We included nonrelated white British-descent participants (n=96 116) at intermediate CVD risk with no prior lipid lowering medication or statin-indicated conditions. A coronary artery disease PRS was used to inform decision to use statins. The effects of statin therapy with and without PRS, as well as CVD events were modelled to determine the incremental cost-effectiveness ratio from a Canadian public health care perspective. We discounted future costs and quality-adjusted life-years by 1.5% annually. RESULTS The optimal economic strategy was when intermediate risk individuals with a PRS in the top 70% are eligible for statins while the lowest 1% are excluded. Base-case analysis at a genotyping cost of $70 produced an incremental cost-effectiveness ratio of $172 906 (143 685 USD) per quality-adjusted life-year. In the probabilistic sensitivity analysis, the intervention has approximately a 50% probability of being cost-effective at $179 100 (148 749 USD) per quality-adjusted life-year. At a $0 genotyping cost, representing individuals with existing genotyping information, PRS-guided strategies dominated standard care when 12% of the lowest PRS individuals were withheld from statins. With improved PRS predictive performance and lower genotyping costs, the incremental cost-effectiveness ratio demonstrates possible cost-effectiveness under thresholds of $150 000 and possibly $50 000 per quality-adjusted life-year. CONCLUSIONS This study suggests that using PRS alongside existing guidelines might be cost-effective for CVD. Stronger predictiveness combined with decreased cost of PRS could further improve cost-effectiveness, providing an economic basis for its inclusion into clinical care.
Collapse
Affiliation(s)
- Michel Kiflen
- Department of Medicine, University of Toronto, Toronto (M.K.).,Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada
| | - Ann Le
- Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada.,Department of Medical Sciences (A.L.), McMaster University, Hamilton, Ontario, Canada
| | - Shihong Mao
- Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada
| | - Ricky Lali
- Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact (R.L., S.N., F.X., G.P.), McMaster University, Hamilton, Ontario, Canada
| | - Sukrit Narula
- Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada.,Department of Internal Medicine, Yale University, New Haven, CT (S.N.)
| | - Feng Xie
- Department of Health Research Methods, Evidence, and Impact (R.L., S.N., F.X., G.P.), McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute (M.K., A.L., S.M., R.L., S.N., G.P.), McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact (R.L., S.N., F.X., G.P.), McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada.,Thrombosis & Atherosclerosis Research Institute (G.P.), McMaster University, Hamilton, Ontario, Canada.,McMaster University, Hamilton, Ontario, Canada (G.P.)
| |
Collapse
|
33
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
34
|
Guo W, Coulter M, Waugh R, Zhang R. The value of genotype-specific reference for transcriptome analyses in barley. Life Sci Alliance 2022; 5:e202101255. [PMID: 35459738 PMCID: PMC9034525 DOI: 10.26508/lsa.202101255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
It is increasingly apparent that although different genotypes within a species share "core" genes, they also contain variable numbers of "specific" genes and different structures of "core" genes that are only present in a subset of individuals. Using a common reference genome may thus lead to a loss of genotype-specific information in the assembled Reference Transcript Dataset (RTD) and the generation of erroneous, incomplete or misleading transcriptomics analysis results. In this study, we assembled genotype-specific RTD (sRTD) and common reference-based RTD (cRTD) from RNA-seq data of cultivated Barke and Morex barley, respectively. Our quantitative evaluation showed that the sRTD has a significantly higher diversity of transcripts and alternative splicing events, whereas the cRTD missed 40% of transcripts present in the sRTD and it only has ∼70% accurate transcript assemblies. We found that the sRTD is more accurate for transcript quantification as well as differential expression analysis. However, gene-level quantification is less affected, which may be a reasonable compromise when a high-quality genotype-specific reference is not available.
