76
|
Du W, Gardea-Torresdey JL, Xie Y, Yin Y, Zhu J, Zhang X, Ji R, Gu K, Peralta-Videa JR, Guo H. Elevated CO 2 levels modify TiO 2 nanoparticle effects on rice and soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:408-416. [PMID: 27838053 DOI: 10.1016/j.scitotenv.2016.10.197] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Evidence suggests that CO2 modifies the behavior of nanomaterials. Thus, in a few decades, plants might be exposed to additional stress if atmospheric levels of CO2 and the environmental burden of nanomaterials increase at the current pace. Here, we used a full-size free-air CO2 enrichment (FACE) system in farm fields to investigate the effect of elevated CO2 levels on phytotoxicity and microbial toxicity of nTiO2 (0, 50, and 200mgkg-1) in a paddy soil system. Results show that nTiO2 did not induce visible signs of toxicity in rice plants cultivated at the ambient CO2 level (370μmolmol-1), but under the high CO2 concentration (570μmolmol-1) nTiO2 significantly reduced rice biomass by 17.9% and 22.1% at 50mgkg-1 and 200mgkg-1, respectively, and grain yield by 20.8% and 44.1% at 50mgkg-1 and 200mgkg-1, respectively. In addition, at the high CO2 concentration, nTiO2 at 200mgkg-1 increased accumulation of Ca, Mg, Mn, P, Zn, and Ti by 22.5%, 16.8%, 29.1%, 7.4%, 15.7% and 8.6%, respectively, but reduced fat and total sugar by 11.2% and 25.5%, respectively, in grains. Such conditions also changed the functional composition of soil microbial communities, alerting specific phyla of bacteria and the diversity and richness of protista. Overall, this study suggests that increases in CO2 levels would modify the effects of nTiO2 on the nutritional quality of crops and function of soil microbial communities, with unknown implications for future economics and human health.
Collapse
|
77
|
Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:236-264. [PMID: 27289187 DOI: 10.1016/j.plaphy.2016.05.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 05/04/2023]
Abstract
Recent investigations show that carbon-based and metal-based engineered nanomaterials (ENMs), components of consumer goods and agricultural products, have the potential to build up in sediments and biosolid-amended agricultural soils. In addition, reports indicate that both carbon-based and metal-based ENMs affect plants differently at the physiological, biochemical, nutritional, and genetic levels. The toxicity threshold is species-dependent and responses to ENMs are driven by a series of factors including the nanomaterial characteristics and environmental conditions. Effects on the growth, physiological and biochemical traits, production and food quality, among others, have been reported. However, a complete understanding of the dynamics of interactions between plants and ENMs is not clear enough yet. This review presents recent publications on the physiological and biochemical effects that commercial carbon-based and metal-based ENMs have in terrestrial plants. This document focuses on crop plants because of their relevance in human nutrition and health. We have summarized the mechanisms of interaction between plants and ENMs as well as identified gaps in knowledge for future investigations.
Collapse
|
78
|
Barrios AC, Medina-Velo IA, Zuverza-Mena N, Dominguez OE, Peralta-Videa JR, Gardea-Torresdey JL. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:100-107. [PMID: 27117792 DOI: 10.1016/j.plaphy.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO2, nCeO2+CA), cerium acetate (CeAc), bulk cerium oxide (bCeO2) and citric acid (CA) at 0-500 mg kg-1. Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO2+CA at 62.5, 250 and 500 mg kg-1 reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg-1 nCeO2+CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg-1 reduced starch by 78%, compared to control. The bCeO2 at 250 and 500 mg kg-1, increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO2 at 500 mg kg-1 reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg-1 decreased Al by 24%; while nCeO2+CA at 125 and 500 mg kg-1 increased B by 33%. On the other hand, bCeO2 at 62.5 mg kg-1 increased Ca (267%), but at 250 mg kg-1 reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO2+CA, while nutritional elements by nCeO2; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality.
Collapse
|
79
|
Medina-Velo IA, Adisa I, Tamez C, Peralta-Videa JR, Gardea-Torresdey JL. Effects of Surface Coating on the Bioactivity of Metal-Based Engineered Nanoparticles: Lessons Learned from Higher Plants. BIOACTIVITY OF ENGINEERED NANOPARTICLES 2017. [DOI: 10.1007/978-981-10-5864-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
80
|
Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:210-225. [PMID: 27137632 DOI: 10.1016/j.plaphy.2016.04.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 05/21/2023]
Abstract
Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered.
