1
|
González-Valdez A, Hernández-Pineda J, Soberón-Chávez G. Detection and Quantification of Mono-Rhamnolipids and Di-Rhamnolipids Produced by Pseudomonas aeruginosa. J Vis Exp 2024. [PMID: 38619254 DOI: 10.3791/65934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The environmental bacterium Pseudomonas aeruginosa is an opportunistic pathogen with high antibiotic resistance that represents a health hazard. This bacterium produces high levels of biosurfactants known as rhamnolipids (RL), which are molecules with significant biotechnological value but are also associated with virulence traits. In this respect, the detection and quantification of RL may be useful for both biotechnology applications and biomedical research projects. In this article, we demonstrate step-by-step the technique to detect the production of the two forms of RL produced by P. aeruginosa using thin-layer chromatography (TLC): mono-rhamnolipids (mRL), molecules constituted by a dimer of fatty acids (mainly C10-C10) linked to one rhamnose moiety, and di-rhamnolipids (dRL), molecules constituted by a similar fatty acid dimer linked to two rhamnose moieties. Additionally, we present a method to measure the total amount of RL based on the acid hydrolysis of these biosurfactants extracted from a P. aeruginosa culture supernatant and the subsequent detection of the concentration of rhamnose that reacts with orcinol. The combination of both techniques can be used to estimate the approximate concentration of mRL and dRL produced by a specific strain, as exemplified here with the type strains PAO1 (phylogroup 1), PA14 (phylogroup 2), and PA7 (phylogroup 3).
Collapse
|
2
|
Li C, Wang Y, Zhou L, Cui Q, Sun W, Yang J, Su H, Zhao F. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Lett Appl Microbiol 2024; 77:ovae016. [PMID: 38366661 DOI: 10.1093/lambio/ovae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
This study aims to isolate microbial strains for producing mono-rhamnolipids with high proportion. Oily sludge is rich in petroleum and contains diverse biosurfactant-producing strains. A biosurfactant-producing strain LP20 was isolated from oily sludge, identified as Pseudomonas aeruginosa based on phylogenetic analysis of 16S rRNA. High-performance liquid chromatography-mass spectrometry results indicated that biosurfactants produced from LP20 were rhamnolipids, mainly containing Rha-C8-C10, Rha-C10-C10, Rha-Rha-C8-C10, Rha-Rha-C10-C10, Rha-C10-C12:1, and Rha-C10-C12. Interestingly, more mono-rhamnolipids were produced by strain LP20 with a relative abundance of 64.5%. Pseudomonas aeruginosa LP20 optimally produced rhamnolipids at a pH of 7.0 and a salinity of 0.1% using glycerol and nitrate. The culture medium for rhamnolipids by strain LP20 was optimized by response surface methodology. LP20 produced rhamnolipids up to 6.9 g L-1, increased by 116%. Rhamnolipids produced from LP20 decreased the water surface tension to 28.1 mN m-1 with a critical micelle concentration of 60 mg L-1. The produced rhamnolipids emulsified many hydrocarbons with EI24 values higher than 56% and showed antimicrobial activity against Staphylococcus aureus and Cladosporium sp. with inhibition rates 48.5% and 17.9%, respectively. Pseudomonas aeruginosa LP20 produced more proportion of mono-rhamnolipids, and the LP20 rhamnolipids exhibited favorable activities and promising potential in microbial-enhanced oil recovery, bioremediation, and agricultural biocontrol.
Collapse
|
3
|
Meng X, Pan Y, Liu T, Luo C, Man S, Zhang Y, Zhang Y. Synthesis of novel diosgenyl saponin analogs and evaluation effects of rhamnose moeity on their cytotoxic activity. Carbohydr Res 2021; 506:108359. [PMID: 34102543 DOI: 10.1016/j.carres.2021.108359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Diosgenyl saponins, as a type of natural products derived from plants, are the main active component of traditional chinese medicine. Inspiringly, a large number of natural diosgensyl saponins have been shown to exert excellent toxicity to hepatocellular cancer (HCC) cells. In order to better understand the relationship between the structures and their biological effects, a group of diosgenyl saponins (1-4 as natural products and 5 and 6 as their analogs) were efficiently synthesized. The cytotoxic activity of these compounds was evaluated on human hepatocellular carcinoma (HepG2) cells. Structure-activity relationship studies showed that the pentasaccharide or hexasaccharide saponin analogs were relatively less active than their corresponding disaccharide analogue or dioscin. The extension of 4-branched rhamnose moiety on these saponin does not exhibit significant effect on their cytotoxic activity, which disclosed that a certain number and the linkage mode of rhamnose moieties could influence the cytotoxicity of steroid saponins on HepG2 cells.
