26
|
Lee KN, Park KH, Kim YM, Cho I, Kim TE. Prediction of emergency cerclage outcomes in women with cervical insufficiency: The role of inflammatory, angiogenic, and extracellular matrix-related proteins in amniotic fluid. PLoS One 2022; 17:e0268291. [PMID: 35536791 PMCID: PMC9089878 DOI: 10.1371/journal.pone.0268291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aimed to determine whether various novel inflammatory, angiogenic, and extracellular matrix-related mediators in amniotic fluid (AF) can independently predict emergency cerclage outcomes in women with acute cervical insufficiency (CI). METHODS This was a retrospective cohort study conducted among 50 singleton pregnant women (18-25 weeks) who underwent emergency cerclage for CI and were subjected to amniocentesis. The AF samples were assayed for endoglin, endostatin, haptoglobin, insulin-like growth factor-binding protein (IGFBP)-3, -4, kallistatin, lumican, macrophage colony-stimulating factor (M-CSF), pentraxin 3, p-selectin, receptor for advanced glycation end products (RAGE), resistin, transforming growth factor beta-induced (TGFBI), and vitamin D-binding protein (VDBP) levels. Interleukin (IL)-6 levels in the AF were also measured for comparison with potential biomarkers assessed in this study. The primary endpoint was spontaneous preterm delivery (SPTD) at <34 weeks following emergency cerclage. RESULTS The AF levels of pentraxin 3, RAGE, and resistin were significantly higher in women who had SPTD at <34 weeks after cerclage placement (pentraxin-3: P = 0.003; RAGE: P = 0.041; and resistin; P = 0.002). In multivariate analysis, elevated AF levels of pentraxin 3 (P = 0.007) and resistin (P = 0.006), but not those of RAGE (P = 0.069), were independently associated with the occurrence of SPTD at <34 weeks after cerclage, following adjustment for baseline clinical variables (e.g., cervical dilation). The area under the curve (AUC) values of AF pentraxin 3, RAGE, and resistin for the prediction of SPTD at <34 weeks were 0.749, 0.669, and 0.770, respectively, which were similar to those of AF IL-6. However, in univariate analyses, no differences in the AF levels of endoglin, endostatin, haptoglobin, IGFBP-3, IGFBP-4, kallistatin, lumican, p-selectin, TGFBI, and VDBP were found to be associated with SPTD at <34 weeks after cerclage placement. CONCLUSIONS In women with acute CI, the AF levels of pentraxin 3, RAGE, and resistin could be useful novel biomarkers for predicting SPTD following emergency cerclage. However, the clinical utility of these new biomarkers should be validated in larger multicenter studies.
Collapse
|
27
|
Hua K, Wang M, Jin Y, Gao Y, Luo R, Bi D, Zhou R, Jin H. P38 MAPK pathway regulates the expression of resistin in porcine alveolar macrophages via Ets2 during Haemophilus parasuis stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104327. [PMID: 34863954 DOI: 10.1016/j.dci.2021.104327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Haemophilus parasuis is a widespread bacterial pathogen causing acute systemic inflammation and leading to the sudden death of piglets. Resistin, a multifunctional peptide hormone previously demonstrated to influence the inflammation in porcine, was extremely increased in H. parasuis-infected tissues. However, the mechanism of resistin expression regulation in porcine, especially during pathogen infection, remains unclear. In the present study, we explored for the first time the transcription factor and signaling pathway mediating the expression of pig resistin during H. parasuis stimulation. We found that H. parasuis induced the expression of pig resistin in a time- and dose-dependent manner via the transcription factor Ets2 in porcine alveolar macrophages during H. parasuis stimulation. Moreover, the expression of Ets2 was mediated by the activation of the p38 MAPK pathway induced by H. parasuis, thus promoting resistin production. These results revealed a novel view of the molecular mechanism of pig resistin production during acute inflammation induced by pathogenic bacteria.
Collapse
|
28
|
Mallardo M, Ferraro S, Daniele A, Nigro E. GDM-complicated pregnancies: focus on adipokines. Mol Biol Rep 2021; 48:8171-8180. [PMID: 34652617 PMCID: PMC8604848 DOI: 10.1007/s11033-021-06785-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022]
Abstract
Gestational diabetes mellitus (GDM) is a serious complication of pregnancy and is defined as a state of glucose intolerance that is first diagnosed and arises during gestation. Although the pathophysiology of GDM has not yet been thoroughly clarified, insulin resistance and pancreatic β-cell dysfunction are considered critical components of its etiopathogenesis. To sustain fetus growth and guarantee mother health, many significant changes in maternal metabolism are required in normal and high-risk pregnancy accompanied by potential complications. Adipokines, adipose tissue-derived hormones, are proteins with pleiotropic functions including a strong metabolic influence in physiological conditions and during pregnancy too. A growing number of studies suggest that various adipokines including adiponectin, leptin, visfatin, resistin and tumor necrosis factor α (TNF-α) are dysregulated in GDM and might have pathological significance and a prognostic value in this pregnancy disorder. In this review, we will focus on the current knowledge on the role that the aforementioned adipokines play in the development and progression of GDM.
