1
|
Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990-6. [PMID: 11029417 PMCID: PMC94731 DOI: 10.1128/jb.182.21.5990-5996.2000] [Citation(s) in RCA: 615] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe swarming in Pseudomonas aeruginosa as a third mode of surface translocation in addition to the previously described swimming and twitching motilities. Swarming in P. aeruginosa is induced on semisolid surfaces (0.5 to 0.7% agar) under conditions of nitrogen limitation and in response to certain amino acids. Glutamate, aspartate, histidine, or proline, when provided as the sole source of nitrogen, induced swarming, while arginine, asparagine, and glutamine, among other amino acids, did not sustain swarming. Cells from the edge of the swarm were about twice as long as cells from the swarm center. In both instances, bacteria possessing two polar flagella were observed by light and electron microscopy. While a fliC mutant of P. aeruginosa displayed slightly diminished swarming, a pilR and a pilA mutant, both deficient in type IV pili, were unable to swarm. Furthermore, cells with mutations in the las cell-to-cell signaling system showed diminished swarming behavior, while rhl mutants were completely unable to swarm. Evidence is presented for rhamnolipids being the actual surfactant involved in swarming motility, which explains the involvement of the cell-to-cell signaling circuitry of P. aeruginosa in this type of surface motility.
Collapse
|
research-article |
25 |
615 |
2
|
Lang S, Wullbrandt D. Rhamnose lipids--biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 1999; 51:22-32. [PMID: 10077819 DOI: 10.1007/s002530051358] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosurfactants containing rhamnose and beta-hydroxydecanoic acid and called rhamnolipids are reviewed with respect to microbial producers, their physiological role, biosynthesis and genetics, and especially their microbial overproduction, physicochemical properties and potential applications. With Pseudomonas species, more than 100 g l-1 rhamnolipids were produced from 160 g l-1 soybean oil at a volumetric productivity of 0.4 g l-1 h-1. The individual rhamnolipids are able to lower the surface tension of water from 72 mN m-1 to 25-30 mN m-1 at concentrations of 10-200 mg l-1. After initial testing, rhamnolipids seem to have potential applications in combating marine oil pollution, removing oil from sand and in combating zoosporic phytopathogens. Rhamnolipids are also a source of L-rhamnose, which is already used for the industrial production of high-quality flavor components.
Collapse
|
Review |
26 |
271 |
3
|
POPPER ZOËA, FRY STEPHENC. Primary cell wall composition of bryophytes and charophytes. ANNALS OF BOTANY 2003; 91:1-12. [PMID: 12495914 PMCID: PMC4240358 DOI: 10.1093/aob/mcg013] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Major differences in primary cell wall (PCW) components between non-vascular plant taxa are reported. (1) Xyloglucan: driselase digestion yielded isoprimeverose (the diagnostic repeat unit of xyloglucan) from PCW-rich material of Anthoceros (a hornwort), mosses and both leafy and thalloid liverworts, as well as numerous vascular plants, showing xyloglucan to be a PCW component in all land plants tested. In contrast, charophycean green algae (Klebsormidium flaccidium, Coleochaete scutata and Chara corallina), thought to be closely related to land plants, did not contain xyloglucan. They did not yield isoprimeverose; additionally, charophyte material was not digestible with xyloglucan-specific endoglucanase or cellulase to give xyloglucan-derived oligosaccharides. (2) Uronic acids: acid hydrolysis of PCW-rich material from the charophytes, the hornwort, thalloid and leafy liverworts and a basal moss yielded higher concentrations of glucuronic acid than that from the remaining land plants including the less basal mosses and all vascular plants tested. Polysaccharides of the hornwort Anthoceros contained an unusual repeat-unit, glucuronic acid-alpha(1-->3)-galactose, not found in appreciable amounts in any other plants tested. Galacturonic acid was consistently the most abundant PCW uronic acid, but was present in higher concentrations in acid hydrolysates of bryophytes and charophytes than in those of any of the vascular plants. Mannuronic acid was not detected in any of the species surveyed. (3) Mannose: acid hydrolysis of charophyte and bryophyte PCW-rich material also yielded appreciably higher concentrations of mannose than are found in vascular plant PCWs. (4) Mixed-linkage glucan (MLG) was absent from all algae and bryophytes tested; however, upon digestion with licheninase, PCW-rich material from the alga Ulva lactuca and the leafy liverwort Lophocolea bidentata yielded penta- to decasaccharides, indicating the presence of MLG-related polysaccharides. Our results show that major evolutionary events are often associated with changes in PCW composition. In particular, the acquisition of xyloglucan may have been a pre-adaptive advantage that allowed colonization of land.
