26
|
Gambardella J, Sardu C, Sacra C, Del Giudice C, Santulli G. Quit smoking to outsmart atherogenesis: Molecular mechanisms underlying clinical evidence. Atherosclerosis 2017; 257:242-245. [PMID: 28108018 PMCID: PMC6691900 DOI: 10.1016/j.atherosclerosis.2016.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] [Imported: 08/29/2023]
|
Editorial |
8 |
39 |
27
|
Jankauskas SS, Kansakar U, Sardu C, Varzideh F, Avvisato R, Wang X, Matarese A, Marfella R, Ziosi M, Gambardella J, Santulli G. COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants (Basel) 2023; 12:326. [PMID: 36829885 PMCID: PMC9952002 DOI: 10.3390/antiox12020326] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] [Imported: 08/29/2023] Open
Abstract
Oxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome. Thus, we collected serum from COVID-19 patients on hospital admission, and we incubated these sera with human endothelial cells, comparing the effects on the generation of reactive oxygen species (ROS) and lipid peroxidation between patients who survived and patients who did not survive. We found that the serum from non-survivors significantly increased lipid peroxidation. Moreover, serum from non-survivors markedly regulated the expression levels of the main markers of ferroptosis, including GPX4, SLC7A11, FTH1, and SAT1, a response that was rescued by silencing TNFR1 on endothelial cells. Taken together, our data indicate that serum from patients who did not survive COVID-19 triggers lipid peroxidation in human endothelial cells.
Collapse
|
research-article |
2 |
38 |
28
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] [Imported: 08/29/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
|
Systematic Review |
2 |
37 |
29
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] [Imported: 06/20/2025]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
|
Review |
8 |
36 |
30
|
Gambardella J, Santulli G. Integrating diet and inflammation to calculate cardiovascular risk. Atherosclerosis 2016; 253:258-261. [PMID: 27594541 PMCID: PMC5813683 DOI: 10.1016/j.atherosclerosis.2016.08.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022] [Imported: 08/29/2023]
|
Editorial |
9 |
36 |
31
|
Mone P, Gambardella J, Minicucci F, Lombardi A, Mauro C, Santulli G. Hyperglycemia Drives Stent Restenosis in STEMI Patients. Diabetes Care 2021; 44:e192-e193. [PMID: 34531311 PMCID: PMC8546275 DOI: 10.2337/dc21-0939] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/03/2021] [Indexed: 02/03/2023] [Imported: 08/29/2023]
|
Letter |
4 |
35 |
32
|
Lombardi A, Gambardella J, Du XL, Sorriento D, Mauro M, Iaccarino G, Trimarco B, Santulli G. Sirolimus induces depletion of intracellular calcium stores and mitochondrial dysfunction in pancreatic beta cells. Sci Rep 2017; 7:15823. [PMID: 29158477 PMCID: PMC5696524 DOI: 10.1038/s41598-017-15283-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] [Imported: 08/29/2023] Open
Abstract
Sirolimus (rapamycin) is an immunosuppressive drug used in transplantation. One of its major side effects is the increased risk of diabetes mellitus; however, the exact mechanisms underlying such association have not been elucidated. Here we show that sirolimus impairs glucose-stimulated insulin secretion both in human and murine pancreatic islets and in clonal β cells in a dose- and time-dependent manner. Importantly, we demonstrate that sirolimus markedly depletes calcium (Ca2+) content in the endoplasmic reticulum and significantly decreases glucose-stimulated mitochondrial Ca2+ uptake. Crucially, the reduced mitochondrial Ca2+ uptake is mirrored by a significant impairment in mitochondrial respiration. Taken together, our findings indicate that sirolimus causes depletion of intracellular Ca2+ stores and alters mitochondrial fitness, eventually leading to decreased insulin release. Our results provide a novel molecular mechanism underlying the increased incidence of diabetes mellitus in patients treated with this drug.
