301
|
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020; 161:5905560. [PMID: 32926169 PMCID: PMC7609133 DOI: 10.1210/endocr/bqaa164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
17 |
302
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
|
|
5 |
17 |
303
|
Chen MY, Liu HP, Cheng J, Chiang SY, Liao WP, Lin WY. Transgenerational impact of DEHP on body weight of Drosophila. CHEMOSPHERE 2019; 221:493-499. [PMID: 30660905 DOI: 10.1016/j.chemosphere.2018.12.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is the most typical plasticizer and an environmental endocrine disruptor (EDC). DEHP is known to influence offspring fertility, growth, and obesity. However, the role of the DEHP as a transgenerational obesogen is still controversial. In this study, we used fruit flies (Drosophila melanogaster) to investigate where the exposure period, doses, and exposed parental sex are critical to change the body weight of the offspring. We found long-term but not short-term, and high-dose but low-dose exposure resulted in significant change. Moreover, we found DEHP treatment on the father or mother Drosophila resulted in increased or decreased body weight of the offspring respectively. Our results demonstrated the heterogeneity of transgenerational impact of DEHP and highlighted the involvement of parental endocrine system in its role as an obesogen.
Collapse
|
|
6 |
17 |
304
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
|
Review |
11 |
17 |
305
|
Song X, Wang X, Bhandari RK. Developmental abnormalities and epigenetic alterations in medaka (Oryzias latipes) embryos induced by triclosan exposure. CHEMOSPHERE 2020; 261:127613. [PMID: 32738708 DOI: 10.1016/j.chemosphere.2020.127613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS), an antibacterial and antifungal agent present in some consumer products, has been detected in the environment at varying concentrations. TCS exposure has been found to cause developmental abnormalities and endocrine disruption in various species of fish. It is not clearly understood whether TCS exposure causes epigenetic alterations in developing embryos and their germ cells. In the present study, we examined the effects of TCS exposure (0, 50, 100 and, 200 μg/L) on embryonic development and primordial germ cells (PGCs), which are precursors of sperm and eggs, in medaka (Oyzias latipes). Developmental TCS exposure from 8 h post-fertilization through 15 days post-fertilization (dpf) resulted in several developmental abnormalities, including enlarged yolk sac, decreased head trunk angle (HTA), and severe edema in the pericardial region. The male ratio increased in the 100 μg/L TCS exposure group, which was negatively correlated with the expression of cyp19ala (a gene encoding aromatase) and arα (androgen receptor alpha). Developmental 50 μg/L TCS exposure resulted in global hypomethylation in the whole body but not in the isolated PGCs. Expression of the gene encoding DNA methyltransferases (dnmt1 and dnmt3aa) was decreased by 50 μg/L TCS exposure both in the whole body and PGCs. TCS altered the expression of genes encoding enzymes involved in DNA methylation and demethylation in PGCs, suggesting epigenetic effects on germ cells. The present results demonstrate that the embryos exposed to the tested concentrations of TCS develop deformities during the early life stages and that the TCS within this range possesses endocrine disrupting properties potential enough to alter sex ratios of developing embryos.
Collapse
|
|
5 |
17 |
306
|
Liao CS, Yen JH, Wang YS. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:625-631. [PMID: 18678443 DOI: 10.1016/j.jhazmat.2008.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/12/2008] [Accepted: 07/02/2008] [Indexed: 05/26/2023]
Abstract
The toxicity and effects of di-n-butyl phthalate (DBP), an endocrine disruptor, on the growth of Chinese cabbage (Brassica rapa var. chinensis) were studied. Etiolation occurred on leaves of Chinese cabbage plant treated with 50mg/L of DBP for 42 d. DBP even below 1mg/L had a significant effect on the concentration of chlorophyll in Chinese cabbage and the biomass showed a severe decrease under treatment with more than 30 mg/L of DBP. At a concentration below 1mg/L of DBP, no significant difference in accumulation was found, but treatments with concentration exceeding 10, 30, 50 and 100mg/L all resulted in significant accumulation of DBP. Six protein spots extracted from leaf tissue of DBP-treated Chinese cabbage displaying a differential expression are shown in 2-DE maps. According to proteome level studies, three protein spots were found to increase and were identified, respectively, as acyl-[acyl-carrier-protein] desaturase (acyl-ACP desaturase), root phototropism protein 3 (RPT3) and ferredoxin-nitrite reductase (Fd-NiR). The other three protein spots were found to decrease and were identified respectively as dihydroflavonol-4-reductase (DFR), aminoacyl-tRNA synthetase (aaRS) and ATP synthase subunit beta. The key finding is that the other closely related plant, Bok choy (Brassica rapa subsp. chinensis), the subspecies of Chinese cabbage, respond differently to the same chemicals.