Collapse
|
29
|
Taouis M, Benomar Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol Cell Endocrinol 2021; 533:111341. [PMID: 34082045 DOI: 10.1016/j.mce.2021.111341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Resistin has been firstly discovered in mice and was identified as an adipose tissue-secreted hormone or adipokine linking obesity and insulin resistance. In humans, resistin has been characterized as a hormone expressed and secreted by Immune cells especially by macrophages, and was linked to many inflammatory responses including inflammation of adipose tissue due to macrophages' infiltration. Human and mouse resistin display sequence and structural similarities and also dissimilarities that could explain their different expression pattern. In mice, strong pieces of evidence clearly associated high resistin plasma levels to obesity and insulin resistance suggesting that resistin could play an important role in the onset and progression of obesity and insulin resistance via resistin-induced inflammation. In humans, the link between resistin and obesity/insulin resistance is still a matter of debate and needs more epidemiological studies. Also, resistin has been linked to other chronic diseases such as cardiovascular diseases and cancers where resistin has been proposed in many studies as a biological marker.
Collapse
|
30
|
Rzepa Ł, Peller M, Eyileten C, Rosiak M, Kondracka A, Mirowska-Guzel D, Opolski G, Filipiak KJ, Postuła M, Kapłon-Cieslicka A. Resistin is Associated with Inflammation and Renal Function, but not with Insulin Resistance in Type 2 Diabetes. Horm Metab Res 2021; 53:478-484. [PMID: 34169498 DOI: 10.1055/a-1492-3077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the study was to investigate the association of adipokines (resistin, leptin and adiponectin) with obesity, insulin resistance (IR) and inflammation in type 2 diabetes mellitus (T2DM). A total of 284 patients with T2DM were included. Concentrations of resistin, leptin, adiponectin, and inflammatory markers [high sensitivity C-reactive protein (hsCRP), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6)] were measured and homeostatic model assessment for IR (HOMA-IR) index was calculated. Resistin correlated negatively with estimated glomerular filtration rate (eGFR) and positively with hsCRP, TNF-α, IL-6, and white blood cell count (WBC). Leptin correlated positively with HOMA-IR, whereas adiponectin correlated negatively. Leptin also correlated positively with body mass index (BMI), waist circumference, IL-6, WBC and negatively with eGFR. Adiponectin correlated negatively with waist circumference, WBC, and eGFR. Multivariate logistic regression indicated lower eGFR and higher WBC and IL-6 as independent predictive factors of resistin concentration above the upper quartile (CAQ3), whereas female sex and higher BMI and HOMA-IR of leptin CAQ3, and lower HOMA-IR and older age of adiponectin CAQ3. In conclusion, in contrast to leptin and adiponectin, in T2DM patients, resistin is not associated with BMI and IR, but with inflammation and worse kidney function.
Collapse
|
31
|
Rzucidlo CL, Sperou ES, Holser RR, Khudyakov JI, Costa DP, Crocker DE. Changes in serum adipokines during natural extended fasts in female northern elephant seals. Gen Comp Endocrinol 2021; 308:113760. [PMID: 33781740 DOI: 10.1016/j.ygcen.2021.113760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/31/2022]
Abstract
Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.