Collapse
|
4
|
Belkilani M, Shokouhi M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7975-7985. [PMID: 34170134 DOI: 10.1021/acs.langmuir.1c00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 μg mL-1.
Collapse
|
5
|
Zhao F, Yuan M, Lei L, Li C, Xu X. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. BIORESOURCE TECHNOLOGY 2021; 323:124605. [PMID: 33388600 DOI: 10.1016/j.biortech.2020.124605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 05/05/2023]
Abstract
Differences in the rhamnolipid structures must result in its different activities, thus affecting its application effect. The rhlC gene in Pseudomonas aeruginosa SG was knocked out to construct strain P. aeruginosa SGΔrhlC. Rhamnolipid production was enhanced by 23.3% through knocking out rhlC gene. P. aeruginosa SGΔrhlC produced 14.22 g/L of rhamnolipid using glycerol and nitrate. Five kinds of mono-rhamnolipid but no di-rhamnolipid were produced by strain SGΔrhlC. The main rhamnolipid homologues were Rha-C10-C10, Rha-C10-C12:1 and Rha-C10-C12. Mono-rhamnolipid exhibited better antimicrobial activity to Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium chrysogenum. Rhamnolipid produced from strain SGΔrhlC showed greater emulsifying activity to crude oil with EI24 of 84.73%. Rhamnolipid produced from strain SGΔrhlC efficiently washed oily sludge at 35 °C. High-producing strain P. aeruginosa SGΔrhlC and its produced mono-rhamnolipid are more promising in agriculture and petroleum industry. This study is a step forward to the tailor-made biosynthesis and application of rhamnolipid.
Collapse
|
6
|
Robineau M, Le Guenic S, Sanchez L, Chaveriat L, Lequart V, Joly N, Calonne M, Jacquard C, Declerck S, Martin P, Dorey S, Ait Barka E. Synthetic Mono-Rhamnolipids Display Direct Antifungal Effects and Trigger an Innate Immune Response in Tomato against Botrytis Cinerea. Molecules 2020; 25:molecules25143108. [PMID: 32650401 PMCID: PMC7397090 DOI: 10.3390/molecules25143108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Natural rhamnolipids are potential biocontrol agents for plant protection against bacterial and fungal diseases. In this work, we synthetized new synthetic mono-rhamnolipids (smRLs) consisting in a rhamnose connected to a simple acyl chain and differing by the nature of the link and the length of the lipid tail. We then investigated the effects of these ether, ester, carbamate or succinate smRL derivatives on Botrytis cinerea development, symptoms spreading on tomato leaves and immune responses in tomato plants. Our results demonstrate that synthetic smRLs are able to trigger early and late immunity-related plant defense responses in tomato and increase plant resistance against B. cinerea in controlled conditions. Structure-function analysis showed that chain length of the lipidic part and type of acyl chain were critical to smRLs immune activity and to the extent of symptoms caused by the fungus on tomato leaves.
