1
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang R, Wu Z, Wang H, Ji M, Shen T, Yang L, Li Y, Yu J, Huang Y, Li L, Xu Z, Sheng Y, Li X, Wang F, Xiao W. Structural optimization and pharmacological evaluation of diphenyl amine esters as anti-hepatocellular carcinoma agents by targeting TAR RNA-binding protein 2. Eur J Med Chem 2025; 291:117676. [PMID: 40279767 DOI: 10.1016/j.ejmech.2025.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular Carcinoma (HCC), a leading cause of cancer-related death in the world, urgently requires novel therapeutic strategies and drug targets. The TRBP-Dicer complex plays a critical role in miRNA biosynthesis, which can be regulated by small molecules to exert anti-cancer effects. This study presented the structural modification of the natural product (-)-Gomisin M1(GM), resulting in the synthesis of 37 derivatives with a diphenyl amine ester scaffold. Several of these derivatives exhibited enhanced modulation of miRNA biogenesis compared to GM. Notably, derivative 13j displayed improved binding affinity to TRBP and greater efficacy in modulating miRNA biosynthesis, as well as anti-HCC activity in vitro and in vivo. Further investigation revealed that 13j induced apoptosis and pyroptosis while inhibiting the epithelial-to-mesenchymal transition process in HCC cells. In terms of druggability, 13j possesses favorable drug-likeness and a promising safety profile. These findings provide a promising scaffold with potent activity and low toxicity, offering a foundation for the development of miRNA-based therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Zhao Wu
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Minghui Ji
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Linhan Yang
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jialing Yu
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinqiao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Lingyu Li
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yuwen Sheng
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Fei Wang
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
3
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
4
|
Li Y, Liu X, Dong Y, Zhou Y. Angiogenesis causes and vasculogenic mimicry formation in the context of cancer stem cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189323. [PMID: 40239849 DOI: 10.1016/j.bbcan.2025.189323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Tumor occurrence, development, invasion, and metastasis are regulated by multiple mechanisms. Among these, angiogenesis promotes tumor progression mainly by supplying tumor tissue and providing channels for tumor metastasis. Cancer stem cells (CSCs) are another important factor affecting tumor progression by involving in tumor initiation and development, while remaining insensitive to conventional antitumor treatments. Among treatment strategies for them, owing to the existence of alternative angiogenic pathways or the risk of damaging normal stem cells, the clinical effect is not ideal. Angiogenesis and CSCs may influence each other in this process. Tumor angiogenesis can support CSC self-renewal by providing a suitable microenvironment, whereas CSCs can regulate tumor neovascularization and mediate drug resistance to anti-angiogenic therapy. This review summarized the role of vascular niche formed by angiogenesis in CSC self-renewal and stemness maintenance, and the function of CSCs in endothelial progenitor cell differentiation and pro-angiogenic factor upregulation. We also elucidated the malignant loop between CSCs and angiogenesis promoting tumor progression. Additionally, we summarized and proposed therapeutic targets, including blocking tumor-derived endothelial differentiation, inhibiting pro-angiogenic factor upregulation, and directly targeting endothelial-like cells comprising CSCs. And we analyzed the feasibility of these strategies to identify more effective methods to improve tumor treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Xing S, Li X, Chen C. Association between frailty and inflammatory cytokines in patients with multiple sclerosis: a case-control study. Cytokine 2025; 191:156945. [PMID: 40334398 DOI: 10.1016/j.cyto.2025.156945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/24/2024] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Frailty is a common symptom in Multiple Sclerosis (MS), yet its precise mechanism remains elusive, and the clinical implications of frailty in MS are uncertain. Moreover, inflammation is closely linked to frailty. This study aims to assess serum cytokine levels in individuals with MS and explore their correlation with frailty. METHODS A case-control study included 83 primary MS patients and 100 healthy individuals undergoing health check-ups. Serum cytokine levels were measured, and MS severity was determined using the Expanded Disability Status Scale (EDSS) score. Additionally, a comprehensive frailty index (FI) was calculated based on health deficits from various domains following standardized procedures. RESULTS Serum IL-6 and TNF-α levels were significantly higher in the frail group than in the non-frail group, with a statistically significant difference (P < 0.05). After adjusting for disease duration, sex, age, BMI, SBP, and DBP, serum IL-6 independently correlated with frailty in MS patients (OR = 1.46; 95 % CI = 1.02-1.93; P = 0.003). Moreover, increased serum IL-6 levels were associated positively with the frailty index (β = 0.123, P = 0.008). CONCLUSION Our initial findings suggest elevated levels of pro-inflammatory cytokines in MS patients with frailty, with IL-6 showing a positive correlation with frail indices. These results underscore the potential impact of inflammatory responses on frailty development in MS.