Collapse
|
Comparative Study |
22 |
231 |
4
|
Lafitte D, Lamour V, Tsvetkov PO, Makarov AA, Klich M, Deprez P, Moras D, Briand C, Gilli R. DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the noviose. Biochemistry 2002; 41:7217-23. [PMID: 12044152 DOI: 10.1021/bi0159837] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA gyrase is a major bacterial protein that is involved in replication and transcription and catalyzes the negative supercoiling of bacterial circular DNA. DNA gyrase is a known target for antibacterial agents since its blocking induces bacterial death. Quinolones, coumarins, and cyclothialidines have been designed to inhibit gyrase. Significant improvements can still be envisioned for a better coumarin-gyrase interaction. In this work, we obtained the crystal costructures of the natural coumarin clorobiocin and a synthetic analogue with the 24 kDa gyrase fragment. We used isothermal titration microcalorimetry and differential scanning calorimetry to obtain the thermodynamic parameters representative of the molecular interactions occurring during the binding process between coumarins and the 24 kDa gyrase fragment. We provide the first experimental evidence that clorobiocin binds gyrase with a stronger affinity than novobiocin. We also demonstrate the crucial role of both the hydroxybenzoate isopentenyl moiety and the 5'-alkyl group on the noviose of the coumarins in the binding affinity for gyrase.
Collapse
|
|
23 |
182 |
5
|
Beal R, Betts WB. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 2000; 89:158-68. [PMID: 10945793 DOI: 10.1046/j.1365-2672.2000.01104.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A study was undertaken to investigate the mechanisms for biosurfactant-enhanced hexadecane uptake into Pseudomonas aeruginosa. Two strains of Ps. aeruginosa were studied, one producing rhamnolipids (PG201) and the other rhamnolipid deficient (UO299). Rhamnolipids produced by PG201 acted to increase the solubility of n-hexadecane in the culture medium (from 1.84 to 22.76 microg l(-1). Rates of(l4)C-n-hexadecane uptake and mineralization were higher in PG201 than in UO299. However, the degree of difference was lower than expected. Additional studies were carried out on the cell surface properties of the two strains. During growth on n-hexadecane, the cell surface hydrophobicity of both PG201 (50.5%) and UO299 (33.7%) increased compared with that observed in water-soluble growth substrates (7-8%). Studies were also carried out to ascertain any energy requirements for the transport of n-hexadecane into Ps. aeruginosa cells. The addition of CCCP (an inhibitor of cytochrome oxidase which thereby blocks oxidative phosphorylation) at a range of concentrations caused a marked decrease in n-hexadecane uptake, indicating that n-hexadecane uptake in Ps. aeruginosa is an energy-dependent process. These studies support the hypothesis of alkane transport into microbial cells by direct contact with larger alkane droplets and by pseudosolubilization. Also, it appears that both mechanisms occur simultaneously.
Collapse
|
|
25 |
148 |
6
|
Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, Tahara A, Constantinescu CC, Zhou J, Boersma HH, Imaizumi T, Nakano M, Finn A, Fayad Z, Virmani R, Fuster V, Bosca L, Narula J. 2-deoxy-2-[18F]fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat Med 2014; 20:215-9. [PMID: 24412923 DOI: 10.1038/nm.3437] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
Abstract
Progressive inflammation in atherosclerotic plaques is associated with increasing risk of plaque rupture. Molecular imaging of activated macrophages with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) has been proposed for identification of patients at higher risk for acute vascular events. Because mannose is an isomer of glucose that is taken up by macrophages through glucose transporters and because mannose receptors are expressed on a subset of the macrophage population in high-risk plaques, we applied (18)F-labeled mannose (2-deoxy-2-[(18)F]fluoro-D-mannose, [(18)F]FDM) for targeting of plaque inflammation. Here, we describe comparable uptake of [(18)F]FDM and [(18)F]FDG in atherosclerotic lesions in a rabbit model; [(18)F]FDM uptake was proportional to the plaque macrophage population. Our FDM competition studies in cultured cells with 2-deoxy-2-[(14)C]carbon-D-glucose ([(14)C]2DG) support at least 35% higher [(18)F]FDM uptake by macrophages in cell experiments. We also demonstrate that FDM restricts binding of anti-mannose receptor antibody to macrophages by approximately 35% and that mannose receptor targeting may provide an additional avenue for imaging of plaque inflammation.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
140 |
7
|
Sandrin TR, Chech AM, Maier RM. A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 2000; 66:4585-8. [PMID: 11010924 PMCID: PMC92350 DOI: 10.1128/aem.66.10.4585-4588.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model cocontaminated system was developed to determine whether a metal-complexing biosurfactant, rhamnolipid, could reduce metal toxicity to allow enhanced organic biodegradation by a Burkholderia sp. isolated from soil. Rhamnolipid eliminated cadmium toxicity when added at a 10-fold greater concentration than cadmium (890 microM), reduced toxicity when added at an equimolar concentration (89 microM), and had no effect at a 10-fold smaller concentration (8.9 microM). The mechanism by which rhamnolipid reduces metal toxicity may involve a combination of rhamnolipid complexation of cadmium and rhamnolipid interaction with the cell surface to alter cadmium uptake.
