26
|
Leiteritz A, Schmiedl T, Baumanns S, Wenzel U. Amyloid-beta induced paralysis is reduced by cholecalciferol through inhibition of the steroid-signaling pathway in an Alzheimer model of Caenorhabditis elegans. Nutr Neurosci 2019; 24:82-89. [PMID: 30905309 DOI: 10.1080/1028415x.2019.1596371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder resulting from the accumulation of toxic β-amyloid (Aβ) aggregates in the human brain. Epidemiological studies have shown that elevated cholesterol plasma levels are associated with the development of AD and we have previously shown that cholesterol restriction reduces the Aβ-induced paralysis in an Alzheimer model of the nematode Caenorhabditis elegans. In the present study we investigated the effects of the cholesterol homolog cholecalciferol, i.e. vitamin D, on Aβ-induced paralysis in C. elegans and its interference with the steroid-signaling pathway. Methods: Aβ-induced paralysis was assessed in the C. elegans strain CL2006, expressing human Aβ1-42 under control of a muscle-specific promoter. Knockdown of members of the steroid-signaling pathway was achieved by RNA interference (RNAi). Nuclear translocation of foxo transcription factor DAF-16 was visualized using the strain TJ356, carrying a daf-16::gfp transgene. Results: Cholecalciferol at a concentration of 1 µM reduced the Aβ-induced paralysis in CL2006 significantly, which was reverted by increasing the cholesterol concentration in the medium. Knockdown of nhr-8, daf-36, daf-9 or daf-12, all reduced Aβ-induced paralysis to the same extent as cholecalciferol with no additional or synergistic effects under co-application. Functional DAF-16 proved to be crucial for the effects of cholecalciferol and DAF-16 nuclear translocation was increased by cholecalciferol and also RNAi versus nhr-8, daf-36, daf-9 or daf-12 with no additive or synergistic effects. Conclusions: Our results suggest, that cholecalciferol inhibits Aβ-induced paralysis in C. elegans through inhibition of steroid-signaling and the concomitant nuclear translocation of DAF-16.
Collapse
|
27
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
|
28
|
A protocol for generating induced T cells by reprogramming B cells in vivo. CELL REGENERATION 2019; 7:7-15. [PMID: 30671224 PMCID: PMC6326249 DOI: 10.1016/j.cr.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
Obtaining T cells by reprogramming is one of the major goals in regenerative medicine. Here, we describe a protocol for generating functional T cells from Hoxb5-expressing pro/pre-B cells in vivo. This protocol includes the construction of Hoxb5 recombinant plasmids, retroviral packaging, isolation and viral transduction of pro/pre-B cells, cell transplantation, and phenotypic analysis of induced T cells. The procedure is reproducible and straightforward, providing an approach for generating induced T cells for translational research.
Collapse
Key Words
- 7-AAD, 7-Aminoactinomycin D
- APC, Allophycocyanin
- BV, Brilliant Violet
- CAR-T, Chimeric antigen receptor T-Cell Immunotherapy
- DAPI, 4,6-diamidino-2-phenylindole
- DN, double negative
- FITC, Fluorescein isothiocyanate
- GFP, green fluorescent protein
- HSC, Hematopoietic stem cells
- Hoxb5
- LN, Lymph node
- PB, peripheral blood
- PE, Phycoerythrin
- PerCP, Peridinin Chlorophyll
- Pro/pre-B cells
- Retrovirus
- SP, single positive
- T cells
- TAA-TCR-T, tumor-associated antigen-TCR-T
- iPSC, induced pluripotent stem cells
Collapse
|
29
|
Franke FC, Müller J, Abal M, Medina ED, Nitsche U, Weidmann H, Chardonnet S, Ninio E, Janssen KP. The Tumor Suppressor SASH1 Interacts With the Signal Adaptor CRKL to Inhibit Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2018; 7:33-53. [PMID: 30480076 PMCID: PMC6251370 DOI: 10.1016/j.jcmgh.2018.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The tumor-suppressor sterile α motif- and Src-homology 3-domain containing 1 (SASH1) has clinical relevance in colorectal carcinoma and is associated specifically with metachronous metastasis. We sought to identify the molecular mechanisms linking decreased SASH1 expression with distant metastasis formation. METHODS SASH1-deficient, SASH1-depleted, or SASH1-overexpressing HCT116 colon cancer cells were generated by the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9-method, RNA interference, and transient plasmid transfection, respectively. Epithelial-mesenchymal transition (EMT) was analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblotting, immunofluorescence microscopy, migration/invasion assays, and 3-dimensional cell culture. Yeast 2-hybrid assays and co-immunoprecipitation/mass-spectrometry showed V-Crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) as a novel interaction partner of SASH1, further confirmed by domain mapping, site-directed mutagenesis, co-immunoprecipitation, and dynamic mass redistribution assays. CRKL-deficient cells were generated in parental or SASH1-deficient cells. Metastatic capacity was analyzed with an orthotopic mouse model. Expression and significance of SASH1 and CRKL for survival and response to chemotherapy was assessed in patient samples from our department and The Cancer Genome Atlas data set. RESULTS SASH1 expression is down-regulated during cytokine-induced EMT in cell lines from colorectal, pancreatic, or hepatocellular cancer, mediated by the putative SASH1 promoter. Deficiency or knock-down of SASH1 induces EMT, leading to an aggressive, invasive phenotype with increased chemoresistance. SASH1 counteracts EMT through interaction with the oncoprotein CRKL, inhibiting CRKL-mediated activation of SRC kinase, which is crucially required for EMT. SASH1-deficient cells form significantly more metastases in vivo, depending entirely on CRKL. Patient tumor samples show significantly decreased SASH1 and increased CRKL expression, associated with significantly decreased overall survival. Patients with increased CRKL expression show significantly worse response to adjuvant chemotherapy. CONCLUSIONS We propose SASH1 as an inhibitor of CRKL-mediated SRC signaling, introducing a potentially druggable mechanism counteracting chemoresistance and metastasis formation.