Collapse
Affiliation(s)
- Shucheng Xing
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Xue Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chen Chen
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Dai P, Wang L. Targeting c-MYC has a key role in hepatocellular carcinoma therapy. Crit Rev Oncol Hematol 2025; 213:104786. [PMID: 40473083 DOI: 10.1016/j.critrevonc.2025.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/18/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a top cause of cancer-associated mortality worldwide, with limited effective treatment options. The oncogenic transcription factor c-MYC plays a pivotal role in HCC pathogenesis by regulating key cellular processes, including proliferation, metabolism, and apoptosis. Impaired c-MYC regulation strongly correlates with aberrant activation of multiple signaling pathways, such as PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK/ERK, which collectively drive tumor progression. Furthermore, c-MYC facilitates metabolic reprogramming, enhancing glycolysis and glutamine metabolism to support rapid tumor growth. Recent advances highlight the critical interplay between c-MYC and epigenetic modulators, ubiquitination processes, and non-coding RNAs, which further sustain its oncogenic activity. Targeting c-MYC through direct inhibition, pathway-specific interventions, and combination therapies stands as a compelling option for HCC treatment. This review offers an in-depth overview of the molecular mechanisms governing c-MYC-driven hepatocarcinogenesis and explores emerging therapeutic approaches aimed at disrupting this oncogenic network. A deeper understanding of c-MYC's role in HCC will pave the way for novel treatment strategies with potential clinical applications.
Collapse
Affiliation(s)
- Peng Dai
- Comprehensive Internal Medicin,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shan Xi Taiyuan, 030001, China.
| | - Liping Wang
- Colorectal Surgery,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Shan Xi Taiyuan, 030001, China.
| |
Collapse
|
7
|
Li YL, He R, Tang M, Lan JY, Liu GY, Jiang LH. Bioinformatics identification of shared signaling pathways and core targets linking Benzo[a]pyrene exposure to HCC progression. Toxicology 2025; 514:154129. [PMID: 40174762 DOI: 10.1016/j.tox.2025.154129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
With the increasing prevalence of environmental pollutants, there is growing concern about the potential effects of these substances in major diseases such as liver cancer. Previous studies have suggested that various chemicals, such as benzo[a]pyrene(BaP), produced by burning carbon containing fuels, may negatively affect liver health, but the exact mechanisms remain unclear. This study aimed to explore the potential molecular mechanisms of BaP in the progression of liver cancer. Through an exhaustive study of databases such as ChEMBL, SwissTargetPrediction, STITCH and TCGA, we identified 169 potential targets that are closely related to BaP and liver cancer. Next, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using the clusterProfiler package to study the biological functions and important pathways of potential targets induced by BaP, which showed that these targets were associated with mitochondrial function, cellular energy metabolism and REDOX reactions. The protein interaction (PPI) network was constructed using the STRING database and Cytoscape software to identify the core targets UBA52, NDUFS8, CYP1A2, NDUFS1 and CYP3A4. The interaction between BaP and these core proteins was further analyzed via molecular docking using the CB-Dock2 database, demonstrating high binding stability, which suggests their critical role in BaP-induced hepatocellular carcinoma (HCC) toxicity. Subsequently, we found significant differences in the expression of five core genes (UBA52, NDUFS8, CYP1A2, NDUFS1, CYP3A4) in HCC, and significant correlation between UBA52, NDUFS8 and CYP3A4 and survival of HCC patients. Single-cell sequencing analysis showed that the expression of UBA52 gene was particularly pronounced in the three immune cells.
Collapse
Affiliation(s)
- Yong-Le Li
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China
| | - Rong He
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China
| | - Meng Tang
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China
| | - Jing-Yi Lan
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China
| | - Guo-Yang Liu
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China
| | - Li-He Jiang
- School of Basic Medicine, Youjiang Medical College for Nationalities, Baise 533000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institute, Hefei 230032, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
8
|
Zehtabi M, Ghaedrahmati F, Dari MAG, Moramezi F, Kempisty B, Mozdziak P, Farzaneh M. Emerging biologic and clinical implications of miR-182-5p in gynecologic cancers. Clin Transl Oncol 2025; 27:2367-2382. [PMID: 39661239 DOI: 10.1007/s12094-024-03822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
Collapse
Affiliation(s)
- Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
- Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Paul Mozdziak
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, USA
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Fu Y, Yang Q, Xu N, Zhang X. MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167759. [PMID: 40037267 DOI: 10.1016/j.bbadis.2025.167759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Breast cancer (BC), which is the most common tumor in women, has greatly endangered women's lives and health. Currently, patients with BC receive comprehensive treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted therapy. According to the latest research, the development of BC is closely related to the inflammatory immune response, and the immunogenicity of BC has steadily been recognized. As such, immunotherapy is one of the promising and anticipated forms of treatment for BC. The potential values of miRNA in the diagnosis and prognosis of BC have been established, and aberrant expression of associated miRNA can either facilitate or inhibit progression of BC. In the tumor immune microenvironment (TME), miRNAs are considered to be an essential molecular mechanism by which tumor cells interact with immunocytes and immunologic factors. Aberrant expression of miRNAs results in reprogramming of tumor cells actively, which may suppress the generation and activation of immunocytes and immunologic factors, avoid tumor cells apoptosis, and ultimately result in uncontrolled proliferation and deterioration. Therefore, through activating and regulating the immunocytes related to tumors and associated immunologic factors, miRNA can contribute to the advancement of BC. In this review, we assessed the function of miRNA and associated immune system components in regulating the advancement of BC, as well as the potential and viability of using miRNA in immunotherapy for BC.