Collapse
|
research-article |
25 |
120 |
8
|
Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 1993; 39:1071-8. [PMID: 8306209 DOI: 10.1139/m93-162] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of two rhamnolipid biosurfactants produced by Pseudomonas aeruginosa UG2 was studied. Analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy showed these two rhamnolipids to be alpha-L-rhamnopyranosyl-beta-hydroxydecanyol-beta-hydroxydecanoate and 2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxydecan oyl-beta- hydroxydecanoate. The ability of UG2 rhamnolipid biosurfactants to enhance removal of naphthalene, anthracene, phenanthrene, fluorene, 2,2',5,5'-tetrachlorobiphenyl, and 3,3',4,4',5,5'-hexachlorobiphenyl into the aqueous phase was affected by soil type, hydrocarbon equilibration time, and biosurfactant adsorption to soil. Partially purified UG2 biosurfactants at a concentration of 5 g/L removed approximately 10% more hydrocarbon from a sandy loam soil than slit loam soil. High levels of UG2 rhamnolipids adsorbed to soil. In 18% (w/v) soil slurries 74, 49, 38, and 20% of 0.5, 1, 2, and 5 g UG2 rhamnolipids/L, respectively, were bound to the soil phase. Sodium dodecyl sulphate recovered lower levels and Witconol SN70 higher levels of phenanthrene and 2,2',5,5'-tetrachlorobiphenyl than UG2 biosurfactants.
Collapse
|
Comparative Study |
32 |
112 |
9
|
Helvaci SS, Peker S, Ozdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf B Biointerfaces 2004; 35:225-33. [PMID: 15261035 DOI: 10.1016/j.colsurfb.2004.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 10/14/2003] [Accepted: 01/07/2004] [Indexed: 11/29/2022]
Abstract
The surface behavior of solutions of the rhamnolipids, R1 and R2, were investigated in the absence and presence of an electrolyte (NaCl) through surface tension measurements and optical microscopy at pH 6.8. The NaCl concentrations studied are 0.05, 0.5 and 1M. Electrolytes directly affect the carboxylate groups of the rhamnolipids. The solution/air interface has a net negative charge due to the dissociated carboxylate ions at pH 6.8 with strong repulsive electrostatic forces between the rhamnolipid molecules. This negative charge is shielded by the Na(+) ions in the electrical double layer in the presence of NaCl, causing the formation of a close-packed monolayer, and a decrease in CMC, and surface tension values. The maximum compaction is observed at 0.5M NaCl concentrations for R1 and R2 monolayers, with the R1 monolayer more compact than R2. The larger spaces left below the hydrophobic tails of R1 with respect to that of R2, due to the missing second rhamnosyl groups are thought to be responsible for the higher compaction. The rigidity of both R1 and R2 monolayers increases with the electrolyte concentration. The rigidity of the R1 monolayer is greater than that of R2 at all NaCl concentrations due to the lower hydrophilic character of R1. The variation of CMC values as a function of NaCl concentration obtained from the surface tension measurements and critical packing parameter (CPP) calculations show that spherical micelles, bilayer and rod like micelles are formed in the rhamnolipid solutions as a function of the NaCl concentration. The results of optical microscopy supported these aggregation states indicating lamellar nematic liquid crystal, cubic lamellar and hexagonal liquid crystal phases in R1 and R2 solutions depending on the NaCl concentration.