Collapse
|
|
16 |
17 |
307
|
Desmarchais A, Téteau O, Papillier P, Jaubert M, Druart X, Binet A, Maillard V, Elis S. Bisphenol S Impaired In Vitro Ovine Early Developmental Oocyte Competence. Int J Mol Sci 2020; 21:ijms21041238. [PMID: 32059612 PMCID: PMC7072985 DOI: 10.3390/ijms21041238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Bisphenol A (BPA) is a widespread compound in the plastic industry that is especially used to produce baby bottles, food packaging and metal cans. BPA, an endocrine disruptor, leads to alterations in reproductive function and therefore has been banned from the food industry. Unregulated BPA analogues, particularly Bisphenol S (BPS), have emerged and are now used in the plastic industry. Thus, this study aimed to examine the acute effects of low and environmental doses of BPS on ewe oocyte quality and developmental competence, and its mechanism of action, during in vitro maturation. METHODS Ewe cumulus-oocyte complexes underwent in vitro maturation in the presence or absence of BPS (1 nM, 10 nM, 100 nM, 1 µM or 10 µM). Oocytes were then subjected to in vitro fertilisation and development. RESULTS 1 µM BPS induced a 12.7% decrease in the cleavage rate (p = 0.004) and a 42.6% decrease in the blastocyst rate (p = 0.017) compared to control. The blastocyst rate reduction was also observed with 10 nM BPS. Furthermore, 10 µM BPS reduced the oocyte maturation rate, and 1 µM BPS decreased cumulus cell progesterone secretion. PR and AMH gene expression were reduced in cumulus cells. BPS induced a 5-fold increase in MAPK 3/1 activation (p = 0.04). CONCLUSIONS BPS impaired ewe oocyte developmental competence. The data suggest that BPS might not be a safe BPA analogue. Further studies are required to elucidate its detailed mechanism of action.
Collapse
|
Journal Article |
5 |
17 |
308
|
Ni Z, Sun W, Li R, Yang M, Zhang F, Chang X, Li W, Zhou Z. Fluorochloridone induces autophagy in TM4 Sertoli cells: involvement of ROS-mediated AKT-mTOR signaling pathway. Reprod Biol Endocrinol 2021; 19:64. [PMID: 33902598 PMCID: PMC8073911 DOI: 10.1186/s12958-021-00739-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fluorochloridone (FLC), a selective pyrrolidone herbicide, has been recognized as a potential endocrine disruptor and reported to induce male reproductive toxicity, but the underlying mechanism is unclear. The aim of this study was to investigate the mechanism of FLC-induced reproductive toxicity on male mice with particular emphasis on the role of autophagy in mice' TM4 Sertoli cells. METHODS Adult C57BL/6 mice were divided into one control group (0.5% sodium carboxymethyl cellulose), and four FLC-treated groups (3,15,75,375 mg/kg). The animals (ten mice per group) received gavage for 28 days. After treatment, histological analysis, sperm parameters, the microstructure of autophagy and the expression of autophagy-associated proteins in testis were evaluated. Furthermore, to explore the autophagy mechanism, TM4 Sertoli cells were treated with FLC (0,40,80,160 μM) in vitro for 24 h. Cell activity and cytoskeletal changes were measured by MTT assay and F-actin immunofluorescence staining. The formation of autophagosome, accumulation of reactive oxygen species (ROS), expression of autophagy marker proteins (LC3, Beclin-1 and P62) and AKT-related pathway proteins (AKT, mTOR) were observed. The ROS scavenger N-acetylcysteine (NAC) and AKT agonist (SC79) were used to treat TM4 cells to observe the changes of AKT-mTOR pathway and autophagy. RESULTS In vivo, it showed that FLC exposure caused testicular injuries, abnormality in epididymal sperm. Moreover, FLC increased the formation of autophagosomes, the accumulation of LC3II/LC3I, Beclin-1 and P62 protein, which is related to the degradation of autophagy. In vitro, FLC triggered TM4 cell autophagy by increasing the formation of autophagosomes and upregulating of LC3II/LC3I, Beclin-1 and P62 levels. In addition, FLC induced ROS production and inhibited the activities of AKT and mTOR kinases. The Inhibition of AKT/mTOR signaling pathways and the activation of autophagy induced by FLC could be efficiently reversed by pretreatment of NAC. Additionally, decreased autophagy and increased cell viability were observed in TM4 cells treated with SC79 and FLC, compared with FLC alone, indicating that FLC-induced autophagy may be pro-death. CONCLUSION Taken together, our study provided the evidence that FLC promoted autophagy in TM4 Sertoli cells and that this process may involve ROS-mediated AKT/mTOR signaling pathways.