Collapse
|
7
|
Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, Noor NM, Abdull Razis AF. Neuroprotective effects of glucomoringin-isothiocyanate against H 2O 2-Induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. Neurotoxicology 2019; 75:89-104. [PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
Collapse
|
8
|
Quintão NLM, Pastor MVD, Antonialli CDS, da Silva GF, Rocha LW, Berté TE, de Souza MM, Meyre-Silva C, Lucinda-Silva RM, Bresolin TMB, Cechinel Filho V. Aleurites moluccanus and its main active constituent, the flavonoid 2″-O-rhamnosylswertisin, in experimental model of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:248-254. [PMID: 30769038 DOI: 10.1016/j.jep.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMMACOLOGICAL RELEVANCE Aleurites moluccana is used in folk medicine to treat pain, fever, asthma, hepatitis, gastric ulcer and inflammatory process in general, and the nut oil had been topically applied to treat arthritis and other joint pain, however the seeds are classified as toxic for oral use. AIM Faced with the need for new alternative to treat the symptoms and modify rheumatoid arthritis (RA) the aim of this work was to evaluate the effects of A. moluccanus' leaves dried extract in rats and mice submitted to complete Freund adjuvant (CFA)-induced RA. MATERIAL AND METHODS Wistar Rats and Swiss mice were submitted to CFA-induced RA in the right hindpaw. They received A. moluccanus extract (orally; p.o.), dexamethasone (subcutaneously), 2″-O-rhamnosylswertisin (p.o.) or vehicle (p.o.), from the 14th day after the CFA injection for up to 8 days. The mechanical hypersensitivity was evaluated using the von Frey filaments and the paw-oedema was measured using a plethysmometer. The rats' injected hindpaw was used to perform the histological analysis. RESULTS A. moluccanus was able to significantly reduce the mechanical hypersensitivity in both ipsi- and contralateral hindpaws of mice injected with CFA, in a dose dependent manner. Furthermore, the paw-oedema was progressively reduced by A. moluccanus. Similar results were obtained for the positive-control drug dexamethasone and the isolated compound 2″-O-rhamnosylswertisin. Besides the effects mentioned above, the extract was also effective to repair the joint damage in CFA-induced RA rats, including reduction of fibrosis, cartilage degradation and bone erosion scores. CONCLUSION These results together with the literature data reinforce the anti-hypersensitivity and anti-inflammatory activity of A. moluccanus extract. Part of the observed effects is due to the presence of the compound 2″-O-rhamnosylswertisin. The fact that the extract acted as a disease modifier point this herbal product as a promisor and safe tool to treat RA and other associated chronic diseases.
Collapse
|
9
|
Jaafaru MS, Nordin N, Shaari K, Rosli R, Abdull Razis AF. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells. PLoS One 2018; 13:e0196403. [PMID: 29723199 PMCID: PMC5933767 DOI: 10.1371/journal.pone.0196403] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC) or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA) induced differentiated neuroblastoma cells (SHSY5Y) via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.
Collapse
|
10
|
Posma J, Garcia-Perez I, Heaton JC, Burdisso P, Mathers JC, Draper J, Lewis M, Lindon JC, Frost G, Holmes E, Nicholson JK. Integrated Analytical and Statistical Two-Dimensional Spectroscopy Strategy for Metabolite Identification: Application to Dietary Biomarkers. Anal Chem 2017; 89:3300-3309. [PMID: 28240543 PMCID: PMC5379249 DOI: 10.1021/acs.analchem.6b03324] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/27/2017] [Indexed: 11/30/2022]
Abstract
A major purpose of exploratory metabolic profiling is for the identification of molecular species that are statistically associated with specific biological or medical outcomes; unfortunately, the structure elucidation process of unknowns is often a major bottleneck in this process. We present here new holistic strategies that combine different statistical spectroscopic and analytical techniques to improve and simplify the process of metabolite identification. We exemplify these strategies using study data collected as part of a dietary intervention to improve health and which elicits a relatively subtle suite of changes from complex molecular profiles. We identify three new dietary biomarkers related to the consumption of peas (N-methyl nicotinic acid), apples (rhamnitol), and onions (N-acetyl-S-(1Z)-propenyl-cysteine-sulfoxide) that can be used to enhance dietary assessment and assess adherence to diet. As part of the strategy, we introduce a new probabilistic statistical spectroscopy tool, RED-STORM (Resolution EnhanceD SubseT Optimization by Reference Matching), that uses 2D J-resolved 1H NMR spectra for enhanced information recovery using the Bayesian paradigm to extract a subset of spectra with similar spectral signatures to a reference. RED-STORM provided new information for subsequent experiments (e.g., 2D-NMR spectroscopy, solid-phase extraction, liquid chromatography prefaced mass spectrometry) used to ultimately identify an unknown compound. In summary, we illustrate the benefit of acquiring J-resolved experiments alongside conventional 1D 1H NMR as part of routine metabolic profiling in large data sets and show that application of complementary statistical and analytical techniques for the identification of unknown metabolites can be used to save valuable time and resources.