Collapse
|
|
21 |
108 |
10
|
Kong F. Recent studies on reaction pathways and applications of sugar orthoesters in synthesis of oligosaccharides. Carbohydr Res 2007; 342:345-73. [PMID: 17109835 DOI: 10.1016/j.carres.2006.09.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/29/2006] [Indexed: 11/20/2022]
Abstract
Formation of sugar-sugar orthoesters consisting of a fully acylated mono- or disaccharide donor and a partially protected mono- or disaccharide acceptor is regioselective, and rearrangement of the orthoesters via RO-(orthoester)C bond cleavage gives a dioxolenium ion intermediate leading to 1,2-trans glycosidic linkage. The activity order of hydroxyl groups in the partially protected mannose and glucose acceptors is 6-OH>3-OH>2- or 4-OH. The coupling reactions with acylated glycosyl trichloroacetimidates as the donors usually give orthoesters as the intermediates specially when the coupling is carried out at slowed rates, and this is successfully used in regio- and stereoselective syntheses of oligosaccharides. Mannose and rhamnose orthoesters readily undergo O-2-(orthoester)C bond breaking, and this is used for synthesis of alpha-(1-->2)-linked oligosaccharides. (1-->3)-Glucosylation is special since the rearrangement of its sugar orthoester intermediates can occur with either RO-(orthoester)C bond cleavage with formation of the dioxolenium ion leading to 1,2-trans linkage, or C-1-O-1 bond cleavage leading to 1,2-cis linkage, and this is dependent upon the structures of donor and acceptor that compose the orthoester.
Collapse
|
|
18 |
95 |
11
|
Datema R, Schwarz RT. Interference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivo. Biochem J 1979; 184:113-23. [PMID: 534512 PMCID: PMC1161681 DOI: 10.1042/bj1840113] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of glycopeptides. In the presence of the inhibitors 2-deoxy-D-glucose, 2-deoxy-2-amino-D-glucose (glucosamine), 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose incorporation of radiolabelled sugars into lipid- and protein-linked oligosaccharides was decreased. Kinetic analysis showed that the inhibitors affected first the assembly of lipid-linked oligosaccharides and then protein glycosylation after a lag period. During inhibition by deoxyglucose and the fluoro sugars lipid-linked oligosaccharides were formed that contained oligosaccharides of decreased molecular weight. No such aberrant forms were found during inhibition by glucosamine. In the case of inhibition by deoxyglucose it was shown that the aberrant oligosaccharides were not transferred to protein. Inhibition of formation of lipid-linked oligosaccharides by deoxyglucose and fluoro sugars was antagonized by mannose, in which case oligosaccharides of normal molecular weight were formed. The inhibition by glucosamine was reversed by its removal from the medium. The reversible effects of these inhibitors exemplify their usefulness as tools in the study of glycosylation processes.
Collapse
|
research-article |
46 |
92 |
12
|
Hanamura T, Hagiwara T, Kawagishi H. Structural and Functional Characterization of Polyphenols Isolated from Acerola (Malpighia emarginata DC.) Fruit. Biosci Biotechnol Biochem 2014; 69:280-6. [PMID: 15725651 DOI: 10.1271/bbb.69.280] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two anthocyanins, cyanidin-3-alpha-O-rhamnoside (C3R) and pelargonidin-3-alpha-O-rhamnoside (P3R), and quercitrin (quercetin-3-alpha-O-rhamnoside), were isolated from acerola (Malpighia emarginata DC.) fruit. These polyphenols were evaluated based on the functional properties associated with diabetes mellitus or its complications, that is, on the radical scavenging activity and the inhibitory effect on both alpha-glucosidase and advanced glycation end product (AGE) formation. C3R and quercitrin revealed strong radical scavenging activity. While the inhibitory profiles of isolated polyphenols except quercitrin towards alpha-glucosidase activity were low, all polyphenols strongly inhibited AGE formation.
Collapse
|
|
11 |
86 |
13
|
Kim SR, Kim YC. Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. PHYTOCHEMISTRY 2000; 54:503-509. [PMID: 10939354 DOI: 10.1016/s0031-9422(00)00110-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Four phenylpropanoid esters of rhamnose, buergerisides A1, B1, B2 and C1 were isolated from roots of Scrophularia huergeriana MIQ. (Scrophulariaceae), and were characterized as 2-O-acetyl-3,4-di-O-(E)-p-methoxycinnamoyl-alpha-L-rhamnopyranosid e, 2-O-acetyl-3-O-(E)-p-methoxycinnamoyl-alpha-L-rhamnopyranoside, 2-O-acetvl-3-O-(Z)-p-methoxycinnamoyl-alpha-L-rhamnopyranosi de and 4-O-(E)-p-methoxycinnamoyl-alpha-L-rhamnopyranoside, respectively. In addition, six known phenylpropanoids were authenticated as: (E)-cinnamic acid, (E)-p-methoxycinnamic acid, (E)-p-methoxycinnamic acid methyl ester, (E)-p-coumaric acid, (E)-caffeic acid, (E)-ferulic acid and a phenylalcohol, 2-(3-hydroxy-4-methoxyphenyl)ethanol. These ten phenylpropanoids all attenuated glutamate-induced neurotoxicity when added to primary cultures of rat cortical cells in a dose-dependent manner. These results demonstrate that phenylpropanoids isolated from S. buergeriana may exert significant protective effects against glutamate-induced neurodegeneration in primary cultures of cortical neurons.