Collapse
Affiliation(s)
- Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| | - Max Coulter
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Dundee, UK
| | - Robbie Waugh
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| |
Collapse
|
35
|
Ochenkowska K, Herold A, Samarut É. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders. Front Mol Neurosci 2022; 15:944693. [PMID: 35875659 PMCID: PMC9298522 DOI: 10.3389/fnmol.2022.944693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 12/17/2022] Open
Abstract
Personalized medicine is currently one of the most promising tools which give hope to patients with no suitable or no available treatment. Patient-specific approaches are particularly needed for common diseases with a broad phenotypic spectrum as well as for rare and yet-undiagnosed disorders. In both cases, there is a need to understand the underlying mechanisms and how to counteract them. Even though, during recent years, we have been observing the blossom of novel therapeutic techniques, there is still a gap to fill between bench and bedside in a patient-specific fashion. In particular, the complexity of genotype-to-phenotype correlations in the context of neurological disorders has dampened the development of successful disease-modifying therapeutics. Animal modeling of human diseases is instrumental in the development of therapies. Currently, zebrafish has emerged as a powerful and convenient model organism for modeling and investigating various neurological disorders. This model has been broadly described as a valuable tool for understanding developmental processes and disease mechanisms, behavioral studies, toxicity, and drug screening. The translatability of findings obtained from zebrafish studies and the broad prospect of human disease modeling paves the way for developing tailored therapeutic strategies. In this review, we will discuss the predictive power of zebrafish in the discovery of novel, precise therapeutic approaches in neurosciences. We will shed light on the advantages and abilities of this in vivo model to develop tailored medicinal strategies. We will also investigate the newest accomplishments and current challenges in the field and future perspectives.
Collapse
Affiliation(s)
- Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Aveeva Herold
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
36
|
Cocorpus J, Hager MM, Benchimol C, Bijol V, Salem F, Punj S, Castellanos L, Singer P, Sethna CB, Basalely A. COL4A4 variant recently identified: lessons learned in variant interpretation-a case report. BMC Nephrol 2022; 23:253. [PMID: 35842573 PMCID: PMC9287857 DOI: 10.1186/s12882-022-02866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Alport syndrome is a hereditary kidney disease characterized by hematuria and proteinuria. Although there have been reports of autosomal dominant COL4A4 variants, this is likely an underdiagnosed condition. Improved access to affordable genetic testing has increased the diagnosis of Alport syndrome. As genetic testing becomes ubiquitous, it is imperative that clinical nephrologists understand the benefits and challenges associated with clinical genetic testing. Case Presentation We present a family of Mexican descent with a heterozygous COL4A4 variant (c.5007delC, ClinVar accession numbers: SCV001580980.2, SCV001993731.1) not previously discussed in detail in the literature. The proband received a biopsy diagnosis suggestive of Fabry disease 18 years after she first developed hematuria and progressed to chronic kidney disease stage III. One year later, the proband was provisionally diagnosed with Alport syndrome after a variant of uncertain significance in the COL4A4 gene was identified following targeted family variant testing of her daughter. Upon review of the medical histories of the proband’s children and niece, all but one had the same variant. Of the four with the variant, three display clinical symptoms of hematuria, and/or proteinuria. The youngest of the four, only months old, has yet to exhibit clinical symptoms. Despite these findings there was a considerable delay in synthesizing this data, as patients were tested in different commercial genetic testing laboratories. Subsequently, understanding this family’s inheritance pattern, family history, and clinical symptoms, as well as the location of the COL4A4 variant resulted in the upgrade of the variant’s classification. Although the classification of this variant varied among different clinical genetic testing laboratories, the consensus was that this variant is likely pathogenic. Conclusions This COL4A4 variant (c.5007delC) not yet discussed in detail in the literature is associated with Alport syndrome. The inheritance pattern is suggestive of autosomal dominant inheritance. This report highlights the intricacies of variant interpretation and classification, the siloed nature of commercial genetic testing laboratories, and the importance of a thorough family history for proper variant interpretation. Additionally, the cases demonstrate the varied clinical presentations of Alport syndrome and suggest the utility of early screening, diagnosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Jenelle Cocorpus
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | | | | | - Vanesa Bijol
- Renal Pathology, Northwell Health, Lake Success, NY, USA
| | - Fadi Salem
- Pathology, Molecular and Cell Based Medicine, Mount Sinai, New York, NY, USA
| | | | - Laura Castellanos
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Pamela Singer
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Christine B Sethna
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Abby Basalely
- Pediatric Nephrology, Cohen Children's Medical Center of New York, 269-01 76th Avenue, New Hyde Park, NY, 11040, USA.