Collapse
|
11
|
Liu Z, Yu M, Zeng G, Li M, Zhang J, Zhong H, Liu Y, Shao B, Li Z, Wang Z, Liu G, Yang X. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1230-1240. [PMID: 27770324 DOI: 10.1007/s11356-016-7851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R/C P), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P) and rhamnolipids (α R) and adsorption capacity of the membrane (N m) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R/C P (with pollution), α,P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.
Collapse
|
12
|
Yin S, Liu M, Kong JQ. Functional analyses of OcRhS1 and OcUER1 involved in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:536-548. [PMID: 27835851 DOI: 10.1016/j.plaphy.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The Km value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10-4 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.
Collapse
|
13
|
Sathi Reddy K, Yahya Khan M, Archana K, Gopal Reddy M, Hameeda B. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. BIORESOURCE TECHNOLOGY 2016; 221:291-299. [PMID: 27643738 DOI: 10.1016/j.biortech.2016.09.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Mango kernel oil (MKO), derived from mango kernels, considered to be one of the highly generated agro-industrial waste, is assessed for its use as substrate for sustainable production of rhamnolipids. In the present study, MKO in combination with glucose gave maximum rhamnolipid yield of 2.8g/l which reduced the surface tension of water from 72 to 30mN/m, holding a CMC of 80mg/l and also showed high emulsification activity (73%) with diesel. Cell free broth was found to be stable even at high temperature (autoclaved at 121°C for 30min), pH value (up to pH 12) and salinity (up to 20% NaCl). The LC-MS data showed mono-rhamnolipid to be predominant congener followed by di-rhamnolipid in presence of MKO. Whereas, di-rhamnolipid was abundant when a combination of MKO with glucose was used. The produced rhamnolipid mixture showed good antifungal activity against various phytopathogens.
Collapse
|
14
|
Moussa Z, Chebl M, Patra D. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Colloids Surf B Biointerfaces 2016; 149:30-37. [PMID: 27716529 DOI: 10.1016/j.colsurfb.2016.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/31/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022]
Abstract
Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application.
Collapse
|
15
|
Johann S, Seiler TB, Tiso T, Bluhm K, Blank LM, Hollert H. Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:155-163. [PMID: 26802344 DOI: 10.1016/j.scitotenv.2016.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 05/21/2023]
Abstract
Biosurfactants like rhamnolipids are promising alternatives to chemical surfactants in a range of applications. A wider use requires an analysis of their environmental fate and their ecotoxicological potential. In the present study mono-rhamnolipids produced by a recombinant Pseudomonas putida strain were analyzed using the Green Toxicology concept for acute and mechanism-specific toxicity in an ecotoxicological test battery. Acute toxicity tests with the invertebrate Daphnia magna and with zebrafish embryos (Danio rerio) were performed. In addition, microbial and fungicidal effectiveness was investigated. Mutagenicity of the sample was tested by means of the Ames fluctuation assay. A selected mono-rhamnolipid was used for model simulations regarding mutagenicity and estrogenic activity. Our results indicate that mono-rhamnolipids cause acute toxicity to daphnids and zebrafish embryos comparable to or even lower than chemical surfactants. Rhamnolipids showed very low toxicity to the germination of Aspergillus niger spores and the growth of Candida albicans. No frameshift mutation or base substitutions were observed using the Ames fluctuation assay with the two tester strains TA98 and TA100. This result was confirmed by model simulations. Likewise it was computed that rhamnolipids have no estrogenic potential. In conclusion, mono-rhamnolipids are an environmental friendly alternative to chemical surfactants as the ecotoxicological potential is low.
