26
|
Mayberry CL, Bond AC, Wilczek MP, Mehmood K, Maginnis MS. Sending mixed signals: polyomavirus entry and trafficking. Curr Opin Virol 2021; 47:95-105. [PMID: 33690104 DOI: 10.1016/j.coviro.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
Polyomaviruses are mostly non-pathogenic, yet some can cause human disease especially under conditions of immunosuppression, including JC, BK, and Merkel cell polyomaviruses. Direct interactions between viruses and the host early during infection dictate the outcome of disease, many of which remain enigmatic. However, significant work in recent years has contributed to our understanding of how this virus family establishes an infection, largely due to advances made for animal polyomaviruses murine and SV40. Here we summarize the major findings that have contributed to our understanding of polyomavirus entry, trafficking, disassembly, signaling, and immune evasion during the infectious process and highlight major unknowns in these processes that are open areas of study.
Collapse
|
27
|
Nabavi SF, Habtemariam S, Berindan-Neagoe I, Cismaru CA, Schaafsma D, Ghavami S, Banach M, Aghaabdollahian S, Nabavi SM. Rationale for Effective Prophylaxis Against COVID-19 Through Simultaneous Blockade of Both Endosomal and Non-Endosomal SARS-CoV-2 Entry into Host Cell. Clin Transl Sci 2021; 14:431-433. [PMID: 33406317 PMCID: PMC7993271 DOI: 10.1111/cts.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022] Open
|
28
|
Liu LK, Liu MJ, Li DL, Liu HP. Recent insights into anti-WSSV immunity in crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103947. [PMID: 33253753 DOI: 10.1016/j.dci.2020.103947] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
White spot syndrome virus (WSSV) is currently the most severely viral pathogen for farmed crustaceans such as shrimp and crayfish, which has been causing huge economic losses for crustaceans farming worldwide every year. Unfortunately, study on the molecular mechanisms of WSSV has been restricted by the lack of crustacean cell lines for WSSV propagation as well as the incompletely annotated genomes for host species, resulting in limited elucidation for WSSV pathogenesis at present. In addition to the findings of anti-WSSV response in shrimp, some of novel cellular events involved in WSSV infection have been recently revealed in crayfish, including endocytosis and intracellular transport of WSSV, innate immune pathways in response to WSSV infection, and regulation of viral gene expression by host genes. Despite these advances, many fundamental gaps in WSSV pathogenesis are still remaining, for example, how WSSV genome enters into nucleus and how the progeny virions are fully assembled in the host cell nucleus. In this review, recent findings in WSSV infection mechanism and the antiviral immunity against WSSV in crayfish are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis as well as new ideas for the target design of antiviral drugs against WSSV in crustaceans farming.
Collapse
|
29
|
Zhao Z, Qin P, Huang YW. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium 2021; 94:102360. [PMID: 33516131 PMCID: PMC7825922 DOI: 10.1016/j.ceca.2021.102360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.
Collapse
|
30
|
Huang YL, Huang MT, Sung PS, Chou TY, Yang RB, Yang AS, Yu CM, Hsu YW, Chang WC, Hsieh SL. Endosomal TLR3 co-receptor CLEC18A enhances host immune response to viral infection. Commun Biol 2021; 4:229. [PMID: 33603190 PMCID: PMC7893028 DOI: 10.1038/s42003-021-01745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Human C-type lectin member 18A (CLEC18A) is ubiquitously expressed in human, and highest expression levels are found in human myeloid cells and liver. In contrast, mouse CLEC18A (mCLEC18A) is only expressed in brain, kidney and heart. However, the biological functions of CLEC18A are still unclear. We have shown that a single amino acid change (S339 →R339) in CTLD domain has profound effect in their binding to polysaccharides and house dust mite allergens. In this study, we further demonstrate that CLEC18A and its mutant CLEC18A(S339R) associate with TLR3 in endosome and bind poly (I:C) specifically. Compared to TLR3 alone, binding affinity to poly (I:C) is further increased in TLR3-CLEC18A and TLR3-CLEC18A(S339R) complexes. Moreover, CLEC18A and CLEC18A(S339R) enhance the production of type I and type III interferons (IFNs), but not proinflammatory cytokines, in response to poly (I:C) or H5N1 influenza A virus (IAV) infection. Compared to wild type (WT) mice, ROSA-CLEC18A and ROSA-CLEC18A(S339R) mice generate higher amounts of interferons and are more resistant to H5N1 IAV infection. Thus, CLEC18A is a TLR3 co-receptor, and may contribute to the differential immune responses to poly (I:C) and IAV infection between human and mouse.