Collapse
Affiliation(s)
- Yeqin Fu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Qiuhui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, China
| | - Ning Xu
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xiping Zhang
- Zhejiang cancer hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
10
|
Samuels M, Karakostas C, Besta S, Lauer Betrán A, Tsilingiri K, Turner C, Shirazi Nia R, Poudine N, Goodyear R, Jones W, Klinakis A, Giamas G. LMTK3 regulation of EV biogenesis and cargo sorting promotes tumour growth by reducing monocyte infiltration and driving pro-tumourigenic macrophage polarisation in breast cancer. Mol Cancer 2025; 24:149. [PMID: 40405280 PMCID: PMC12100856 DOI: 10.1186/s12943-025-02346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Lemur Tail Kinase 3 (LMTK3) promotes cell proliferation, invasiveness and therapy resistance, and its expression correlates with poor survival in several different malignancies, including breast cancer. Crosstalk through extracellular vesicles (EVs) is an increasingly appreciated mechanism of cell communication within the tumour immune microenvironment, which contributes to different aspects of cancer progression and plays a pivotal role in shaping tumour fate. METHODS Nanoparticle tracking analysis and transmission electron microscopy were used to study the effects of LMTK3 on EV size, while single particle interferometry allowed us to examine LMTK3-dependent effects on the subpopulation distribution of EVs. Quantitative mass spectrometry was used to profile LMTK3-dependent proteomics changes in breast cancer-derived EVs. Bioinformatics analysis of clinical data along with in vitro and cell-based assays were implemented to explore the effects of LMTK3-dependent EV protein cargo on the tumour immune microenvironment. To elucidate the mechanism through which LMTK3 impacts endosomal trafficking and regulates EV biogenesis, we used a variety of approaches, including in vitro kinase assays, confocal and electron microscopy, as well as in vivo subcutaneous and orthotopic breast cancer mouse models. RESULTS Here, we report that LMTK3 increases the average size of EVs, modulates immunoregulatory EV proteomic cargo and alters the subpopulation distribution of EVs released by breast cancer cells. Mechanistically, we provide evidence that LMTK3 phosphorylates Rab7, a key regulator of multivesicular body (MVB) trafficking, thereby reducing the fusion of MVBs with lysosomes and subsequent degradation of intralumenal vesicles, resulting in altered EV release. Moreover, LMTK3 causes increased packaging of phosphoserine aminotransferase 1 (PSAT1) in EVs, leading to a paracrine upregulation of phosphoglycerate dehydrogenase (PHGDH) in monocytes when these EVs are taken up. PSAT1 and PHGDH play key roles in the serine biosynthesis pathway, which is closely linked to cancer progression and regulation of monocyte behaviour. LMTK3 EV-induced elevated PHGDH expression in monocytes reduces their infiltration into breast cancer 3D spheroids and in vivo breast cancer mouse models. Furthermore, these infiltrating monocytes preferentially differentiate into pro-tumourigenic M2-like macrophages. Additional breast cancer mouse studies highlight the contribution of LMTK3-dependent EVs in the observed immunosuppressive macrophage phenotype. Finally, in vitro experiments show that pharmacological inhibition of LMTK3 reverses the pro-tumourigenic and immunomodulatory effects mediated by EVs derived from LMTK3 overexpressing cells. CONCLUSION Overall, this study advances our knowledge on the mechanisms of EV biogenesis and highlights a novel oncogenic role of LMTK3 in the breast TME, further supporting it as a target for cancer therapy.
Collapse
Affiliation(s)
- Mark Samuels
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Christos Karakostas
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Simoni Besta
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Andrea Lauer Betrán
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Katerina Tsilingiri
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Charlotte Turner
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Reza Shirazi Nia
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Niloufar Poudine
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Richard Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Giamas
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University. Oncology department of the first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton, BN1 9QG, UK.
| |
Collapse
|
11
|
Hu S, Chen G, Luo A, Zhao H, Li D, Peng B, Du J, Luo D. Mechanism of LINC01018/miR-182-5p/Rab27B in the immune escape through PD-L1-mediated CD8 + T cell suppression in glioma. Biol Direct 2025; 20:61. [PMID: 40399992 PMCID: PMC12093642 DOI: 10.1186/s13062-025-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/15/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Glioma is a malignant tumor associated with poorer prognosis. This study aims to elucidate the mechanism of LINC01018/miR-182-5p/Rab27B axis in PD-L1-mediated CD8+ T cell suppression in the progression of gliomas. METHODS LINC01018, miR-182-5p, and Rab27B expression levels in glioblastoma tissues were measured. The proportion of infiltrating macrophages and monocytes and CD8+ T cell function were assessed. The relationship between miR-182-5p and Rab27B was analyzed. Glioma cell activity, invasion, and migration were measured. The expression of E-cadherin, N-cadherin, Vimentin, PD-L1, iNOS, and CD206 was determined. Glioma cell-derived EVs were isolated, and the co-localization of Rab27B and PD-L1 and the binding of Rab27B to PD-L1 were analyzed. The endocytosis of EVs by microglia was assayed. The impact of LINC01018/miR-182-5p/Rab27B on glioma growth was observed. The function of macrophages and CD8+ T cells in tumors was analyzed. RESULTS Rab27B was downregulated, and infiltrating macrophages and monocytes were increased in glioblastoma. miR-182-5p inhibited Rab27B expression. Rab27B knockdown reverses the inhibitory effect of LINC01018 overexpression on glioma cell growth. Glioma cells-derived EVs with low Rab27B expression carried more PD-L1 to increase PD-L1 expression and M2 polarization in microglia. LINC01018 overexpression reduced macrophages in orthotopic tumors. CD8+ T cell numbers showed no significant difference, but TIM-3 increased and IFN-γ decreased. miR-182-5p inhibition enhanced the therapeutic effect of anti-PD-L1, which was reversed after glioma cell-derived EVs. CONCLUSION LINC01018 promotes PD-L1-mediated CD8+ T cell suppression via the miR-182-5p/Rab27B axis in glioma cell-derived EVs, thereby contributing to immune escape in gliomas.