Collapse
|
16
|
Wen L, Zang L, Huang K, Li S, Wang R, Wang PG. Efficient enzymatic synthesis of L-rhamnulose and L-fuculose. Bioorg Med Chem Lett 2016; 26:969-972. [PMID: 26778148 PMCID: PMC5984655 DOI: 10.1016/j.bmcl.2015.12.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
L-Rhamnulose (6-deoxy-L-arabino-2-hexulose) and L-fuculose (6-deoxy-L-lyxo-2-hexulose) were prepared from L-rhamnose and L-fucose by a two-step strategy. In the first reaction step, isomerization of L-rhamnose to L-rhamnulose, or L-fucose to L-fuculose was combined with a targeted phosphorylation reaction catalyzed by L-rhamnulose kinase (RhaB). The by-products (ATP and ADP) were selectively removed by silver nitrate precipitation method. In the second step, the phosphate group was hydrolyzed to produce L-rhamnulose or L-fuculose with purity exceeding 99% in more than 80% yield (gram scale).
Collapse
|
17
|
Chen L, Xu JF, Sun LC. [Chemical Constituents from Glycosmis pentaphylla]. ZHONG YAO CAI = ZHONGYAOCAI = JOURNAL OF CHINESE MEDICINAL MATERIALS 2016; 39:90-93. [PMID: 30080005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the chemical constituents of Glycosmis pentaphylla. METHODS 95% ethanolic extract of Glycosmis pentaphylla was fractioned and separated extensively by silica gel, Sephadex LH-20 chromatography,their structures were elucidated by means of spectral data analysis. RESULTS All compounds were isolated and identified as 5,7,4’-trihydroxydihydroflavonol( 1),aromadendrin( 2),trans-dihydroquercetin( 3),cis-dihydroquercetin( 4),kaempferol( 5),quercetin( 6),5,7,4’-trihydroxyflavonol-3-O-α-L-rhamnopyranoside( 7),quercetin-3-O-α-L-arabinofuranoside( 8),quercetin-3-O-α-L-rhamnopyranoside( 9),5,7,3’,4’-tetrahydroxyflavonone-3-O-rhamnopyranoside( 1→6) glucopyranoside( 10) and 5,7,3’-trihydroxy-4’-methyl ether-flavonone-3-O-rhamnopyranoside( 1→6) glucopyranoside( 11). CONCLUSION All compounds are isolated from this plant for the first time.
Collapse
|
18
|
Ribeiro JP, Diercks T, Jiménez-Barbero J, André S, Gabius HJ, Cañada FJ. Fluorinated Carbohydrates as Lectin Ligands: (19)F-Based Direct STD Monitoring for Detection of Anomeric Selectivity. Biomolecules 2015; 5:3177-92. [PMID: 26580665 PMCID: PMC4693274 DOI: 10.3390/biom5043177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022] Open
Abstract
The characterization of the binding of reducing carbohydrates present as mixtures of anomers in solution to a sugar recepor (lectin) poses severe difficulties. In this situation, NMR spectroscopy enables the observation of signals for each anomer in the mixture by applying approaches based on ligand observation. Saturation transfer difference (STD) NMR allows fast and efficient screening of compound mixtures for reactivity to a receptor. Owing to the exceptionally favorable properties of 19F in NMR spectroscopy and the often complex 1H spectra of carbohydrates, 19F-containing sugars have the potential to be turned into versatile sensors for recognition. Extending the recently established 1H → 1H STDre19F-NMR technique, we here demonstrate its applicability to measure anomeric selectivity of binding in a model system using the plant lectin concanavalin A (ConA) and 2-deoxy-2-fluoro-d-mannose. Indeed, it is also possible to account for the mutual inhibition between the anomers on binding to the lectin by means of a kinetic model. The monitoring of 19F-NMR signal perturbation disclosed the relative activities of the anomers in solution and thus enabled the calculation of their binding affinity towards ConA. The obtained data show a preference for the α anomer that increases with temperature. This experimental approach can be extended to others systems of biomedical interest by testing human lectins with suitably tailored glycan derivatives.
