26
|
Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, Turnbaugh JA, Verdin E, Hall KD, Leibel RL, Ravussin E, Rosenbaum M, Patterson AD, Turnbaugh PJ. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell 2020; 181:1263-1275.e16. [PMID: 32437658 PMCID: PMC7293577 DOI: 10.1016/j.cell.2020.04.027] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 12/29/2022]
Abstract
Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.
Collapse
|
27
|
Maske CB, Coiduras II, Ondriezek ZE, Terrill SJ, Williams DL. Intermittent High-Fat Diet Intake Reduces Sensitivity to Intragastric Nutrient Infusion and Exogenous Amylin in Female Rats. Obesity (Silver Spring) 2020; 28:942-952. [PMID: 32237211 PMCID: PMC7180114 DOI: 10.1002/oby.22779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Intermittent (INT) access to a high-fat diet (HFD) can induce excessive-intake phenotypes in rodents. This study hypothesized that impaired satiation responses contribute to elevated intake in an INT-HFD access model. METHODS First, this study characterized the intake and meal patterns of female rats that were subjected to an INT HFD in which a 45% HFD was presented for 20 hours every fourth day. To examine nutrient-induced satiation, rats received intragastric infusions of saline or Ensure Plus prior to darkness-onset food access. A similar design was used to examine sensitivity to the satiating effect of amylin. This study then examined whether an INT HFD influences amylin-induced c-Fos in feeding-relevant brain areas. RESULTS Upon INT HFD access, rats consumed meals of larger size. The anorexic response to intragastric Ensure infusion and exogenous amylin treatment was blunted in INT rats on both chow-only and INT-HFD days of the diet regimen, compared with chow-maintained and continuous-HFD rats. An INT HFD did not influence amylin-induced c-Fos in the area postrema, nucleus of the solitary tract, and lateral parabrachial nucleus. CONCLUSIONS Impaired satiation responses, mediated in part by reduced sensitivity to amylin, may explain the elevated intake observed upon INT HFD access and may play a role in disorders of INT overconsumption, including binge eating.
Collapse
|
28
|
Pearl D, Katsumura S, Amiri M, Tabatabaei N, Zhang X, Vinette V, Pang X, Beug ST, Kim SH, Jones LM, Robichaud N, Ong SG, Jia JJ, Ali H, Tremblay ML, Jaramillo M, Alain T, Morita M, Sonenberg N, Tahmasebi S. 4E-BP-Dependent Translational Control of Irf8 Mediates Adipose Tissue Macrophage Inflammatory Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2392-2400. [PMID: 32213561 DOI: 10.4049/jimmunol.1900538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
Deregulation of mRNA translation engenders many human disorders, including obesity, neurodegenerative diseases, and cancer, and is associated with pathogen infections. The role of eIF4E-dependent translational control in macrophage inflammatory responses in vivo is largely unexplored. In this study, we investigated the involvement of the translation inhibitors eIF4E-binding proteins (4E-BPs) in the regulation of macrophage inflammatory responses in vitro and in vivo. We show that the lack of 4E-BPs exacerbates inflammatory polarization of bone marrow-derived macrophages and that 4E-BP-null adipose tissue macrophages display enhanced inflammatory gene expression following exposure to a high-fat diet (HFD). The exaggerated inflammatory response in HFD-fed 4E-BP-null mice coincides with significantly higher weight gain, higher Irf8 mRNA translation, and increased expression of IRF8 in adipose tissue compared with wild-type mice. Thus, 4E-BP-dependent translational control limits, in part, the proinflammatory response during HFD. These data underscore the activity of the 4E-BP-IRF8 axis as a paramount regulatory mechanism of proinflammatory responses in adipose tissue macrophages.