Collapse
|
research-article |
8 |
33 |
33
|
Mone P, De Gennaro S, Moriello D, Frullone S, D’Amelio R, Ferrante MNV, Marro A, Santulli G. Insulin resistance drives cognitive impairment in hypertensive pre-diabetic frail elders: the CENTENNIAL study. Eur J Prev Cardiol 2023; 30:1283-1288. [PMID: 37196030 PMCID: PMC10480019 DOI: 10.1093/eurjpc/zwad173] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] [Imported: 06/20/2025]
Abstract
AIMS Pre-diabetes is a condition that confers an increased cardiovascular risk. Frailty is very common in hypertensive patients, and insulin resistance has been linked to frailty in older adults with diabetes. On these grounds, our aim was to evaluate the association between insulin resistance and cognitive impairment in hypertensive and pre-diabetic and frail older adults. METHODS AND RESULTS We studied consecutive pre-diabetic and hypertensive elders with frailty presenting at the Avellino local health authority of the Italian Ministry of Health (ASL AV) from March 2021 to March 2022. All of them fulfilled the following inclusion criteria: a previous diagnosis of hypertension with no clinical or laboratory evidence of secondary causes, a confirmed diagnosis of pre-diabetes, age >65 years, Montreal Cognitive Assessment (MoCA) Score <26, and frailty. We enrolled 178 frail patients, of which 141 successfully completed the study. We observed a strong inverse correlation (r = -0.807; P < 0.001) between MoCA Score and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). The results were confirmed by a linear regression analysis using MoCA Score as dependent variable, after adjusting for several potential confounders. CONCLUSION Taken together, our data highlight for the first time the association between insulin resistance and global cognitive function in frail elders with hypertension and pre-diabetes.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
31 |
34
|
Lombardi A, Trimarco B, Iaccarino G, Santulli G. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal 2017; 15:47. [PMID: 29132395 PMCID: PMC5684747 DOI: 10.1186/s12964-017-0203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] [Imported: 08/29/2023] Open
Abstract
BACKGROUND One of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified. METHODS We studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells. RESULTS We demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS. CONCLUSION Our observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.
Collapse
|
research-article |
8 |
29 |
35
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] [Imported: 08/29/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
28 |
36
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] [Imported: 06/20/2025] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
|
Review |
2 |
28 |
37
|
Forzano I, Avvisato R, Varzideh F, Jankauskas SS, Cioppa A, Mone P, Salemme L, Kansakar U, Tesorio T, Trimarco V, Santulli G. L-Arginine in diabetes: clinical and preclinical evidence. Cardiovasc Diabetol 2023; 22:89. [PMID: 37072850 PMCID: PMC10114382 DOI: 10.1186/s12933-023-01827-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] [Imported: 08/29/2023] Open
Abstract
L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.
Collapse
|
Review |
2 |
27 |
38
|
Mone P, Lombardi A, Salemme L, Cioppa A, Popusoi G, Varzideh F, Pansini A, Jankauskas SS, Forzano I, Avvisato R, Wang X, Tesorio T, Santulli G. Stress Hyperglycemia Drives the Risk of Hospitalization for Chest Pain in Patients With Ischemia and Nonobstructive Coronary Arteries (INOCA). Diabetes Care 2023; 46:450-454. [PMID: 36478189 PMCID: PMC9887616 DOI: 10.2337/dc22-0783] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] [Imported: 08/29/2023]
Abstract
OBJECTIVE Ischemia with nonobstructive coronary arteries (INOCA) is a prevailing finding in patients with angina. However, the main factors underlying the risk of being rehospitalized for chest pain in patients with INOCA remain mostly unknown. RESEARCH DESIGN AND METHODS We evaluated INOCA patients referred to the "Casa di Cura Montevergine" in Mercogliano (Avellino), Italy, from January 2016 to January 2021 for percutaneous coronary intervention (PCI). In these subjects, we assessed the impact of the stress hyperglycemia ratio (SHR), defined as the ratio of mmol/L blood glucose and % HbA1c, on the risk of rehospitalization for chest pain. RESULTS A total of 2,874 patients with INOCA successfully completed the study. At the 1-year follow-up, the risk of rehospitalization for chest pain was significantly higher (P < 0.001) in INOCA patients with SHR >1 compared to patients with SHR ≤1. These findings were confirmed by multivariable analyses (adjusting for potential confounders, including age, BMI, blood pressure, heart rate, chronic kidney disease, and cholesterol), propensity score matching, and inverse probability of treatment weighting. CONCLUSIONS Our data indicate, to our knowledge for the first time, that SHR on hospital admission significantly and independently increases the risk of rehospitalization for chest pain in INOCA patients.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