Collapse
|
research-article |
4 |
17 |
309
|
van Duursen MBM, Boberg J, Christiansen S, Connolly L, Damdimopoulou P, Filis P, Fowler PA, Gadella BM, Holte J, Jääger K, Johansson HKL, Li T, Mazaud-Guittot S, Parent AS, Salumets A, Soto AM, Svingen T, Velthut-Meikas A, Bay Wedebye E, Xie Y, van den Berg M. Safeguarding Female Reproductive Health against Endocrine Disrupting Chemicals-The FREIA Project. Int J Mol Sci 2020; 21:E3215. [PMID: 32370092 PMCID: PMC7246859 DOI: 10.3390/ijms21093215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women's reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman's reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.
Collapse
|
Review |
5 |
16 |
310
|
Forner-Piquer I, Santangeli S, Maradonna F, Verde R, Piscitelli F, di Marzo V, Habibi HR, Carnevali O. Role of Bisphenol A on the Endocannabinoid System at central and peripheral levels: Effects on adult female zebrafish. CHEMOSPHERE 2018; 205:118-125. [PMID: 29689525 DOI: 10.1016/j.chemosphere.2018.04.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA), a widely used chemical to produce polycarbonate plastics, has become an ubiquitous pollutant due to its extensive use. Its endocrine disrupting properties have been documented in several studies, as well as its potential to induce metabolic and reproductive impairments at environmentally relevant concentrations. Recent insights highlighted the role of the Endocannabinoid System (ECS) in energy homeostasis and lipid metabolism. In fact, disruption of the ECS may induce metabolic alterations among other effects. Thus, the main objective of this study was to investigate the disruptive effects of environmentally relevant concentrations of BPA on the ECS of female zebrafish liver and brain. Adult female zebrafish were exposed for 3 weeks to three different concentrations of BPA (5 μg/L; 10 μg/L; 20 μg/L). We observed changes in the expression of a number of genes involved in the Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) metabolism in the liver and brain, as well as altered levels of endocannabinoids and endocannabinoid-like mediators. These changes were associated with greater presence of hepatic lipid vacuoles, following exposure to the highest concentration of BPA (20 μg/L) tested, although there were no changes in food intake and in the expression of the molecular markers for appetite. The overall results support the hypothesis that exposure to BPA induced changes in the central and hepatic ECS system of adult female zebrafish causing the increase of the area covered by lipids in the liver at the highest concentration tested, but not via food intake.
