1
|
Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 2015; 112:11389-11394. [PMID: 26217001 PMCID: PMC4568687 DOI: 10.1073/pnas.1513047112] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 08/29/2023] Open
Abstract
Calcium (Ca2+) released from the sarcoplasmic reticulum (SR) is crucial for excitation-contraction (E-C) coupling. Mitochondria, the major source of energy, in the form of ATP, required for cardiac contractility, are closely interconnected with the SR, and Ca2+ is essential for optimal function of these organelles. However, Ca2+ accumulation can impair mitochondrial function, leading to reduced ATP production and increased release of reactive oxygen species (ROS). Oxidative stress contributes to heart failure (HF), but whether mitochondrial Ca2+ plays a mechanistic role in HF remains unresolved. Here, we show for the first time, to our knowledge, that diastolic SR Ca2+ leak causes mitochondrial Ca2+ overload and dysfunction in a murine model of postmyocardial infarction HF. There are two forms of Ca2+ release channels on cardiac SR: type 2 ryanodine receptors (RyR2s) and type 2 inositol 1,4,5-trisphosphate receptors (IP3R2s). Using murine models harboring RyR2 mutations that either cause or inhibit SR Ca2+ leak, we found that leaky RyR2 channels result in mitochondrial Ca2+ overload, dysmorphology, and malfunction. In contrast, cardiac-specific deletion of IP3R2 had no major effect on mitochondrial fitness in HF. Moreover, genetic enhancement of mitochondrial antioxidant activity improved mitochondrial function and reduced posttranslational modifications of RyR2 macromolecular complex. Our data demonstrate that leaky RyR2, but not IP3R2, channels cause mitochondrial Ca2+ overload and dysfunction in HF.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Disease Models, Animal
- Heart Failure/metabolism
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Microscopy, Electron, Transmission
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Mutation
- Myocardial Infarction/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Oxidative Stress
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
10 |
421 |
2
|
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence. J Clin Med 2020; 9:E1417. [PMID: 32403217 PMCID: PMC7290769 DOI: 10.3390/jcm9051417] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] [Imported: 06/20/2025] Open
Abstract
The symptoms most commonly reported by patients affected by coronavirus disease (COVID-19) include cough, fever, and shortness of breath. However, other major events usually observed in COVID-19 patients (e.g., high blood pressure, arterial and venous thromboembolism, kidney disease, neurologic disorders, and diabetes mellitus) indicate that the virus is targeting the endothelium, one of the largest organs in the human body. Herein, we report a systematic and comprehensive evaluation of both clinical and preclinical evidence supporting the hypothesis that the endothelium is a key target organ in COVID-19, providing a mechanistic rationale behind its systemic manifestations.
Collapse
|
Review |
5 |
356 |
3
|
Shu J, Santulli G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis 2018; 275:379-381. [PMID: 29843915 PMCID: PMC6113064 DOI: 10.1016/j.atherosclerosis.2018.05.033] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/13/2023] [Imported: 08/29/2023]
|
Editorial |
7 |
325 |
4
|
Santulli G. Angiopoietin-like proteins: a comprehensive look. Front Endocrinol (Lausanne) 2014; 5:4. [PMID: 24478758 PMCID: PMC3899539 DOI: 10.3389/fendo.2014.00004] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 01/31/2023] [Imported: 06/20/2025] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) are a family of proteins structurally similar to the angiopoietins. To date, eight ANGPTLs have been discovered, namely ANGPTL1 to ANGPTL8. Emerging evidence implies a key role for ANGPTLs in the regulation of a plethora of physiological and pathophysiological processes. Most of the ANGPTLs exhibit multibiological properties, including established functional roles in lipid and glucose metabolism, inflammation, hematopoiesis, and cancer. This report represents a systematic and updated appraisal of this class of proteins, focusing on the main features of each ANGPTL.