Collapse
|
29
|
Liu L, Jin R, Hao J, Zeng J, Yin D, Yi Y, Zhu M, Mandal A, Hua Y, Ng CK, Egilmez NK, Sauter ER, Li B. Consumption of the Fish Oil High-Fat Diet Uncouples Obesity and Mammary Tumor Growth through Induction of Reactive Oxygen Species in Protumor Macrophages. Cancer Res 2020; 80:2564-2574. [PMID: 32213543 DOI: 10.1158/0008-5472.can-19-3184] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 01/22/2023]
Abstract
Obesity is associated with increased risk of many types of cancer and can be induced by various high-fat diets (HFD) from different fat sources. It remains unknown whether fatty acid composition in different HFD influences obesity-associated tumor development. Here we report that consumption of either a cocoa butter or fish oil HFD induced similar obesity in mouse models. While obesity induced by the cocoa butter HFD was associated with accelerated mammary tumor growth, consumption of the fish oil HFD uncoupled obesity from increased mammary tumor growth and exhibited a decrease in protumor macrophages. Compared with fatty acid (FA) components in both HFDs, n-3 FA rich in the fish oil HFD induced significant production of reactive oxygen species (ROS) and macrophage death. Moreover, A-FABP expression in the protumor macrophages facilitated intracellular transportation of n-3 FA and oxidation of mitochondrial FA. A-FABP deficiency diminished n-3 FA-mediated ROS production and macrophage death in vitro and in vivo. Together, our results demonstrate a novel mechanism by which n-3 FA induce ROS-mediated protumor macrophage death in an A-FABP-dependent manner. SIGNIFICANCE: This study provides mechanistic insight into dietary supplementation with fish oil for breast cancer prevention and advances a new concept that not all HFDs leading to obesity are tumorigenic. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/12/2564/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Carcinogenesis/immunology
- Carcinogenesis/metabolism
- Cell Line, Tumor/transplantation
- Diet, High-Fat/adverse effects
- Diet, High-Fat/methods
- Dietary Fats/adverse effects
- Fatty Acid-Binding Proteins/genetics
- Fatty Acid-Binding Proteins/metabolism
- Female
- Fish Oils/administration & dosage
- Humans
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Obesity/complications
- Obesity/immunology
- Obesity/metabolism
- Primary Cell Culture
- Reactive Oxygen Species/metabolism
Collapse
|
30
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
|
31
|
Ahart ZC, Martin LE, Kemp BR, Banik DD, Roberts SG, Torregrossa AM, Medler KF. Differential Effects of Diet and Weight on Taste Responses in Diet-Induced Obese Mice. Obesity (Silver Spring) 2020; 28:284-292. [PMID: 31891242 PMCID: PMC6981059 DOI: 10.1002/oby.22684] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/21/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Previous studies have reported that individuals with obesity have reduced taste perception, but the relationship between obesity and taste is poorly understood. Earlier work has demonstrated that diet-induced obesity directly impairs taste. Currently, it is not clear whether these changes to taste are due to obesity or to the high-fat diet exposure. The goal of the current study was to determine whether diet or excess weight is responsible for the taste deficits induced by diet-induced obesity. METHODS C57BL/6 mice were placed on either high-fat or standard chow in the presence or absence of captopril. Mice on captopril did not gain weight when exposed to a high-fat diet. Changes in the responses to different taste stimuli were evaluated using live cell imaging, brief-access licking, immunohistochemistry, and real-time polymerase chain reaction. RESULTS Diet and weight gain each affected taste responses, but their effects varied by stimulus. Two key signaling proteins, α-gustducin and phospholipase Cβ2, were significantly reduced in the mice on the high-fat diet with and without weight gain, identifying a potential mechanism for the reduced taste responsiveness to some stimuli. CONCLUSIONS Our data indicate that, for some stimuli, diet alone can cause taste deficits, even without the onset of obesity.
Collapse
|
32
|
Burrell JA, Richard AJ, King WT, Stephens JM. Mitochondrial Pyruvate Carriers are not Required for Adipogenesis but are Regulated by High-Fat Feeding in Brown Adipose Tissue. Obesity (Silver Spring) 2020; 28:293-302. [PMID: 31970913 PMCID: PMC6986308 DOI: 10.1002/oby.22678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objectives of this study were to assess the role of mitochondrial pyruvate carriers (MPCs) in adipocyte development in vitro and determine whether MPCs are regulated in vivo by high-fat feeding in male and female C57BL/6J mice. METHODS This study utilized small interfering RNA-mediated knockdown to assess the requirement of MPC1 for adipogenesis in the 3T3-L1 model system. Treatment with UK-5099, a potent pharmacological MPC inhibitor, was also used to assess the loss of MPC activity. Western blot analysis was performed on adipose tissue samples from mice on a low-fat diet or a high-fat diet (HFD) for 12 weeks. RESULTS The loss of MPC expression via small interfering RNA-mediated knockdown or pharmacological inhibition did not affect adipogenesis of 3T3-L1 cells. In vivo studies indicated that expression of MPCs was significantly decreased in brown adipose tissue of male mice, but not female, on an HFD. CONCLUSIONS Although MPCs are essential for pyruvate transport, MPCs are not required for adipogenesis in vitro, suggesting that other substrates can be used for energy production when the MPC complex is not functional. Also, a significant decrease in MPC1 and 2 expression occurred in brown fat, but not white fat, of male mice fed an HFD.