Collapse
|
32
|
Habib SS, Sultan M, Khan A, Al-khlaiwi T, Bashir S. Circulating Adiponectin and Resistin Levels Are Associated with Adiposity Indices and Physical Fitness in Healthy Adult Males. Med Sci Monit Basic Res 2021; 27:e930322. [PMID: 34158467 PMCID: PMC8237699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/26/2021] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND The aim of this study was to assess the correlation of physical fitness scores (PFS) with serum adiponectin, resistin, and adiponectin/resistin ratio (AR ratio) in relation to body adiposity indices in healthy adult males. MATERIAL AND METHODS This cross-sectional study was conducted at the Clinical Physiology Unit, Physiology Department, King Saud University Medical City, King Saud University, Riyadh, from March 2017 to April 2018. We included 125 healthy adult males. Serum samples were obtained after overnight fasting. Analysis was performed for fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), basal insulin, lipid profile, resistin, and adiponectin. Bioimpedance analysis (BIA) was used to assess body composition. Based on ideal body composition, PFS were computed as previously published for all subjects and compared with serum markers. RESULTS There was a positive correlation of adiponectin with PFS (r=.218, p=0.015) and an inverse correlation with obesity degree (OD), OD (r=-.239, p=0.001), body mass index (BMI) (r=-.244, p=0.001), and waist/hip ratio (WHR) WHR (r=-.296, p=0.001). Moreover, it was correlated negatively with basal insulin (r=-.211, p=0.009) and homeostatic insulin resistance model (HOMA-IR) HOMA-IR (r=-.221, p=0.013). Resistin was correlated negatively with PFS (r=-.203, p=0.023), while its correlation with OD, BMI, WHR, and HOMA-IR was not significant. AR ratio was positively correlated with PFS (r=.286, p=0.001) and negatively with OD (r=-.210, p=0.019), BMI (r=-.222, p=0.013), WHR (r=-.308, p=0.001) and basal insulin (r=-.237, p=0.008). In linear regression analysis, the relationship of PFS was significant with adiponectin (r=.218, p=0.015), resistin (r=-.203, p=0.023) and AR ratio (r=.286, p=0.001). ROC curve analysis showed that individually the values of adiponectin and resistin were not significantly correlated with PFS, but they were significant with the combined AR ratio with AUC 64.6% (p=0.029). CONCLUSIONS Serum adiponectin was positively correlated and resistin was negatively correlated with physical fitness scores based on healthy body composition with low proportion of body adiposity and a higher proportion of fat-free mass. However, the combined effect of adiponectin/resistin ratio is an even better predictor of physical fitness. Moreover, the adiponectin/resistin ratio is even more highly associated with physical fitness than adiponectin or resistin alone.
Collapse
|
33
|
Elaraby E, Malek AI, Abdullah HW, Elemam NM, Saber-Ayad M, Talaat IM. Natural Killer Cell Dysfunction in Obese Patients with Breast Cancer: A Review of a Triad and Its Implications. J Immunol Res 2021; 2021:9972927. [PMID: 34212054 PMCID: PMC8205589 DOI: 10.1155/2021/9972927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Natural killer cells (NK cells) are a crucial constituent of the innate immune system as they mediate immunity against viruses, bacteria, parasites, and most importantly, tumor cells. The exact mechanism of how the innate immune system and specifically NK cells interact with cancer cells is complex and is yet to be understood. Several factors that constitute the tumor microenvironment (TME) such as hypoxia and TGF-β are believed to play a role in the complex physiological reaction of NK cells to tumor cells. On the other hand, several risk factors are implicated in the development and progression of breast cancer, most importantly: obesity. Cytokines released from adipose tissue such as adipokines, leptin, and resistin, among others, are also believed to facilitate tumor progression. In this study, we aimed to build a triad of breast cancer, obesity, and NK cell dysfunction to elucidate a link between these pillars on a cellular level. Directing efforts towards solidifying the link between these factors will help in designing a targeted immunotherapy with a low side-effect profile that can revolutionize breast cancer treatment and improve survival in obese patients.
Collapse
|
34
|
Yadav AK, Jang BC. Inhibition of Lipid Accumulation and Cyclooxygenase-2 Expression in Differentiating 3T3-L1 Preadipocytes by Pazopanib, a Multikinase Inhibitor. Int J Mol Sci 2021; 22:ijms22094884. [PMID: 34063048 PMCID: PMC8125232 DOI: 10.3390/ijms22094884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pazopanib is a multikinase inhibitor with anti-tumor activity. As of now, the anti-obesity effect and mode of action of pazopanib are unknown. In this study, we investigated the effects of pazopanib on lipid accumulation, lipolysis, and expression of inflammatory cyclooxygenase (COX)-2 in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte. Of note, pazopanib at 10 µM markedly decreased lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, pazopanib inhibited not only expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and perilipin A but also phosphorylation of signal transducer and activator of transcription (STAT)-3 during 3T3-L1 preadipocyte differentiation. In addition, pazopanib treatment increased phosphorylation of cAMP-activated protein kinase (AMPK) and its downstream effector ACC during 3T3-L1 preadipocyte differentiation. However, in differentiated 3T3-L1 adipocytes, pazopanib treatment did not stimulate glycerol release and hormone-sensitive lipase (HSL) phosphorylation, hallmarks of lipolysis. Moreover, pazopanib could inhibit tumor necrosis factor (TNF)-α-induced expression of COX-2 in both 3T3-L1 preadipocytes and differentiated cells. In summary, this is the first report that pazopanib has strong anti-adipogenic and anti-inflammatory effects in 3T3-L1 cells, which are mediated through regulation of the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, ACC, perilipin A, AMPK, and COX-2.