27 |
39
|
Kansakar U, Jankauskas SS, Gambardella J, Santulli G. Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 2021; 324:117-120. [PMID: 33832772 PMCID: PMC8195811 DOI: 10.1016/j.atherosclerosis.2021.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] [Imported: 08/29/2023]
|
Editorial |
4 |
26 |
40
|
Gambardella J, Santulli G. What is linking COVID-19 and endothelial dysfunction? Updates on nanomedicine and bioengineering from the 2020 AHA Scientific Sessions. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 7:e2-e3. [PMID: 33377481 PMCID: PMC7799225 DOI: 10.1093/ehjcvp/pvaa145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] [Imported: 08/29/2023]
|
Research Support, N.I.H., Extramural |
4 |
26 |
41
|
Varzideh F, Kansakar U, Santulli G. SGLT2 inhibitors in cardiovascular medicine. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 7:e67-e68. [PMID: 33964138 PMCID: PMC8488965 DOI: 10.1093/ehjcvp/pvab039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] [Imported: 08/29/2023]
|
news |
4 |
23 |
42
|
Gambardella J, Jankauskas SS, D'Ascia SL, Sardu C, Matarese A, Minicucci F, Mone P, Santulli G. Glycation of ryanodine receptor in circulating lymphocytes predicts the response to cardiac resynchronization therapy. J Heart Lung Transplant 2022; 41:438-441. [PMID: 35042640 PMCID: PMC8977242 DOI: 10.1016/j.healun.2021.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023] [Imported: 08/29/2023] Open
Abstract
Finding reliable parameters to identify patients with heart failure (HF) that will respond to cardiac resynchronization therapy (CRT) represents a major challenge. We and others have observed post-translational modifications of Ryanodine Receptor (RyR) in several tissues (including skeletal muscle and circulating lymphocytes) of patients with advanced HF. We designed a prospective study to test the hypothesis that RyR1 glycation in circulating lymphocytes could predict CRT responsiveness in patients with non-ischemic HF. We enrolled 94 patients who underwent CRT and 30 individuals without HF, examining RyR1 glycation in peripheral lymphocytes at enrollment and after 1 year. We found that baseline RyR1 glycation independently predicts CRT response at 1 year after adjusting for age, diabetes, QRS duration and morphology, echocardiographic dyssynchrony, and hypertension. Moreover, RyR1 glycation in circulating lymphocytes significantly correlated with pathologic intracellular calcium leak. Taken together, our data show for the first time that RyR1 glycation in circulating lymphocytes represents a novel biomarker to predict CRT responsiveness.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
23 |
43
|
Morelli MB, Wang X, Santulli G. Functional role of gut microbiota and PCSK9 in the pathogenesis of diabetes mellitus and cardiovascular disease. Atherosclerosis 2019; 289:176-178. [PMID: 31431286 PMCID: PMC6790279 DOI: 10.1016/j.atherosclerosis.2019.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] [Imported: 08/29/2023]
|
Editorial |
6 |
22 |
44
|
Shu J, Matarese A, Santulli G. Diabetes, body fat, skeletal muscle, and hypertension: The ominous chiasmus? J Clin Hypertens (Greenwich) 2019; 21:239-242. [PMID: 30525276 PMCID: PMC6374156 DOI: 10.1111/jch.13453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] [Imported: 08/29/2023]
|
Research Support, N.I.H., Extramural |
6 |
22 |
45
|
Mone P, De Gennaro S, Frullone S, Marro A, Santulli G. Hyperglycemia drives the transition from pre-frailty to frailty: The Monteforte study. Eur J Intern Med 2023; 111:135-137. [PMID: 36635128 PMCID: PMC10122706 DOI: 10.1016/j.ejim.2023.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] [Imported: 06/20/2025]
|
Letter |
2 |
22 |
46
|
Mone P, Gambardella J, Wang X, Jankauskas SS, Matarese A, Santulli G. miR-24 Targets the Transmembrane Glycoprotein Neuropilin-1 in Human Brain Microvascular Endothelial Cells. Noncoding RNA 2021; 7:9. [PMID: 33540664 PMCID: PMC7931075 DOI: 10.3390/ncrna7010009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Neuropilin-1 is a transmembrane glycoprotein that has been implicated in several processes including angiogenesis and immunity. Recent evidence has also shown that it is implied in the cellular internalization of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). We hypothesized that specific microRNAs can target Neuropilin-1. By combining bioinformatic and functional approaches, we identified miR-24 as a regulator of Neuropilin-1 transcription. Since Neuropilin-1 has been shown to play a key role in the endothelium-mediated regulation of the blood-brain barrier, we validated miR-24 as a functional modulator of Neuropilin-1 in human brain microvascular endothelial cells (hBMECs), which are the most suitable cell line for an in vitro blood-brain barrier model.