Collapse
|
19
|
Hu H, Xiao L, Zheng B, Wei X, Ellis A, Liu YM. Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS. Anal Bioanal Chem 2015; 407:8059-66. [PMID: 26302964 PMCID: PMC4596796 DOI: 10.1007/s00216-015-8978-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Authentication and quality assessment of Cordyceps sinensis, a precious and pricey natural product that offers a variety of health benefits, is highly significant. To identify effective chemical markers, authentic C. sinensis was thoroughly screened by using HPLC-MS/MS. In addition to many previously reported ingredients, two glycosides, i.e., cyclo-Ala-Leu-rhamnose and Phe-o-glucose, were detected for the first time in this material. Six ingredients detected, including cordycepin, D-mannitol, Phe, Phe-o-glucose, cyclo-Gly-Pro, and cyclo-Ala-Leu-rhamnose, were selected as a collection of chemical markers. An HPLC-MS/MS method was developed to simultaneously quantify them with sensitivity and specificity. The method had limits of detection ranging from 0.008 μg mL(-1) for cordycepin to 0.75 μg mL(-1) for cyclo-Gly-Pro. Recovery was found between 96 and 103 % in all tests. To evaluate the effectiveness of the marker collection proposed, five authentic C. sinensis samples and five samples of its substitutes were analyzed. Cordycepin, D-mannitol, and Phe were found present in all samples. The contents ranged from 0.0076 to 0.029 % (w/w) for cordycepin, 0.33 to 18.9 % for mannitol, and 0.0013 to 0.642 % for Phe. Interestingly, the two glycosides, Phe-o-glucose and cyclo-Ala-Leu-rhamnose, were detected only in authentic C. sinensis samples. These results indicated that the proposed protocol based on HPLC-MS/MS quantification of the markers might have a great potential in authentication and quality assessment of C. sinensis. Graphical abstract Chemical markers of C. sinensis identified in this work.
Collapse
|
20
|
Müller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. PHYTOCHEMISTRY 2015; 118:139-148. [PMID: 26318325 DOI: 10.1016/j.phytochem.2015.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate-adapted insects.
Collapse
|
21
|
Gong Z, Peng Y, Zhang Y, Song G, Chen W, Jia S, Wang Q. [Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant]. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2015; 31:1050-1062. [PMID: 26647580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rhamnolipid biosurfactant is mainly produced by Pseudomonas aeruginosa that is the opportunistic pathogenic strain and not suitable for future industrial development. In order to develop a relatively safe microbial strain for the production of rhamnolipid biosurfactant, we constructed engineered Escherichia coli strains for rhamnolipid production by expressing different copy numbers of rhamnosyltransferase (rhlAB) gene with the constitutive synthetic promoters of different strengths in E. coli ATCC 8739. We further studied the combinatorial regulation of rhlAB gene and rhaBDAC gene cluster for dTDP-1-rhamnose biosynthesis with different synthetic promoters, and obtained the best engineered strain-E. coli TIB-RAB226. Through the optimization of culture temperature, the titer of rhamnolipd reached 124.3 mg/L, 1.17 fold higher than that under the original condition. Fed-batch fermentation further improved the production of rhamnolipid and the titer reached the highest 209.2 mg/L within 12 h. High performance liquid chromatography-mass spectrometry (LC-MS) analysis showed that there are total 5 mono-rhamnolipid congeners with different nuclear mass ratio and relative abundance. This study laid foundation for heterologous biosynthesis of rhanomilipd.