Collapse
Key Words
- BSA, bovine serum albumin
- CRISPR/Cas9, Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9
- CRKL, V-Crk avian sarcoma virus CT10 oncogene homolog-like
- Chemoresistance
- DMEM, Dulbecco's modified Eagle medium
- EMT
- EMT, epithelial-mesenchymal transition
- GFP, green fluorescent protein
- GTPase, guanosine triphosphatase
- MS, mass spectrometry
- NLS, nuclear localization signal
- PBS, phosphate-buffered saline
- SASH1, sterile α motif– and Src-homology 3–domain containing 1
- SH2, Src-homology 2 domain
- SH3, Src-homology 3 domain
- SH3N, N-terminal Src-homology 3 domain
- SRC-Kinase
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- Tumor Suppressor
- ZEB, zinc-finger δEF1 family
- cDNA, complementary DNA
- gRNA, guide RNA
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
|
30
|
Wang K, Ding R, Ha Y, Jia Y, Liao X, Wang S, Li R, Shen Z, Xiong H, Guo J, Jie W. Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1 α/Jagged1/Notch1 signaling. Acta Pharm Sin B 2018; 8:795-804. [PMID: 30245966 PMCID: PMC6148082 DOI: 10.1016/j.apsb.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is beneficial for the differentiation of stem cells transplanted for myocardial injury, but mechanisms underlying this benefit remain unsolved. Here, we report the impact of hypoxia-induced Jagged1 expression in cardiomyocytes (CMs) for driving the differentiation of cardiac stem cells (CSCs). Forced hypoxia-inducible factor 1α (HIF-1α) expression and physical hypoxia (5% O2) treatment could induce Jagged1 expression in neonatal rat CMs. Pharmacological inhibition of HIF-1α by YC-1 attenuated hypoxia-promoted Jagged1 expression in CMs. An ERK inhibitor (PD98059), but not inhibitors of JNK (SP600125), Notch (DAPT), NF-κB (PTDC), JAK (AG490), or STAT3 (Stattic) suppressed hypoxia-induced Jagged1 protein expression in CMs. c-Kit+ CSCs isolated from neonatal rat hearts using a magnetic-activated cell sorting method expressed GATA4, SM22α or vWF, but not Nkx2.5 and cTnI. Moreover, 87.3% of freshly isolated CSCs displayed Notch1 receptor expression. Direct co-culture of CMs with BrdU-labeled CSCs enhanced CSCs differentiation, as evidenced by an increased number of BrdU+/Nkx2.5+ cells, while intermittent hypoxia for 21 days promoted co-culture-triggered differentiation of CSCs into CM-like cells. Notably, YC-1 and DAPT attenuated hypoxia-induced differentiation. Our results suggest that hypoxia induces Jagged1 expression in CMs primarily through ERK signaling, and facilitates early cardiac lineage differentiation of CSCs in CM/CSC co-cultures via HIF-1α/Jagged1/Notch signaling.
Collapse
Key Words
- BMSCs, bone marrow stem cells
- BrdU, 5-bromo-2′-deoxyuridine
- CMs, cardiomyocytes
- CSCs, cardiac stem cells
- Cardiac stem cell
- Cardiomyocyte, Co-culture
- Cell differentiation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- ERK, extracellular signal-regulated kinase
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- GFP, green fluorescent protein
- HIF-1α, hypoxia-inducible factor 1α
- HRE, hypoxia responsive element
- Hypoxia
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MACS, magnetic-activated cell sorting
- MI, myocardial infarction
- MOI, multiplicity of infection
- N-ICD, notch intracellular domain
- NF-κB, nuclear factor κB
- Notch1 signaling
- PBS, phosphate buffer saline
- PE, phycoerythrin
- RT-PCR, reverse transcription PCR
- STAT3, signal transducer and activator of transcription 3
- YC-1, 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl-indazole
- qPCR, quantitative PCR
- vWF, von Willebrand factor
Collapse
|
31
|
Doblas VG, Gonneau M, Höfte H. Cell wall integrity signaling in plants: Malectin-domain kinases and lessons from other kingdoms. ACTA ACUST UNITED AC 2018; 3:1-11. [PMID: 32743130 PMCID: PMC7389452 DOI: 10.1016/j.tcsw.2018.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022]
Key Words
- AFM, atomic force microscopy
- Animals
- CWI sensing, cell wall integrity sensing
- Cell wall
- Cell wall rheology
- CrRLK1L
- CrRLK1L, Catharanthus roseus receptor-like kinase 1-like protein
- ECM, extracellular matrix
- ER, endoplasmic reticulum
- GFP, green fluorescent protein
- GPI-AP, glycosylphosphatidylinositol-anchored protein
- Immunity
- LRR, leucine-rich repeat
- Mechanosensing
- PME, pectin methylesterases
- PTI, pathogen-associated molecular pattern (PAMP)-triggered immunity
- Plant growth
- RALF, rapid alkalinisation factor
- RK, receptor kinase
- RLCK, receptor-like cytoplasmic kinase
- ROP, Rho-GTPase of plants
- ROS, reactive oxygen species
- Signaling
- TGF-β, transforming growth factor β
- Yeast
Collapse
|
32
|
Means AL, Freeman TJ, Zhu J, Woodbury LG, Marincola-Smith P, Wu C, Meyer AR, Weaver CJ, Padmanabhan C, An H, Zi J, Wessinger BC, Chaturvedi R, Brown TD, Deane NG, Coffey RJ, Wilson KT, Smith JJ, Sawyers CL, Goldenring JR, Novitskiy SV, Washington MK, Shi C, Beauchamp RD. Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 2018; 6:257-276. [PMID: 30109253 PMCID: PMC6083016 DOI: 10.1016/j.jcmgh.2018.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
Abstract
Background & Aims Chronic inflammation is a predisposing condition for colorectal cancer. Many studies to date have focused on proinflammatory signaling pathways in the colon. Understanding the mechanisms that suppress inflammation, particularly in epithelial cells, is critical for developing therapeutic interventions. Here, we explored the roles of transforming growth factor β (TGFβ) family signaling through SMAD4 in colonic epithelial cells. Methods The Smad4 gene was deleted specifically in adult murine intestinal epithelium. Colitis was induced by 3 rounds of dextran sodium sulfate in drinking water, after which mice were observed for up to 3 months. Nontransformed mouse colonocyte cell lines and colonoid cultures and human colorectal cancer cell lines were analyzed for responses to TGFβ1 and bone morphogenetic protein 2. Results Dextran sodium sulfate treatment was sufficient to drive carcinogenesis in mice lacking colonic Smad4 expression, with resulting tumors bearing striking resemblance to human colitis-associated carcinoma. Loss of SMAD4 protein was observed in 48% of human colitis-associated carcinoma samples as compared with 19% of sporadic colorectal carcinomas. Loss of Smad4 increased the expression of inflammatory mediators within nontransformed mouse colon epithelial cells in vivo. In vitro analysis of mouse and human colonic epithelial cell lines and organoids indicated that much of this regulation was cell autonomous. Furthermore, TGFβ signaling inhibited the epithelial inflammatory response to proinflammatory cytokines. Conclusions TGFβ suppresses the expression of proinflammatory genes in the colon epithelium, and loss of its downstream mediator, SMAD4, is sufficient to initiate inflammation-driven colon cancer. Transcript profiling: GSE100082.