Collapse
|
81
|
Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M. Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO 2 and excess boron: Modulation of boron phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:50-58. [PMID: 27665987 DOI: 10.1016/j.plaphy.2016.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Little is known about the interaction of nanoparticles (NPs) with soil constituents and their effects in plants. Boron (B), an essential micronutrient that reduces crop production at both deficiency and excess, has not been investigated with respect to its interaction with cerium oxide NPs (nano-CeO2). Considering conflicting results on the nano-CeO2 toxicity and protective role as antioxidant, their possible modulation on B toxicity in sunflower (Helianthus annuus L.) was investigated. Sunflower was cultivated for 30 days in garden pots containing original or B-spiked soil amended with nano-CeO2 at 0-800 mg kg-1. At harvest, Ce and B concentrations in tissues, biomass, and activities of stress enzymes in leaves were determined. Results showed that in the original soil, Ce accumulated mainly in roots, with little translocation to stems and leaves, while reduced root Ce was observed in plants from B-spiked soil. In the original soil, higher levels of nano-CeO2 reduced plant B concentration. Although morphological effects were not visible, changes in biomass and oxidative stress response were observed. Sunflower leaves from B-spiked soil showed visible symptoms of B toxicity, such as necrosis and chlorosis in old leaves, as well as an increase of superoxide dismutase (SOD) activity. However, at high nano-CeO2 level, SOD activity decreased reaching values similar to that of the control. This study has shown that nano-CeO2 reduced both the B nutritional status of sunflower in original soil and the B phytotoxicity in B-spiked soil.
Collapse
|
82
|
Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun Y, Barrios AC, Niu G, Margez JPF, Gardea-Torresdey JL. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:201-211. [PMID: 27343939 DOI: 10.1016/j.scitotenv.2016.06.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment.
Collapse
|
83
|
Reddy PVL, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:470-479. [PMID: 27314900 DOI: 10.1016/j.scitotenv.2016.06.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The expansion of nanotechnology and its ubiquitous applications has fostered unavoidable interaction between engineered nanomaterials (ENMs) and plants. Recent research has shown ambiguous results with regard to the impact of ENMs in plants. On one hand, there are reports that show hazardous effects, while on the other hand, some reports highlight positive effects. This uncertainty whether the ENMs are primarily hazardous or whether they have a potential for propitious impact on plants, has raised questions in the scientific community. In this review, we tried to demystify this ambiguity by citing various exposure studies of different ENMs (nano-Ag, nano-Au, nano-Si, nano-CeO2, nano-TiO2, nano-CuO, nano-ZnO, and CNTs, among others) and their effects on various groups of plant families. After scrutinizing the most recent literature, it seems that the divergence in the research results may be possibly attributed to multiple factors such as ENM properties, plant species, soil dynamics, and soil microbial community. The analysis of the literature also suggests that there is a knowledge gap on the effects of ENMs towards changes in color, texture, shape, and nutritional aspects on ENM exposed plants.
Collapse
|
84
|
Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:956-64. [PMID: 26672385 DOI: 10.1016/j.scitotenv.2015.11.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 05/22/2023]
Abstract
Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants.
Collapse
|
85
|
Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:904-11. [PMID: 26351199 DOI: 10.1016/j.scitotenv.2015.08.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/24/2023]
Abstract
There is lack of information about the effects of foliar applied nanoparticles on fruit quality. In this study, three week-old soil grown cucumber seedlings were foliar-exposed to nCeO2, nCuO, and corresponding bulk counterparts at 50, 100, and 200mg/L. Respective suspensions/solutions were sprayed to experimental units in a volume of 250ml. Net photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E) were measured 15days after treatment application and in 74day-old plants. Yield, fruit characteristics (size, weight, and firmness), Ce, Cu, and nutritional elements were also measured. Results showed a nano-specific decrement on Pn (22% and 30%) and E (11% and 17%) in seedling leaves exposed to nCeO2 and nCuO at 200mg/L, respectively, compared with control. nCeO2 at 50mg/L, bCeO2 at 200mg/L, and all Cu treatments, except nCuO at 100mg/L, significantly reduced fruit firmness (p≤0.05), compared with control. However, nCuO at 200mg/L and bCuO at 50mg/L significantly increased fruit fresh weight (p≤0.05). At 200mg/L, nCeO2 and bCeO2 reduced fruit Zn by 25%, while nCuO and bCuO reduced fruit Mo by 51% and 44%, respectively, compared with control. This study has shown that when the route of exposure is the foliage, differences in particle size are less significant, compared to root-based exposure. To the authors' knowledge, this is the first report on the effect of foliar application of nCeO2 and nCuO upon yield and nutritional quality of cucumber.