Collapse
|
33
|
Guerra-Cantera S, Frago LM, Díaz F, Ros P, Jiménez-Hernaiz M, Freire-Regatillo A, Barrios V, Argente J, Chowen JA. Short-Term Diet Induced Changes in the Central and Circulating IGF Systems Are Sex Specific. Front Endocrinol (Lausanne) 2020; 11:513. [PMID: 32849298 PMCID: PMC7431666 DOI: 10.3389/fendo.2020.00513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor (IGF) 1 exerts a wide range of functions in mammalians participating not only in the control of growth and metabolism, but also in other actions such as neuroprotection. Nutritional status modifies the IGF system, although little is known regarding how diet affects the newest members of this system including pregnancy-associated plasma protein-A (PAPP-A) and PAPP-A2, proteases that liberate IGF from the IGF-binding proteins (IGFBPs), and stanniocalcins (STCs) that inhibit PAPP-A and PAPP-A2 activity. Here we explored if a 1-week dietary change to either a high-fat diet (HFD) or a low-fat diet (LFD) modifies the central and peripheral IGF systems in both male and female Wistar rats. The circulating IGF system showed sex differences in most of its members at baseline. Males had higher levels of both free (p < 0.001) and total IGF1 (p < 0.001), as well as IGFBP3 (p < 0.001), IGFBP5 (p < 0.001), and insulin (p < 0.01). In contrast, females had higher serum levels of PAPP-A2 (p < 0.05) and IGFBP2 (p < 0.001). The responses to a short-term dietary change were both diet and sex specific. Circulating levels of IGF2 increased in response to LFD intake in females (p < 0.001) and decreased in response to HFD intake in males (p < 0.001). In females, LFD intake also decreased circulating IGFBP2 levels (p < 0.001). In the hypothalamus LFD intake increased IGF2 (p < 0.01) and IGFBP2 mRNA (p < 0.001) levels, as well as the expression of NPY (p < 0.001) and AgRP (p < 0.01), but only in males. In conclusion, short-term LFD intake induced more changes in the peripheral and central IGF system than did short-term HFD intake. Moreover, these changes were sex-specific, with IGF2 and IGFBP2 being more highly affected than the other members of the IGF system. One of the main differences between the commercial LFD employed and the HFD or normal rodent chow is that the LFD has a significantly higher sucrose content, suggesting that this nutrient could be involved in the observed responses.
Collapse
|
34
|
Chen D, Zhao H, Gao X, Chen S, Liu H, Zhang J, Zhang J, Meng M. Subcutaneous administration of α-GalCer activates iNKT10 cells to promote M2 macrophage polarization and ameliorates chronic inflammation of obese adipose tissue. Int Immunopharmacol 2019; 77:105948. [PMID: 31629216 DOI: 10.1016/j.intimp.2019.105948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The role of iNKT cells was investigated in chronic adipose tissue inflammation in obese mice after administration of α-GalCer in different pathways. METHODS C57BL/6J mice were fed high-fat diet (HFD) for 12 weeks to establish the obese mouse model. The pathology of adipose tissue was observed by H&E staining. The rates of iNKT cells, macrophages and cell subsets in adipose tissue were detected by FCM. Cytokine levels in serum and adipose tissue lymphocyte-stimulated supernatants were assessed with the CBA kit. The expression levels of related transcription factor in adipose tissue were detected by Western blot. RESULTS The proportions of iNKT cells, iNKT10 cells and M2 macrophages were decreased, while those of iNKT1 and M1 macrophages were increased in adipose tissue of HFD-fed mice. The expression levels of the related transcriptional proteins E4BP4 and Arg-1 were decreased while iNOS expression was increased in adipose tissue. Administration of α-GalCer by subcutaneous injection resulted in increased rates of iNKT10 cells and M2 macrophages, and decreased amounts of M1 macrophages in adipose tissue of HFD-fed mice. The expression of E4BP4 and Arg-1 were up-regulated, but iNOS was down-regulated. Meanwhile, infiltration of inflammatory cells into adipose tissue was further reduced. CONCLUSION The imbalance between the proportions of iNKT1 and iNKT10 cells may be involved in the development of chronic inflammation in obese adipose tissue. Administration of α-GalCer by subcutaneous injection in HFD-fed mice activates adipose tissue iNKT10 cells, which promote M2 macrophage polarization and improve chronic inflammation in obese adipose tissue.
Collapse
|
35
|
Sinden DS, Holman CD, Bare CJ, Sun X, Gade AR, Cohen DE, Pitt GS. Knockout of the X-linked Fgf13 in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity. FASEB J 2019; 33:11579-11594. [PMID: 31339804 PMCID: PMC6994920 DOI: 10.1096/fj.201901178r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor (FGF)13, a nonsecreted, X-linked, FGF homologous factor, is differentially expressed in adipocytes in response to diet, yet Fgf13's role in metabolism has not been explored. Heterozygous Fgf13 knockouts fed normal chow and housed at 22°C showed hyperactivity accompanying reduced core temperature and obesity when housed at 30°C. Those heterozygous knockouts showed defects in thermogenesis even at 30°C and an inability to protect core temperature. Surprisingly, we detected trivial FGF13 in adipose of wild-type mice fed normal chow and no obesity in adipose-specific heterozygous knockouts housed at 30°C, and we detected an intact brown fat response through exogenous β3 agonist stimulation, suggesting a defect in sympathetic drive to brown adipose tissue. In contrast, hypothalamic-specific ablation of Fgf13 recapitulated weight gain at 30°C. Norepinephrine turnover in brown fat was reduced at both housing temperatures. Thus, our data suggest that impaired CNS regulation of sympathetic activation of brown fat underlies obesity and thermogenesis in Fgf13 heterozygous knockouts fed normal chow.-Sinden, D. S., Holman, C. D., Bare, C. J., Sun, X., Gade, A. R., Cohen, D. E., Pitt, G. S. Knockout of the X-linked Fgf13 in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity.