Collapse
Key Words
- AOM, azoxymethane
- APC, adenomatous polyposis coli
- BMP, bone morphogenetic protein
- CAC, colitis-associated carcinoma
- CCL20, Chemokine (C-C motif) ligand 20
- CRC, colorectal cancer
- CRISPR/Cas9, Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9
- Colitis-Associated Carcinoma
- DMEM, Dulbecco's modified Eagle medium
- DSS, dextran sodium sulfate
- FBS, fetal bovine serum
- FDR, false discovery rate
- GFP, green fluorescent protein
- HBSS, Hank's balanced salt solution
- IBD, inflammatory bowel disease
- IL, interleukin
- IMCS4fl/fl, immortalized mouse colonoctye cell line with loxP-flanked Smad4 alleles
- IMCS4null, immortalized mouse colonocyte cell line with deletion of the Smad4 alleles
- LPS, lipopolysaccharide
- PBS, phosphate-buffered saline
- PE, phycoerythrin
- R-SMAD, Receptor-SMAD
- SFG, retroviral vector
- STAT3, signal transducer and activator of transcription 3
- TGFβ
- TGFβ, transforming growth factor β
- TNF, tumor necrosis factor
- Tumor Necrosis Factor
- UC, ulcerative colitis
- WNT, wingless-type mouse mammary tumor virus integration site
- YAMC, young adult mouse colon epithelial cells
- mRNA, messenger RNA
- sgRNA, single-guide RNA
Collapse
|
33
|
Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M, Cocchiaro JL, Carroll I, Azcarate-Peril MA, Rawls JF, Allbritton NL, Magness ST. A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cell Mol Gastroenterol Hepatol 2018; 6:301-319. [PMID: 30123820 PMCID: PMC6092482 DOI: 10.1016/j.jcmgh.2018.05.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Background & Aims The human gut microbiota is becoming increasingly recognized as a key factor in homeostasis and disease. The lack of physiologically relevant in vitro models to investigate host-microbe interactions is considered a substantial bottleneck for microbiota research. Organoids represent an attractive model system because they are derived from primary tissues and embody key properties of the native gut lumen; however, access to the organoid lumen for experimental perturbation is challenging. Here, we report the development and validation of a high-throughput organoid microinjection system for cargo delivery to the organoid lumen and high-content sampling. Methods A microinjection platform was engineered using off-the-shelf and 3-dimensional printed components. Microinjection needles were modified for vertical trajectories and reproducible injection volumes. Computer vision (CVis) and microfabricated CellRaft Arrays (Cell Microsystems, Research Triangle Park, NC) were used to increase throughput and enable high-content sampling of mock bacterial communities. Modeling preformed using the COMSOL Multiphysics platform predicted a hypoxic luminal environment that was functionally validated by transplantation of fecal-derived microbial communities and monocultures of a nonsporulating anaerobe. Results CVis identified and logged locations of organoids suitable for injection. Reproducible loads of 0.2 nL could be microinjected into the organoid lumen at approximately 90 organoids/h. CVis analyzed and confirmed retention of injected cargos in approximately 500 organoids over 18 hours and showed the requirement to normalize for organoid growth for accurate assessment of barrier function. CVis analyzed growth dynamics of a mock community of green fluorescent protein- or Discosoma sp. red fluorescent protein-expressing bacteria, which grew within the organoid lumen even in the presence of antibiotics to control media contamination. Complex microbiota communities from fecal samples survived and grew in the colonoid lumen without appreciable changes in complexity. Conclusions High-throughput microinjection into organoids represents a next-generation in vitro approach to investigate gastrointestinal luminal physiology and the gastrointestinal microbiota.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Anaerobic
- Barrier Function
- CAG, chicken beta-actin promoter with CMV enhancer
- CFU, colony-forming unit
- CRA, CellRaft Array
- CVis, computer vision
- EGFP, enhanced green fluorescent protein
- FITC, fluorescein isothiocyanate
- Fecal Microbiota
- GFP, green fluorescent protein
- GI, gastrointestinal
- HF, hydrogen fluoride
- High-Content Sampling
- High-Throughput
- Microinjection
- OUT, operational taxonomic unit
- Organoid
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- QIIME, Quantitative Insights Into Microbial Ecology
- WT, wild-type
- hiPS, Human Induced Pluripotent Stem Cell
- rRNA, ribosomal RNA
Collapse
|
34
|
Smith NR, Swain JR, Davies PS, Gallagher AC, Parappilly MS, Beach CZ, Streeter PR, Williamson IA, Magness ST, Wong MH. Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 2018; 6:79-96. [PMID: 29928673 PMCID: PMC6008251 DOI: 10.1016/j.jcmgh.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ intestinal stem cell (ISC) functioning upstream of the slow-cycling B lymphoma Mo-MLV insertion region 1 homolog (Bmi1)-expressing cell, other studies have reported the opposite relation. Tools that facilitate simultaneous analyses of these populations are required to evaluate their coordinated function. METHODS We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed. RESULTS Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5GFP and Bmi1GFP-enriched populations with stem activity. Growth from singly isolated Lgr5GFP ISCs gave rise to small spheroids. Spheroids did not express Lgr5GFP and instead up-regulated Bmi1GFP expression. Conversely, Bmi1-derived spheroids initiated Lgr5GFP expression as crypt domains were established. CONCLUSIONS These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5GFP and Bmi1GFP ISC-enriched populations. Ex vivo analyses showed hierarchical plasticity between different ISC-expressing states; specifically Lgr5GFP ISCs gave rise to Bmi1GFP cells, and vice versa. These data highlight the impact of temporal and physiological context on unappreciated interactions between Lgr5GFP and Bmi1GFP cells during crypt formation.