Collapse
|
|
25 |
72 |
14
|
Ratnayake R, Lacey E, Tennant S, Gill JH, Capon RJ. Kibdelones: novel anticancer polyketides from a rare Australian actinomycete. Chemistry 2007; 13:1610-9. [PMID: 17091523 DOI: 10.1002/chem.200601236] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The kibdelones are a novel family of bioactive heterocyclic polyketides produced by a rare soil actinomycete, Kibdelosporangium sp. (MST-108465). Complete relative stereostructures were assigned to kibdelones A-C (1-3), kibdelone B rhamnoside (5), 13-oxokibdelone A (7), and 25-methoxy-24-oxokibdelone C (8) on the basis of detailed spectroscopic analysis and chemical interconversion, as well as mechanistic and biosynthetic considerations. Under mild conditions, kibdelones B (2) and C (3) undergo a facile equilibration to kibdelones A-C (1-3), while kibdelone B rhamnoside (5) equilibrates to a mixture of kibdelone A-C rhamnosides (4-6). A plausible mechanism for this equilibration is proposed and involves air oxidation, quinone/hydroquinone redox transformations, and a choreographed sequence of keto/enol tautomerizations that aromatize ring C via a quinone methide intermediate. Kibdelones exhibit potent and selective cytotoxicity against a panel of human tumor cell lines and display significant antibacterial and nematocidal activity.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
66 |
15
|
Marumo K, Lindqvist L, Verma N, Weintraub A, Reeves PR, Lindberg AA. Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-D-xylo-4-hexulose and thymidine diphosphate-L-rhamnose. Production using cloned gene products and separation by HPLC. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:539-45. [PMID: 1541269 DOI: 10.1111/j.1432-1033.1992.tb16665.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A two-step enzymatic synthesis of dTDP-L-rhamnose is developed using enzymes from sonicated extracts of cultures of Escherichia coli K12 strains harboring plasmids containing different parts of the rfb gene cluster of Salmonella enterica LT2. The intermediate dTDP-6-deoxy-D-xylo-4-hexulose was isolated after a 1-h reaction, using only dTDP-D-glucose and dTDP-D-glucose 4,6-dehydratase, followed by protein precipitation and desalting by gel chromatography (yield 89%). In a two-step reaction using dTDP-D-glucose and dTDP-D-glucose 4,6-dehydratase in the first step, and with NADPH, dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase and NADPH:dTDP-6-deoxy-L-lyxo-4-hexulose-4-reductase in the second hour of incubation, the dTDP-D-glucose was fully converted to dTDP-L-rhamnose. The hexoses of both products were identified by mass spectroscopy. The molar yield of dTDP-L-rhamnose, after protein precipitation, anion-exchange chromatography and desalting by gel chromatography, was 62%, corresponding to more than 150 mg, starting from 250 mg of dTDP-D-glucose. When stored lyophilysed under nitrogen, these products were found to be stable for several months. Both dTDP-6-deoxy-D-xylo-4-hexulose and dTDP-L-rhamnose have light absorption maxima at 267 nm, with molar absorption coefficients close to that of dTMP. However, the absorption coefficient of dTDP-6-deoxy-D-xylo-4-hexulose at the absorption maximum of 320 nm (specific for sugars containing keto groups) was found to be approximately 20% higher than values presented earlier. Furthermore, an HPLC technique is presented for determining the net activity of dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase and NADPH:dTDP-6-deoxy-L-lyxo-4-hexulose-4-reductase, based on separation of dTDP-6-deoxy-D-xylo-4-hexulose and dTDP-L-rhamnose. The HPLC technique is also suitable for determination of all the nucleotide components involved in the synthesis.