Collapse
|
35
|
Finamore F, Cecchettini A, Ceccherini E, Signore G, Ferro F, Rocchiccioli S, Baldini C. Characterization of Extracellular Vesicle Cargo in Sjögren's Syndrome through a SWATH-MS Proteomics Approach. Int J Mol Sci 2021; 22:ijms22094864. [PMID: 34064456 PMCID: PMC8124455 DOI: 10.3390/ijms22094864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a complex heterogeneous disease characterized by a wide spectrum of glandular and extra-glandular manifestations. In this pilot study, a SWATH-MS approach was used to monitor extracellular vesicles-enriched saliva (EVs) sub-proteome in pSS patients, to compare it with whole saliva (WS) proteome, and assess differential expressed proteins between pSS and healthy control EVs samples. Comparison between EVs and WS led to the characterization of compartment-specific proteins with a moderate degree of overlap. A total of 290 proteins were identified and quantified in EVs from healthy and pSS patients. Among those, 121 proteins were found to be differentially expressed in pSS, 82% were found to be upregulated, and 18% downregulated in pSS samples. The most representative functional pathways associated to the protein networks were related to immune-innate response, including several members of S100 protein family, annexin A2, resistin, serpin peptidase inhibitors, azurocidin, and CD14 monocyte differentiation antigen. Our results highlight the usefulness of EVs for the discovery of novel salivary-omic biomarkers and open novel perspectives in pSS for the identification of proteins of clinical relevance that could be used not only for the disease diagnosis but also to improve patients’ stratification and treatment-monitoring. Data are available via ProteomeXchange with identifier PXD025649.
Collapse
|
36
|
Abstract
OBJECTIVE The aim of this study was to evaluate the resistin concentrations in saliva; which is a noninvasive and stress-free diagnostic sample, and to investigate the significance of salivary resistin concentrations in screening GDM. METHODS This cross-sectional case-control study included 41 newly diagnosed GDM patients and 40 healthy pregnant. The participants were consecutively included in the study among eligible pregnant women; who were in the age range from 18 to 40 years of age and at the gestational age between 24 and 28 weeks. The levels of serum and salivary resistin were determined using an enzyme-linked immunosorbent assay method. RESULTS Maternal serum resistin and salivary resistin concentrations were significantly higher in the patients with GDM compared to the individuals in the control group. The data were evaluated by the receiver-operator curve analysis; which revealed that serum and saliva resistin concentrations were moderately successful markers to differentiate subjects with GDM from healthy pregnant women. CONCLUSIONS The results indicate that the determination of saliva resistin levels at the gestational age between 24 to 28 weeks may be used as an alternative, stress-free, and noninvasive technique that may be used in GDM screening.
Collapse
|
37
|
Wen F, Shi Z, Liu X, Tan Y, Wei L, Zhu X, Zhang H, Zhu X, Meng X, Ji W, Yang M, Lu Z. Acute Elevated Resistin Exacerbates Mitochondrial Damage and Aggravates Liver Steatosis Through AMPK/PGC-1α Signaling Pathway in Male NAFLD Mice. Horm Metab Res 2021; 53:132-144. [PMID: 33302316 DOI: 10.1055/a-1293-8250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resistin was identified as a link between obesity and insulin resistance and is associated with many diseases in mice. Deciphering the related development and molecular mechanism is necessary for the treatment of these diseases. Previous studies have revealed that increased resistin levels are correlated with lipid accumulation and play a role in non-alcoholic fatty liver disease (NAFLD) development. However, the exact mechanisms underlying these processes remain unclear. To further clarify whether acute elevated resistin level exacerbated liver steatosis, a high-fat diet-induced NAFLD animal model was used and treated with or without resistin for 6 days. We discovered that resistin altered mitochondrial morphology, decreased mitochondrial content, and increased lipid accumulation in HFD mice. qRT-PCR and western blot analysis showed that acute elevated resistin significantly altered the gene expression of mitochondrial biogenesis and liver lipid metabolism molecules in HFD mice. Consequently, in vitro experiments verified that resistin reduced the mitochondrial content, impaired the mitochondrial function and increased the lipid accumulation of palmitate-treated HepG2 cells. Additionally, we demonstrated that resistin upregulated proinflammatory factors, which confirmed that resistin promoted the development of inflammation in NAFLD mice and palmitate-treated HepG2 cells. Signaling-transduction analysis demonstrated that acute elevated resistin aggravated liver steatosis through AMPK/PGC-1α pathway in male mice. This reveals a novel pathway through which lipogenesis is induced by resistin and suggests that maintaining mitochondrial homeostasis may be key to treatments for preventing resistin-induced NAFLD aggravation.