Collapse
Affiliation(s)
- Su Hu
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Guoshuo Chen
- Department of Intervention, the Affiliated Cancer Hospital, Guangzhou Institute of Cancer Research, Guangzhou Medical University, Guangzhou, 510095, China
| | - Aiping Luo
- Department of Radiology, the Affiliated Cancer Hospital, Guangzhou Institute of Cancer Research, Guangzhou Medical University, Guangzhou, 510095, China
| | - Hailin Zhao
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Dan Li
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Biao Peng
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| | - Jike Du
- Department of Medical Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| | - Dongdong Luo
- Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
12
|
Wang B, Bai X, Zhang M, Liu X, Dara MZN, Liu L, Ou M, Li D, Wang J, Liu L, Sun W. Ustilaginoidin D Induces Acute Toxicity and Hepatotoxicity in Mice. Toxins (Basel) 2025; 17:250. [PMID: 40423332 DOI: 10.3390/toxins17050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025] Open
Abstract
Ustilaginoidin D is a type of bis-naphtho-γ-pyrone mycotoxin produced by Ustilaginoidea virens, the causal agent of rice false smut. Although previous studies have demonstrated the inhibitory effect of ustilaginoidin D on ATP synthesis and cancer cell growth in mice, its specific health risks remain unclear. Here, we reveal that ustilaginoidin D is highly toxic to mice with an LD50 value of 213 mg /kg·bw. Dose-dependent weight loss and liver damage were observed, accompanied by altered markers of liver cell damage, including the enzyme activities of alanine aminotransferase and aspartate aminotransferase and the content of glutathione in mouse liver. RNA-seq analysis of liver tissues from mice treated with 150 mg of ustilaginoidin D/kg·bw identified significant changes in gene expression profiles, with differentially expressed genes enriched in cancer-related pathways, hypertrophic cardiomyopathy, and metabolic pathways. RT-qPCR data are highly consistent with transcriptome analysis in expression profiles of 22 chemical-carcinogenesis-associated genes. These findings indicate that ustilaginoidin D induces acute toxicity and liver dysfunction in mice, raising serious concerns about its threat to human health.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaolong Bai
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Min Zhang
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Xiangxiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Muhammad Zulqar Nain Dara
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Lingjing Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Mingming Ou
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Dayong Li
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Jiyang Wang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Provincial Key Laboratory of Green Management of Crop Pests and Diseases, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Korbecki J, Bosiacki M, Pilarczyk M, Kot M, Defort P, Walaszek I, Chlubek D, Baranowska-Bosiacka I. The CXCL1-CXCR2 Axis as a Component of Therapy Resistance, a Source of Side Effects in Cancer Treatment, and a Therapeutic Target. Cancers (Basel) 2025; 17:1674. [PMID: 40427171 PMCID: PMC12110541 DOI: 10.3390/cancers17101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
CXCL1 (Gro-α, MGSA) is a chemokine functionally similar to CXCL8/IL-8, as both activate the same receptor, CXCR2. CXCL1 levels are frequently elevated in tumors compared to healthy tissue, where they play a key role in promoting cancer cell migration, angiogenesis, and neutrophil recruitment. While the involvement of CXCL1 in tumor progression is well established, its relevance to cancer therapy remains underexplored. This review examines the therapeutic potential of targeting CXCL1 and its receptor, CXCR2, in cancer treatment. It discusses anti-CXCL1 antibodies and CXCR2 antagonists, including AZD5069, SB225002, SCH-479833, navarixin/SCH-527123, ladarixin/DF2156A, and reparixin, as well as strategies to enhance CXCR2 expression in lymphocytes during adoptive cell therapy to improve immunotherapy outcomes. Particular attention is given to the role of CXCL1 in treatment resistance, including resistance to chemotherapy, radiotherapy, and anti-angiogenic therapy. Cancer therapies often upregulate CXCL1 expression, which in turn drives treatment resistance. Additionally, this review explores the contribution of CXCL1 to therapy-induced side effects, such as chemotherapy-induced metastasis, neuropathy, nephrotoxicity, diarrhea, and cardiotoxicity. CXCR2 inhibitors are well tolerated by patients in clinical trials. However, the limited number of studies evaluating these agents in combination with standard chemotherapy precludes any definitive conclusions.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Marcin Kot
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Piotr Defort
- Neurosurgery Center University Hospital, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-417 Zielona Gora, Poland; (M.P.); (M.K.); (P.D.)