Collapse
|
36
|
Shin BC, Ghosh S, Dai Y, Byun SY, Calkins KL, Devaskar SU. Early life high-fat diet exposure maintains glucose tolerance and insulin sensitivity with a fatty liver and small brain size in the adult offspring. Nutr Res 2019; 69:67-81. [PMID: 31639589 PMCID: PMC6934265 DOI: 10.1016/j.nutres.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Diet during pregnancy has long lasting consequences on the offspring, warranting a study on the impact of early exposure to a high fat diet on the adult offspring. We hypothesized that a prenatal n-6 enriched diet will have adverse metabolic outcomes on the adult offspring that may be reversed with a postnatal n-3 enriched diet. To test this hypothesis, we examined the adult offspring from three groups: (1) n-6 group: during gestation and lactation, dams consumed an n-6 polyunsaturated fatty acid enriched diet, (2) n-3 group: gestational n-6 diet was followed by an n-3 enriched diet during lactation, and (3) a control (CD) group that received standard diet throughout gestation and lactation. Offspring from all groups weaned to a control diet ad libitum. Beginning at postnatal day 2 (P < .03) and persisting at 360 days in males (P < .04), an increase in hypothalamic AgRP expression occurred in the n-6 and n-3 groups, with an increase in food intake (P = .01), and the n-3 group displaying lower body (P < .03) and brain (P < .05) weights. At 360 days, the n-6 and n-3 groups remained glucose tolerant and insulin sensitive, with increased phosphorylated-AMP-activated protein kinase (P < .05). n-6 group developed hepatic steatosis with reduced hepatic reflected as higher plasma microRNA-122 (P < .04) that targets pAMPK. We conclude that early life exposure to n-6 and n-3 led to hypothalamic AgRP-related higher food intake, with n-6 culminating in a fatty liver partially mitigated by postnatal n-3. While both diets preserved glucose tolerance and insulin sensitivity, postnatal n-3 displayed detrimental effects on the brain.
Collapse
|
37
|
Quiclet C, Dittberner N, Gässler A, Stadion M, Gerst F, Helms A, Baumeier C, Schulz TJ, Schürmann A. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 2019; 97:9-17. [PMID: 31108105 DOI: 10.1016/j.metabol.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Ectopic fat accumulation in the pancreas in response to obesity and its implication on the onset of type 2 diabetes remain poorly understood. Intermittent fasting (IF) is known to improve glucose homeostasis and insulinresistance. However, the effects of IF on fat in the pancreas and β-cell function remain largely unknown. Our aim was to evaluate the impact of IF on pancreatic fat accumulation and its effects on islet function. METHODS New Zealand Obese (NZO) mice were fed a high-fat diet ad libitum (NZO-AL) or fasted every other day (intermittent fasting, NZO-IF) and pancreatic fat accumulation, glucose homoeostasis, insulin sensitivity, and islet function were determined and compared to ad libitum-fed B6.V-Lepob/ob (ob/ob) mice. To investigate the crosstalk of pancreatic adipocytes and islets, co-culture experiments were performed. RESULTS NZO-IF mice displayed better glucose homeostasis and lower fat accumulation in both the pancreas (-32%) and the liver (-35%) than NZO-AL mice. Ob/ob animals were insulin-resistant and had low fat in the pancreas but high fat in the liver. NZO-AL mice showed increased fat accumulation in both organs and exhibited an impaired islet function. Co-culture experiments demonstrated that pancreatic adipocytes induced a hypersecretion of insulin and released higher levels of free fatty acids than adipocytes of inguinal white adipose tissue. CONCLUSIONS These results suggest that pancreatic fat participates in diabetes development, but can be prevented byIF.