Collapse
|
Review |
11 |
231 |
5
|
Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol 2017; 595:3041-3051. [PMID: 28303572 PMCID: PMC5430224 DOI: 10.1113/jp272781] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 12/19/2022] [Imported: 06/20/2025] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3 Rs) are calcium (Ca2+ ) release channels on the endo/sarcoplasmic reticulum (ER/SR). Here we summarize the latest advances in the field, describing the recently discovered mechanistic roles of intracellular Ca2+ release channels in the regulation of mitochondrial fitness and endothelial function, providing novel therapeutic options for the treatment of heart failure, hypertension, and diabetes mellitus.
Collapse
|
Review |
8 |
165 |
6
|
Santulli G, Pagano G, Sardu C, Xie W, Reiken S, D’Ascia SL, Cannone M, Marziliano N, Trimarco B, Guise TA, Lacampagne A, Marks AR. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 2015; 125:1968-1978. [PMID: 25844899 PMCID: PMC4463204 DOI: 10.1172/jci79273] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022] [Imported: 08/29/2023] Open
Abstract
The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a "leaky" RyR2 channel, we exploited them to assess RyR2 channel function in β cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and β cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
156 |
7
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
|
Review |
5 |
140 |
8
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
131 |
9
|
Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, Santulli G. SGLT2 Inhibition via Empagliflozin Improves Endothelial Function and Reduces Mitochondrial Oxidative Stress: Insights From Frail Hypertensive and Diabetic Patients. Hypertension 2022; 79:1633-1643. [PMID: 35703100 PMCID: PMC9642044 DOI: 10.1161/hypertensionaha.122.19586] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 01/05/2023] [Imported: 06/20/2025]
Abstract
BACKGROUND Frailty is a multidimensional condition often diagnosed in older adults with hypertension and diabetes, and both these conditions are associated with endothelial dysfunction and oxidative stress. We investigated the functional role of the SGLT2 (sodium glucose cotransporter 2) inhibitor empagliflozin in frail diabetic and hypertensive older adults. METHODS We studied the effects of empagliflozin in consecutive hypertensive and diabetic older patients with frailty presenting at the ASL (local health unit of the Italian Ministry of Health) of Avellino, Italy, from March 2021 to January 2022. Moreover, we performed in vitro experiments in human endothelial cells to measure cell viability, permeability, mitochondrial Ca2+, and oxidative stress. RESULTS We evaluated 407 patients; 325 frail elders with diabetes successfully completed the study. We propensity-score matched 75 patients treated with empagliflozin and 75 with no empagliflozin. We observed a correlation between glycemia and Montreal Cognitive Assessment (MoCA) score and between glycemia and 5-meter gait speed (5mGS). At 3-month follow-up, we detected a significant improvement in the MoCA score and in the 5mGS in patients receiving empagliflozin compared with non-treated subjects. Mechanistically, we demonstrate that empagliflozin significantly reduces mitochondrial Ca2+ overload and reactive oxygen species production triggered by high glucose in human endothelial cells, attenuates cellular permeability, and improves cell viability in response to oxidative stress. CONCLUSIONS Taken together, our data indicate that empagliflozin reduces frailty in diabetic and hypertensive patients, most likely by decreasing the mitochondrial generation of reactive oxygen species in endothelial cells.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
113 |
10
|
Matarese A, Gambardella J, Sardu C, Santulli G. miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19. Biomedicines 2020; 8:462. [PMID: 33143053 PMCID: PMC7693865 DOI: 10.3390/biomedicines8110462] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
Collapse
|
research-article |
5 |
107 |
11
|
Mone P, Lombardi A, Gambardella J, Pansini A, Macina G, Morgante M, Frullone S, Santulli G. Empagliflozin Improves Cognitive Impairment in Frail Older Adults With Type 2 Diabetes and Heart Failure With Preserved Ejection Fraction. Diabetes Care 2022; 45:1247-1251. [PMID: 35287171 PMCID: PMC9174954 DOI: 10.2337/dc21-2434] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023] [Imported: 06/20/2025]
Abstract