| | - Ireneusz Walaszek
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
14
|
Yin F, He Y, Qiao Y, Yan Y. Tumor-derived vesicles in immune modulation: focus on signaling pathways. Front Immunol 2025; 16:1581964. [PMID: 40443670 PMCID: PMC12119490 DOI: 10.3389/fimmu.2025.1581964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Tumor-derived extracellular vesicles (TDEVs) represent a heterogeneous population of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which are essential for tumor growth. EVs function as natural carriers of bioactive molecules, including lipids, proteins, and nucleic acids, enabling them to influence and regulate complex cellular interactions within the tumor microenvironment (TME). The TDEVs mainly have immunosuppressive functions as a result of the inhibitory signals disrupting the immune cell anti-tumor activity. They enhance tumor progression and immune evasion by inhibiting the effector function of immune cells and by altering critical processes of immune cell recruitment, polarization, and functional suppression by different signaling pathways. In this sense, TDEVs modulate the NF-κB pathway, promoting inflammation and inducing immune evasion. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is required for TDEV-mediated immune suppression and the manifestation of tumor-supporting features. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling, necessary for metabolic reprogramming, is orchestrated by TDEV to abrogate immune response and drive cancer cell proliferation. Finally, exosomal cargo can modulate the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, activating pro-inflammatory responses that influence tumor development and immunomodulation. In this review, we take a deep dive into how TDEVs affect the immune cells by altering key signaling pathways. We also examine emerging therapeutic approaches aimed at disrupting EV-mediated pathways, offering promising avenues for the development of novel EV-based cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Yin
- Department of Neurology, The Second Hospital of Jilin University, Changchun, China
| | - Yangfang He
- Department of Endocrinology and Metabolism, The Second Hospital of Jilin University, Changchun, China
| | - Yue Qiao
- Department of Physical Examination Center, The Second Hospital of Jilin University, Changchun, China
| | - Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Xu M, Ruan TT, Tang H, Fang RF, Sai WL, Xie Q, Yao DF, Yao M. Up-regulated programmed cell death protein-1/its ligand 1 expression promotes metabolic dysfunction-associated steatotic liver disease malignant progression. World J Gastrointest Oncol 2025; 17:104842. [DOI: 10.4251/wjgo.v17.i5.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
This editorial focuses on the recent article by Yang et al in the World Journal of Gastrointestinal Oncology, which highlights the role of interlukin-17A in promoting hepatocellular carcinoma (HCC) progression by up-regulated programmed cell death protein-1 (PD-1)/programmed cell death protein ligand-1 (PD-L1) expression. Previous, the high PD-1/PD-L1 level was due to hepatitis virus infection leading to systemic innate immune tolerance and cluster of differentiation 8 + T cells exhaustion, ultimately leading to HCC. Recently, interesting studies have found that the malignant progression of metabolic dysfunction-associated steatotic/fatty liver disease (MASLD/MAFLD), that is former nonalcoholic fatty liver disease, was achieved by up-regulated PD-L1 level that was activated the cGAS-STING pathway under lipid accumulation with mitochondrial DNA overflow and up-regulated PD-1/PD-L1 to promote MASLD malignant transformation via immune escape. These data suggested that PD-1 or PD-L1 should be a promising target for preventing or delaying non-viral liver disease malignant progression except of antiviral therapy for HCC.
Collapse
Affiliation(s)
- Min Xu
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Tian-Tian Ruan
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hao Tang
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qun Xie
- Department of Infectious Diseases, Nantong Haian People’s Hospital, Haian 226600, Jiangsu Province, China
| | - Deng-Fu Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
16
|
Jiang D, Yoou MS, Cho S, Choi Y. Molecular Dynamics-Guided Repositioning of FDA-Approved Drugs for PD-L1 Inhibition with In Vitro Anticancer Potential. Int J Mol Sci 2025; 26:4497. [PMID: 40429641 PMCID: PMC12110937 DOI: 10.3390/ijms26104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Programmed death-ligand 1 (PD-L1) is a crucial immune checkpoint protein that tumors often exploit to evade immune surveillance. This study systematically screened a library of 1031 FDA-approved drugs using a high-throughput molecular dynamics approach to identify potential inhibitors targeting PD-L1. From this screening, five promising compounds-vorapaxar, delafloxacin, tenofovir disoproxil, pivmecillinam, and fursultiamine-showed significant binding affinities to PD-L1 and demonstrated cytotoxic activity against A549 lung tumor cells. These candidates were further evaluated through extended molecular dynamics simulations lasting up to 150 ns to assess their structural stability, residue fluctuations, and binding free energy. Among the identified compounds, pivmecillinam demonstrated the most favorable results, exhibiting stable binding interactions and a binding free energy of -18.01 kcal/mol, comparable to that of the known PD-L1 inhibitor BMS-1. These findings suggest that pivmecillinam has promising immunomodulatory potential and could serve as a candidate for further development in cancer immunotherapy. Overall, this study underscores the value of integrating high-throughput MD and experimental approaches for drug repositioning to identify novel therapeutic agents.