| |
Collapse
|
37
|
Ardizzone A, Capra AP, Campolo M, Filippone A, Esposito E, Briuglia S. Neurofibromatosis: New Clinical Challenges in the Era of COVID-19. Biomedicines 2022; 10:biomedicines10050940. [PMID: 35625677 PMCID: PMC9138859 DOI: 10.3390/biomedicines10050940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Rare diseases constitute a wide range of disorders thus defined for their low prevalence. However, taken together, rare diseases impact a considerable percentage of the world population, thus representing a public healthcare problem. In particular, neurofibromatoses are autosomal-dominant genetic disorders that include type 1 neurofibromatosis (NF1), type 2 neurofibromatosis (NF2) and schwannomatosis. Each of the three types is a genetically distinct disease with an unpredictable clinical course and for which there is still no resolutive cure. Therefore, a personalized therapeutic approach directed at improving the symptomatology as well as the search for new pharmacological strategies for the management of neurofibromatosis represents a priority for positive outcomes for affected patients. The coronavirus disease 2019 (COVID-19) pandemic has severely affected health systems around the world, impacting the provision of medical care and modifying clinical surveillance along with scientific research procedures. COVID-19 significantly worsened exchanges between healthcare personnel and neurofibromatosis patients, precluding continuous clinical monitoring in specialized clinic centers. In this new scenario, our article presents, for the first time, a comprehensive literature review on the clinical challenges for neurofibromatosis clinical care and research during the COVID-19 pandemic health emergency. The review was performed through PubMed (Medline) and Google Scholar databases until December 2021.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.A.); (A.P.C.); (M.C.); (A.F.)
- Correspondence: ; Tel.: +39-090-676-5208
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
38
|
Goldberg A, Sucic JF, Talley SA. The angiotensin-converting enzyme gene insertion/deletion polymorphism interacts with fear of falling in relation to stepping speed in community-dwelling older adults. Physiother Theory Pract 2022:1-12. [PMID: 35383515 DOI: 10.1080/09593985.2022.2056861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Despite the association of genetic factors with falls, balance, and lower extremity functioning, interaction of the angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism with fear of falling (FOF) in relation to stepping performance has, to the best of our knowledge, not been investigated in older adults. OBJECTIVE The purpose of this study was to examine the interaction effects of the ACE I/D polymorphism with FOF in relation to stepping performance in older adults. METHODS Eighty-eight community-dwelling adults 60 years or older participated in a cross-sectional observational study. Participants completed tests of rapid and distance stepping, and self-reported FOF (yes/no). Participants provided saliva for ACE genotyping. General linear models evaluated ACE genotype × FOF interaction effects in relation to stepping performance. The α level was set at 0.05. RESULTS The ACE I/D polymorphism exhibited significant interaction effects (p for interactions 0.002 ≤ p ≤ .04) with FOF in relation to stepping speed. Relationships between FOF and stepping speed varied among ACE genotypes. The insertion/insertion (II) genotype was significantly associated (p = .01) with slow stepping in individuals with, but not without FOF (p > .05). CONCLUSION Variation in relationships between FOF and stepping speed among ACE genotypes suggests a role for the ACE I/D polymorphism in modifying relationships between FOF and stepping speed in older adults. The association of the ACE II genotype with slow stepping performance in individuals with, but not without FOF, suggests that older adults with the ACE II genotype and FOF may be at increased risk for poor stepping performance and associated functional declines.
Collapse
Affiliation(s)
- Allon Goldberg
- Physical Therapy Department, College of Health Sciences, University of Michigan-Flint, Flint, MI, USA
| | - Joseph F Sucic
- Department of Natural Sciences, College of Arts and Sciences, University of Michigan-Flint, Flint, MI, USA
| | - Susan Ann Talley
- Physical Therapy Department, College of Health Sciences, University of Michigan-Flint, Flint, MI, USA
| |
Collapse
|
39
|
Issahaku AR, Aljoundi A, Soliman ME. Establishing the mutational effect on the binding susceptibility of AMG510 to KRAS switch II binding pocket: Computational insights. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
A Model for the Integration of Genome Sequencing into a Paediatric Cardiology Clinic. Can J Cardiol 2022; 38:1454-1457. [DOI: 10.1016/j.cjca.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
|
41
|
Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerg Top Life Sci 2022; 6:215-225. [PMID: 35234253 DOI: 10.1042/etls20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Precision medicine is driven by the paradigm shift of empowering clinicians to predict the most appropriate course of action for patients with complex diseases and improve routine medical and public health practice. It promotes integrating collective and individualized clinical data with patient specific multi-omics data to develop therapeutic strategies, and knowledgebase for predictive and personalized medicine in diverse populations. This study is based on the hypothesis that understanding patient's metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic and predictive biomarkers and optimal paths providing personalized care for diverse and targeted chronic, acute, and infectious diseases. This study briefs emerging significant, and recently reported multi-omics and translational approaches aimed to facilitate implementation of precision medicine. Furthermore, it discusses current grand challenges, and the future need of Findable, Accessible, Intelligent, and Reproducible (FAIR) approach to accelerate diagnostic and preventive care delivery strategies beyond traditional symptom-driven, disease-causal medical practice.