Collapse
Key Words
- 3D, 3-dimensional
- 4-OHT, 4-hydroxytamoxifen
- APC, allophycocyanin
- Bmi1
- Bmi1, B lymphoma Mo-MLV insertion region 1 homolog
- Egf, epidermal growth factor
- FACS, fluorescence-activated cell sorting
- GFP, green fluorescent protein
- HBSS, Hank’s balanced salt solution
- Hierarchy
- ISC, intestinal stem cell
- Intestinal Stem Cells
- Lgr5
- Lgr5, leucine-rich repeat-containing G-protein–coupled receptor 5
- Lyz, lysozyme
- OHSU, Oregon Health and Science University
- PBS, phosphate-buffered saline
- PE, Phycoerythrin
- Plasticity
- Rspo1, R-spondin1
- TdT, tdTomato
- Wnt, wingless-type MMTV (mouse mammary tumor virus) integration site
- cDNA, complementary DNA
- mAb, monoclonal antibody
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
|
35
|
Ye W, Takabayashi H, Yang Y, Mao M, Hibdon ES, Samuelson LC, Eaton KA, Todisco A. Regulation of Gastric Lgr5+ve Cell Homeostasis by Bone Morphogenetic Protein (BMP) Signaling and Inflammatory Stimuli. Cell Mol Gastroenterol Hepatol 2018; 5:523-538. [PMID: 29930977 PMCID: PMC6009760 DOI: 10.1016/j.jcmgh.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Gastric Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) cells exert important functions during injury and homeostasis. Bone morphogenetic protein (BMP) signaling regulates gastric inflammation and epithelial homeostasis. We investigated if BMP signaling controls the fate of Lgr5+ve cells during inflammation. METHODS The H+/K+-adenosine triphosphatase β-subunit promoter was used to express the BMP inhibitor noggin (Nog) in the stomach (H+/K+-Nog mice). Inhibition of BMP signaling in Lgr5 cells was achieved by crossing Lgr5-EGFP-ires-CreERT2 (Lgr5-Cre) mice to mice with floxed alleles of BMP receptor 1A (Lgr5-Cre;Bmpr1aflox/flox mice). Lgr5/GFP+ve cells were isolated using flow cytometry. Lineage tracing studies were conducted by crossing Lgr5-Cre mice to mice that express Nog and tdTomato (Lgr5-Cre;H+/K+-Nog;Rosa26-tdTom). Infection with Helicobacter felis was used to induce inflammation. Morphology of the mucosa was analyzed by H&E staining. Distribution of H+/K+-adenosine triphosphatase-, IF-, Ki67-, CD44-, CD44v9-, and bromodeoxyuridine-positive cells was analyzed by immunostaining. Expression of neck and pit cell mucins was determined by staining with the lectins Griffonia (Bandeiraea) simplicifolia lectin II and Ulex europaeus agglutinin 1, respectively. Id1, Bmpr1a, Lgr5, c-Myc, and Cd44 messenger RNAs were measured by quantitative reverse-transcription polymerase chain reaction. RESULTS Lgr5-Cre;Bmpr1aflox/flox mice showed diminished expression of Bmpr1a in Lgr5/GFP+ve cells. Infection of Lgr5-Cre;Bmpr1aflox/flox mice with H felis led to enhanced inflammation, increased cell proliferation, parietal cell loss, and to the development of metaplasia and dysplasia. Infected Lgr5-Cre;H+/K+-Nog;Rosa26-tdTom mice, but not control mice, showed the presence of tomato+ve glands lining the lesser curvature that stained positively with Griffonia (Bandeiraea) simplicifolia lectin II and Ulex europaeus agglutinin 1, and with anti-IF, -CD44, -CD44v9, and -bromodeoxyuridine antibodies. CONCLUSIONS Inflammation and inhibition of BMP signaling activate Lgr5+ve cells, which give rise to metaplastic, dysplastic, proliferating lineages that express markers of mucus neck and zymogenic cell differentiation.
Collapse
Key Words
- ATPase, adenosine triphosphatase
- BMP, bone morphogenetic protein
- BrdU, bromodeoxyuridine
- Chief Cells
- Differentiation
- Dysplasia
- EGFP, enhanced green fluorescent protein
- ERK, extracellular signal–regulated kinase
- GFP, green fluorescent protein
- GSII, Griffonia (Bandeiraea) simplicifolia lectin II
- H/K-nog, H/K-noggin
- HBSS, Hank's balanced salt solution
- IF, intrinsic factor
- Metaplasia
- QRT-PCR, quantitative reverse-transcription polymerase chain reaction
- SPEM, spasmolytic polypeptide expressing metaplasia
- TFF2, Trefoil factor 2
- mRNA, messenger RNA
Collapse
|
36
|
Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, Wang J, Benitez AJ, DeMarshall M, Tobias JW, Hamilton KE, Falk GW, Spergel JM, Klein-Szanto AJ, Rustgi AK, Muir AB, Nakagawa H. The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive Epithelial Changes. Cell Mol Gastroenterol Hepatol 2018; 5:333-352. [PMID: 29552622 PMCID: PMC5852293 DOI: 10.1016/j.jcmgh.2017.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Aberrations in the esophageal proliferation-differentiation gradient are histologic hallmarks in eosinophilic esophagitis (EoE) and gastroesophageal reflux disease. A reliable protocol to grow 3-dimensional (3D) esophageal organoids is needed to study esophageal epithelial homeostasis under physiological and pathologic conditions. METHODS We modified keratinocyte-serum free medium to grow 3D organoids from endoscopic esophageal biopsies, immortalized human esophageal epithelial cells, and murine esophagi. Morphologic and functional characterization of 3D organoids was performed following genetic and pharmacologic modifications or exposure to EoE-relevant cytokines. The Notch pathway was evaluated by transfection assays and by gene expression analyses in vitro and in biopsies. RESULTS Both murine and human esophageal 3D organoids displayed an explicit proliferation-differentiation gradient. Notch inhibition accumulated undifferentiated basal keratinocytes with deregulated squamous cell differentiation in organoids. EoE patient-derived 3D organoids displayed normal epithelial structure ex vivo in the absence of the EoE inflammatory milieu. Stimulation of esophageal 3D organoids with EoE-relevant cytokines resulted in a phenocopy of Notch inhibition in organoid 3D structures with recapitulation of reactive epithelial changes in EoE biopsies, where Notch3 expression was significantly decreased in EoE compared with control subjects. CONCLUSIONS Esophageal 3D organoids serve as a novel platform to investigate regulatory mechanisms in squamous epithelial homeostasis in the context of EoE and other diseases. Notch-mediated squamous cell differentiation is suppressed by cytokines known to be involved in EoE, suggesting that this may contribute to epithelial phenotypes associated with disease. Genetic and pharmacologic manipulations establish proof of concept for the utility of organoids for future studies and personalized medicine in EoE and other esophageal diseases.
Collapse
Key Words
- 3D, 3-dimensional
- BCH, basal cell hyperplasia
- DAPI, 4′,6-Diamidino-2-Phenylindole, Dihydrochloride
- DNMAML1, dominant negative MAML1
- DOX, doxycycline
- EGF, epidermal growth factor
- EMT, epithelial-mesenchymal transition
- EoE, eosinophilic esophagitis
- Eosinophilic Esophagitis
- GERD, gastroesophageal reflux disease
- GFP, green fluorescent protein
- GSI, γ-secretase inhibitor
- H&E, hematoxylin and eosin
- IF, immunofluorescence
- IHC, immunohistochemistry
- IL, interleukin
- IVL, Involucrin
- KSFM, keratinocyte SFM
- KSFMC, KSFM containing 0.6 mM Ca2+
- Keratinocytes
- MAML1, Mastermind-like protein1
- OFR, organoid formation rate
- Squamous Cell Differentiation
- TNF-α, tumor necrosis factor-α
- Three-Dimensional
- Tslp, thymic stromal lymphopoietin
- aDMEM/F12, advanced Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
|
37
|
Abstract
Characterization of PTS-IIC, an endogenous constitutive promoter from L. lactis.. Cellobiose enhances activity from PTS-IIC promoter. PTS-IIC promoter mediates protein expression in B. subtilis and E coli Nissle 1917.
Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- GFP, green fluorescent protein
- Heterologous protein expression
- LAB, lactic acid bacteria
- LB, Luria-Bertani media
- Lactococcus lactis
- OD600, optical density at 600 nm
- PBS, phosphate buffered saline
- Probiotics
- Promoter
- RFU, relative fluorescence unit
- ccpA, catabolite control protein A
- celA, cellobiose-specific phosphor-β-glucosidase
- cre, catabolite-responsive element
- noxE, NADH oxidase promoter
- nt, nucleotide
- ptcC, cellobiose-specific PTS IIC component
Collapse
|
38
|
Cox CM, Lu R, Salcin K, Wilson JM. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol 2017; 5:145-156. [PMID: 29322087 PMCID: PMC5756061 DOI: 10.1016/j.jcmgh.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS During late embryonic development and through weaning, enterocytes of the ileum are highly endocytic. Defects in endocytosis and trafficking are implicated in neonatal disease, however, the mechanisms regulating trafficking during the developmental period are incompletely understood. The apical endosomal protein endotubin (EDTB) is highly expressed in the late embryonic and neonatal ileum. In epithelial cells in vitro, EDTB regulates both trafficking of tight junction proteins and proliferation through modulation of YAP activity. However, EDTB function during the endocytic stage of development of the intestine is unknown. METHODS By using Villin-CreERT2, we induced knockout of EDTB during late gestation and analyzed the impact on endocytic compartments and enterocyte structure in neonates using immunofluorescence, immunocytochemistry, and transmission electron microscopy. RESULTS Deletion of the apical endosomal protein EDTB in the small intestine during development impairs enterocyte morphogenesis, including loss of the apical endocytic complex, defective formation of the lysosomal compartment, and some cells had large microvillus-rich inclusions similar to those observed in microvillus inclusion disease. There also was a decrease in apical endocytosis and mislocalization of proteins involved in apical trafficking. CONCLUSIONS Our results show that EDTB-mediated trafficking within the epithelial cells of the developing ileum is important for maintenance of endocytic compartments and enterocyte integrity during early stages of gut development.
Collapse
Key Words
- AEC, apical endocytic complex
- AP, alkaline phosphatase
- CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/cas9 endonuclease
- EDTB, endotubin
- EEA1, early endosomal antigen 1
- Endosomes
- Endotubin
- G, guide
- GFP, green fluorescent protein
- GTPase, guanosine triphosphatase
- KO, knockout
- LAMP1, lysosome-associated membrane protein 1
- MAMDC4, MAM domain containing 4
- MVID, microvillus inclusion disease
- P, postnatal day
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Rab
- SDS, sodium dodecyl sulfate
- TBST, tris-buffered saline with 0.1% tween-20
- TEM, transmission electron microscopic
- TJ, tight junction
- Tight Junction
- Trafficking
Collapse
|
39
|
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M, Van Landeghem L. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. Cell Mol Gastroenterol Hepatol 2017; 5:31-49. [PMID: 29188232 PMCID: PMC5696385 DOI: 10.1016/j.jcmgh.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.
Collapse
Key Words
- AFM, atomic force microscope
- Adhesion
- Colorectal Cancer
- DMEM, Dulbecco's modified Eagle medium
- ENS, enteric nervous system
- Enteric Neurons
- GFP, green fluorescent protein
- MCS, multiple cloning site
- Migration
- PBS, phosphate-buffered saline
- TEC, tumor epithelial cell
- Tuj, tubulin III
- pcENS, primary culture enteric nervous system
- α-SMA, α–smooth muscle actin
Collapse
|
40
|
Smith NR, Davies PS, Levin TG, Gallagher AC, Keene DR, Sengupta SK, Wieghard N, El Rassi E, Wong MH. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell Homeostasis. Cell Mol Gastroenterol Hepatol 2017; 3:389-409. [PMID: 28462380 PMCID: PMC5404029 DOI: 10.1016/j.jcmgh.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. METHODS Here we tested this hypothesis by analyzing a CD166-/- mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. RESULTS We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166-/- Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. CONCLUSIONS These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC-niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CD166
- CLEM, correlative light and electron microscopy
- FACS, fluorescence-activated cell sorting
- FITC, fluorescein isothiocyanate
- GFP, green fluorescent protein
- HBSS, Hank’s balanced salt solution
- Homeostasis
- IHC, immunohistochemistry
- ISC, intestinal stem cell
- Intestinal Stem Cell
- Lyz, lysozyme
- Muc2, mucin 2
- Paneth Cell
- SEM, standard error of the mean
- Stem Cell Niche
- TA, transit-amplifying
- TEM, transmission electron microscopy
- WT, wild-type
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
Collapse
|
41
|
Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Mol Metab 2017; 6:288-294. [PMID: 28271035 PMCID: PMC5324019 DOI: 10.1016/j.molmet.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) is released during meals and promotes nutrient uptake and storage. GIP receptor knockout mice are protected from diet induced weight gain and thus GIP antagonists have been proposed as a treatment for obesity. In this study, we assessed the role of GIP in hyperphagia induced obesity and metabolic abnormalities in leptin deficient (Lepob/ob) mice. METHODS We crossbred GIP-GFP knock-in homozygous mice (GIPgfp/gfp) that have complete GIP knockout, and mice heterozygous for the ob mutation (Lepob/+) mice to generate Lepob/+/GIP+/+, Lepob/ob/GIP+/+, and Lepob/ob/GIPgfp/gfp mice. Male animals were weighed weekly and both oral glucose and insulin tolerance testing were performed to assess glucose homeostasis and circulating profiles of GIP and insulin. Body composition was evaluated by computerized tomography (CT) scan and analyses of indirect calorimetry and locomotor activity were performed. RESULTS Postprandial GIP levels were markedly elevated in Lepob/ob/GIP+/+ mice compared to Lepob/+/GIP+/+ controls and were undetectable in Lepob/ob/GIPgfp/gfp mice. Insulin levels were equivalently elevated in both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice compared to controls at 8 weeks of age but the hyperinsulinemia was marginally reduced in Lepob/ob/GIPgfp/gfp by 21 weeks, in association with amelioration of glucose intolerance. Both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice remained equivalently insulin resistant. Body weight gain and subcutaneous and visceral fat volume of both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice were significantly higher than that of Lepob/+/GIP+/+ mice, while no significant differences were seen between Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice. Locomotor activity and energy expenditure were decreased in both Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice compared to control Lepob/+/GIP+/+ mice, while no significant differences were seen between Lepob/ob/GIP+/+ and Lepob/ob/GIPgfp/gfp mice. There was no significant difference in fat oxidation among the three groups. Fat content in liver was significantly lower in Lepob/ob/GIPgfp/gfp compared to Lepob/ob/GIP+/+ mice, while that of control Lepob/+/GIP+/+ mice was the lowest. CONCLUSIONS Our results indicate that GIP knockout does not prevent excess weight gain and metabolic derangement in hyperphagic leptin deficient mice.