Collapse
|
86
|
Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Cerium Biomagnification in a Terrestrial Food Chain: Influence of Particle Size and Growth Stage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6782-92. [PMID: 26690677 DOI: 10.1021/acs.est.5b04784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mass-flow modeling of engineered nanomaterials (ENMs) indicates that a major fraction of released particles partition into soils and sediments. This has aggravated the risk of contaminating agricultural fields, potentially threatening associated food webs. To assess possible ENM trophic transfer, cerium accumulation from cerium oxide nanoparticles (nano-CeO2) and their bulk equivalent (bulk-CeO2) was investigated in producers and consumers from a terrestrial food chain. Kidney bean plants (Phaseolus vulgaris var. red hawk) grown in soil contaminated with 1000-2000 mg/kg nano-CeO2 or 1000 mg/kg bulk-CeO2 were presented to Mexican bean beetles (Epilachna varivestis), which were then consumed by spined soldier bugs (Podisus maculiventris). Cerium accumulation in plant and insects was independent of particle size. After 36 days of exposure to 1000 mg/kg nano- and bulk-CeO2, roots accumulated 26 and 19 μg/g Ce, respectively, and translocated 1.02 and 1.3 μg/g Ce, respectively, to shoots. The beetle larvae feeding on nano-CeO2 exposed leaves accumulated low levels of Ce since ∼98% of Ce was excreted in contrast to bulk-CeO2. However, in nano-CeO2 exposed adults, Ce in tissues was higher than Ce excreted. Additionally, Ce content in tissues was biomagnified by a factor of 5.3 from the plants to adult beetles and further to bugs.
Collapse
|
87
|
Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL. Effects of Silver Nanoparticles on Radish Sprouts: Root Growth Reduction and Modifications in the Nutritional Value. FRONTIERS IN PLANT SCIENCE 2016; 7:90. [PMID: 26909084 PMCID: PMC4754487 DOI: 10.3389/fpls.2016.00090] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/18/2016] [Indexed: 05/08/2023]
Abstract
Reports indicate that silver nanoparticles (nAg) are toxic to vegetation, but little is known about their effects in crop plants. This study examines the impacts of nAg on the physiology and nutritional quality of radish (Raphanus sativus) sprouts. Seeds were germinated and grown for 5 days in nAg suspensions at 0, 125, 250, and 500 mg/L. Seed germination and seedling growth were evaluated with traditional methodologies; the uptake of Ag and nutrients was quantified by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and changes in macromolecules were analyzed by infrared (IR) spectroscopy. None of the nAg concentrations reduced seed germination. However, the water content (% of the total weight) was reduced by 1.62, 1.65, and 2.54% with exposure to 125, 250, and 500 mg/L, respectively, compared with the control. At 500 mg/L, the root and shoot lengths were reduced by 47.7 and 40%, with respect to the control. The seedlings exposed to 500 mg/L had 901 ± 150 mg Ag/kg dry wt and significantly less Ca, Mg, B, Cu, Mn, and Zn, compared with the control. The infrared spectroscopy analysis showed changes in the bands corresponding to lipids (3000-2800 cm(-1)), proteins (1550-1530 cm(-1)), and structural components of plant cells such as lignin, pectin, and cellulose. These results suggest that nAg could significantly affect the growth, nutrient content and macromolecule conformation in radish sprouts, with unknown consequences for human health.