Collapse
|
38
|
Magnuson AM, Regan DP, Booth AD, Fouts JK, Solt CM, Hill JL, Dow SW, Foster MT. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr 2019; 59:1641-1654. [PMID: 31165249 DOI: 10.1007/s00394-019-02019-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Accumulation of visceral, but not subcutaneous, adipose tissue is highly associated with metabolic disease. Inflammation inciting from adipose tissue is commonly associated with metabolic disease risk and comorbidities. However, constituents of the immune system, lymph nodes, embedded within these adipose depots remain under-investigated. We hypothesize that, lymph nodes are inherently distinct and differentially respond to diet-induced obesity much like the adipose depots they reside in. METHODS Adipose tissue and lymph nodes were collected from the visceral and inguinal depots of male mice fed 13 weeks of standard CHOW or high fat diet (HFD). Immune cells were isolated from tissues, counted and characterized by flow cytometry or plated for proliferative capacity following Concanavalin A stimulation. Lymph node size and fibrosis area were also characterized. RESULTS In HFD fed mice visceral adipose tissue accumulation was associated with significant enlargement of the lymph node encased within. The subcutaneous lymph node did not change. Compared with mice fed CHOW for 13 weeks, mice fed HFD had a decline in immune cell populations and immune cell proliferative ability, as well as, exacerbated fibrosis accumulation, within the visceral, but not subcutaneous, lymph node. CONCLUSIONS Obesity-induced chronic low-grade inflammation is associated with impaired immunity and increased susceptibility to disease. Excessive visceral adiposity and associated inflammation driven by diet likely leads to obesity-induced immune suppression by way of lymph node/lymphatic system pathophysiology.
Collapse
|
39
|
Soto JE, Burnett CM, Eyck PT, Abel ED, Grobe JL. Comparison of the Effects of High-Fat Diet on Energy Flux in Mice Using Two Multiplexed Metabolic Phenotyping Systems. Obesity (Silver Spring) 2019; 27:793-802. [PMID: 30938081 PMCID: PMC6478533 DOI: 10.1002/oby.22441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Multiplexed metabolic phenotyping systems are available from multiple commercial vendors, and each system includes unique design features. Although expert opinion supports strengths and weaknesses of each design, empirical data from carefully controlled studies to test the biological impact of design differences are lacking. METHODS Wild-type C57BL/6J mice of both sexes underwent phenotyping in OxyMax (Columbus Instruments International) and Promethion (Sable Systems International) systems located within the same room of a newly constructed animal research facility in a crossover design study. Phenotypes were examined under chow (2920×)-fed conditions and again after 4 weeks of 60% high-fat diet (D12492) feeding. RESULTS Food intake, physical activity, and respiratory gas exchange data significantly diverged between systems, depending upon sex of animals and diet supplied. Estimates of energy expenditure based on gas exchange in both systems accounted for a fraction of consumed calories that was greater in males than females. CONCLUSIONS Design differences quantitatively impact the assessment of metabolic end points and thus the qualitative interpretation of various interventions. Importantly, current multiplexed systems remain blind to multiple additional end points, including digestive efficiency and selected forms of energy flux (nitrogenous, anaerobic, etc.), that account for a physiologically and/or pathophysiologically significant fraction of total energy flux.
Collapse
|
40
|
Tarigan TJE, Khumaedi AI, Wafa S, Johan M, Abdullah M, Surono IS, Tahapary DL. Determinant of postprandial triglyceride levels in healthy young adults. Diabetes Metab Syndr 2019; 13:1917-1921. [PMID: 31235115 DOI: 10.1016/j.dsx.2019.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/21/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fasting lipid profile does not necessarily illustrate the exact lipid dynamic in 24 h as human spends most of their time in postprandial state. Postprandial triglyceride (TG) has been reported to have advantages compared to fasting TG in terms of practicality and ability to predict cardiovascular events. This study aims to assess the determinant of postprandial TG in healthy young adults. METHODS This is a quasy-experimental study that involved 200 healthy young adults. This study compared fasting with postprandial TG and analyzed the relationship between postprandial TG with various demographic and metabolic parameters after ingestion of standardized high fat liquid meal. RESULT There was an upward trend from fasting TG to 2 h postprandial TG and 4 h postprandial TG. There was strong correlation between fasting TG and 2 h postprandial TG with 4 h postprandial TG (r = 0.731; p < 0.0001 dan r = 0.669; p < 0.0001, respectively). Whereas body mass index (BMI) and age showed weak correlation with 4 h postprandial TG (r = 0.141; p < 0.0001 dan r = 0.0747; p < 0.0001), fasting TG was the strongest predictor of 4 h postprandial TG (r = 0.669, B = 1.722 (95% CI 1.552 to 1.892), p < 0.0001). CONCLUSION Fasting TG was the strongest determinant of 4 h postprandial TG in healthy young adults. We also observed strong correlation between 4 h postprandial TG and fasting TG. Hence, 4 h postprandial TG might potentially replaced fasting TG when measurement of fasting TG is not feasible.