Collapse
|
42
|
Nakamura T, Fukaya T, Uto T, Takagi H, Arimura K, Tono T, Sato K. Selective depletion of basophils ameliorates immunoglobulin E-mediated anaphylaxis. Biochem Biophys Rep 2016; 9:29-35. [PMID: 28955985 PMCID: PMC5614540 DOI: 10.1016/j.bbrep.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 11/15/2022] Open
Abstract
Basophils, which are the rarest granulocytes, play crucial roles in protective immunity against parasites and development of allergic disorders. Although immunoglobulin (Ig)E-dependent responses via receptor for IgE (FcεRI) in basophils have been extensively studied, little is known about cell surface molecules that are selectively expressed on this cell subset to utilize the elimination in vivo through treatment with monoclonal antibody (mAb). Since CD200 receptor 3 (CD200R3) was exclusively expressed on basophils and mast cells (MCs) using a microarray screening, we have generated anti-CD200R3 mAb recognizing CD200R3A. In this study we examined the expression pattern of CD200R3A on leukocytes, and the influence of the elimination of basophils by anti-CD200R3A mAb on allergic responses. Flow cytometric analysis showed that CD200R3A was primarily expressed on basophils and MCs, but not on other leukocytes. Administration with anti-CD200R3A mAb led to the prominent specific depletion of tissue-resident and circulating basophils, but not MCs. Furthermore, in vivo depletion of basophils ameliorated IgE-mediated systemic and local anaphylaxis. Taken together, these findings suggest that CD200R3A is reliable cell surface marker for basophils in vivo, and targeting this unique molecule with mAb for the elimination of basophils may serve as a novel therapeutic strategy in ameliorating the allergic diseases. CD200R3A was primarily expressed on basophils and mast cells. Administration with anti-CD200R3A mAb depleted basophils, but not MCs. Depletion of basophils by anti-CD200R3A mAb ameliorated IgE-mediated systemic and local anaphylaxis.
Collapse
Key Words
- BMMCs, bone marrow-derived mast cells
- Basophils
- CD200R, CD200 receptor
- DNP, 2,4-dinitrophenol
- DNP-BSA, DNP-conjugated bovine serum albumin
- FcγR, Fcγ receptor
- FcεR, Fcε receptor
- GFP, green fluorescent protein
- IL, Interleukin
- IRES, internal ribosome entry site
- ITAM, immunoreceptor tyrosine-based activation motif
- Ig, Immunoglobulin
- IgE
- Intervention
- PE, Phycoerythrin
- PSA, passive systemic anaphylaxis
- Passive anaphylaxis
- RBC, red blood cells
- Type I hyperreactivity
- mAb, monoclonal antibody
Collapse
|
43
|
Lo YH, Chung E, Li Z, Wan YW, Mahe MM, Chen MS, Noah TK, Bell KN, Yalamanchili HK, Klisch TJ, Liu Z, Park JS, Shroyer NF. Transcriptional Regulation by ATOH1 and its Target SPDEF in the Intestine. Cell Mol Gastroenterol Hepatol 2016; 3:51-71. [PMID: 28174757 PMCID: PMC5247424 DOI: 10.1016/j.jcmgh.2016.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The transcription factor atonal homolog 1 (ATOH1) controls the fate of intestinal progenitors downstream of the Notch signaling pathway. Intestinal progenitors that escape Notch activation express high levels of ATOH1 and commit to a secretory lineage fate, implicating ATOH1 as a gatekeeper for differentiation of intestinal epithelial cells. Although some transcription factors downstream of ATOH1, such as SPDEF, have been identified to specify differentiation and maturation of specific cell types, the bona fide transcriptional targets of ATOH1 still largely are unknown. Here, we aimed to identify ATOH1 targets and to identify transcription factors that are likely to co-regulate gene expression with ATOH1. METHODS We used a combination of chromatin immunoprecipitation and messenger RNA-based high-throughput sequencing (ChIP-seq and RNA-seq), together with cell sorting and transgenic mice, to identify direct targets of ATOH1, and establish the epistatic relationship between ATOH1 and SPDEF. RESULTS By using unbiased genome-wide approaches, we identified more than 700 genes as ATOH1 transcriptional targets in adult small intestine and colon. Ontology analysis indicated that ATOH1 directly regulates genes involved in specification and function of secretory cells. De novo motif analysis of ATOH1 targets identified SPDEF as a putative transcriptional co-regulator of ATOH1. Functional epistasis experiments in transgenic mice show that SPDEF amplifies ATOH1-dependent transcription but cannot independently initiate transcription of ATOH1 target genes. CONCLUSIONS This study unveils the direct targets of ATOH1 in the adult intestines and illuminates the transcriptional events that initiate the specification and function of intestinal secretory lineages.
Collapse
Key Words
- ATOH1
- ATOH1, atonal homolog 1
- Atoh1Flag
- Atoh1GFP
- CRC, colorectal cancer
- ChIP, chromatin immunoprecipitation
- ChIP-seq, chromatin immunoprecipitation sequencing
- DBZ, dibenzazepine
- FACS, fluorescence-activated cell sorting
- FDR, false-discovery rate
- GFP, green fluorescent protein
- GO, gene ontology
- Gfi1, growth factor independent 1
- ISC, intestinal stem cell
- Intestinal Epithelium
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- QES, Q-enrichment-score
- RT-qPCR, reverse-transcription quantitative polymerase chain reaction
- SPDEF
- Spdef, SAM pointed domain containing ETS transcription factor
- TRE-Spdef
- TSS, transcription start site
- Transcription
- Villin-creER
- mRNA, messenger RNA
Collapse
|
44
|
Tsai EA, Gilbert MA, Grochowski CM, Underkoffler LA, Meng H, Zhang X, Wang MM, Shitaye H, Hankenson KD, Piccoli D, Lin H, Kamath BM, Devoto M, Spinner NB, Loomes KM. THBS2 Is a Candidate Modifier of Liver Disease Severity in Alagille Syndrome. Cell Mol Gastroenterol Hepatol 2016; 2:663-675.e2. [PMID: 28090565 PMCID: PMC5042888 DOI: 10.1016/j.jcmgh.2016.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Alagille syndrome is an autosomal-dominant, multisystem disorder caused primarily by mutations in JAG1, resulting in bile duct paucity, cholestasis, cardiac disease, and other features. Liver disease severity in Alagille syndrome is highly variable, however, factors influencing the hepatic phenotype are unknown. We hypothesized that genetic modifiers may contribute to the variable expressivity of this disorder. METHODS We performed a genome-wide association study in a cohort of Caucasian subjects with known pathogenic JAG1 mutations, comparing patients with mild vs severe liver disease, followed by functional characterization of a candidate locus. RESULTS We identified a locus that reached suggestive genome-level significance upstream of the thrombospondin 2 (THBS2) gene. THBS2 codes for a secreted matricellular protein that regulates cell proliferation, apoptosis, and angiogenesis, and has been shown to affect Notch signaling. By using a reporter mouse line, we detected thrombospondin 2 expression in bile ducts and periportal regions of the mouse liver. Examination of Thbs2-null mouse livers showed increased microvessels in the portal regions of adult mice. We also showed that thrombospondin 2 interacts with NOTCH1 and NOTCH2 and can inhibit JAG1-NOTCH2 interactions. CONCLUSIONS Based on the genome-wide association study results, thrombospondin 2 localization within bile ducts, and demonstration of interactions of thrombospondin 2 with JAG1 and NOTCH2, we propose that changes in thrombospondin 2 expression may further perturb JAG1-NOTCH2 signaling in patients harboring a JAG1 mutation and lead to a more severe liver phenotype. These results implicate THBS2 as a plausible candidate genetic modifier of liver disease severity in Alagille syndrome.