OBJECTIVE To assess whether the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin improves cognitive impairment in frail older adults with diabetes and heart failure with preserved ejection fraction (HFpEF). RESEARCH DESIGN AND METHODS We designed a prospective study to assess cognitive and physical function in consecutive frail older adults with diabetes and HFpEF, comparing the effects of empagliflozin, metformin, and insulin. RESULTS A total of 162 frail older adults with HFpEF and diabetes successfully completed the study. Montreal Cognitive Assessment scores at baseline and after 1 month were 19.80 ± 3.77 vs. 22.25 ± 3.27 (P < 0.001) in the empagliflozin group, 19.95 ± 3.81 vs. 20.71 ± 3.56 (P = 0.26) in the metformin group, and 19.00 ± 3.71 vs. 19.1 ± 3.56 (P = 0.81) in the insulin group. A multivariable regression analysis confirmed the beneficial effects of empagliflozin. Additionally, we observed a marked amelioration of physical impairment, assessed by the 5-m gait speed test, in the empagliflozin and metformin groups but not in the insulin group. CONCLUSIONS This study is the first to show significant beneficial effects of the SGLT2 inhibitor empagliflozin on cognitive and physical impairment in frail older adults with diabetes and HFpEF.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
88 |
12
|
Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016; 93:65-72. [PMID: 27062709 PMCID: PMC5036981 DOI: 10.1016/j.maturitas.2016.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022] [Imported: 08/29/2023]
Abstract
Both cardiovascular disease and aging are associated with changes in the sympathetic nervous system. Indeed, mounting evidence indicates that adrenergic receptors are functionally involved in numerous processes underlying both aging and cardiovascular disorders, in particular heart failure. This article will review the pathophysiological role of the sympathetic nervous system in heart failure and cardiovascular aging.
Collapse
|
Review |
9 |
80 |
13
|
Wang X, Morelli MB, Matarese A, Sardu C, Santulli G. Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro and ex vivo. ESC Heart Fail 2020; 7:284-288. [PMID: 31981320 PMCID: PMC7083461 DOI: 10.1002/ehf2.12584] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
AIMS We hypothesize that specific microRNAs (miRNAs) within cardiomyocyte-derived exosomes play a pivotal role in the phenoconversion of cardiac myofibroblasts following myocardial infarction (MI). METHODS AND RESULTS We used an established murine model of MI, obtained in vivo via ligation of the left anterior descending coronary artery. We isolated adult cardiomyocytes and fibroblasts, and we assessed the functional role of cardiomyocyte-derived exosomes and their molecular cargo in the activation of cardiac fibroblasts. We identified and biologically validated miR-92a as a transcriptional regulator of mothers against DPP homologues 7 (SMAD7), a known inhibitor of α-smooth muscle actin (α-SMA), established marker of myofibroblast activation. We found that miR-92a was significantly (P < 0.05) upregulated in cardiomyocyte-derived exosomes and in fibroblasts isolated after MI compared with SHAM conditions (n ≥ 6/group). We tested the activation of myofibroblasts by measuring the expression levels of αSMA, periostin, and collagen. Primary isolated cardiac fibroblasts were activated both when incubated with cardiomyocyte-derived exosomes isolated from ischemic cardiomyocytes and when cultured in conditioned medium of post-MI cardiomyocytes, whereas no significant difference was observed following incubation with exosomes or medium from sham cardiomyocytes. These effects were attenuated when an inhibitor of exosome secretion, GW4869 (10 μM for 12 h) was included in the experimental setting. Through means of specific miR-92a mimic and miR-92a inhibitor, we also verified the mechanistic contribution of miR-92a to the activation of cardiac fibroblasts. CONCLUSIONS Our results indicate for the first time that miR-92a is transferred to fibroblasts in form of exosomal cargo and is critical for cardiac myofibroblast activation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
70 |
14
|
Morelli MB, Shu J, Sardu C, Matarese A, Santulli G. Cardiosomal microRNAs Are Essential in Post-Infarction Myofibroblast Phenoconversion. Int J Mol Sci 2019; 21:201. [PMID: 31892162 PMCID: PMC6982041 DOI: 10.3390/ijms21010201] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
The inclusion of microRNAs (miRNAs) in extracellular microvesicles/exosomes (named cardiosomes when deriving from cardiomyocytes) allows their active transportation and ensures cell-cell communication. We hypothesize that cardiosomal miRNAs play a pivotal role in the activation of myofibroblasts following ischemic injury. Using a murine model of myocardial infarction (MI), we tested our hypothesis by measuring in isolated fibroblasts and cardiosomes the expression levels of a set of miRNAs, which are upregulated in cardiomyocytes post-MI and involved in myofibroblast phenoconversion. We found that miR-195 was significantly upregulated in cardiosomes and in fibroblasts isolated after MI compared with SHAM conditions. Moreover, primary isolated cardiac fibroblasts were activated both when incubated with cardiosomes isolated from ischemic cardiomyocytes and when cultured in conditioned medium of post-MI cardiomyocytes, whereas no significant effect was observed following incubation with cardiosomes or medium from sham cardiomyocytes. Taken together, our findings indicate for the first time that a cardiomyocyte-specific miRNA, transferred to fibroblasts in form of exosomal cargo, is crucial in the activation of myofibroblasts.