Collapse
|
|
33 |
63 |
16
|
Sheridan RTC, Hudon J, Hank JA, Sondel PM, Kiessling LL. Rhamnose glycoconjugates for the recruitment of endogenous anti-carbohydrate antibodies to tumor cells. Chembiochem 2014; 15:1393-8. [PMID: 24909955 PMCID: PMC4205123 DOI: 10.1002/cbic.201402019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 12/12/2022]
Abstract
Immunotherapy is a promising strategy for targeting tumors. One emerging approach is to harness the immune effector functions of natural antibodies to destroy tumor cells. Dinitrophenyl (DNP) and the galactose-α-1,3-galactose (αGal) epitope are two haptens that bind endogenous antibodies. One potential alternative is the deoxysugar L-rhamnose. We compared these candidates by using a biosensor assay to evaluate human sera for endogenous antibody concentration, antibody isotype distribution, and longevity of antibody-hapten interactions. Antibodies recognizing α-rhamnose are of equal or greater abundance and affinity as those recognizing αGal. Moreover, both rhamnose and αGal epitopes are more effective than DNP at recruiting the IgG antibody subtype. Exposure of tumor cells to rhamnose-bearing glycolipids and human serum promotes complement-mediated cytotoxicity. These data highlight the utility of α-rhamnose-containing glycoconjugates to direct the immune system to target cells.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
63 |
17
|
Fukuda H, Matsuzawa T, Abe Y, Endo S, Yamada K, Kubota K, Hatazawa J, Sato T, Ito M, Takahashi T, Iwata R, Ido T. Experimental study for cancer diagnosis with positron-labeled fluorinated glucose analogs: [18F]-2-fluoro-2-deoxy-D-mannose: a new tracer for cancer detection. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1982; 7:294-7. [PMID: 6981508 DOI: 10.1007/bf00253423] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) and 18F-2-fluoro-2-deoxy-D-mannose (18F-FDM) were tested as tumor diagnostic agents in a transplantable rat tumor and rabbit tumors. Tissue distribution studies in rats showed high tumor uptakes of both radiopharmaceuticals. The tumor uptake reached 2.65 +/- 0.61% dose 18 dose F-FDG/g and 2.65 +/- 0.81% dose 18F-FDM/g at 60 min and remained relatively constant until 120 min. Blood clearance both 18F-FDG and 18F-FDM was very rapid and tumor-to-blood ratios reached 22.1 and 29.4 at 60 min, respectively. Tumor-to-tissue ratios of both radiopharmaceuticals were very high in most organs, especially in the liver, kidney, and pancreas. Positron emission tomography (PET) of rabbit tumor with 18F-FDM clearly delineated the main tumor, central necrosis, and lymph node metastases. These data suggested that 18F-FDM, which is a by-product of 18F-FDG synthesis was also an excellent cancer diagnostic agent as well as 18F-FDG. This is not only a new feature of 18F-FDM, but also an economical improvement on cancer diagnosis by PET.
Collapse
|
|
43 |
60 |
18
|
Abstract
The direct formation of beta-l-rhamnopyranosides by means of thioglycoside donors protected with a 2-O-sulfonate ester and, ideally, a 4-O-benzoyl ester, is reported. Activation is achieved with the combination of 1-benzenesulfinyl piperidine and triflic anhydride in the presence of 2,4,6-tri-tert-butylpyrimidine. Selectivities vary from moderate to good, and the sulfonyl group is easily removed post-glycosylation with sodium amalgam in 2-propanol.