Collapse
|
41
|
Di Lascio N, Kusmic C, Rossi C, Solini A, Faita F. Alterations in Carotid Parameters in ApoE-/- Mice Treated with a High-Fat Diet: A Micro-ultrasound Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:980-988. [PMID: 30712947 DOI: 10.1016/j.ultrasmedbio.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Information on the common carotid artery and cerebral microcirculation can be obtained by micro-ultrasound (µUS). The aim of the study described here was to investigate high-fat diet-induced alterations in vascular parameters in ApoE-/- mice. Twenty-two ApoE-/- male mice were examined by µUS and divided into the standard diet (ApoE-/-SD) and high-fat diet (ApoE-/-HF) groups. The µUS examination was repeated after 4 mo (T1). Carotid stiffness, reflection magnitude and reflection index were measured; the amplitudes of the first (W1) and second (W2) local maxima, the local minimum (Wb) and the reflection index (RIWIA = Wb/W1) were assessed with wave intensity analysis. At T1, ApoE-/-HF mice had increased carotid stiffness (1.48 [0.36] vs. 1.88 [0.51]) and reflection magnitude (0.89 [0.07] vs. 0.94 [0.07]) values. Longitudinal comparisons highlighted increases in carotid stiffness for ApoE-/-HF mice (from 1.37 [0.25] to 1.88 [0.51] m/s) but not for ApoE-/-SD mice (from 1.40 [0.62] to 1.48 [0.36] m/s). ApoE-/-HF mice exhibited carotid artery stiffening and increased wave reflections.
Collapse
|
42
|
Peris‐Sampedro F, Mounib M, Schéle E, Edvardsson CE, Stoltenborg I, Adan RAH, Dickson SL. Impact of Free-Choice Diets High in Fat and Different Sugars on Metabolic Outcome and Anxiety-Like Behavior in Rats. Obesity (Silver Spring) 2019; 27:409-419. [PMID: 30699240 PMCID: PMC6590171 DOI: 10.1002/oby.22381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Rats were exposed to free-choice diets (fat plus one of two different sugar solutions, glucose or sucrose), and the metabolic consequences and impact on locomotor activity and anxiety-like behavior were explored. METHODS For 3 weeks, 7-week-old male rats were offered either chow only or free-choice high-fat diets differing in their added sugar: no sugar, sucrose, or glucose. In a second experiment, after 2 weeks on the diets, rats were switched from high sucrose to high glucose for two additional weeks. Metabolic end points included body weight, food intake, food choice, glycemic control, metabolic hormones, fat pad weight, brown adipose tissue weight, and gene expression. Behavioral analysis included locomotor and anxiety-like activity in the open field and elevated plus maze. RESULTS Both sugar diets enhanced adiposity and induced hyperphagia, favoring unhealthier dietary selection above that of the control diets (chow or free-choice high-fat with no sugar). Despite isocaloric intake in the sugar-containing diets, offering glucose instead of sucrose was associated with improved insulin sensitivity. The sugar-containing diets reduced activity (but with movements of increased velocity) and induced an anxiety-like phenotype. CONCLUSIONS Although free-choice diets negatively impacted on metabolism and anxiety-like behavior, replacing sucrose with glucose improved insulin sensitivity and may therefore be better for health.
Collapse
|
43
|
Yi HS. Implications of Mitochondrial Unfolded Protein Response and Mitokines: A Perspective on Fatty Liver Diseases. Endocrinol Metab (Seoul) 2019; 34:39-46. [PMID: 30912337 PMCID: PMC6435852 DOI: 10.3803/enm.2019.34.1.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The signaling network of the mitochondrial unfolded protein response (UPRmt) and mitohormesis is a retrograde signaling pathway through which mitochondria-to-nucleus communication occurs in organisms. Recently, it has been shown that the UPRmt is closely associated with metabolic disorders and conditions involving insulin resistance, such as alcoholic and non-alcoholic fatty liver and fibrotic liver disease. Scientific efforts to understand the UPRmt and mitohormesis, as well as to establish the mitochondrial proteome, have established the importance of mitochondrial quality control in the development and progression of metabolic liver diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we integrate and discuss the recent data from the literature on the UPRmt and mitohormesis in metabolic liver diseases, including NAFLD/NASH and fibrosis.
Collapse
|
44
|
Abulizi N, Quin C, Brown K, Chan YK, Gill SK, Gibson DL. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients 2019; 11:nu11020418. [PMID: 30781503 PMCID: PMC6412740 DOI: 10.3390/nu11020418] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
The dynamics of the tripartite relationship between the host, gut bacteria and diet in the gut is relatively unknown. An imbalance between harmful and protective gut bacteria, termed dysbiosis, has been linked to many diseases and has most often been attributed to high-fat dietary intake. However, we recently clarified that the type of fat, not calories, were important in the development of murine colitis. To further understand the host-microbe dynamic in response to dietary lipids, we fed mice isocaloric high-fat diets containing either milk fat, corn oil or olive oil and performed 16S rRNA gene sequencing of the colon microbiome and mass spectrometry-based relative quantification of the colonic metaproteome. The corn oil diet, rich in omega-6 polyunsaturated fatty acids, increased the potential for pathobiont survival and invasion in an inflamed, oxidized and damaged gut while saturated fatty acids promoted compensatory inflammatory responses involved in tissue healing. We conclude that various lipids uniquely alter the host-microbe interaction in the gut. While high-fat consumption has a distinct impact on the gut microbiota, the type of fatty acids alters the relative microbial abundances and predicted functions. These results support that the type of fat are key to understanding the biological effects of high-fat diets on gut health.