Collapse
|
31
|
Zhu Y, Feng F, Hu G, Wang Y, Yu Y, Zhu Y, Xu W, Cai X, Sun Z, Han W, Ye R, Qu D, Ding Q, Huang X, Chen H, Xu W, Xie Y, Cai Q, Yuan Z, Zhang R. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat Commun 2021; 12:961. [PMID: 33574281 PMCID: PMC7878750 DOI: 10.1038/s41467-021-21213-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.
Collapse
|
32
|
Xu J, Berastegui-Cabrera J, Carretero-Ledesma M, Chen H, Xue Y, Wold EA, Pachón J, Zhou J, Sánchez-Céspedes J. Discovery of a Small Molecule Inhibitor of Human Adenovirus Capable of Preventing Escape from the Endosome. Int J Mol Sci 2021; 22:ijms22041617. [PMID: 33562748 PMCID: PMC7915867 DOI: 10.3390/ijms22041617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses (HAdVs) display a wide range of tissue tropism and can cause an array of symptoms from mild respiratory illnesses to disseminated and life-threatening infections in immunocompromised individuals. However, no antiviral drug has been approved specifically for the treatment of HAdV infections. Herein, we report our continued efforts to optimize salicylamide derivatives and discover compound 16 (JMX0493) as a potent inhibitor of HAdV infection. Compound 16 displays submicromolar IC50 values, a higher selectivity index (SI > 100) and 2.5-fold virus yield reduction compared to our hit compound niclosamide. Moreover, unlike niclosamide, our mechanistic studies suggest that the antiviral activity of compound 16 against HAdV is achieved through the inhibition of viral particle escape from the endosome, which bars subsequent uncoating and the presentation of lytic protein VI.
Collapse
|
33
|
Xu M, Perdomo MF, Mattola S, Pyöriä L, Toppinen M, Qiu J, Vihinen-Ranta M, Hedman K, Nokso-Koivisto J, Aaltonen LM, Söderlund-Venermo M. Persistence of Human Bocavirus 1 in Tonsillar Germinal Centers and Antibody-Dependent Enhancement of Infection. mBio 2021; 12:e03132-20. [PMID: 33531399 PMCID: PMC7858059 DOI: 10.1128/mbio.03132-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a nonenveloped single-stranded DNA parvovirus, causes mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children. HBoV1 often persists in nasopharyngeal secretions for months, hampering diagnosis. It has also been shown to persist in pediatric palatine and adenoid tonsils, which suggests that lymphoid organs are reservoirs for virus spread; however, the tissue site and host cells remain unknown. Our aim was to determine, in healthy nonviremic children with preexisting HBoV1 immunity, the adenotonsillar persistence site(s), host cell types, and virus activity. We discovered that HBoV1 DNA persists in lymphoid germinal centers (GCs), but not in the corresponding tonsillar epithelium, and that the cell types harboring the virus are mainly naive, activated, and memory B cells and monocytes. Both viral DNA strands and both sides of the genome were detected, as well as infrequent mRNA. Moreover, we showed, in B-cell and monocyte cultures and ex vivo tonsillar B cells, that the cellular uptake of HBoV1 occurs via the Fc receptor (FcγRII) through antibody-dependent enhancement (ADE). This resulted in viral mRNA transcription, known to occur exclusively from double-stranded DNA in the nucleus, however, with no detectable productive replication. Confocal imaging with fluorescent virus-like particles moreover disclosed endocytosis. To which extent the active HBoV1 GC persistence has a role in chronic inflammation or B-cell maturation disturbances, and whether the virus can be reactivated, will be interesting topics for forthcoming studies.IMPORTANCE Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown. Our study provides new insights into tonsillar HBoV1 persistence. We observed HBoV1 persistence exclusively in germinal centers where immune maturation occurs, and the main host cells were B cells and monocytes. In cultured cell lines and primary tonsillar B cells, we showed the virus uptake to be significantly enhanced by HBoV1-specific antibodies, mediated by the cellular IgG receptor, leading to viral mRNA synthesis, but without detectable productive replication. Possible implications of such active viral persistence could be tonsillar inflammation, disturbances in immune maturation, reactivation, or cell death with release of virus DNA, explaining the long-lasting HBoV1 airway shedding.