Collapse
|
|
7 |
16 |
311
|
Sweeney T, Fox J, Robertson L, Kelly G, Duffy P, Lonergan P, O'doherty J, Roche JF, Evans NP. Postnatal exposure to octylphenol decreases semen quality in the adult ram. Theriogenology 2007; 67:1068-75. [PMID: 17284332 DOI: 10.1016/j.theriogenology.2006.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/21/2006] [Accepted: 12/30/2006] [Indexed: 11/17/2022]
Abstract
The aim of this experiment was to determine if maternal exposure to octylphenol pre- and/or postnatally influenced FSH concentrations and semen quantity and quality in postpubertal rams. Rams were born to ewes that received twice-weekly s.c. injections of octylphenol equivalent to 1000microg/kg/day for one of the following periods: (1) day 70 of gestation (D70) to weaning (at 20 weeks postnatally; n=4); (2) D70 to birth (n=6); (3) birth to weaning (n=7), controls received corn oil from D70 to weaning (n=5). Rams were blood-sampled weekly and semen characteristics were evaluated at 1 year of age. Maternal exposure to octylphenol, pre- and/or postnatally did not affect FSH concentrations, semen volume, concentration, percentage live, motility or IVM/IVF characteristics. However, exposure to octylphenol from birth to weaning increased the number of morphologically abnormal sperm cells in the ejaculates of these rams.
Collapse
|
|
18 |
16 |
312
|
Marlatt VL, Sun J, Curran CA, Bailey HC, Kennedy CK, Elphick JR, Martyniuk CJ. Molecular responses to 17β-estradiol in early life stage salmonids. Gen Comp Endocrinol 2014; 203:203-14. [PMID: 24698784 DOI: 10.1016/j.ygcen.2014.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/19/2023]
Abstract
Environmental estrogens (EE) are ubiquitous in many aquatic environments and biological responses to EEs in early developmental stages of salmonids are poorly understood compared to juvenile and adult stages. Using 17β-estradiol (E2) as a model estrogen, waterborne exposures were conducted on early life stage rainbow trout (Oncorhynchus mykiss; egg, alevin, swim-up fry) and both molecular and physiological endpoints were measured to quantify the effects of E2. To investigate developmental stage-specific effects, laboratory exposures of 1 μg/L E2 were initiated pre-hatching as eyed embryos or post-hatching upon entering the alevin stage. High mortality (∼90%) was observed when E2 exposures were initiated at the eyed embryo stage compared to the alevin stage (∼35% mortality), demonstrating stage-specific sensitivity. Gene expression analyses revealed that vitellogenin was detectable in the liver of swim-up fry, and was highly inducible by 1 μg/L E2 (>200-fold higher levels compared to control animals). Experiments also confirmed the induction of vitellogenin protein levels in protein extracts isolated from head and tail regions of swim-up fry after E2 exposure. These findings suggest that induction of vitellogenin, a well-characterized biomarker for estrogenic exposure, can be informative measured at this early life stage. Several other genes of the reproductive endocrine axis (e.g. estrogen receptors and androgen receptors) exhibited decreased expression levels compared to control animals. In addition, chronic exposure to E2 during the eyed embryo and alevin stages resulted in suppressive effects on growth related genes (growth hormone receptors, insulin-like growth factor 1) as well as premature hatching, suggesting that the somatotropic axis is a key target for E2-mediated developmental and growth disruptions. Combining molecular biomarkers with morphological and physiological changes in early life stage salmonids holds considerable promise for further defining estrogen action during development, and for assessing the impacts of endocrine disrupting chemicals in vivo in teleosts.
Collapse
|
|
11 |
16 |
313
|
Peter VS, Peter MCS. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: does it promote physiologic adaptation or maladaptation? Gen Comp Endocrinol 2011; 174:249-58. [PMID: 22001502 DOI: 10.1016/j.ygcen.2011.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022]
Abstract
Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of physiologic acclimation. This interfering action of TH and cortisol during hormonal interruption may subsequently promote ecological adaptation in fish as these physiologic processes ultimately favor them to survive in their hostile environment.