Collapse
Affiliation(s)
- Dejun Jiang
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea;
| | - Myoung-Schook Yoou
- Eulji Medi-Bio Research Institute, Eulji University, Daejeon 34824, Republic of Korea;
| | - Sungjoon Cho
- Department of Bio-Applied Toxicology, Hoseo University, Asan 31499, Republic of Korea;
| | - Youngjin Choi
- Department of Bio-Applied Toxicology, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
17
|
Ramzy A, Abdel-Halim M, Manie T, Elemam NM, Mansour S, Youness RA, Sebak A. In-vitro immune-modulation of triple-negative breast cancer through targeting miR-30a-5p/MALAT1 axis using nano-PDT combinational approach. Transl Oncol 2025; 55:102365. [PMID: 40132387 PMCID: PMC11984585 DOI: 10.1016/j.tranon.2025.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenic tumor; however, its tumor immune microenvironment (TIME) is densely packed with immune suppressive cytokines and immune checkpoints. The immune-suppressive features of TNBC TIME represent a considerable obstacle to any immunotherapeutic approach. The objective of this study was to develop a multimodal in-vitro strategy to manipulate the TNBC TIME and enhance patients' outcomes by employing carefully tailored hybrid chitosan-lipid Nanoparticles (CLNPs), metformin and chlorin e6 (Ce-6)-mediated PDT, alone or combined. Special focus is directed towards evaluation of the role of the selected treatment agents on the non-coding RNAs (ncRNAs) involved in tuning the immuno-oncogenic profile of TNBC, for instance, the miR-30a-5p/MALAT1 network. METHODS This study enrolled 30 BC patients. CLNPs and ce-6-loaded CLNPs with different physicochemical features were synthesized and optimized using ionotropic gelation. The intracellular concentration and effects on MDA-MB-231 cellular viability were investigated. UHPLC was used to quantify ce-6. MDA-MB-231 cells were transfected with miR-30a-5p oligonucleotides and MALAT1 siRNAs using lipofection to investigate the interaction between MIF, PD-L1, TNF-α, IL-10, and the miR-30a-5p/MALAT1 ceRNA network. qRT-PCR was used to evaluate IL-10, TNF-α, and MIF expression levels, whereas flow cytometry was used for PD-L1. RESULTS Immunophenotyping of BC biopsies revealed significantly elevated levels of immunosuppressive markers, including IL-10, TNF-α, PD-L1, and MIF in BC biopsies compared to its normal counterparts. Upon patient stratification, it was shown that MIF and IL-10 are upregulated in TNBC patients compared to non-TNBC patients. Nonetheless, immune suppressive biomarkers expression investigated in the current study was generally correlated with signs of poor prognosis. CLNPs with mean particle size ranging from 50-150 nm were obtained. CLNPs exhibited different patterns of intracellular uptake, cytotoxicity and modulation of the immunosuppressive markers based on their physicochemical properties and composition. In particular, CLNP4 in-vitro effectively reduced IL-10, TNF-α, MIF, and PD-L1. Loading of Ce-6 into CLNP4 (Ce6-CLNPs) improved the in-vitro cytotoxic effects via PDT. In addition, PDT with Ce6-CLNP4 enhanced the expression of tumor-suppressive miR-30a-5p and decreased oncogenic lncRNA MALAT1 expression in MDA-MB-231 cells, suggesting a potential for modulating the TNBC immuno-oncogenic profile. CONCLUSION This study demonstrated that CLNPs and Ce-6-mediated PDT can modulate several key immunosuppressive factors and the miR-30a-5p/MALAT1 axis in TNBC cells. These findings provide a rationale for further in-vivo investigation of this multimodal therapeutic strategy.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt; Faculty of Pharmaceutical Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt.
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
18
|
Sohail SK. Natural Products as Modulators of miRNA in Hepatocellular Carcinoma: A Therapeutic Perspective. J Gene Med 2025; 27:e70019. [PMID: 40296860 DOI: 10.1002/jgm.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/07/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025] Open
Abstract
Hepatocellular carcinoma (HCC) continues to pose a substantial worldwide health concern, marked by elevated mortality rates and restricted therapeutic alternatives. Recent studies have highlighted the potential of natural compounds as therapeutic agents in cancer management. This review focuses on the diagnostic and prognostic potential of microRNAs (miRNAs) as biomarkers in HCC, alongside the therapeutic promise of natural products. We explore the intricate role of miRNAs in the pathogenesis of HCC, detailing their regulatory functions in cellular processes such as proliferation, apoptosis, and metastasis. Additionally, we discuss the emerging evidence supporting the use of natural compounds, including phytochemicals, in modulating miRNA expression and their potential synergistic effects with conventional therapies. Key miRNAs discussed include miR-21, an oncogenic factor that promotes tumor growth by targeting the tumor suppressor phosphatase and tensin homolog (PTEN); miR-34a, which enhances apoptosis and may improve treatment efficacy when combined with c-MET inhibitors; miR-203, whose downregulation correlates with poor outcomes and may serve as a prognostic marker; miR-16, which acts as a tumor suppressor and has diagnostic potential when measured alongside traditional markers like alpha-fetoprotein (AFP); and miR-483-3p, associated with resistance to apoptosis and tumor progression. By integrating insights from recent studies, this review aims to highlight the dual role of miRNAs as both biomarkers and therapeutic targets, paving the way for enhanced diagnostic strategies and novel treatment modalities in HCC management.