Collapse
|
34
|
Stewart CM, Phan A, Bo Y, LeBlond ND, Smith TKT, Laroche G, Giguère PM, Fullerton MD, Pelchat M, Kobasa D, Côté M. Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog 2021; 17:e1009275. [PMID: 33513206 PMCID: PMC7875390 DOI: 10.1371/journal.ppat.1009275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps. Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic pathogens that can cause severe hemorrhagic fevers in humans and non-human primates. They are members of the growing Filoviridae family that also includes three other species of Ebolaviruses known to be highly pathogenic in humans. While vaccines for EBOV are being deployed and showed high efficacy, pan-filoviral treatment is still lacking. To infect cells, EBOV requires the endosomal/lysosomal resident protein Niemann-Pick C1 (NPC1). Accordingly, viral particles require extensive trafficking within endosomal pathways for entry and delivery of the viral genome into the host cell cytoplasm. Here, we used chemical biology to reveal that EBOV triggers receptor tyrosine kinase (RTK)-dependent signaling to traffic to intracellular vesicles that contain the receptor and are conducive to entry. The characterization of host trafficking factors and signaling pathways that are potentially triggered by the virus are important as these could be targeted for antiviral therapies. In our study, we identified several RTK inhibitors, some of which are FDA-approved drugs, that potently block EBOV infection. Since all filoviruses known to date, even Měnglà virus that was recently discovered in bats in China, use NPC1 as their entry receptor, these inhibitors have the potential to be effective pan-filovirus antivirals.
Collapse
|
35
|
Haldar S, Okamoto K, Dunning RA, Kasson PM. Precise Triggering and Chemical Control of Single-Virus Fusion within Endosomes. J Virol 2020; 95:e01982-20. [PMID: 33115879 PMCID: PMC7737740 DOI: 10.1128/jvi.01982-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Many enveloped viruses infect cells within endocytic compartments. The pH drop that accompanies endosomal maturation, often in conjunction with proteolysis, triggers viral proteins to insert into the endosomal membrane and drive fusion. Fusion dynamics have been studied by tracking viruses within living cells, which limits the precision with which fusion can be synchronized and controlled, and reconstituting viral fusion to synthetic membranes, which introduces nonphysiological membrane curvature and composition. To overcome these limitations, we report chemically controllable triggering of single-virus fusion within endosomes. We isolated influenza (A/Aichi/68; H3N2) virus:endosome conjugates from cells, immobilized them in a microfluidic flow cell, and rapidly and controllably triggered fusion. Observed lipid-mixing kinetics were surprisingly similar to those of influenza virus fusion with model membranes of opposite curvature: 80% of single-virus events had indistinguishable kinetics. This result suggests that endosomal membrane curvature is not a key permissive feature for viral entry, at least lipid mixing. The assay preserved endosomal membrane asymmetry and protein composition, providing a platform to test how cellular restriction factors and altered endosomal trafficking affect viral membrane fusion.IMPORTANCE Many enveloped viruses infect cells via fusion to endosomes, but controlling this process within living cells has been challenging. We studied the fusion of influenza virus virions to endosomes in a chemically controllable manner. Extracting virus:endosome conjugates from cells and exogenously triggering fusion permits precise study of virus:endosome fusion kinetics. Surprisingly, endosomal curvature does not grossly alter fusion kinetics, although membrane deformability does. This supports a model for influenza virus entry where cells restrict or permit membrane fusion by changing deformability, for instance, using interferon-induced proteins.