Collapse
|
Review |
14 |
16 |
314
|
Gustavsen MW, von Krogh K, Taubøll E, Zimmer KE, Dahl E, Olsaker I, Ropstad E, Verhaegen S. Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model. Acta Neurol Scand 2009:14-21. [PMID: 19566492 DOI: 10.1111/j.1600-0404.2009.01206.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To better understand the interaction of antiepileptic drugs and production of sex hormones, possible effects of valproate (VPA), levetiracetam (LEV) and carbamazepine (CBZ) on steroidogenesis were investigated in the human adrenal carcinoma cell line H295R. MATERIALS AND METHODS H295R cells were exposed to different concentrations of VPA, LEV or CBZ for 48 h. Sex hormone concentrations and mRNA expression levels were analyzed via radioimmunoassay and quantitative real time (RT)-PCR, respectively. RESULTS In VPA-exposed cells estradiol levels decreased in a dose-dependent manner, while testosterone and progesterone levels were unaffected. Expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), steroidogenic acute regulatory protein (StAR), CYP11a, CYP17, CYP21, 3betaHSD2, 17betaHSD1 was downregulated and expression of CYP11beta2 was upregulated. No effect on sex hormone production was observed under influence of LEV or CBZ. Expression of StAR, CYP17, CYP19 and 3betaHSD2 was downregulated in LEV-exposed cells, and expression of HMGR, CYP11beta2 and CYP17 was downregulated in CBZ-exposed cells. CONCLUSIONS VPA exposure resulted in a decrease in estradiol levels and a general downregulation of expression of genes encoding for enzymes early in steroidogenesis. No consistent changes were seen with LEV or CBZ exposure.
Collapse
|
|
16 |
16 |
315
|
Miyagawa S, Sato M, Iguchi T. Molecular mechanisms of induction of persistent changes by estrogenic chemicals on female reproductive tracts and external genitalia. J Steroid Biochem Mol Biol 2011; 127:51-7. [PMID: 21397691 DOI: 10.1016/j.jsbmb.2011.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 12/27/2022]
Abstract
The effects of environmental endocrine-disrupting chemicals (EDCs) are a great and growing concern for human and animal development and life. The reproductive organs are considered as a primary target of EDCs, yet the effects on reproductive organs can extend to other body systems. Perinatal diethylstilbestrol (DES)-exposed mice exhibit various reproductive organ abnormalities. The perinatal DES-exposure model has allowed insight into our understanding of the mechanisms of persistent reproductive organ abnormalities elicited by exposure to estrogens and/or estrogenic EDCs. The persistent changes in the vagina of neonatally DES-exposed mice result from sustained expression of growth factors by ligand-independent transcriptional activation of the estrogen receptor. Developmental regulatory genes, such as Wnt and Hox genes, are also targets of DES during fetal stages and altered gene expression can induce malformations of the reproductive organs. In this review, we focus on the development of female reproductive tracts and external genitalia, and discuss the recent progress in understanding the disruptive effects of estrogens and EDCs on these organs.
Collapse
|
Review |
14 |
16 |
316
|
Hicks KD, Sullivan AW, Cao J, Sluzas E, Rebuli M, Patisaul HB. Interaction of bisphenol A (BPA) and soy phytoestrogens on sexually dimorphic sociosexual behaviors in male and female rats. Horm Behav 2016; 84:121-6. [PMID: 27373758 PMCID: PMC4996731 DOI: 10.1016/j.yhbeh.2016.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/14/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to bisphenol A (BPA), a ubiquitous EDC, has been linked to altered sociosexual and mood-related behaviors in various animal models and children but effects are inconsistent across laboratories and animal models creating confusion about potential risk in humans. Exposure to endocrine active diets, such as soy, which is rich in phytoestrogens, may contribute to this variability. Here, we tested the individual and combined effects of low dose oral BPA and soy diet or the individual isoflavone genistein (GEN; administered as the aglycone genistin (GIN)) on rat sociosexual behaviors with the hypothesis that soy would obfuscate any BPA-related effects. Social and activity levels were unchanged by developmental exposure to BPA but soy diet had sex specific effects including suppressed novelty preference, and open field exploration in females. The data presented here reinforce that environmental factors, including anthropogenic chemical exposure and hormone active diets, can shape complex behaviors and even reverse expected sex differences.