Collapse
|
research-article |
4 |
21 |
47
|
Gambardella J, Lombardi A, Morelli MB, Ferrara J, Santulli G. Inositol 1,4,5-Trisphosphate Receptors in Human Disease: A Comprehensive Update. J Clin Med 2020; 9:1096. [PMID: 32290556 PMCID: PMC7231134 DOI: 10.3390/jcm9041096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (ITPRs) are intracellular calcium release channels located on the endoplasmic reticulum of virtually every cell. Herein, we are reporting an updated systematic summary of the current knowledge on the functional role of ITPRs in human disorders. Specifically, we are describing the involvement of its loss-of-function and gain-of-function mutations in the pathogenesis of neurological, immunological, cardiovascular, and neoplastic human disease. Recent results from genome-wide association studies are also discussed.
Collapse
|
Review |
5 |
21 |
48
|
Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med 2022; 9:863238. [PMID: 35498051 PMCID: PMC9043126 DOI: 10.3389/fcvm.2022.863238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023] [Imported: 08/29/2023] Open
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Collapse
|
Review |
3 |
20 |
49
|
Gambardella J, Jankauskas SS, Kansakar U, Varzideh F, Avvisato R, Prevete N, Sidoli S, Mone P, Wang X, Lombardi A, Santulli G. Ketone Bodies Rescue Mitochondrial Dysfunction Via Epigenetic Remodeling. JACC Basic Transl Sci 2023; 8:1123-1137. [PMID: 37791311 PMCID: PMC10543927 DOI: 10.1016/j.jacbts.2023.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 10/05/2023] [Imported: 06/20/2025]
Abstract
Ischemic cardiac disease is a major cause of mortality worldwide. However, the exact molecular processes underlying this disorder are not fully known. This study includes a comprehensive and coordinated set of in vivo and in vitro experiments using human cardiac specimens from patients with postischemic heart failure (HF) and healthy control subjects, a murine model of HF, and cellular systems. These approaches identified for the first time a specific pattern of maladaptive chromatin remodeling, namely a double methylation of histone 3 at lysine 27 and a single methylation at lysine 36 (H3_K27me2K36me1) consistently induced by ischemic injury in all these settings: human HF; murine HF; and in vitro models. Mechanistically, this work demonstrates that this histone modification mediates the ischemia-induced transcriptional repression of PPARG coactivator 1α (PGC1α), master regulator of mitochondrial function and biogenesis. Intriguingly, both the augmented H3_K27me2K36me1 and the mitochondrial dysfunction ensued by PGC1α down-regulation were significantly attenuated by the treatment with β-hydroxybutyrate, the most abundant ketone body in humans, revealing a novel pathway coupling metabolism to gene expression. Taken together, these findings establish maladaptive chromatin remodeling as a key mechanism in postischemic heart injury, functionally modulated by ketone bodies.
Collapse
|
research-article |
2 |
20 |
50
|
Varzideh F, Jankauskas SS, Kansakar U, Mone P, Gambardella J, Santulli G. Sortilin drives hypertension by modulating sphingolipid/ceramide homeostasis and by triggering oxidative stress. J Clin Invest 2022; 132:e156624. [PMID: 35104807 PMCID: PMC8803317 DOI: 10.1172/jci156624] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] [Imported: 06/20/2025] Open
Abstract
Sortilin is a glycoprotein mainly known for its role as a trafficking molecule directing proteins to specific secretory or endocytic compartments of the cell. Its actual contribution to essential hypertension has remained hitherto elusive. Combining top-notch in vivo, ex vivo, and in vitro approaches to clinical investigations, Di Pietro et al. explored the signaling pathway evoked by sortilin in endothelial cells and report on such exploration in this issue of the JCI. The researchers identified circulating sortilin as a biomarker associated with high blood pressure. Mechanistically, they demonstrate that sortilin altered sphingolipid/ceramide homeostasis, initiating a signaling cascade that, from sphingosine-1-phosphate (S1P), leads to the augmented production of reactive oxygen species. Herein, we discuss the main implications of these findings, and we anticipate some of the potential avenues of investigation prompted by this discovery, which could eventually lead to treatments for cardiometabolic disorders.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
20 |