Collapse
|
36
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
|
37
|
Bruchez A, Sha K, Johnson J, Chen L, Stefani C, McConnell H, Gaucherand L, Prins R, Matreyek KA, Hume AJ, Mühlberger E, Schmidt EV, Olinger GG, Stuart LM, Lacy-Hulbert A. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science 2020; 370:241-247. [PMID: 32855215 PMCID: PMC7665841 DOI: 10.1126/science.abb3753] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Abstract
Recent outbreaks of Ebola virus (EBOV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have exposed our limited therapeutic options for such diseases and our poor understanding of the cellular mechanisms that block viral infections. Using a transposon-mediated gene-activation screen in human cells, we identify that the major histocompatibility complex (MHC) class II transactivator (CIITA) has antiviral activity against EBOV. CIITA induces resistance by activating expression of the p41 isoform of invariant chain CD74, which inhibits viral entry by blocking cathepsin-mediated processing of the Ebola glycoprotein. We further show that CD74 p41 can block the endosomal entry pathway of coronaviruses, including SARS-CoV-2. These data therefore implicate CIITA and CD74 in host defense against a range of viruses, and they identify an additional function of these proteins beyond their canonical roles in antigen presentation.
Collapse
MESH Headings
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Betacoronavirus/physiology
- COVID-19
- Cell Line, Tumor
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- DNA Transposable Elements
- Ebolavirus/physiology
- Endosomes/virology
- Genetic Testing
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Pandemics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Virus Internalization
Collapse
|
38
|
Genoyer E, Kulej K, Hung CT, Thibault PA, Azarm K, Takimoto T, Garcia BA, Lee B, Lakdawala S, Weitzman MD, López CB. The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. mBio 2020; 11:e02028-20. [PMID: 32843550 PMCID: PMC7448285 DOI: 10.1128/mbio.02028-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases.IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.
Collapse
|
39
|
Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Marthi M, Swanson JA, Moore BB, Lauring AS, Peters‐Golden M. Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus. EMBO J 2020; 39:e105057. [PMID: 32643835 PMCID: PMC7429743 DOI: 10.15252/embj.2020105057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo. AMs exposed to cigarette smoke extract lost the inhibitory activity of their secreted EVs. Influenza strains varied in their susceptibility to inhibition by AM-EVs. Only those exhibiting early endosomal escape and high pH of fusion were inhibited via a reduction in endosomal pH. By contrast, strains exhibiting later endosomal escape and lower fusion pH proved resistant to inhibition. These results extend our understanding of how resident AMs participate in host defense and have broader implications in the defense and treatment of pathogens internalized within endosomes.
Collapse
|
40
|
Wang XW, Vasta GR, Wang JX. The functional relevance of shrimp C-type lectins in host-pathogen interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103708. [PMID: 32305304 DOI: 10.1016/j.dci.2020.103708] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins (CTLs) are key recognition proteins in shrimp immunity. A few years ago we reviewed sequence information, ligand specificity, expression profiles and specific functions of the shrimp CTLs. Since then, multiple integrated studies that implemented biochemical approaches using both the native and recombinant proteins, functional genetic approaches using RNA interference, and mechanistic studies by analyzing protein-protein interactions were carried out. Results from these rigorous studies revealed the functions and mechanisms of action of selected members of the shrimp CTL family. This review focuses on this new knowledge, that includes unique structural aspects, functions, and mechanisms in host-pathogen interactions, the functional relevance of regions other than the C-type lectin domain, and the regulation of transcription of shrimp CTLs. Thus, this review aims to provide a detailed update of recent studies that have contributed to our better understanding of the shrimp immune events that involve CTL functions.