Collapse
|
88
|
Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC, Trujillo-Reyes J, Flores-Margez JP, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Environmental Effects of Nanoceria on Seed Production of Common Bean (Phaseolus vulgaris): A Proteomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13283-13293. [PMID: 26488752 DOI: 10.1021/acs.est.5b03452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The rapidly growing literature on the response of edible plants to nanoceria has provided evidence of its uptake and bioaccumulation, which delineates a possible route of entry into the food chain. However, little is known about how the residing organic matter in soil may affect the bioavailability and resulting impacts of nanoceria on plants. Here, we examined the effect of nanoceria exposure (62.5-500 mg/kg) on kidney bean (Phaseolus vulgaris) productivity and seed quality as a function of soil organic matter content. Cerium accumulation in the seeds produced from plants in organic matter enriched soil showed a dose-dependent increase, unlike in low organic matter soil treatments. Seeds obtained upon nanoceria exposure in soils with higher organic matter were more susceptible to changes in nutrient quality. A quantitative proteomic analysis of the seeds produced upon nanoceria exposure provided evidence for upregulation of stress-related proteins at 62.5 and 125 mg/kg nanoceria treatments. Although the plants did not exhibit overt toxicity, the major seed proteins primarily associated with nutrient storage (phaseolin) and carbohydrate metabolism (lectins) were significantly down-regulated in a dose dependent manner upon nanoceria exposure. This study thus suggests that nanoceria exposures may negatively affect the nutritional quality of kidney beans at the cellular and molecular level. More confirmatory studies with nanoceria along different species using alternative and orthogonal "omic" tools are currently under active investigation, which will enable the identification of biomarkers of exposure and susceptibility.
Collapse
|
89
|
Lee DG, Roehrdanz PR, Feraud M, Ervin J, Anumol T, Jia A, Park M, Tamez C, Morelius EW, Gardea-Torresdey JL, Izbicki J, Means JC, Snyder SA, Holden PA. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers. WATER RESEARCH 2015; 85:467-75. [PMID: 26379202 DOI: 10.1016/j.watres.2015.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/27/2015] [Accepted: 08/25/2015] [Indexed: 05/28/2023]
Abstract
Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage.
Collapse
|
90
|
Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J, Peralta-Videa JR, Guo H. Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11884-11893. [PMID: 26368651 DOI: 10.1021/acs.est.5b03055] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interactions of nCeO2 with plants have been mostly evaluated at seedling stage and under controlled conditions. In this study, the effects of nCeO2 at 0 (control), 100 (low), and 400 (high) mg/kg were monitored for the entire life cycle (about 7 months) of wheat plants grown in a field lysimeter. Results showed that at high concentration nCeO2 decreased the chlorophyll content and increased catalase and superoxide dismutase activities, compared with control. Both concentrations changed root and leaf cell microstructures by agglomerating chromatin in nuclei, delaying flowering by 1 week, and reduced the size of starch grains in endosperm. Exposed to low concentration produced embryos with larger vacuoles, while exposure to high concentration reduced number of vacuoles, compared with control. There were no effects on the final biomass and yield, Ce concentration in shoots, as well as sugar and starch contents in grains, but grain protein increased by 24.8% and 32.6% at 100 and 400 mg/kg, respectively. Results suggest that more field life cycle studies are needed in order to better understand the effects of nCeO2 in crop plants.
Collapse
|
91
|
Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1783-93. [PMID: 26311125 DOI: 10.1039/c5em00329f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The environmental impacts of Cu-based nanoparticles (NPs) are not well understood. In this study, cilantro (Coriandrum sativum) was germinated and grown in commercial potting mix soil amended with Cu(OH)2 (Kocide and CuPRO), nano-copper (nCu), micro-copper (μCu), nano-copper oxide (nCuO), micro-copper oxide (μCuO) and ionic Cu (CuCl2) at either 20 or 80 mg Cu per kg. In addition to seed germination and plant elongation, relative chlorophyll content and micro and macroelement concentrations were determined. At both concentrations, only nCuO, μCuO, and ionic Cu, showed statistically significant reductions in germination. Although compared with control, the relative germination was reduced by ∼50% with nCuO at both concentrations, and by ∼40% with μCuO, also at both concentrations, the difference among compounds was not statistically significant. Exposure to μCuO at both concentrations and nCu at 80 mg kg(-1) significantly reduced (p≤ 0.05) shoot elongation by 11% and 12.4%, respectively, compared with control. Only μCuO at 20 mg kg(-1) significantly reduced (26%) the relative chlorophyll content, compared with control. None of the treatments increased root Cu, but all of them, except μCuO at 20 mg kg(-1), significantly increased shoot Cu (p≤ 0.05). Micro and macro elements B, Zn, Mn, Ca, Mg, P, and S were significantly reduced in shoots (p≤ 0.05). Similar results were observed in roots. These results showed that Cu-based NPs/compounds depress nutrient element accumulation in cilantro, which could impact human nutrition.