Collapse
|
38
|
Tchio C, Baba K, Piccione G, Tosini G. Removal of melatonin receptor type 1 signalling induces dyslipidaemia and hormonal changes in mice subjected to environmental circadian disruption. Endocrinol Diabetes Metab 2021; 4:e00171. [PMID: 33532613 PMCID: PMC7831213 DOI: 10.1002/edm2.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 11/26/2022] Open
Abstract
Background Melatonin is a hormone secreted by the pineal gland in a circadian rhythmic manner with peak synthesis at night. Melatonin signalling was suggested to play a critical role in metabolism during the circadian disruption. Methods Melatonin-proficient (C3H-f+/+ or WT) and melatonin receptor type 1 knockout (MT1 KO) male and female mice were phase-advanced (6 hours) once a week for 6 weeks. Every week, we measured weight, food intake and basal glucose levels. At the end of the experiment, we sacrificed the animals and measured the blood's plasma for lipids profile (total lipids, phospholipids, triglycerides and total cholesterol), metabolic hormones profiles (ghrelin, leptin, insulin, glucagon, glucagon-like-peptide and resistin) and the body composition. Results Environmental circadian disruption (ECD) did not produce any significant effects in C3H-f+/+, while it increased lipids profile in MT1 KO with the significant increase observed in total lipids and triglycerides. For metabolic hormones profile, ECD decreased plasma ghrelin and increased plasma insulin in MT1 KO females. Under control condition, MT1 KO females have significantly different body weight, fat mass, total lipids and total cholesterol than the control C3H-f+/+ females. Conclusion Our data show that melatonin-proficient mice are not affected by ECD. When the MT1 receptors are removed, ECD induced dyslipidaemia in males and females with females experiencing the most adverse effect. Overall, our data demonstrate that MT1 signalling is an essential modulator of lipid and metabolic homeostasis during ECD.
Collapse
|
39
|
Govindsamy A, Ghoor S, Cerf ME. Programming With Varying Dietary Fat Content Alters Cardiac Insulin Receptor, Glut4 and FoxO1 Immunoreactivity in Neonatal Rats, Whereas High Fat Programming Alters Cebpa Gene Expression in Neonatal Female Rats. Front Endocrinol (Lausanne) 2021; 12:772095. [PMID: 35069436 PMCID: PMC8766637 DOI: 10.3389/fendo.2021.772095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Fetal programming refers to an intrauterine stimulus or insult that shapes growth, development and health outcomes. Dependent on the quality and quantity, dietary fats can be beneficial or detrimental for the growth of the fetus and can alter insulin signaling by regulating the expression of key factors. The effects of varying dietary fat content on the expression profiles of factors in the neonatal female and male rat heart were investigated and analyzed in control (10% fat), 20F (20% fat), 30F (30% fat) and 40F (40% fat which was a high fat diet used to induce high fat programming) neonatal rats. The whole neonatal heart was immunostained for insulin receptor, glucose transporter 4 (Glut4) and forkhead box protein 1 (FoxO1), followed by image analysis. The expression of 84 genes, commonly associated with the insulin signaling pathway, were then examined in 40F female and 40F male offspring. Maintenance on diets, varying in fat content during fetal life, altered the expression of cardiac factors, with changes induced from 20% fat in female neonates, but from 30% fat in male neonates. Further, CCAAT/enhancer-binding protein alpha (Cebpa) was upregulated in 40F female neonates. There was, however, differential expression of several insulin signaling genes in 40F (high fat programmed) offspring, with some tending to significance but most differences were in fold changes (≥1.5 fold). The increased immunoreactivity for insulin receptor, Glut4 and FoxO1 in 20F female and 30F male neonatal rats may reflect a compensatory response to programming to maintain cardiac physiology. Cebpa was upregulated in female offspring maintained on a high fat diet, with fold increases in other insulin signaling genes viz. Aebp1, Cfd (adipsin), Adra1d, Prkcg, Igfbp, Retn (resistin) and Ucp1. In female offspring maintained on a high fat diet, increased Cebpa gene expression (concomitant with fold increases in other insulin signaling genes) may reflect cardiac stress and an adaptative response to cardiac inflammation, stress and/or injury, after high fat programming. Diet and the sex are determinants of cardiac physiology and pathophysiology, reflecting divergent mechanisms that are sex-specific.