Collapse
|
22
|
Galuppo M, Giacoppo S, Iori R, De Nicola GR, Milardi D, Bramanti P, Mazzon E. 4(α-L-RHAMNOSYLOXY)-BENZYL ISOTHIOCYANATE, A BIOACTIVE PHYTOCHEMICAL THAT DEFENDS CEREBRAL TISSUE AND PREVENTS SEVERE DAMAGE INDUCED BY FOCAL ISCHEMIA/REPERFUSION. J BIOL REG HOMEOS AG 2015; 29:343-356. [PMID: 26122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Natural compounds are a promising source to treat several pathologies. The present study shows the in vivo pharmacological beneficial effect of 4(α-L-rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) obtained from glucomoringin (GMG; 4(α;-L-rhamnosyloxy)- benzyl glucosinolate), purified from Moringa oleifera seeds and hydrolyzed by myrosinase enzyme (β-thioglucoside glucohydrolase; E.C. 3.2.1.147). Cerebral ischemia/reperfusion (CIR) was induced in rats according to a classic model of carotid artery occlusion for a time period of 1 h and the reperfusion time was prolonged for seven days. GMG-ITC (3.5 mg GMG/ml plus 30 μl enzyme/rat; one ml i.p./rat) was administered 15 min after the beginning of ischemia and daily. The results clearly show that GMG-ITC possesses the capability to counteract the CIR-induced damage reducing TNF-alpha release, IκB-alpha cytosolic degradation/NFκBp65 nuclear translocation, as well as several other direct or indirect markers of inflammation (phospho-ERK p42/44, p-selectin) and oxidative stress (inducible Nitric Oxide Synthase (iNOS), MMP-9). GMG-ITC was shown to exert neuroprotective properties in preventing CIR-induced damage and the related cascade of inflammatory and oxidative mediators that exacerbate the progression of this disease in an experimental rat model. Our results clearly show that the tested phytochemical GMG-ITC possesses the capability to counteract CIR-induced damage.
Collapse
|
23
|
Sheridan RTC, Hudon J, Hank JA, Sondel PM, Kiessling LL. Rhamnose glycoconjugates for the recruitment of endogenous anti-carbohydrate antibodies to tumor cells. Chembiochem 2014; 15:1393-8. [PMID: 24909955 PMCID: PMC4205123 DOI: 10.1002/cbic.201402019] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 12/12/2022]
Abstract
Immunotherapy is a promising strategy for targeting tumors. One emerging approach is to harness the immune effector functions of natural antibodies to destroy tumor cells. Dinitrophenyl (DNP) and the galactose-α-1,3-galactose (αGal) epitope are two haptens that bind endogenous antibodies. One potential alternative is the deoxysugar L-rhamnose. We compared these candidates by using a biosensor assay to evaluate human sera for endogenous antibody concentration, antibody isotype distribution, and longevity of antibody-hapten interactions. Antibodies recognizing α-rhamnose are of equal or greater abundance and affinity as those recognizing αGal. Moreover, both rhamnose and αGal epitopes are more effective than DNP at recruiting the IgG antibody subtype. Exposure of tumor cells to rhamnose-bearing glycolipids and human serum promotes complement-mediated cytotoxicity. These data highlight the utility of α-rhamnose-containing glycoconjugates to direct the immune system to target cells.
Collapse
|
24
|
Watanabe K, Nakashima Y, Kamiya S. Effects of Some L-Rhamnosyl Derivatives on the Adsorption of Phage PL-1 to the Host Lactobacillus casei. Biosci Biotechnol Biochem 2014; 56:346. [PMID: 1368309 DOI: 10.1271/bbb.56.346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Mega T. Glucose Trimming ofN-Glycan in Endoplasmic Reticulum Is Indispensable for the Growth ofRaphanus sativusSeedling (kaiware radish). Biosci Biotechnol Biochem 2014; 69:1353-64. [PMID: 16041142 DOI: 10.1271/bbb.69.1353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently I found that glycosidase inhibitors such as castanospermine, deoxynojirimycin, swainsonine, 2-acetamindo 2,3-dideoxynojirimycin, and deoxymannojirimycin change the N-glycan structure of root glycoproteins, and that the glucosidase inhibitors castanospermine and deoxynojirimycin suppress the growth of Raphanus sativus seedlings (Mega, T., J. Biochem., 2004). The present study undertook to see whether the growth suppression is due to the inhibition of glucose trimming in endoplasmic reticulum (ER). The study, using three glucosidase inhibitors, castanospermine, N-methyl deoxynojirimycin, and deoxynojirimycin, upon the growth of R. sativus foliage leaf, made clear that glucose trimming is indispensable for plant growth, because the inhibition of glucose trimming correlated with leaf growth. On the other hand, processing inhibition in the Golgi apparatus by other glycosidase inhibitors had little effect on plant growth, although N-glycan processing was disrupted depending on inhibitor specificity. These results suggest that N-glycan processing after glucosidase processing is dispensable for plant growth and cell differentiation.
Collapse
|