Collapse
|
92
|
Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10551-8. [PMID: 25735245 DOI: 10.1007/s11356-015-4243-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/16/2015] [Indexed: 04/16/2023]
Abstract
A soil microcosm study was performed to examine the impacts of cerium oxide nanoparticles (nCeO2) on the physiology, productivity, and macromolecular composition of barley (Hordeum vulgare L.). The plants were cultivated in soil treated with nCeO2 at 0, 125, 250, and 500 mg kg(-1) (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). Accumulation of Ce in leaves/grains and its effects on plant stress and nutrient loading were analyzed. The data revealed that nCeO2-H promoted plant development resulting in 331 % increase in shoot biomass compared with the control. nCeO2 treatment modified the stress levels in leaves without apparent signs of toxicity. However, plants exposed to nCeO2-H treatment did not form grains. Compared with control, nCeO2-M enhanced grain Ce accumulation by as much as 294 % which was accompanied by remarkable increases in P, K, Ca, Mg, S, Fe, Zn, Cu, and Al. Likewise, nCeO2-M enhanced the methionine, aspartic acid, threonine, tyrosine, arginine, and linolenic acid contents in the grains by up to 617, 31, 58, 141, 378, and 2.47 % respectively, compared with the rest of the treatments. The findings illustrate the beneficial and harmful effects of nanoceria in barley.
Collapse
|
93
|
Padilla-Rodríguez A, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL, Perales-Pérez O, Román-Velázquez FR. Adsorption of arsenic(V) oxyanion from aqueous solutions by using protonated chitosan flakes. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1040123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
94
|
Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 515-516:60-9. [PMID: 25698520 DOI: 10.1016/j.scitotenv.2015.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 04/14/2023]
Abstract
ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.
Collapse
|
95
|
Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2921-2928. [PMID: 25648544 DOI: 10.1021/es5060226] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn.
Collapse
|
96
|
Padilla-Rodríguez A, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL, Perales-Pérez O, Román-Velázquez FR. Synthesis of protonated chitosan flakes for the removal of vanadium(III, IV and V) oxyanions from aqueous solutions. Microchem J 2015. [DOI: 10.1016/j.microc.2014.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC, Peralta-Videa JR, Gardea-Torresdey JL. Differential Toxicity of Bare and Hybrid ZnO Nanoparticles in Green Pea (Pisum sativum L.): A Life Cycle Study. FRONTIERS IN PLANT SCIENCE 2015; 6:1242. [PMID: 26793219 PMCID: PMC4710101 DOI: 10.3389/fpls.2015.01242] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/21/2015] [Indexed: 05/07/2023]
Abstract
The effect of surface or lattice modification of nanoparticles (NPs) on terrestrial plants is poorly understood. We investigated the impact of different zinc oxide (ZnO) NPs on green pea (Pisum sativum L.), one of the highest consumed legumes globally. Pea plants were grown for 65 d in soil amended with commercially available bare ZnO NPs (10 nm), 2 wt% alumina doped (Al2O3@ZnO NPs, 15 nm), or 1 wt% aminopropyltriethoxysilane coated NPs (KH550@ZnO NP, 20 nm) at 250 and 1000 mg NP/kg soil inside a greenhouse. Bulk (ZnO) and ionic Zn (zinc chloride) were included as controls. Plant fresh and dry biomass, changes in leaf pigment concentrations, elements (Zn, Al, Si), and protein and carbohydrate profile of green pees were quantified upon harvest at 65 days. With the exception of the coated 1000 mg/kg NP treatment, fresh and dry weight were unaffected by Zn exposure. Although, all treated plants showed higher tissue Zn than controls, those exposed to Al2O3@ZnO NPs at 1000 mg/kg had greater Zn concentration in roots and seeds, compared to bulk Zn and the other NP treatments, keeping Al and Si uptake largely unaffected. Higher Zn accumulation in green pea seeds were resulted in coated ZnO at 250 mg/kg treatments. In leaves, Al2O3@ZnO NP at 250 mg/kg significantly increased Chl-a and carotenoid concentrations relative to the bulk, ionic, and the other NP treatments. The protein and carbohydrate profiles remained largely unaltered across all treatments with the exception of Al2O3@ZnO NPs at 1000 mg/kg where sucrose concentration of green peas increased significantly, which is likely a biomarker of stress. Importantly, these findings demonstrate that lattice and surface modification can significantly alter the fate and phytotoxic effects of ZnO NPs in food crops and seed nutritional quality. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of bare, coated, and doped ZnO NPs on a soil-grown food crop.