Collapse
|
|
22 |
60 |
19
|
Crich D, Banerjee A. Stereocontrolled synthesis of the D- and L-glycero-beta-D-manno-heptopyranosides and their 6-deoxy analogues. Synthesis of methyl alpha-l-rhamno-pyranosyl-(1-->3)-D-glycero-beta-D-manno-heptopyranosyl- (1-->3)-6-deoxy-glycero-beta-D-manno-heptopyranosyl-(1-->4)-alpha-L- rhamno-pyranoside, a tetrasaccharide subunit of the lipopolysaccharide from Plesimonas shigelloides. J Am Chem Soc 2006; 128:8078-86. [PMID: 16771524 PMCID: PMC2617734 DOI: 10.1021/ja061594u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of d- and l-glycero-alpha-manno-thioheptopyranosides, protected with 4,6-O-alkylidene-type acetals is described. In glycosylations carried out with preactivation with the 1-benzenesulfinylpiperidine/trifluoromethanesulfonic anhydride couple, both the D- and L-glycero series exhibit excellent beta-selectivity with a range of glycosyl acceptors. In contrast, a 4,7-O-alkylidene acetal was found not to afford beta-selectivity. With a 4,6-O-[1-cyano-2-(2-iodophenyl)ethylidene] acetal protected thioglycoside, excellent beta-selectivity was obtained in glycosylation reactions, and subsequent treatment with tributyltin hydride and azoisobutyronitrile brought about clean fragmentation to the 6-deoxy-glycero-beta-D-manno-heptopyranosides. This chemistry was applied to the stereocontrolled synthesis of methyl alpha-L-rhamno-pyranosyl-(1-->3)-D-glycero-beta-D-manno-heptopyranosyl-(1-->3)-6-deoxy-glycero-beta-D-manno-heptopyranosyl-(1-->4)-alpha-L-rhamno-pyranoside, a component of the lipopolysaccharide from Plesimonas shigelloides.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
59 |
20
|
Crich D, Li L. 4,6-O-benzylidene-directed beta-mannopyranosylation and alpha-glucopyranosylation: the 2-deoxy-2-fluoro and 3-deoxy-3-fluoro series of donors and the importance of the O2-C2-C3-O3 interaction. J Org Chem 2007; 72:1681-90. [PMID: 17266375 PMCID: PMC2621329 DOI: 10.1021/jo062294y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 4,6-O-benzylidene-protected 2-O-benzyl-3-deoxy-3-fluoro- and 3-O-benzyl-2-deoxy-2-fluorogluco- and mannopyranosyl thioglycosides were synthesized and their coupling reactions with a series of alcohols, on preactivation with 1-benzenesulfinylpiperidine and trifluoromethanesulfonic anhydride, investigated. In all cases, the selectivities were lower than those observed with the corresponding simple 4,6-O-benzylidene 2,3-di-O-benzylgluco- and mannopyranosyl thioglycosides. This leads to the conclusion that the high beta-selectivity observed with 4,6-O-benzylidene 2,3-di-O-benzylmannopyranosyl donors under the same conditions is in large part derived from the compression of the O2-C2-C3-O3 torsion angle on going from the intermediate covalent glycosyl triflate to the oxacarbenium ion, as compared to the relaxation of this torsion angle in the gluco series.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
56 |
21
|
Stern RJ, Lee TY, Lee TJ, Yan W, Scherman MS, Vissa VD, Kim SK, Wanner BL, McNeil MR. Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coli and Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 3):663-671. [PMID: 10217500 DOI: 10.1099/13500872-145-3-663] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
dTDP-rhamnose is made from glucose-1-phosphate and dTTP by four enzymes encoded by rmIA-D. An Escherichia coli rmIC mutant was constructed and a crude enzyme extract prepared from it did not produce dTDP-4-keto-rhamnose, in contrast to a crude enzyme extract prepared from a wild-type E. coli strain where small amounts of this intermediate were found after incubation with dTDP-glucose in the absence of NADPH. These results showed that dTDP-4-keto-rhamnose, the product of RmIC, exists as a free intermediate. Further, the Mycobacterium tuberculosis rmIC gene was expressed and incubation of the resulting purified M. tuberculosis RmIC enzyme with dTDP-4-keto-6-deoxyglucose resulted in the conversion of approximately 7% of dTDP-4-keto-6-deoxyglucose to dTDP-4-keto-rhamnose. The enzyme also allowed for the incorporation of two deuterium atoms from deuterium oxide solvent into dTDP-4-keto-glucose. Thus the rmIC gene encodes dTDP-4-keto-6-deoxyglucose epimerase capable of epimerizing at both C-3' and C-5'; this enzyme produces free dTDP-4-keto-rhamnose but the equilibrium of the 4-keto sugar nucleotides lies strongly on the side of the gluco configuration.
Collapse
|
|
26 |
54 |
22
|
Kim YK, Kim YS, Choi SU, Ryu SY. Isolation of flavonol rhamnosides fromloranthus tanakae and cytotoxic effect of them on human tumor cell lines. Arch Pharm Res 2004; 27:44-7. [PMID: 14969337 DOI: 10.1007/bf02980044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Loranthus tanakae Fr. et Sav. (Loranthaceae) is a species of mistletoe, a semiparasitic plant growing on the branches of Quercus and Betula species as host trees. In our ongoing search for bioactive compounds from endemic species in Korea, we have investigated to isolate the chemical constituents responsible for the antitumor effect of the MeOH extract of L. tanakae. The ethylacetate soluble part of the MeOH extract demonstrated a marginal inhibition on the proliferation of the tumor cell lines such as A549 (non small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nerve system), and HCT-15 (colon) in vitro. Thus, the activity-guided isolation procedure upon the ethylacetate soluble part of the extract has been carried out and finally four flavonoid rhamnopyranosides (1-4) were isolated as active principle. The structures of 1-4 were elucidated by the physicochemical and spectral data as rhamnetin 3-O-alpha-L-rhamnoside (1), quercetin 3-O-alpha-L-rhamnoside (2), rhamnocitrin 3-O-alpha-L-rhamnoside (3), and kaempferol 3-O-alpha-L-rhamnoside (4).