Collapse
|
research-article |
6 |
68 |
15
|
Wilson S, Mone P, Kansakar U, Jankauskas SS, Donkor K, Adebayo A, Varzideh F, Eacobacci M, Gambardella J, Lombardi A, Santulli G. Diabetes and restenosis. Cardiovasc Diabetol 2022; 21:23. [PMID: 35164744 PMCID: PMC8845371 DOI: 10.1186/s12933-022-01460-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023] [Imported: 08/29/2023] Open
Abstract
Restenosis, defined as the re-narrowing of an arterial lumen after revascularization, represents an increasingly important issue in clinical practice. Indeed, as the number of stent placements has risen to an estimate that exceeds 3 million annually worldwide, revascularization procedures have become much more common. Several investigators have demonstrated that vessels in patients with diabetes mellitus have an increased risk restenosis. Here we present a systematic overview of the effects of diabetes on in-stent restenosis. Current classification and updated epidemiology of restenosis are discussed, alongside the main mechanisms underlying the pathophysiology of this event. Then, we summarize the clinical presentation of restenosis, emphasizing the importance of glycemic control in diabetic patients. Indeed, in diabetic patients who underwent revascularization procedures a proper glycemic control remains imperative.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
59 |
16
|
Izzo R, Trimarco V, Mone P, Aloè T, Capra Marzani M, Diana A, Fazio G, Mallardo M, Maniscalco M, Marazzi G, Messina N, Mininni S, Mussi C, Pelaia G, Pennisi A, Santus P, Scarpelli F, Tursi F, Zanforlin A, Santulli G, Trimarco B. Combining L-Arginine with vitamin C improves long-COVID symptoms: The LINCOLN Survey. Pharmacol Res 2022; 183:106360. [PMID: 35868478 PMCID: PMC9295384 DOI: 10.1016/j.phrs.2022.106360] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION Recent evidence suggests that oxidative stress and endothelial dysfunction play critical roles in the pathophysiology of COVID-19 and Long-COVID. We hypothesized that a supplementation combining L-Arginine (to improve endothelial function) and Vitamin C (to reduce oxidation) could have favorable effects on Long-COVID symptoms. METHODS We designed a survey (LINCOLN: L-Arginine and Vitamin C improves Long-COVID), assessing several symptoms that have been associated with Long-COVID to be administered nationwide to COVID-19 survivors; the survey also included effort perception, measured using the Borg scale. Patients receiving the survey were divided in two groups, with a 2:1 ratio: the first group included patients that received L-Arginine + Vitamin C, whereas the second group received a multivitamin combination (alternative treatment). RESULTS 1390 patients successfully completed the survey. Following a 30-day treatment in both groups, the survey revealed that patients in the L-Arginine + Vitamin C treatment arm had significantly lower scores compared to patients who had received the multivitamin combination. There were no other significant differences between the two groups. When examining effort perception, we observed a significantly lower value (p < 0.0001) in patients receiving L-Arginine + Vitamin C compared to the alternative-treatment arm. CONCLUSIONS Our survey indicates that the supplementation with L-Arginine + Vitamin C has beneficial effects in Long-COVID, in terms of attenuating its typical symptoms and improving effort perception.