Collapse
|
research-article |
9 |
16 |
317
|
Liang J, Liu QS, Ren Z, Min K, Yang X, Hao F, Zhang Q, Liu Q, Zhou Q, Jiang G. Studying paraben-induced estrogen receptor- and steroid hormone-related endocrine disruption effects via multi-level approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161793. [PMID: 36702264 DOI: 10.1016/j.scitotenv.2023.161793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Increasing concerns have been raised on the health risks of parabens in the regard of their widespread applications and potential endocrine disrupting activities. In this study, four typical parabens, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), and butyl paraben (BuP) were systematically investigated for their estrogen receptor- and steroid hormone-related endocrine disruptions using multi-level approaches. Paraben exposure promoted the proliferation of MCF-7 cells, increased the luciferase activity in MVLN cells, and induced the vitellogenin (vtg) expression in zebrafish larvae, showing the typical estrogenic effects. The in vitro protein assays further revealed that PrP and BuP could bind with two isoforms of estrogen receptors (ERs). The estrogenic activities of parabens were predicted to be positively correlated with their chemical structure complexity by using molecular docking analysis. Furthermore, the synthesis and secretion of estradiol (E2) and testosterone (T) were significantly disturbed in H295R cells and zebrafish larvae, which could be regulated by paraben-induced transcriptional disturbance in both in vitro steroidogenesis and in vivo hypothalamic-pituitary-gonadal (HPG) axis. Parabens could disturb the endocrine system by activating the ERs and disrupting the steroid hormone synthesis and secretion, suggesting their potential deleterious risks to the environment and human health.
Collapse
|
|
2 |
16 |
318
|
Mattsson A, Olsson JA, Brunström B. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos. Gen Comp Endocrinol 2011; 172:251-9. [PMID: 21420409 DOI: 10.1016/j.ygcen.2011.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/28/2011] [Accepted: 03/13/2011] [Indexed: 01/13/2023]
Abstract
Gonadal estrogen plays an important role in the differentiation of a female phenotype in birds. Exogenous compounds that interfere with estrogen signaling, for instance by binding to the estrogen receptors alpha and beta (ERα and ERβ), are therefore potential disruptors of sexual differentiation in birds. The ERα agonist propyl-pyrazole-triol (PPT), the ERα antagonist methyl piperidino pyrazole (MPP) and the ERβ agonist diarylproprionitrile (DPN) were used in the present study to explore the roles of the ERs in normal and disrupted sex differentiation in the chicken embryo. Activation of ERα by PPT caused disturbed differentiation of the reproductive organs in both sexes. In male embryos, PPT caused left-side ovotestis formation and retention of the Müllerian ducts. In female embryos, PPT caused retention of the right Müllerian duct (which normally regresses) and malformation of both Müllerian ducts. PPT also induced hepatic expression of mRNA for the estrogen-regulated egg yolk protein apoVLDL II. Notably, none of these effects were observed following treatment with DPN. ERα-inactivation by MPP counteracted the action of PPT but had little effect by its own. Our results indicate that ERα plays an important role in sex differentiation of the reproductive tract in female chicken embryos and show that ERα can mediate xenoestrogen-induced disturbances of sex differentiation.
Collapse
|
|
14 |
16 |
319
|
Dorelle LS, Da Cuña RH, Rey Vázquez G, Höcht C, Shimizu A, Genovese G, Lo Nostro FL. The SSRI fluoxetine exhibits mild effects on the reproductive axis in the cichlid fish Cichlasoma dimerus (Teleostei, Cichliformes). CHEMOSPHERE 2017; 171:370-378. [PMID: 28030789 DOI: 10.1016/j.chemosphere.2016.11.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Among the wide variety of pharmaceuticals released into the environment, Fluoxetine (FLX), a selective serotonin reuptake inhibitor, is one of the most prescribed for the treatment of major depression. It inhibits serotonin (5-HT) reuptake at the presinaptic membrane, increasing serotonergic activity. In vertebrates, including fish, the serotonergic system is closely related to the Hypothalamic Pituitary Gonadal (HPG) axis which regulates reproduction. As FLX can act as an endocrine disrupting compound (EDC) by affecting several reproductive parameters in fish, the aim of this study was to provide an integral assessment of the potential effect of FLX on the reproductive axis of the Neotropical freshwater fish Cichlasoma dimerus. Adult fish were intraperitoneally injected with 2 μg g-1 FLX or saline every third day for 15 days. No significant differences were found on serotonergic turnover (5-HIAA/5-HT ratio). Pituitary βLH content in FLX injected females was significantly higher than control females; no significant differences were seen for βFSH content. Sex steroids remained unaltered, both in males and females fish, after FLX treatment. No plasma vitellogenin was induced in treated males. Some alterations were seen in testes of FLX injected males, such as the presence of foam cells and an acidophilic PAS positive, Alcian-Blue negative secretion in the lobular lumen. Although there is no clear consensus about the effect of this drug on reproductive physiology, these results indicate that FLX is acting as a mild EDC in adults of C. dimerus.