Collapse
|
19
|
Saleh RO, Aboqader Al-Aouadi RF, Almuzaini NA, Uthirapathy S, Sanghvi G, Soothwal P, Arya R, Bareja L, Mohamed Abdelgawwad El-Sehrawy AA, Hulail HM. Glucose metabolism is controlled by non-coding RNAs in autoimmune diseases; a glimpse into immune system dysregulation. Hum Immunol 2025; 86:111269. [PMID: 39999745 DOI: 10.1016/j.humimm.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The immune system accidentally targets the body's tissues, causing inflammation and tissue damage, the root causes of autoimmune illnesses. In recent studies, non-coding RNAs have been shown to significantly control gene expression and metabolic pathways linked to autoimmune diseases. This review investigates the effects of non-coding RNA on glucose metabolism, a route frequently dysregulated in autoimmune illnesses such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and diabetes. We review how non-coding RNA affects immune cell activity modulation, glucose absorption, glycolysis, and other metabolic processes critical to immune function. We also investigate the possibility of using non-coding RNA-mediated metabolic pathway targeting as a new therapeutic approach to treat autoimmune disorders. By clarifying the complex interplay of non-coding RNA, glucose metabolism, and immune dysregulation, this study endeavors to enhance comprehension of autoimmune etiology and facilitate the creation of focused therapies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
20
|
Pu Q, Han Y, Su Z, Ren H, Ou Q, Kashyap S, Liu S. Serine Hydroxymethyltransferase Modulates Midgut Physiology in Aedes aegypti Through miRNA Regulation: Insights from Small RNA Sequencing and Gene Expression Analysis. Biomolecules 2025; 15:644. [PMID: 40427537 PMCID: PMC12108651 DOI: 10.3390/biom15050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Aedes aegypti mosquitoes are critical vectors of arboviruses, responsible for transmitting pathogens that pose significant public health challenges. Serine hydroxymethyltransferase (SHMT), a key enzyme in one-carbon metabolism, plays a vital role in various biological processes, including DNA synthesis, energy metabolism, and cell proliferation. Although SHMT is expressed at low levels in the midgut of Aedes aegypti, its silencing has been shown to inhibit blood meal digestion. The precise mechanisms by which SHMT regulates midgut physiology in mosquitoes remain poorly understood. In this study, we employed small RNA sequencing and quantitative PCR to identify differentially expressed miRNAs (DEMs) following SHMT downregulation. We focused on a subset of DEMs-miR-2940-5p, miR-2940-3p, miR-2941, and miR-306-5p-to explore their potential biological functions. To further elucidate the molecular mechanisms underlying the miRNA response to SHMT downregulation, we analyzed the expression levels of key genes involved in the miRNA biogenesis pathway. Our results demonstrated that several critical enzymes, including Drosha, Dicer1, and AGO1, exhibited significant changes in expression upon SHMT silencing. This study provides new insights into the molecular mechanisms through which SHMT influences the biological functions and nutritional metabolism of the mosquito midgut. By linking SHMT activity to miRNA regulation, our findings highlight a potential pathway by which SHMT modulates midgut physiology, offering a foundation for future research into mosquito biology and vector control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (Q.P.); (Y.H.); (Z.S.); (H.R.); (Q.O.); (S.K.)
| |
Collapse
|
21
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
22
|
Wang E, Sun S, Li H, Jia Y, Bai Z. HBx/WDR5 enhances IGF-1 transcription in hepatocellular carcinoma cells and promotes recruitment, infiltration, and activity of Treg cells. Immunol Res 2025; 73:69. [PMID: 40199768 PMCID: PMC11978548 DOI: 10.1007/s12026-025-09620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
HBV X protein (HBx), the smallest open reading frame in the hepatitis B virus (HBV) genome, can promote hepatocellular carcinoma (HCC) tumorigenesis by activating the expression of multiple oncogenes through inducing epigenetic alterations and interacting with the underlying transcriptional machinery. HBV non-infected HepG2 and Huh7 cells were transfected with HBx expression plasmids. The transcriptional, protein expression, and secretion levels of IGF-1 were detected by RT-qPCR, western blot, and ELISA, respectively. ChIP-qPCR was used to analyze the binding proteins on the IGF-1 gene. A co-culture system of HCC and Treg cells was designed using Transwell chambers. IGF-1 mRNA, protein, and secretion levels were increased in HepG2 and Huh7 cells exogenously expressing HBx. HBx was able to enter the nucleus and interact with the enhancer region of the IGF-1 gene. Levels of WDR5 and H3K4me1, which bind to the enhancer region of the IGF-1 gene, were also increased in HepG2 and Huh7 cells ectopically expressing HBx. Knockdown of WDR5 counteracted the upregulation of IGF-1 mRNA and protein levels by HBx. In the cell co-culture system, HBx/IGF-1 signaling in HCC cells promoted Treg cells expansion, IL-10 secretion, and infiltration, which was blocked by the IGF-1R inhibitor picropodophyllin. HBx/WDR5 promoted IGF-1 transcription in HCC cells through enhancers. HBx could promote Treg cell recruitment, infiltration, and activity by enhancing IGF-1 expression. IGF-1/IGF-1R signaling plays an important role in the communication between HCC cells and Treg cells. Targeting WDR or IGF-1/IGF-1R would be beneficial for the treatment of HCC.