Collapse
|
98
|
Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:177-85. [PMID: 25474419 PMCID: PMC4326043 DOI: 10.1039/c4em00551a] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.
Collapse
|
99
|
Rico CM, Peralta-Videa JR, Gardea-Torresdey JL. Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: a fourier transform infrared (FT-IR) microspectroscopy study. APPLIED SPECTROSCOPY 2015; 69:287-95. [PMID: 25587938 DOI: 10.1366/14-07495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cerium oxide nanoparticles (nCeO2) have extensive industrial applications, and concerns regarding their threat to the environment have been raised. This study includes structural analysis of intact root xylem of rice (Oryza sativaL.), wheat (Triticum aestivumL.), and barley (Hordeum vulgareL.) seedlings exposed to nCeO2 suspensions (0, 62.5, 125, 250, and 500 mg L(-1)). Fourier transform infrared microspectroscopy was applied to determine compositional alterations in the root xylem, and principal component analysis (PCA) was carried out to examine spectral differences between nCeO2 treatments. Results demonstrated that nCeO2 at ≥ 125 mg L(-1) changed the region of spectra around 1696-1760 cm(-1) in rice root, 125 and 250 mg L(-1) modified 1744-1792 cm(-1) in wheat, and 62.5 and 125 mg L(-1) altered 1727-1760 cm(-1) in barley. PCA afforded the clustering of nCeO2 treatments at 0 and 62.5 mg L(-1) in rice and wheat and 0 and 500 mg L(-1) in barley. Furthermore, major peaks at 1744 or 1760 cm(-1) appeared in primary PC and 1728 cm(-1) in secondary PC score loadings. These findings illustrated that nCeO2 induced compositional modifications in the root xylem of cereals.
Collapse
|
100
|
Ge Y, Priester JH, Van De Werfhorst LC, Walker SL, Nisbet RM, An YJ, Schimel JP, Gardea-Torresdey JL, Holden PA. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13489-96. [PMID: 25354168 DOI: 10.1021/es5031646] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered nanoparticles (ENPs) are entering agricultural soils through land application of nanocontaining biosolids and agrochemicals. The potential adverse effects of ENPs have been studied on food crops and soil bacterial communities separately; however, how ENPs will affect the interacting plant-soil system remains unknown. To address this, we assessed ENP effects on soil microbial communities in soybean-planted, versus unplanted, mesocosms exposed to different doses of nano-CeO2 (0-1.0 g kg(-1)) or nano-ZnO (0-0.5 g kg(-1)). Nano-CeO2 did not affect soil bacterial communities in unplanted soils, but 0.1 g kg(-1) nano-CeO2 altered soil bacterial communities in planted soils, indicating that plants interactively promote nano-CeO2 effects in soil, possibly due to belowground C shifts since plant growth was impacted. Nano-ZnO at 0.5 g kg(-1) significantly altered soil bacterial communities, increasing some (e.g., Rhizobium and Sphingomonas) but decreasing other (e.g., Ensifer, Rhodospirillaceae, Clostridium, and Azotobacter) operational taxonomic units (OTUs). Fewer OTUs decreased from nano-ZnO exposure in planted (41) versus unplanted (85) soils, suggesting that plants ameliorate nano-ZnO effects. Taken together, plants--potentially through their effects on belowground biogeochemistry--could either promote (i.e., for the 0.1 g kg(-1) nano-CeO2 treatment) or limit (i.e., for the 0.5 g kg(-1) nano-ZnO treatment) ENP effects on soil bacterial communities.
Collapse
|