Collapse
|
41
|
Kounatidis I, Stanifer ML, Phillips MA, Paul-Gilloteaux P, Heiligenstein X, Wang H, Okolo CA, Fish TM, Spink MC, Stuart DI, Davis I, Boulant S, Grimes JM, Dobbie IM, Harkiolaki M. 3D Correlative Cryo-Structured Illumination Fluorescence and Soft X-ray Microscopy Elucidates Reovirus Intracellular Release Pathway. Cell 2020; 182:515-530.e17. [PMID: 32610083 PMCID: PMC7391008 DOI: 10.1016/j.cell.2020.05.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.
Collapse
|
42
|
Izumida M, Hayashi H, Tanaka A, Kubo Y. Cathepsin B Protease Facilitates Chikungunya Virus Envelope Protein-Mediated Infection via Endocytosis or Macropinocytosis. Viruses 2020; 12:v12070722. [PMID: 32635194 PMCID: PMC7412492 DOI: 10.3390/v12070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.
Collapse
|
43
|
Albakri MM, Veliz FA, Fiering SN, Steinmetz NF, Sieg SF. Endosomal toll-like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology 2020; 159:183-192. [PMID: 31630392 PMCID: PMC6954739 DOI: 10.1111/imm.13135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
The plant virus, cowpea mosaic virus (CPMV), has demonstrated a remarkable capacity to induce anti-tumour immune responses following direct administration into solid tumours. The molecular pathways that account for these effects and the capacity of CPMV to activate human cells are not well defined. Here, we examine the ability of CPMV particles to activate human monocytes, dendritic cells (DCs) and macrophages. Monocytes in peripheral blood mononuclear cell cultures and purified CD14+ monocytes were readily activated by CPMV in vitro, leading to induction of HLA-DR, CD86, PD-L1, IL-15R and CXCL10 expression. Monocytes released chemokines, CXCL10, MIP-1α and MIP-1β into cell culture supernatants after incubation with CPMV. DC subsets (pDC and mDC) and monocyte-derived macrophages also demonstrated evidence of activation after incubation with CPMV. Inhibitors of spleen tyrosine kinase (SYK), endocytosis or endocytic acidification impaired the capacity of CPMV to activate monocytes. Furthermore, CPMV activation of monocytes was partially blocked by a TLR7/8 antagonist. These data demonstrate that CPMV activates human monocytes in a manner dependent on SYK signalling, endosomal acidification and with an important contribution from TLR7/8 recognition.
Collapse
|
44
|
Wang F, Pan H, Yao X, He H, Liu L, Luo Y, Zhou H, Zheng M, Zhang R, Ma Y, Cai L. Bioorthogonal Metabolic Labeling Utilizing Protein Biosynthesis for Dynamic Visualization of Nonenveloped Enterovirus 71 Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3363-3370. [PMID: 31845579 DOI: 10.1021/acsami.9b17412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioorthogonal metabolic labeling through the endogenous cellular metabolic pathways (e.g., phospholipid and sugar) is a promising approach for effectively labeling live viruses. However, it remains a big challenge to label nonenveloped viruses due to lack of host-derived envelopes. Herein, a novel bioorthogonal labeling strategy is developed utilizing protein synthesis pathway to label and trace nonenveloped viruses. The results show that l-azidohomoalanine (Aha), an azido derivative of methionine, is more effective than azido sugars to introduce azido motifs into viral capsid proteins by substituting methionine residues during viral protein biosynthesis and assembly. The azide-modified EV71 (N3-EV71) particles are then effectively labeled with dibenzocyclooctyl (DBCO)-functionalized fluorescence probes through an in situ bioorthogonal reaction with well-preserved viral infectivity. Dual-labeled imaging clearly clarifies that EV71 virions primarily bind to scavenger receptors and are internalized through clathrin-mediated endocytosis. The viral particles are then transported into early and late endosomes where viral RNA is released in a low-pH dependent manner at about 70 min postinfection. These results first reveal viral trafficking and uncoating mechanisms, which may shed light on the pathogenesis of EV71 infection and contribute to antiviral drug discovery.