Collapse
|
research-article |
3 |
59 |
17
|
Santulli G, Pascale V, Finelli R, Visco V, Giannotti R, Massari A, Morisco C, Ciccarelli M, Illario M, Iaccarino G, Coscioni E. We are What We Eat: Impact of Food from Short Supply Chain on Metabolic Syndrome. J Clin Med 2019; 8:2061. [PMID: 31771147 PMCID: PMC6947359 DOI: 10.3390/jcm8122061] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] [Imported: 08/29/2023] Open
Abstract
Food supply in the Mediterranean area has been recently modified by big retail distribution; for instance, industrial retail has favored shipments of groceries from regions that are intensive producers of mass food, generating a long supply chain (LSC) of food that opposes short supply chains (SSCs) that promote local food markets. However, the actual functional role of food retail and distribution in the determination of the risk of developing metabolic syndrome (MetS) has not been studied hitherto. The main aim of this study was to test the effects of food chain length on the prevalence of MetS in a population accustomed to the Mediterranean diet. We conducted an observational study in Southern Italy on individuals adhering to the Mediterranean diet. We examined a total of 407 subjects (41% females) with an average age of 56 ± 14.5 years (as standard deviation) and found that being on the Mediterranean diet with a SSC significantly reduces the prevalence of MetS compared with the LSC (SSC: 19.65%, LSC: 31.46%; p: 0.007). Our data indicate for the first time that the length of food supply chain plays a key role in determining the risk of MetS in a population adhering to the Mediterranean diet.
Collapse
|
research-article |
6 |
57 |
18
|
Sardu C, Santulli G, Santamaria M, Barbieri M, Sacra C, Paolisso P, D'Amico F, Testa N, Caporaso I, Paolisso G, Marfella R, Rizzo MR. Effects of Alpha Lipoic Acid on Multiple Cytokines and Biomarkers and Recurrence of Atrial Fibrillation Within 1 Year of Catheter Ablation. Am J Cardiol 2017; 119:1382-1386. [PMID: 28258730 PMCID: PMC5392151 DOI: 10.1016/j.amjcard.2017.01.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
Catheter ablation (CA) is a procedure commonly used to restore sinus rhythm in patients with atrial fibrillation (AF). However, AF recurrence after CA remains a relevant clinical issue. We tested the effects of an oral antioxidant treatment (alpha lipoic acid [ALA]) on AF recurrence post-CA. Patients with paroxysmal AF have been enrolled in a randomized, prospective, double-blind, controlled placebo trial. After CA, patients have been randomly assigned to receive ALA oral supplementation (ALA group) or placebo (control group) and evaluated at baseline and after a 12-month follow-up: 73 patients completed the 12-month follow-up (ALA: 33 and control: 40). No significant difference has been detected between the 2 groups at baseline. Strikingly, 1 year after CA, ALA therapy significantly reduced serum markers of inflammation. However, there was no significant difference in AF recurrence events at follow-up comparing ALA with placebo group. Multivariate analysis revealed that the only independent prognostic risk factor for AF recurrence after CA is age. In conclusion, ALA therapy reduces serum levels of common markers of inflammation in ablated patients. Nevertheless, ALA does not prevent AF recurrence after an ablative treatment.
Collapse
|
Randomized Controlled Trial |
8 |
55 |
19
|
Gambardella J, Trimarco B, Iaccarino G, Santulli G. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:373-385. [PMID: 28956314 PMCID: PMC5889357 DOI: 10.1007/5584_2017_106] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 08/29/2023]
Abstract
Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.
Collapse
|
Review |
7 |
52 |
20
|
Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA 2021; 7:39. [PMID: 34287359 PMCID: PMC8293470 DOI: 10.3390/ncrna7030039] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] [Imported: 08/29/2023] Open
Abstract
Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM.