Collapse
|
40
|
Sabry MM, Dawood AF, Rashed LA, Sayed SM, Hassan S, Younes SF. Relation between resistin, PPAR-γ, obesity and atherosclerosis in male albino rats. Arch Physiol Biochem 2020; 126:389-398. [PMID: 30612469 DOI: 10.1080/13813455.2018.1550094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Obesity and atherosclerosis are inflammatory states involving variable metabolic signals. The adipokine resistin is implicated in adipose tissue dysfunction and is modulated by PPARγ. In this study, resistin and PPARγ role is investigated in the development of CVS disease. Forty-eight Adult male albino rats were divided into control, obesity and atherosclerotic groups; each group is divided into two subgroups; with and without PPARγ agonist administration for 8 weeks. To assess pathological changes; lipid profile, inflammatory mediator, serum resistin level and resistin expression in adipose tissue were measured. Aorta is histopathologically evaluated. It was found that resistin expression is significantly correlated with lipid profile and inflammatory status in obesity and atherosclerotic groups, and PPARγ agonist administration significantly improves inflammatory status and dyslipidemic profile across studied groups (p < .05). Aortic wall shows histopathological evidence of atherosclerosis in obesity group which is more evident in atherosclerotic group, and milder changes upon receiving PPARγ agonist.
Collapse
|
41
|
Farkhondeh T, Llorens S, Pourbagher-Shahri AM, Ashrafizadeh M, Talebi M, Shakibaei M, Samarghandian S. An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules 2020; 25:E5218. [PMID: 33182462 PMCID: PMC7665135 DOI: 10.3390/molecules25215218] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity as an independent risk factor for cardiovascular diseases (CVDs) leads to an increase in morbidity, mortality, and a shortening of life span. The changes in heart structure and function as well as metabolic profile are caused by obese people, including those free of metabolic disorders. Obesity alters heart function structure and affects lipid and glucose metabolism, blood pressure, and increase inflammatory cytokines. Adipokines, specific cytokines of adipocytes, are involved in the progression of obesity and the associated co-morbidities. In the current study, we review the scientific evidence on the effects of obesity on CVDs, focusing on the changes in adipokines. Several adipokines have anti-inflammatory and cardioprotective effects comprising omentin, apelin, adiponectin, and secreted frizzled-related protein (Sfrp-5). Other adipokines have pro-inflammatory impacts on the cardiovascular system and obesity including leptin, tumor necrosis factor (TNF), retinol-binding protein4 (RBP-4), visfatin, resistin, and osteopontin. We found that obesity is associated with multiple CVDs, but can only occur in unhealthy metabolic patients. However, more studies should be designed to clarify the association between obesity, adipokine changes, and the occurrence of CVDs.
Collapse
|
42
|
Zieba DA, Biernat W, Barć J. Roles of leptin and resistin in metabolism, reproduction, and leptin resistance. Domest Anim Endocrinol 2020; 73:106472. [PMID: 32265081 DOI: 10.1016/j.domaniend.2020.106472] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/20/2022]
Abstract
Increased adipose mass can cause insulin resistance and type 2 diabetes mellitus. This phenomenon is related to adipocyte-secreted signaling molecules that affect glucose balance, such as fatty acids, adiponectin, leptin, interleukin-6, tumor necrosis factor-α, and resistin. Among these hormones, leptin and resistin play important roles in regulating weight and glucose metabolism. Leptin and resistin work in both similar and opposite ways, and they interact with each other. Circulating concentrations of leptin and resistin are elevated in models of obesity and rodents fed a high-fat diet. In addition, leptin and resistin are similarly regulated by nutritional status: they are reduced by fasting and increased by feeding. This effect is mediated partially through insulin receptors and glucose transporters. Our latest data provided the first indication that in sheep, intravenous infusion of resistin increases the mean circulating concentrations of leptin and decreases luteinizing hormone in a dose-dependent manner during both the long-day (LD) and short-day seasons. Furthermore, exogenous resistin increased suppressor of cytokine signaling (SOCS)-3 mRNA expression only during the LD season, when the leptin resistance/insensitivity phenomenon was observed in the arcuate nucleus, preoptic area, and anterior pituitary. We concluded that one factor contributing to central leptin resistance is autosuppression, via which leptin and resistin stimulate the expression of SOCS-3, which inhibits leptin signaling. The increased expression of SOCS-3 in response to leptin and resistin may be a pivotal cause of leptin resistance/insensitivity, a pathological situation in obese individuals and a physiological occurrence in sheep during the LD season.