Collapse
|
45
|
Horníková L, Bruštíková K, Forstová J. Microtubules in Polyomavirus Infection. Viruses 2020; 12:E121. [PMID: 31963741 PMCID: PMC7019765 DOI: 10.3390/v12010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Microtubules, part of the cytoskeleton, are indispensable for intracellular movement, cell division, and maintaining cell shape and polarity. In addition, microtubules play an important role in viral infection. In this review, we summarize the role of the microtubules' network during polyomavirus infection. Polyomaviruses usurp microtubules and their motors to travel via early and late acidic endosomes to the endoplasmic reticulum. As shown for SV40, kinesin-1 and microtubules are engaged in the release of partially disassembled virus from the endoplasmic reticulum to the cytosol, and dynein apparently assists in the further disassembly of virions prior to their translocation to the cell nucleus-the place of their replication. Polyomavirus gene products affect the regulation of microtubule dynamics. Early T antigens destabilize microtubules and cause aberrant mitosis. The role of these activities in tumorigenesis has been documented. However, its importance for productive infection remains elusive. On the other hand, in the late phase of infection, the major capsid protein, VP1, of the mouse polyomavirus, counteracts T-antigen-induced destabilization. It physically binds microtubules and stabilizes them. The interaction results in the G2/M block of the cell cycle and prolonged S phase, which is apparently required for successful completion of the viral replication cycle.
Collapse
|
46
|
Benfield CT, MacKenzie F, Ritzefeld M, Mazzon M, Weston S, Tate EW, Teo BH, Smith SE, Kellam P, Holmes EC, Marsh M. Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Sci Alliance 2020; 3:e201900542. [PMID: 31826928 PMCID: PMC6907390 DOI: 10.26508/lsa.201900542] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Host interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral restriction factors. Of these, IFITM3 potently inhibits viruses that enter cells through acidic endosomes, many of which are zoonotic and emerging viruses with bats (order Chiroptera) as their natural hosts. We previously demonstrated that microbat IFITM3 is antiviral. Here, we show that bat IFITMs are characterized by strong adaptive evolution and identify a highly variable and functionally important site-codon 70-within the conserved CD225 domain of IFITMs. Mutation of this residue in microbat IFITM3 impairs restriction of representatives of four different virus families that enter cells via endosomes. This mutant shows altered subcellular localization and reduced S-palmitoylation, a phenotype copied by mutation of conserved cysteine residues in microbat IFITM3. Furthermore, we show that microbat IFITM3 is S-palmitoylated on cysteine residues C71, C72, and C105, mutation of each cysteine individually impairs virus restriction, and a triple C71A-C72A-C105A mutant loses all restriction activity, concomitant with subcellular re-localization of microbat IFITM3 to Golgi-associated sites. Thus, we propose that S-palmitoylation is critical for Chiropteran IFITM3 function and identify a key molecular determinant of IFITM3 S-palmitoylation.