Collapse
|
42
|
Gille F, Brall C. Can we know if donor trust expires? About trust relationships and time in the context of open consent for future data use. JOURNAL OF MEDICAL ETHICS 2022; 48:184-188. [PMID: 33722983 DOI: 10.1136/medethics-2020-106244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
As donor trust legitimises research, trust is vital for research in the fields of biomedicine, genetics, translational medicine and personalised medicine. For parts of the donor community, the consent signature is a sign of trust in research. Many consent processes in biomedical research ask donors to provide their data for an unspecified future use, which introduces uncertainty of the unknown. This uncertainty can jeopardise donor trust or demand blind trust. But which donor wants to trust blindly? To reduce this uncertainty, we explore first, which future-proof actors donors could trust when signing a consent form. Second, we discuss the question Can we know if donor trust expires? and what prevents donor trust from expiring. Finally, we present possible measures that can help to nurture trust in the far future. In this article, we draw on our previous research on trust in biomedical research, on trust in the broader healthcare system and Niklas Luhmann's and Anthony Giddens' trust theories. Our findings suggest that, in the far future, researchers will need to consider donor autonomy, as well as societal norms and values of the time period in which the data were donated. They will need to find mechanisms where possible to publicly announce the use of old data sets. However, foremost researchers will need to treat the data respectfully. It remains vital that professionals and the society continue to elaborate on the norms and values that shape the common understanding of what is morally right and wrong when researching data.
Collapse
Affiliation(s)
- Felix Gille
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Caroline Brall
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
A Web Screening on Training Initiatives in Cancer Genomics for Healthcare Professionals. Genes (Basel) 2022; 13:genes13030430. [PMID: 35327984 PMCID: PMC8950486 DOI: 10.3390/genes13030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The disruptive advances in genomics contributed to achieve higher levels of precision in the diagnosis and treatment of cancer. This scientific advance entails the need for greater literacy for all healthcare professionals. Our study summarizes the training initiatives conducted worldwide in cancer genomics field for healthcare professionals. We conducted a web search of the training initiatives aimed at improving healthcare professionals’ literacy in cancer genomics undertaken worldwide by using two search engines (Google and Bing) in English language and conducted from 2003 to 2021. A total of 85,649 initiatives were identified. After the screening process, 36 items were included. The majority of training programs were organized in the United States (47%) and in the United Kingdom (28%). Most of the initiatives were conducted in the last five years (83%) by universities (30%) and as web-based modalities (80%). In front of the technological advances in genomics, education in cancer genomics remains fundamental. Our results may contribute to provide an update on the development of educational programs to build a skilled and appropriately trained genomics health workforce in the future.
Collapse
|
44
|
Zureigat B, Gould D, Seven M. Educational Interventions to Improve Nurses' Competency in Genetics and Genomics: A Scoping Review. J Contin Educ Nurs 2022; 53:13-20. [PMID: 34978477 DOI: 10.3928/00220124-20211210-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Regardless of profession and area of practice, every health care provider must possess basic knowledge and skills to integrate genetics and genomics into practice. Nurses play a pivotal role in providing health care, and they should be well equipped to apply genetics and genomics to health care settings. This scoping review explored the existing literature of educational interventions to improve nurses' competencies, including knowledge, attitudes, and skills in genetics and genomics. METHOD A scoping review was conducted with the Joanna Briggs Institute method for scoping reviews. We searched PubMed, Web of Science, CINAHL, and ERIC in March 2021. We included original research studies published in English in peer-reviewed journals that reported findings on the effectiveness of an educational intervention to improve nurses' competencies in genetics or genomics. RESULTS A total of 17 studies were included in the scoping review. Registered nurses, advanced practice nurses, and nursing faculty were targeted with different types of interventions, including face-to-face education, online/remote education, and written materials. CONCLUSION Limited research shows that various educational interventions improved the competencies in genetics and genomics among nurses with different degrees and areas of practice. Research is needed to evaluate the long-term effects of educational interventions by reliable assessment methods for nurses with appropriate sample sizes. [J Contin Educ Nurs. 2022;53(1):13-20.].