Collapse
|
|
21 |
51 |
23
|
Lee EJ, Kim SR, Kim J, Kim YC. Hepatoprotective phenylpropanoids from Scrophularia buergeriana roots against CCl(4)-induced toxicity: action mechanism and structure-activity relationship. PLANTA MEDICA 2002; 68:407-411. [PMID: 12058315 DOI: 10.1055/s-2002-32081] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phenylpropanoids isolated from the roots of Scrophularia buergeriana MIQ. (Scrophulariaceae) protected primary cultures of rat hepatocytes from toxicity induced by carbon tetrachloride (CCl(4) ). In this report, we show that two of these phenylpropanoids, 4-O-E- p-methoxycinnamoyl-alpha-L-rhamnopyranoside ester ( 1) and p-methoxycinnamic acid ( 3) have significant hepatoprotective activity; another phenylpropanoid used for comparison, isoferulic acid ( 11), was equally active. To determine the mechanism(s) by which these three phenylpropanoids exerted their hepatoprotective activity, we measured activities of enzymes involved in the glutathione (GSH) redox system and assayed the level of hepatic mitochondrial GSH. The GSH levels in primary cultures of rat hepatocytes were significantly reduced with CCl(4) insult, but were significantly preserved by the treatment with these three phenylpropanoids. The activities of glutathione disulfide reductase and glutathione-S-transferase which normally decrease in CCl(4) -injured rat hepatocytes were significantly preserved by the treatment with these three phenylpropanoids. In addition, in CCl(4) -injured rat hepatocytes, the increased formation of malondialdehyde, a byproduct of lipid peroxidation, was reduced by the treatment with these phenylpropanoids. We determined the essential structural moiety within these three phenylpropanoids needed to exert hepatoprotective activity. The alpha,beta-unsaturated ester moiety seemed to be essential for exerting hepatoprotective activity.
Collapse
|
Comparative Study |
23 |
50 |
24
|
Sathi Reddy K, Yahya Khan M, Archana K, Gopal Reddy M, Hameeda B. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. BIORESOURCE TECHNOLOGY 2016; 221:291-299. [PMID: 27643738 DOI: 10.1016/j.biortech.2016.09.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Mango kernel oil (MKO), derived from mango kernels, considered to be one of the highly generated agro-industrial waste, is assessed for its use as substrate for sustainable production of rhamnolipids. In the present study, MKO in combination with glucose gave maximum rhamnolipid yield of 2.8g/l which reduced the surface tension of water from 72 to 30mN/m, holding a CMC of 80mg/l and also showed high emulsification activity (73%) with diesel. Cell free broth was found to be stable even at high temperature (autoclaved at 121°C for 30min), pH value (up to pH 12) and salinity (up to 20% NaCl). The LC-MS data showed mono-rhamnolipid to be predominant congener followed by di-rhamnolipid in presence of MKO. Whereas, di-rhamnolipid was abundant when a combination of MKO with glucose was used. The produced rhamnolipid mixture showed good antifungal activity against various phytopathogens.
Collapse
|
|
9 |
50 |
25
|
Liao L, Auzanneau FI. Glycosylation of N-acetylglucosamine: imidate formation and unexpected conformation. Org Lett 2003; 5:2607-10. [PMID: 12868870 DOI: 10.1021/ol034669x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structure: see text] Rhamnosylation in mild conditions of a disaccharide containing N-acetylglucosamine afforded the imidate 6 while at higher temperature and concentration of promoter trisaccharide 7 was isolated. The kinetic imidate 6 was independently rearranged in 50% yield to the thermodynamic trisaccharide 7. Comparative NMR studies of 7 in CDCl(3) and DMSO-d(6) suggest the formation of a nonchair conformation in CDCl(3). The structure of 7 was confirmed through the independent synthesis of the N-acetylacetamido trisaccharide 11.
Collapse
|
|
22 |
45 |