Collapse
|
45
|
Ducrocq F, Hyde A, Fanet H, Oummadi A, Walle R, De Smedt-Peyrusse V, Layé S, Ferreira G, Trifilieff P, Vancassel S. Decrease in Operant Responding Under Obesogenic Diet Exposure is not Related to Deficits in Incentive or Hedonic Processes. Obesity (Silver Spring) 2019; 27:255-263. [PMID: 30597761 DOI: 10.1002/oby.22358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A growing body of evidence suggests that obesity could result from alterations in reward processing. In rodent models, chronic exposure to an obesogenic diet leads to blunted dopamine signaling and related incentive responding. This study aimed to determine which reward-related behavioral dimensions are actually impacted by obesogenic diet exposure. METHODS Mice were chronically exposed to an obesogenic diet. Incentive and hedonic processes were tested through operant conditioning and licking microstructures, respectively. In parallel, mesolimbic dopamine transmission was assessed using microdialysis. RESULTS Prolonged high-fat (HF) diet exposure led to blunted mesolimbic dopamine release, paralleled by a decrease in operant responding in all schedules tested. HF-fed and control animals similarly decreased their operant responding in an effort-based choice task, and HF-fed animals displayed an overall lower calorie intake in this task. Analysis of the licking microstructures during consumption of a freely accessible reward suggested a decrease in basal hunger and a potentiation of gastrointestinal inhibition in HF-fed animals, without changes in hedonic reactivity. CONCLUSIONS These results suggest that the decrease in operant responding under prolonged HF diet exposure is mainly driven by decrease in hunger as well as stronger postingestive negative feedback mechanisms, rather than by a decrease in incentive or hedonic responses.
Collapse
|
46
|
Silva CB, Fassini PG, Ramalho LNZ, da Conceição EC, Zordan AJCM, Carlos D, Suen VMM. Curcuma supplementation in high-fat-fed C57BL/6 mice: no beneficial effect on lipid and glucose profile or prevention of weight gain. Eur J Nutr 2019; 59:93-102. [PMID: 30604178 DOI: 10.1007/s00394-018-1887-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/19/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE This experimental study investigated the effects of curcuma supplementation on weight gain, Body Adiposity Index, glucose and lipid profile, and liver and pancreas histology in C57BL/6 mice fed with a high-fat diet. METHODS 40 animals were separated into four groups: standard diet (SD), standard diet plus curcuma (SD + C), high-fat diet (HFD), and high-fat diet plus curcuma (HFD + C). Curcuma dose was 8 mg/animal/day. Histological and biochemical analyses were performed at the end of the experimental period. RESULTS Curcuma prevented weight gain, despite a higher food intake, and increased brown adipose tissue weight only in mice receiving standard diet. However, these changes were not observed in HFD + C group. The groups that received curcuma (SD + C and HFD + C) showed a pancreas with diffuse macro- and microgoticular steatosis. CONCLUSIONS Curcuma supplementation did not prevent weight gain or improved glucose and lipid profile in mice receiving high-fat diet. Furthermore, there was evidence of possible curcuma toxicity in the pancreas of C57BL/6 mice. The implications of these findings on humans still need to be investigated.