Collapse
Key Words
- ALGS, Alagille syndrome
- BSA, bovine serum albumin
- CK19, cytokeratin 19
- ChiLDReN, Childhood Liver Disease Research Network
- Cholestasis
- GFP, green fluorescent protein
- GWAS, genome-wide association study
- Gene Modifier
- Genome-Wide Association Study
- JAG1
- NOTCH2
- PCR, polymerase chain reaction
- SNP, single-nucleotide polymorphism
- THBS2, thrombospondin 2
- cDNA, complementary DNA
- ddPCR, droplet digital polymerase chain reaction
Collapse
|
45
|
A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function: Pre-Clinical Study in the Porcine Myocardial Infarction Model. JACC Basic Transl Sci 2016; 1:360-372. [PMID: 30167524 PMCID: PMC6113410 DOI: 10.1016/j.jacbts.2016.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) remains a dreadful disease around the world, causing irreversible sequelae that shorten life expectancy and reduce quality of life despite current treatment. Here, the authors engineered a cell-enriched myocardial graft, composed of a decellularized myocardial matrix refilled with adipose tissue-derived progenitor cells (EMG-ATDPC). Once applied over the infarcted area in the swine MI model, the EMG-ATDPC improved cardiac function, reduced infarct size, attenuated fibrosis progression, and promoted neovascularization of the ischemic myocardium. The beneficial effects exerted by the EMG-ATDPC and the absence of identified adverse side effects should facilitate its clinical translation as a novel MI therapy in humans. MI remains a major cause of morbidity and mortality despite major treatment advances achieved during the past decades. Administration of an engineered myocardial graft, composed of decellularized myocardial matrix refilled with ATDPCs (EMG-ATDPC), in a porcine pre-clinical MI model, may support cardiac recovery following MI. Thirty days post-EMG-ATDPC implantation, cardiac magnetic resonance imaging and comprehensive histological analysis were performed to evaluate its impact on myocardial restoration. EMG-ATDPC resulted in better left ventricular ejection fraction, higher vessel density and neovascularization, and reduced infarct size by 68%, as well as limited fibrosis. Accordingly, EMG-ATDPC is ready to start the translational avenue toward phase I first-in-man clinical trials.
Collapse
Key Words
- ATDPC, adipose tissue-derived progenitor cells
- CMR, cardiac magnetic resonance imaging
- EMG, engineered myocardial graft
- GFP, green fluorescent protein
- IsoB4, isolectin B4
- LV, left ventricle/ventricular
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- SMA, smooth muscle actin
- adipose tissue-derived progenitor cells
- cTnI, cardiac troponin I
- cardiac tissue engineering
- decellularized myocardial scaffold
- myocardial infarction
- pATDPC, porcine adipose tissue-derived progenitor cell
- pre-clinical model
Collapse
|
46
|
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR. LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2016; 2:648-662.e8. [PMID: 28078320 PMCID: PMC5042889 DOI: 10.1016/j.jcmgh.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Collapse
Key Words
- CDX2, caudal type homeobox2
- ChIPseq, chromatin immunoprecipitation sequencing
- Ct, cycle threshold
- DE, definitive endoderm
- E, embryonic day
- Endoderm
- GFP, green fluorescent protein
- Intestine
- LGR5
- Organoid
- Pluripotent Stem Cells
- Rspo, R-spondin protein
- WNT
- creER, cre recombinase protein fused to estrogen receptor
- hESC, human embryonic stem cell
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- shRNA, short hairpin RNA
Collapse
|
47
|
Nagy V, Cole T, Van Campenhout C, Khoung TM, Leung C, Vermeiren S, Novatchkova M, Wenzel D, Cikes D, Polyansky AA, Kozieradzki I, Meixner A, Bellefroid EJ, Neely GG, Penninger JM. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. Cell Cycle 2016; 14:1799-808. [PMID: 25891934 DOI: 10.1080/15384101.2015.1036209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.
Collapse
Key Words
- BSA, bovine serum albumin
- Brn3d, brain 3d
- CGNL1, cyclin L1
- ChIP, chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DDK, DYKDDDDK epitope
- Drgx, dorsal root ganglia homeobox
- ECL, enhanced chemiluminescence
- En1, engrailed-1
- FDR, false discovery rate
- FPKM, fragments per kilobase exon
- GAPDH, glyceraldehyde 3-phospate dehydrogenase
- GEO, gene expression omnibus
- GFP, green fluorescent protein
- HEK293, human embryonic kidney cell 293
- HRP, horseraddish peroxidase
- HSAN, hereditary and sensory autonomic neuropathy
- Hamlet
- Hmx3, H6 family homeobox 3
- IL1R1, interleukin 1 receptor type 1
- MO, morpholino oligonucleotide
- NBT/BCIP, nitro blue tetrazolium / 5-bromo-4-chloro-3-indolyl-phosphate
- PBS, phosphate buffered saline
- PDB, protein data base
- PMID, pubmed identification.