Collapse
|
45
|
Ahmed Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:101-125. [DOI: 10.1016/bs.pmbts.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Renieri A, Storey H, Flinter F. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:143-154. [PMID: 34930753 PMCID: PMC8763160 DOI: 10.2215/cjn.04230321] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Elizabeth Watson
- South West Genetic Laboratory Hub, North Bristol Trust, Bristol, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Francesca Mari
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique, Gosselies, Belgium
| | - Pavlina Plevova
- Department of Medical Genetics, University Hospital of Ostrava, Ostrava, Czech Republic
- Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, Utah
| | - Rimante Cerkauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- Department of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Louise Hopkinson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ania Koziell
- School of Immunology and Microbial Sciences, Faculty of Life Sciences, King's College London, London, United Kingdom
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | | | - Asheeta Gupta
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | | | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laith al-Rabadi
- Health Sciences Centre, University of Utah, Salt Lake City, Utah
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Micheel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Southmead, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Hendica Belge
- Institut de Pathologie et de Génétique, Center for Human Genetics, Gosselies, Belgium
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Agnieszka Bierzynska
- Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Concetta Gangemi
- Division of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Frances Flinter
- Department of Clinical Genetics, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
47
|
Process Mining for Healthcare: Characteristics and Challenges. J Biomed Inform 2022; 127:103994. [DOI: 10.1016/j.jbi.2022.103994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022]
|
48
|
The correctness of large scale analysis of genomic data. FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2021. [DOI: 10.2478/fcds-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Implementing a large genomic project is a demanding task, also from the computer science point of view. Besides collecting many genome samples and sequencing them, there is processing of a huge amount of data at every stage of their production and analysis. Efficient transfer and storage of the data is also an important issue. During the execution of such a project, there is a need to maintain work standards and control quality of the results, which can be difficult if a part of the work is carried out externally. Here, we describe our experience with such data quality analysis on a number of levels - from an obvious check of the quality of the results obtained, to examining consistency of the data at various stages of their processing, to verifying, as far as possible, their compatibility with the data describing the sample.
Collapse
|
49
|
Álvaro-Sánchez S, Abreu-Rodríguez I, Abulí A, Serra-Juhe C, Garrido-Navas MDC. Current Status of Genetic Counselling for Rare Diseases in Spain. Diagnostics (Basel) 2021; 11:2320. [PMID: 34943558 PMCID: PMC8700506 DOI: 10.3390/diagnostics11122320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Genetic Counselling is essential for providing personalised information and support to patients with Rare Diseases (RD). Unlike most other developed countries, Spain does not recognize geneticists or genetic counsellors as healthcare professionals Thus, patients with RD face not only challenges associated with their own disease but also deal with lack of knowledge, uncertainty, and other psychosocial issues arising as a consequence of diagnostic delay. In this review, we highlight the importance of genetic counsellors in the field of RD as well as evaluate the current situation in which rare disease patients receive genetic services in Spain. We describe the main units and strategies at the national level assisting patients with RD and we conclude with a series of future perspectives and unmet needs that Spain should overcome to improve the management of patients with RD.
Collapse
Affiliation(s)
| | - Irene Abreu-Rodríguez
- Genetics Service, Hospital del Mar Research Institute, IMIM, 08003 Barcelona, Spain;
| | - Anna Abulí
- Department of Clinical and Molecular Genetics, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
- Medicine Genetics Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Clara Serra-Juhe
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Maria del Carmen Garrido-Navas
- CONGEN, Genetic Counselling Services, C/Albahaca 4, 18006 Granada, Spain;
- Genetics Department, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
50
|
St Geme JW. The 2020 Joseph W. St Geme, Jr. Leadership Award Address: On Leadership and the Joy of Pediatrics. Pediatrics 2021; 148:183475. [PMID: 34850189 DOI: 10.1542/peds.2021-053872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Joseph W St Geme
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|