Collapse
|
43
|
Borse SP, Chhipa AS, Sharma V, Singh DP, Nivsarkar M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med Princ Pract 2020; 30:109-121. [PMID: 32818934 PMCID: PMC8114074 DOI: 10.1159/000511002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) accounts for >90% of the cases of diabetes in adults. Resistance to insulin action is the major cause that leads to chronic hyperglycemia in diabetic patients. T2DM is the consequence of activation of multiple pathways and factors involved in insulin resistance and β-cell dysfunction. Also, the etiology of T2DM involves the complex interplay between genetics and environmental factors. This interplay can be governed efficiently by lifestyle modifications to achieve better management of diabetes. The present review aims at discussing the major factors involved in the development of T2DM that remain unfocussed during the anti-diabetic therapy. The review also focuses on lifestyle modifications that are warranted for the successful management of T2DM. In addition, it attempts to explain flaws in current strategies to combat diabetes. The employability of phytoconstituents as multitargeting molecules and their potential use as effective therapeutic adjuvants to first line hypoglycemic agents to prevent side effects caused by the synthetic drugs are also discussed.
Collapse
|
44
|
Sudan SK, Deshmukh SK, Poosarla T, Holliday NP, Dyess DL, Singh AP, Singh S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188419. [PMID: 32822824 DOI: 10.1016/j.bbcan.2020.188419] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Systemic and organ-confined inflammation has been associated with cancer development and progression. Resistin, initially described as an adipocyte-derived cytokine in mice, is mostly expressed by the macrophages in humans. It has potent pro-inflammatory properties, and its elevated serum levels are detected in cancer patients. Aberrant expression of resistin receptors is also reported in several malignancies and associated with aggressive clinicopathological features. Several lines of evidence demonstrate that resistin, acting through its different receptors, promotes tumor growth, metastasis, and chemoresistance by influencing a variety of cellular phenotypes as well as by modulating the tumor microenvironment. Racially disparate expression of resistin has also attracted much interest, considering prevalent cancer health disparities. This review discusses the aberrant expression of resistin and its receptors, its diverse downstream signaling and impact on tumor growth, metastasis, angiogenesis, and therapy resistance to support its clinical exploitation in biomarker and therapeutic development.
Collapse
|
45
|
Tang N, Liu Y, Tian Z, Xu S, Wang M, Chen H, Wang B, Li Y, Wang Y, Yang S, Zhao L, Chen D, Li Z. Characterization, tissue distribution of resistin gene and the effect of fasting and refeeding on resistin mRNA expression in Siberian sturgeon (Acipenser baerii). JOURNAL OF FISH BIOLOGY 2020; 97:508-514. [PMID: 32447775 DOI: 10.1111/jfb.14406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Resistin as an adipokine identified from rodents in 2001 is involved in many biological processes. However, little is known about this gene in fish. We cloned Siberian sturgeon (Acipenser baerii) resistin cDNA of 795 base pairs, encoding 107 amino acids, which showed 38-40% identity to human and rodents. Real-time quantitative PCR showed that the resistin gene was widely distributed in tissues of Siberian sturgeon, with the highest expression in liver. After fasting for 1, 3, 6 and 10 days, the expression of the resistin gene in the liver of Siberian sturgeon decreased significantly, and after refeeding on the 10 days of fasting the resistin mRNA expression increased rapidly, suggesting that resistin may play an important role in liver in response to starvation. Taken together, these results suggest that resistin may be involved in the regulation of energy homeostasis in liver.
Collapse
|
46
|
Lin Q, Price SA, Skinner JT, Hu B, Fan C, Yamaji-Kegan K, Johns RA. Systemic evaluation and localization of resistin expression in normal human tissues by a newly developed monoclonal antibody. PLoS One 2020; 15:e0235546. [PMID: 32609743 PMCID: PMC7329134 DOI: 10.1371/journal.pone.0235546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Resistin and resistin-like molecules are pleiotropic cytokines that are involved in inflammatory diseases. Our previous work suggested that resistin has the potential to be used as a biomarker and therapeutic target for human pulmonary arterial hypertension. However, data are limited on the distribution of resistin in healthy human organs. In this study, we used our newly developed anti-human resistin (hResistin) antibody to immunohistochemically detect the expression, localization, and intracellular/extracellular compartmentalization of hResistin in a full human tissue panel from healthy individuals. The potential cross reactivity of this monoclonal anti-hResistin IgG1 with normal human tissues also was verified. Results showed that hResistin is broadly distributed and principally localized in the cytoplasmic granules of macrophages scattered in the interstitium of most human tissues. Bone marrow hematopoietic precursor cells also exhibited hResistin signals in their cytoplasmic granules. Additionally, hResistin labeling was observed in the cytoplasm of nervous system cells. Notably, the cytokine activity of hResistin was illustrated by positively stained extracellular material in most human tissues. These data indicate that our generated antibody binds to the secreted hResistin and support its potential use for immunotherapy to reduce circulating hResistin levels in human disease. Our findings comprehensively document the basal expression patterns of hResistin protein in normal human tissues, suggest a critical role of this cytokine in normal and pathophysiologic inflammatory processes, and offer key insights for using our antibody in future pharmacokinetic studies and immunotherapeutic strategies.