Collapse
|
|
8 |
16 |
320
|
Zhang H, Pan L, Zhang L. Molecular cloning and characterization of estrogen receptor gene in the scallop Chlamys farreri: expression profiles in response to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:51-7. [PMID: 22507668 DOI: 10.1016/j.cbpc.2012.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
In order to gain insights into the mechanism of sex steroid signaling in molluscs, the full-length cDNA of estrogen receptor (ER) was isolated and characterized from Chlamys farreri for the first time. The positions of cysteine residues and other residues around them that constitute the two zinc finger motifs and the P-box are conserved. Phylogenetic analysis revealed that the CfER is an ortholog of the other mollusk ERs. Tissue distribution analysis of the CfER mRNA revealed that the expression of ER mRNA was observed in various tissues, and highest in the gonad of males and females. C. farreri were exposed for 10 days to endocrine disrupting chemicals including Benzo(a)pyrene (B(a)p) and polybrominated diphenyl ethers (BDE-47). B(a)p exposure at 0.4 and 2 μg/L caused significant increase in mRNA expression of ER and VTG, but B(a)p at 10 μg/L down-regulated CfER and VTG mRNA expression compared to control. Varying increase of ER and VTG mRNA transcripts was resulted in by BDE-47 at 0.1, 1 and 10 μg/L. These results elucidate potential roles of CfER induced by xenobiotics in C. farreri and can be helpful for investigating the mechanism of sex steroid signaling in bivalve mollusks.
Collapse
|
|
13 |
16 |
321
|
Peng Y, Wang J, Wu C. Determination of Endocrine Disruption Potential of Bisphenol A Alternatives in Food Contact Materials Using In Vitro Assays: State of the Art and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12613-12625. [PMID: 31180677 DOI: 10.1021/acs.jafc.9b01543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternatives to bisphenol A (BPA) are developed for food contact materials as a result of increasing evidence of exposure-correlated harmful effects of BPA. In vitro assays provide the fast, affordable, and mechanism insightful ways to screen endocrine disruption (ED), which is a major concern of new BPA alternatives. In this review, we summarize the safety and regulation information on the alternatives to BPA, review the state of the art of in vitro assays for ED evaluation, highlight their advantages and limitations, and discuss the challenges and future research needs. Our review shows that ligand binding, reporter gene, cell proliferation, and steroidogenesis are four commonly used in vitro assays to determine the ED at the response of receptor, gene transcription, and whole cell level. Major challenges are found from in vitro-in vivo translation and identification of ED chemicals in polymers. More studies on these areas are needed in the future.
Collapse
|
Review |
6 |
16 |
322
|
Nguyen RHN, Umbach DM, Parad RB, Stroehla B, Rogan WJ, Estroff JA. US assessment of estrogen-responsive organ growth among healthy term infants: piloting methods for assessing estrogenic activity. Pediatr Radiol 2011; 41:633-42. [PMID: 21104239 PMCID: PMC3141824 DOI: 10.1007/s00247-010-1895-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/01/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A mother's circulating estrogen increases over the third trimester, producing physiological effects on her newborn that wane postnatally. Estrogenization might be prolonged in newborns exposed to exogenous estrogens, such as isoflavones in soy formula. OBJECTIVE We evaluated ultrasonography for monitoring growth of multiple estrogen-responsive organs in healthy infants and developed organ-growth trajectories. MATERIALS AND METHODS We studied 38 boys (61 visits) from birth to age 6 months and 41 girls (96 visits) from birth to age 1 year using a partly cross-sectional, partly longitudinal design. We measured uterus and ovaries in girls, testes and prostate in boys, and kidneys, breasts, thymus, and thyroid in all children. We imaged all organs from the body surface in one session of < 1 h. RESULTS Uterine volume decreased from birth (P < 0.0001), whereas ovarian volume increased sharply until age 2 months and then decreased (P < 0.001). Testicular volume increased with age (P < 0.0001), but prostatic volume showed minimal age trend. Breast bud diameter showed no age trend in girls but declined from birth in boys (P = 0.03). CONCLUSION US examination of multiple estrogen-responsive organs in infants in a single session is feasible and yields volume estimates useful for assessing potential endocrine disruptor effects on organ growth.