Collapse
|
Review |
4 |
52 |
21
|
Fiorentino G, Coppola A, Izzo R, Annunziata A, Bernardo M, Lombardi A, Trimarco V, Santulli G, Trimarco B. Effects of adding L-arginine orally to standard therapy in patients with COVID-19: A randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine 2021; 40:101125. [PMID: 34522871 PMCID: PMC8428476 DOI: 10.1016/j.eclinm.2021.101125] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] [Imported: 08/29/2023] Open
Abstract
BACKGROUND We and others have previously demonstrated that the endothelium is a primary target of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and L-arginine has been shown to improve endothelial dysfunction. However, the effects of L-arginine have never been evaluated in coronavirus disease 2019 (COVID-19). METHODS This is a parallel-group, double-blind, randomized, placebo-controlled trial conducted on patients hospitalized for severe COVID-19. Patients received 1.66 g L-arginine twice a day or placebo, administered orally. The primary efficacy endpoint was a reduction in respiratory support assessed 10 and 20 days after randomization. Secondary outcomes were the length of in-hospital stay, the time to normalization of lymphocyte number, and the time to obtain a negative real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2 on nasopharyngeal swab. This clinical trial had been registered at ClinicalTrials.gov, identifier: NCT04637906. FINDINGS We present here the results of the initial interim analysis on the first 101 patients. No treatment-emergent serious adverse events were attributable to L-arginine. At 10-day evaluation, 71.1% of patients in the L-arginine arm and 44.4% in the placebo arm (p < 0.01) had the respiratory support reduced; however, a significant difference was not detected 20 days after randomization. Strikingly, patients treated with L-arginine exhibited a significantly reduced in-hospital stay vs placebo, with a median (interquartile range 25th,75th percentile) of 46 days (45,46) in the placebo group vs 25 days (21,26) in the L-arginine group (p < 0.0001); these findings were also confirmed after adjusting for potential confounders including age, duration of symptoms, comorbidities, D-dimer, as well as antiviral and anticoagulant treatments. The other secondary outcomes were not significantly different between groups. INTERPRETATION In this interim analysis, adding oral L-arginine to standard therapy in patients with severe COVID-19 significantly decreases the length of hospitalization and reduces the respiratory support at 10 but not at 20 days after starting the treatment. FUNDING Both placebo and L-arginine were kindly provided by Farmaceutici Damor S.p.A., Naples.
Collapse
|
research-article |
4 |
51 |
22
|
Yuan Q, Yang J, Santulli G, Reiken SR, Wronska A, Kim MM, Osborne BW, Lacampagne A, Yin Y, Marks AR. Maintenance of normal blood pressure is dependent on IP3R1-mediated regulation of eNOS. Proc Natl Acad Sci U S A 2016; 113:8532-8537. [PMID: 27402766 PMCID: PMC4968706 DOI: 10.1073/pnas.1608859113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] [Imported: 08/29/2023] Open
Abstract
Endothelial cells (ECs) are critical mediators of blood pressure (BP) regulation, primarily via the generation and release of vasorelaxants, including nitric oxide (NO). NO is produced in ECs by endothelial NO synthase (eNOS), which is activated by both calcium (Ca(2+))-dependent and independent pathways. Here, we report that intracellular Ca(2+) release from the endoplasmic reticulum (ER) via inositol 1,4,5-trisphosphate receptor (IP3R) is required for Ca(2+)-dependent eNOS activation. EC-specific type 1 1,4,5-trisphosphate receptor knockout (IP3R1(-/-)) mice are hypertensive and display blunted vasodilation in response to acetylcholine (ACh). Moreover, eNOS activity is reduced in both isolated IP3R1-deficient murine ECs and human ECs following IP3R1 knockdown. IP3R1 is upstream of calcineurin, a Ca(2+)/calmodulin-activated serine/threonine protein phosphatase. We show here that the calcineurin/nuclear factor of activated T cells (NFAT) pathway is less active and eNOS levels are decreased in IP3R1-deficient ECs. Furthermore, the calcineurin inhibitor cyclosporin A, whose use has been associated with the development of hypertension, reduces eNOS activity and vasodilation following ACh stimulation. Our results demonstrate that IP3R1 plays a crucial role in the EC-mediated vasorelaxation and the maintenance of normal BP.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