Collapse
|
47
|
Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M. The Role of Adipokines in Breast Cancer: Current Evidence and Perspectives. Curr Obes Rep 2019; 8:413-433. [PMID: 31637624 DOI: 10.1007/s13679-019-00364-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The current review shows evidence for the role of adipokines in breast cancer (BC) pathogenesis summarizing the mechanisms underlying the association between adipokines and breast malignancy. Special emphasis is given also on intriguing insights into the relationship between obesity and BC as well as on the role of novel adipokines in BC development. RECENT FINDINGS Recent evidence has underscored the role of the triad of obesity, insulin resistance, and adipokines in postmenopausal BC. Adipokines exert independent and joint effects on activation of major intracellular signal networks implicated in BC cell proliferation, growth, survival, invasion, and metastasis, particularly in the context of obesity, considered a systemic endocrine dysfunction characterized by chronic inflammation. To date, more than 10 adipokines have been linked to BC, and this catalog is continuously increasing. The majority of circulating adipokines, such as leptin, resistin, visfatin, apelin, lipocalin 2, osteopontin, and oncostatin M, is elevated in BC, while some adipokines such as adiponectin and irisin (adipo-myokine) are generally decreased in BC and considered protective against breast carcinogenesis. Further evidence from basic and translational research is necessary to delineate the ontological role of adipokines and their interplay in BC pathogenesis. More large-scale clinical and longitudinal studies are awaited to assess their clinical utility in BC prognosis and follow-up. Finally, novel more effective and safer adipokine-centered therapeutic strategies could pave the way for targeted oncotherapy.
Collapse
|
48
|
Karampela I, Christodoulatos GS, Dalamaga M. The Role of Adipose Tissue and Adipokines in Sepsis: Inflammatory and Metabolic Considerations, and the Obesity Paradox. Curr Obes Rep 2019; 8:434-457. [PMID: 31637623 DOI: 10.1007/s13679-019-00360-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Sepsis has become a global health problem with rising incidence and high mortality, creating a substantial social and economic burden. Early diagnosis and treatment can improve outcome, but reliable sepsis biomarkers are lacking. This review summarizes current evidence of the pathophysiological mechanisms linking adipose tissue to sepsis and presents experimental and clinical data on adipokines and sepsis along with important insights into the obesity paradox in sepsis survival. RECENT FINDINGS Sepsis is characterized by significant alterations in circulating cytokines and adipokines, biologically active molecules produced by the adipose tissue, being implicated in metabolic and inflammatory processes. Although data are inconclusive regarding classic adipokines such as leptin and adiponectin, recent evidence have highlighted the striking elevation of resistin and visfatin in critical illness and sepsis as well as their association with sepsis severity and outcomes. Given that inflammatory and metabolic pathways are involved in sepsis, studying adipokines presents an attractive, innovative, and promising research field that may provide more powerful diagnostic and prognostic biomarkers as well as novel therapeutic targets, empowering the therapeutic armamentarium for sepsis management in order to improve survival.
Collapse
|
49
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
|
50
|
Lubkowska A, Chudecka M. The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3298. [PMID: 31500356 PMCID: PMC6765828 DOI: 10.3390/ijerph16183298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
Liposuction is becoming an increasingly common procedure of aesthetic surgery, that patients choose to shape the body. Apart from the risks associated with the surgery, one should also consider whether the reduction of adipose tissue can significantly affect the metabolism of lipids and carbohydrates and, indirectly, that of bone tissue. The aim of the presented study was to assess the effects of small-volume liposuction surgery in the gluteal-femoral region on the selected markers of carbohydrate, lipid, and bone metabolism. The study included 27 women (40.75 ± 13.67 years of age, BMI = 25.9 ± 4.13 kg/m2) subjected to the removal of 3.35 ± 0.994 L of adipose tissue to shape the body. Following the procedure, significant changes in the body composition and body adiposity indicators were observed in these women. A slight decrease in adiponectin, leptin, resistin and insulin levels and HOMA-IR value was found three months after the procedure. No changes in the lipid profile of the subjects were found. It can be concluded that the removal of a small volume of adipose tissue from the gluteal-femoral region has a slight but positive effect on carbohydrate and lipid metabolism, providing a decreased risk of developing insulin resistance.
Collapse
|