Collapse
|
47
|
Zhang F, Guo H, Chen Q, Ruan Z, Fang Q. Endosomes and Microtubles are Required for Productive Infection in Aquareovirus. Virol Sin 2019; 35:200-211. [PMID: 31858455 DOI: 10.1007/s12250-019-00178-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Grass carp reovirus (GCRV), the genus Aquareovirus in family Reoviridae, is viewed as the most pathogenic aquareovirus. To understand the molecular mechanism of how aquareovirus initiates productive infection, the roles of endosome and microtubule in cell entry of GCRV are investigated by using quantum dots (QDs)-tracking in combination with biochemical approaches. We found that GCRV infection and viral protein synthesis were significantly inhibited by pretreating host cells with endosome acidification inhibitors NH4Cl, chloroquine and bafilomycin A1 (Bafi). Confocal images indicated that GCRV particles could colocalize with Rab5, Rab7 and lysosomes in host cells. Further ultrastructural examination validated that viral particle was found in late endosomes. Moreover, disruption of microtubules with nocodazole clearly blocked GCRV entry, while no inhibitory effects were observed with cytochalasin D treated cells in viral infection, hinting that intracellular transportation of endocytic uptake in GCRV infected cells is via microtubules but not actin filament. Notably, viral particles were observed to transport along microtubules by using QD-labeled GCRV. Altogether, our results suggest that GCRV can use endosomes and microtubules to initiate productive infection.
Collapse
|
48
|
Chen YJ, Liu X, Tsai B. SV40 Hijacks Cellular Transport, Membrane Penetration, and Disassembly Machineries to Promote Infection. Viruses 2019; 11:v11100917. [PMID: 31590347 PMCID: PMC6832212 DOI: 10.3390/v11100917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
During entry, a virus must be transported through the endomembrane system of the host cell, penetrate a cellular membrane, and undergo capsid disassembly, to reach the cytosol and often the nucleus in order to cause infection. To do so requires the virus to coordinately exploit the action of cellular membrane transport, penetration, and disassembly machineries. How this is accomplished remains enigmatic for many viruses, especially for viruses belonging to the nonenveloped virus family. In this review, we present the current model describing infectious entry of the nonenveloped polyomavirus (PyV) SV40. Insights from SV40 entry are likely to provide strategies to combat PyV-induced diseases, and to illuminate cellular trafficking, membrane transport, and disassembly mechanisms.
Collapse
|
49
|
Liu T, Li J, Liu Y, Qu Y, Li A, Li C, Zhang Q, Wu W, Li J, Liu Y, Li D, Wang S, Liang M. SNX11 Identified as an Essential Host Factor for SFTS Virus Infection by CRISPR Knockout Screening. Virol Sin 2019; 34:508-520. [PMID: 31215001 PMCID: PMC6814687 DOI: 10.1007/s12250-019-00141-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 01/23/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic tick-borne bunyavirus that causes lethal infectious disease and severe fever with thrombocytopenia syndrome (SFTS) in humans. The molecular mechanisms and host cellular factors required for SFTSV infection remain uncharacterized. Using a genome-wide CRISPR-based screening strategy, we identified a host cellular protein, sorting nexin 11 (SNX11) which is involved in the intracellular endosomal trafficking pathway, as an essential cell factor for SFTSV infection. An SNX11-KO HeLa cell line was established, and SFTSV replication was significantly reduced. The glycoproteins of SFTSV were detected and remained in later endosomal compartments but were not detectable in the endoplasmic reticulum (ER) or Golgi apparatus. pH values in the endosomal compartments of the SNX11-KO cells increased compared with the pH of normal HeLa cells, and lysosomal-associated membrane protein 1 (LAMP1) expression was significantly elevated in the SNX11-KO cells. Overall, these results indicated that penetration of SFTSV from the endolysosomes into the cytoplasm of host cells was blocked in the cells lacking SNX11. Our study for the first time provides insight into the important role of the SNX11 as an essential host factor in the intracellular trafficking and penetrating process of SFTSV infection via potential regulation of viral protein sorting, membrane fusion, and other endocytic machinery.
Collapse
|
50
|
Suwan K, Yata T, Waramit S, Przystal JM, Stoneham CA, Bentayebi K, Asavarut P, Chongchai A, Pothachareon P, Lee KY, Topanurak S, Smith TL, Gelovani JG, Sidman RL, Pasqualini R, Arap W, Hajitou A. Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer. Proc Natl Acad Sci U S A 2019; 116:18571-18577. [PMID: 31375630 PMCID: PMC6744886 DOI: 10.1073/pnas.1906653116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage's minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.
Collapse
|