49 |
23
|
Mone P, Gambardella J, Pansini A, de Donato A, Martinelli G, Boccalone E, Matarese A, Frullone S, Santulli G. Cognitive Impairment in Frail Hypertensive Elderly Patients: Role of Hyperglycemia. Cells 2021; 10:2115. [PMID: 34440883 PMCID: PMC8391431 DOI: 10.3390/cells10082115] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] [Imported: 06/20/2025] Open
Abstract
Endothelial dysfunction is a key hallmark of hypertension, which is a leading risk factor for cognitive decline in older adults with or without frailty. Similarly, hyperglycemia is known to impair endothelial function and is a predictor of severe cardiovascular outcomes, independent of the presence of diabetes. On these grounds, we designed a study to assess the effects of high-glucose and metformin on brain microvascular endothelial cells (ECs) and on cognitive impairment in frail hypertensive patients. We tested the effects of metformin on high-glucose-induced cell death, cell permeability, and generation of reactive oxygen species in vitro, in human brain microvascular ECs. To investigate the consequences of hyperglycemia and metformin in the clinical scenario, we recruited frail hypertensive patients and we evaluated their Montreal Cognitive Assessment (MoCA) scores, comparing them according to the glycemic status (normoglycemic vs. hyperglycemic) and the use of metformin. We enrolled 376 patients, of which 209 successfully completed the study. We observed a significant correlation between MoCA score and glycemia. We found that hyperglycemic patients treated with metformin had a significantly better MoCA score than hyperglycemic patients treated with insulin (18.32 ± 3.9 vs. 14.94 ± 3.8; p < 0.001). Our in vitro assays confirmed the beneficial effects of metformin on human brain microvascular ECs. To our knowledge, this is the first study correlating MoCA score and glycemia in frail and hypertensive older adults, showing that hyperglycemia aggravates cognitive impairment.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
48 |
24
|
Mone P, Gambardella J, Lombardi A, Pansini A, De Gennaro S, Leo AL, Famiglietti M, Marro A, Morgante M, Frullone S, De Luca A, Santulli G. Correlation of physical and cognitive impairment in diabetic and hypertensive frail older adults. Cardiovasc Diabetol 2022; 21:10. [PMID: 35045834 PMCID: PMC8772197 DOI: 10.1186/s12933-021-01442-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] [Imported: 06/20/2025] Open
Abstract
BACKGROUND Diabetes and hypertension are common in older adults and represent established risk factors for frailty. Frailty is a multidimensional condition due to reserve loss and susceptibility to stressors with a high risk of death, hospitalizations, functional and cognitive impairment. Comorbidities such as diabetes and hypertension play a key role in increasing the risk of mortality, hospitalization, and disability. Moreover, frail patients with diabetes and hypertension are known to have an increased risk of cognitive and physical impairment. Nevertheless, no study assessed the correlation between physical and cognitive impairment in frail older adults with diabetes and hypertension. METHODS We evaluated consecutive frail older patients with diabetes and hypertension who presented at ASL (local health unit of the Italian Ministry of Health) Avellino, Italy, from March 2021 to October 2021. The inclusion criteria were: a previous diagnosis of diabetes and hypertension with no evidence of secondary causes; age > 65 years; a frailty status; Montreal Cognitive Assessment (MoCA) score < 26. RESULTS 179 patients successfully completed the study. We found a strong and significant correlation between MoCA score and 5-m gait speed test (r: 0.877; p < 0.001). To further verify our results, we performed a linear multivariate analysis adjusting for potential confounding factors, with MoCA score as dependent variable, which confirmed the significant association with glycemia (p < 0.001). CONCLUSIONS This is the first study showing a significant correlation between 5-m gait speed test and MoCA score in frail diabetic and hypertensive older adults.
Collapse
|
research-article |
3 |
47 |
25
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:3951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
|
Review |
4 |
46 |