- PRDM12
- PRDM12, PR homology domain-containing member 12
- RA, retinoic acid
- RT-qPCR, real-time quantitative polymerase chain reaction
- S1PR1, Sphi8ngosine-1-phosphate receptor 1
- SET, Su(var)3–9 and ‘Enhancer of zeste’
- Sncg, Synuclein Gamma (Breast Cancer-Specific Protein 1)
- TRH(DE), tryrotropin-releasing hormone degrading enzyme
- TRHDE
- TRHDE, tyrotropin-releasing hormone degrading enzyme
- Tlx3, T-cell leukemia homeobox 3
- nociception
- pCMV6, plasmid cytomegalovirus
- sensory neurons
Collapse
|
48
|
Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 2016; 11:1063-80. [PMID: 26046590 PMCID: PMC4590600 DOI: 10.1080/15548627.2015.1058683] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress (OS) stimulates autophagy in different cellular systems, but it remains controversial if this rule can be generalized. We have analyzed the effect of chronic OS induced by the parkinsonian toxin paraquat (PQ) on autophagy in astrocytoma cells and primary astrocytes, which represent the first cellular target of neurotoxins in the brain. PQ decreased the basal levels of LC3-II and LC3-positive vesicles, and its colocalization with lysosomal markers, both in the absence and presence of chloroquine. This was paralleled by increased number and size of SQSTM1/p62 aggregates. Downregulation of autophagy was also observed in cells chronically exposed to hydrogen peroxide or nonlethal concentrations of PQ, and it was associated with a reduced astrocyte capability to protect dopaminergic cells from OS in co-cultures. Surprisingly, PQ treatment led to inhibition of MTOR, activation of MAPK8/JNK1 and MAPK1/ERK2-MAPK3/ERK1 and upregulation of BECN1/Beclin 1 expression, all signals typically correlating with induction of autophagy. Reduction of OS by NMDPEF, a specific NQO2 inhibitor, but not by N-acetylcysteine, abrogated the inhibitory effect of PQ and restored autophagic flux. Activation of NQO2 by PQ or menadione and genetic manipulation of its expression confirmed the role of this enzyme in the inhibitory action of PQ on autophagy. PQ did not induce NFE2L2/NRF2, but when it was co-administered with NMDPEF NFE2L2 activity was enhanced in a SQSTM1-independent fashion. Thus, a prolonged OS in astrocytes inhibits LC3 lipidation and impairs autophagosome formation and autophagic flux, in spite of concomitant activation of several pro-autophagic signals. These findings outline an unanticipated neuroprotective role of astrocyte autophagy and identify in NQO2 a novel pharmacological target for its positive modulation.
Collapse
Key Words
- AVs, autophagic vacuoles
- Ab, antibody
- BNAH, benzyldihydronicotinamide riboside
- CA-DCF-DA, 5(6)-carboxy-2′,7′ dichlorofluorescein diacetate
- CQ, chloroquine
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- FACS, flow cytometry
- GFAP, glial fibrillary acidic protein
- GFP, green fluorescent protein
- K3, menadione
- MAPK, mitogen-activated protein kinase
- MFI, mean fluorescence intensity
- MPTP, 1-methyl 4-phenyl 1,2,3,6-tetraidro-piridine
- MitoSOX, 3,8-phenanthridinediamine, 5-(6′-triphenylphosphoniumhexyl)-5,6 dihydro-6-phenyl
- NFE2L2, nuclear factor, erythroid 2-like 2
- NMDPEF, N-[2-(2-methoxy-6H-dipyrido[2,3-a:3,2-e]pyrrolizin-11-yl)ethyl]-2-furamide]
- NQO2
- OS, oxidative stress
- PBS, phosphate-buffered saline
- PQ, paraquat
- ROS
- ROS, reactive oxygen species
- RT, room temperature
- SN, substantia nigra
- TTBS, Tween-Tris buffered saline
- WB, western blotting
- astrocytes
- macroautophagy
- p-, phosphorylated
- paraquat
- parkinson disease
- shRNA, short harpin ribonucleic acid
- siRNA, small interfering ribonucleic acid
Collapse
|
49
|
Kanamori H, Takemura G, Goto K, Tsujimoto A, Mikami A, Ogino A, Watanabe T, Morishita K, Okada H, Kawasaki M, Seishima M, Minatoguchi S. Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy 2016; 11:1146-60. [PMID: 26042865 DOI: 10.1080/15548627.2015.1051295] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Little is known about the association between autophagy and diabetic cardiomyopathy. Also unknown are possible distinguishing features of cardiac autophagy in type 1 and type 2 diabetes. In hearts from streptozotocin-induced type 1 diabetic mice, diastolic function was impaired, though autophagic activity was significantly increased, as evidenced by increases in microtubule-associated protein 1 light chain 3/LC3 and LC3-II/-I ratios, SQSTM1/p62 (sequestosome 1) and CTSD (cathepsin D), and by the abundance of autophagic vacuoles and lysosomes detected electron-microscopically. AMP-activated protein kinase (AMPK) was activated and ATP content was reduced in type 1 diabetic hearts. Treatment with chloroquine, an autophagy inhibitor, worsened cardiac performance in type 1 diabetes. In addition, hearts from db/db type 2 diabetic model mice exhibited poorer diastolic function than control hearts from db/+ mice. However, levels of LC3-II, SQSTM1 and phosphorylated MTOR (mechanistic target of rapamycin) were increased, but CTSD was decreased and very few lysosomes were detected ultrastructurally, despite the abundance of autophagic vacuoles. AMPK activity was suppressed and ATP content was reduced in type 2 diabetic hearts. These findings suggest the autophagic process is suppressed at the final digestion step in type 2 diabetic hearts. Resveratrol, an autophagy enhancer, mitigated diastolic dysfunction, while chloroquine had the opposite effects in type 2 diabetic hearts. Autophagy in the heart is enhanced in type 1 diabetes, but is suppressed in type 2 diabetes. This difference provides important insight into the pathophysiology of diabetic cardiomyopathy, which is essential for the development of new treatment strategies.
Collapse
Key Words
- AMP-activated protein kinase
- AMPK, AMP-activated protein kinase
- CTSD, cathepsin D
- DM, diabetes mellitus
- GFP, green fluorescent protein
- HBA1c, glycated hemoglobin α 1
- LV, left ventricular
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- Mn-SOD, superoxide dismutase 2, mitochondrial
- SIRT1, sirtuin 1
- SQSTM1/p62, sequestosome 1
- STZ, streptozotocin
- autophagy
- cardiomyopathy
- chloroquine
- diabetes mellitus
- insulin
- resveratrol
- type 1 diabetes
- type 2 diabetes
- ultrastructure
Collapse
|
50
|
Huang YW, Chang YC, Diaz-Avalos R, King CY. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme. Prion 2016; 9:207-27. [PMID: 26038983 DOI: 10.1080/19336896.2015.1039217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5-7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-β repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains.
Collapse
Key Words
- 5-FOA, 5-fluoroorotic acid
- Aβ, amyloid β-protein
- GFP, green fluorescent protein
- PrP, prion protein
- SC, synthetic complete
- STEM, scanning transmission electron microscopy
- YPD, yeast extract, peptone, dextrose
- amyloid, prion strain, [PSI+], SUP35, yeast
- mpl, mass per length
Collapse
|