Collapse
|
47
|
Speretta GF, Lemes EV, Vendramini RC, Menani JV, Zoccal DB, Colombari E, Colombari DSA, Bassi M. High-fat diet increases respiratory frequency and abdominal expiratory motor activity during hypercapnia. Respir Physiol Neurobiol 2018; 258:32-39. [PMID: 30308245 PMCID: PMC6317333 DOI: 10.1016/j.resp.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022]
Abstract
Breathing disorders are commonly observed in association with obesity. Here we tested whether high-fat diet (HFD) impairs the chemoreflex ventilatory response. Male Holtzman rats (300-320 g) were fed with standard chow diet (SD) or HFD for 12 weeks. Then, tidal volume (VT), respiratory frequency (fR) and pulmonary ventilation (VE) were determined in conscious rats during basal condition, hypercapnia (7% or 10% CO2) or hypoxia (7% O2). The mean arterial pressure (MAP), heart rate (HR) and baroreflex sensitivity were also evaluated in conscious rats. A group of anesthetized rats was used for the measurements of the activity of inspiratory (diaphragm) and expiratory (abdominal) muscles under the same gas conditions. Baseline fR, VT and VE were similar between SD and HFD rats. During hypercapnia, the increase of fR was exacerbated in conscious HFD rats (60 ± 3, vs. SD: 47 ± 3 Δ breaths.min-1, P < 0.05). In anesthetized rats, hypercapnia strongly increased abdominal muscle activity in HFD group (238 ± 27, vs. basal condition: 100 ± 0.3%; P < 0.05), without significant change in SD group (129 ± 2.1, vs. basal condition: 100 ± 0.8%; P = 0.34). The ventilatory responses to hypoxia were similar between groups. In conscious HFD rats, MAP and HR were elevated and the baroreflex function was impaired (P < 0.05). These data demonstrated that 12 weeks of HFD exaggerate the ventilatory response activated by hypercapnia. The mechanisms involved in these responses need more investigation in future studies.
Collapse
|
48
|
Sun D, Heianza Y, Li X, Shang X, Smith SR, Bray GA, Sacks FM, Qi L. Genetic, epigenetic and transcriptional variations at NFATC2IP locus with weight loss in response to diet interventions: The POUNDS Lost Trial. Diabetes Obes Metab 2018; 20:2298-2303. [PMID: 29693310 PMCID: PMC6105429 DOI: 10.1111/dom.13333] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023]
Abstract
DNA Methylation of NFATC2IP was recently identified as being causally related to body mass index. The present study aimed to examine the roles of the genetic variation, methylation and gene expression at this locus in adiposity changes in a 2-year weight-loss trial. Participants (n = 692) were genotyped and randomly assigned to 1 of the 4 reduced-calorie diets, DNA methylation was derived from stored blood samples at baseline (n = 48), and adipose tissue gene expression was measured in 96 volunteers. We found significant interactions of fat intake with the genetic (rs11150675) and transcriptional (ILMN_1725441) variations at the NFATC2IP locus on 2-year weight change (Pinteraction < .01). Similarly, cis-DNA methylation at cg26663590 of the NFATC2IP locus showed an opposite impact on weight-loss in response to high-fat vs low-fat diet (effect size, 4.62 vs -1.24 kg). Additionally, baseline methylation at cg26663590 causally mediated 52.8% of the effect of rs11150675 on 2-year weight-loss in the high-fat diet group (P = .01), whereas no such mediation was observed in the low-fat diet group. Our findings suggest potentially causal effects of genetic, epigenetic and transcriptional variations at the NFATC2IP locus on adiposity changes in response to dietary fat intake.
Collapse
|
49
|
Toledo M, Batista-Gonzalez A, Merheb E, Aoun ML, Tarabra E, Feng D, Sarparanta J, Merlo P, Botrè F, Schwartz GJ, Pessin JE, Singh R. Autophagy Regulates the Liver Clock and Glucose Metabolism by Degrading CRY1. Cell Metab 2018; 28:268-281.e4. [PMID: 29937374 PMCID: PMC6082686 DOI: 10.1016/j.cmet.2018.05.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/19/2018] [Accepted: 05/24/2018] [Indexed: 01/18/2023]
Abstract
The circadian clock coordinates behavioral and circadian cues with availability and utilization of nutrients. Proteasomal degradation of clock repressors, such as cryptochrome (CRY)1, maintains periodicity. Whether macroautophagy, a quality control pathway, degrades circadian proteins remains unknown. Here we show that circadian proteins BMAL1, CLOCK, REV-ERBα, and CRY1 are lysosomal targets, and that macroautophagy affects the circadian clock by selectively degrading CRY1. Autophagic degradation of CRY1, an inhibitor of gluconeogenesis, occurs in a diurnal window when rodents rely on gluconeogenesis, suggesting that CRY1 degradation is time-imprinted to maintenance of blood glucose. High-fat feeding accelerates autophagic CRY1 degradation and contributes to obesity-associated hyperglycemia. CRY1 contains several light chain 3 (LC3)-interacting region (LIR) motifs, which facilitate the interaction of cargo proteins with the autophagosome marker LC3. Using mutational analyses, we identified two distinct LIRs on CRY1 that exert circadian glycemic control by regulating CRY1 degradation, revealing LIRs as potential targets for controlling hyperglycemia.
Collapse
|
50
|
Tanajak P, Pongkan W, Chattipakorn SC, Chattipakorn N. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats. Diab Vasc Dis Res 2018; 15:263-269. [PMID: 29424246 DOI: 10.1177/1479164118757152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. METHODS In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. RESULTS Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr154, p-ERK1/2 Thr202/Tyr204 and p-Akt Ser473) were decreased, compared with normal diet rats. CONCLUSION These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.
Collapse
|