Collapse
|
Research Support, N.I.H., Intramural |
14 |
16 |
323
|
Cardona B, Rudel RA. US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol 2020; 518:110927. [PMID: 32645345 PMCID: PMC9183204 DOI: 10.1016/j.mce.2020.110927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer risk from pesticides may be missed if effects on mammary gland are not assessed in toxicology studies required for registration. Using US EPA's registration documents, we identified pesticides that cause mammary tumors or alter development, and evaluated how those findings were considered in risk assessment. Of 28 pesticides that produced mammary tumors, EPA's risk assessment acknowledges those tumors for nine and dismisses the remaining cases. For five pesticides that alter mammary gland development, the implications for lactation and cancer risk are not assessed. Many of the mammary-active pesticides activate pathways related to endocrine disruption: altering steroid synthesis in H295R cells, activating nuclear receptors, or affecting xenobiotic metabolizing enzymes. Clearer guidelines based on breast cancer biology would strengthen assessment of mammary gland effects, including sensitive histology and hormone measures. Potential cancer risks from several common pesticides should be re-evaluated, including: malathion, triclopyr, atrazine, propylene oxide, and 3-iodo-2-propynyl butylcarbamate (IPBC).
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
324
|
Loganathan N, McIlwraith EK, Belsham DD. Bisphenol A Induces Agrp Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology 2021; 111:678-695. [PMID: 32575098 DOI: 10.1159/000509592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical and obesogen. Although limited evidence exists of the effects of BPA on hypothalamic agouti-related peptide (AgRP) levels, the mechanisms underlying these effects remain unknown. Given that AgRP is a potent orexigenic neuropeptide, determining the mechanism by which BPA increases AgRP is critical to preventing the progression to metabolic disease. METHODS Using quantitative reverse transcriptase polymerase chain reaction, we investigated the response of Agrp-expressing mouse hypothalamic cell lines to BPA treatment. The percentage of total BPA entering hypothalamic cells in culture was quantified using an enzyme-linked immunosorbent assay. In order to identify the mechanism underlying BPA-mediated changes in Agrp, siRNA knockdown of transcription factors, FOXO1, CHOP, ATF3, ATF4, ATF6, and small-molecule inhibitors of endoplasmic reticulum stress, JNK or MEK/ERK were used. RESULTS BPA increased mRNA levels of Agrp in six hypothalamic cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-46, mHypoE-44, and mHypoE-42). Interestingly, only 18% of the total BPA in the culture medium entered the cells after 24 h, suggesting that the exposure concentration is much lower than the treatment concentration. BPA increased pre-Agrp mRNA levels, indicating increased Agrp transcription. Knockdown of the transcription factor ATF3 prevented BPA-mediated increase in Agrp, pre-Agrp, and in part Npy mRNA levels. However, chemical chaperone, sodium phenylbutyrate, JNK inhibitor, SP600125, or the MEK/ERK inhibitor PD0352901 did not block BPA-induced Agrp upregulation. CONCLUSION Overall, these results indicate that hypothalamic Agrp is susceptible to dysregulation by BPA and implicate ATF3 as a common mediator of the orexigenic effects of BPA in hypothalamic neurons.
Collapse
|
|
4 |
15 |
325
|
Anderson AM, Carter KW, Anderson D, Wise MJ. Coexpression of nuclear receptors and histone methylation modifying genes in the testis: implications for endocrine disruptor modes of action. PLoS One 2012; 7:e34158. [PMID: 22496781 PMCID: PMC3319570 DOI: 10.1371/journal.pone.0034158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. METHODOLOGY/PRINCIPAL FINDINGS The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. CONCLUSIONS/SIGNIFICANCE This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
15 |