Collapse
Affiliation(s)
- Erli Wang
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Shuhua Sun
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Hui Li
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Yi Jia
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China
| | - Zhe Bai
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Province Cancer Hospital, Taiyuani, 030000, Shanx, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China.
- Department of Hepatobiliary, Pancreatic and Gastric Surgery, Xinghualing District, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Gongren new street, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
23
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025; 310:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
24
|
Shin E, Kim HM, Koo JS. Expression of T cell-related proteins in breast ductal carcinoma in situ. Histol Histopathol 2025; 40:467-475. [PMID: 39356080 DOI: 10.14670/hh-18-805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
This study aims to explore the expression of T cell subtype markers within the immune cells constituting the tumor microenvironment of ductal carcinoma in situ (DCIS) and to assess its implications. A tissue microarray comprising 191 cases of breast DCIS was created, and immunohistochemistry staining for T cell subtype markers (STAT3, STAT4, STAT-6, and FOXP3) was conducted. The DCIS cases were categorized into luminal, HER-2, and TNBC (Triple-negative breast cancer) types based on ER, PR, HER-2, and Ki-67 results. Additionally, they were classified as low-TIL (tumor-infiltrating lymphocytes) (<10%) or high-TIL (≥10%) types according to stromal TIL. Results revealed that 54.6% were luminal, 39.5% HER-2, and 5.9% TNBC. STAT3 exhibited a high positivity rate in luminal-type tumor cells, while STAT3, STAT4, STAT6, and FOXP3 showed elevated positivity rates in TNBC immune cells (p<0.05). Furthermore, a higher positivity rate was observed in high-TIL immune cells compared with low-TIL (p<0.001). The strongest agreement between T cell subtype markers in immune cells was found between STAT3 and STAT4 (OA=83.7%, κ=0.658), whereas the lowest was between STAT4 and FOXP3 (OA=71.7%, κ=0.370). In immune cells, STAT3 and STAT4 positivity correlated with necrosis (p<0.001), and the absence of positivity in all immune cell-related proteins in DCIS with necrosis was associated with poor prognosis (p=0.013). In conclusion, the immune cells in DCIS exhibit positivity for diverse T cell subtype markers, with TNBC and high-TIL DCIS displaying heightened positivity.
Collapse
Affiliation(s)
- Eunah Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
26
|
Rostom MM, Rashwan AA, Sotiropoulou CD, Hozayen SZ, Abdelhamid AM, Abdelhalim MM, Eltahtawy O, Emara HM, Elemam NM, Kontos CK, Youness RA. MIAT: A pivotal oncogenic long noncoding RNA tunning the hallmarks of solid malignancies. Transl Oncol 2025; 54:102329. [PMID: 40014977 PMCID: PMC11910686 DOI: 10.1016/j.tranon.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non-coding RNAs (LncRNAs) have emerged as intriguing players in cellular regulation, challenging the traditional view of non-coding RNAs as mere "dark genome". Non-coding DNA makes up most of the human genome and plays a pivotal role in cancer development. These RNA molecules, which do not code for proteins, have captivated researchers with their diverse and crucial roles in gene regulation, chromatin dynamics, and other cellular processes. In several physiological and pathological circumstances, lncRNAs serve critical functions. This review will tackle the complex function of the lncRNA myocardial infarction-associated transcript (MIAT) in various solid malignancies. A special emphasis would be directed on the correlation between cancer patients' clinicopathological features and the expression profile of MIAT. MIAT is a oncogenic regulator in many malignant tumors, where it can control the growth, invasion, metastasis, and resistance to death of cells. As a result, MIAT is thought to be a possible biomarker and therapeutic target for cancer patients. The biological functions, mechanisms and potential clinical implications of MIAT during carcinogenesis and finally the current possible therapeutic approaches targeting MIAT are also outlined in this review.
Collapse
Affiliation(s)
- Monica M Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Alaa A Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Sama Z Hozayen
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | | | - Miriam Mokhtar Abdelhalim
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Omar Eltahtawy
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt
| | - Hadir M Emara
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt; Department of Nanotechnology, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, UAE; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, UAE
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, Cairo, Egypt.
| |
Collapse
|
27
|
He NSM, Wu X, Chen S, Yun X, Yao S, Yu H. Targeting NETO2 suppresses cell proliferation, invasion, and migration and inactivates the STAT3/C-MYC pathway in hepatocellular carcinoma. World J Surg Oncol 2025; 23:107. [PMID: 40158169 PMCID: PMC11954197 DOI: 10.1186/s12957-025-03717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Neuropilin and tolloid-like 2 (NETO2) facilitates the progression of various cancers, but its role in hepatocellular carcinoma (HCC) is not known. This study aimed to assess the potential of targeting NETO2 in HCC and its relationship with the STAT3/C-MYC pathway. METHODS HCC cells (Huh7 and MHCC-97 H) were cultured and transfected with control siRNA (siCtrl), NETO2 siRNA (siNETO2), control overexpression (oeCtrl), or NETO2 overexpression (oeNETO2), with non-transfected cells used as blank controls. RESULTS NETO2 mRNA and protein expressions were reduced in both Huh7 and MHCC-97 H cells. EdU and CCK-8 assays indicated that cell proliferation was decreased after siNETO2 transfection in Huh7 and MHCC-97 H cells. TUNEL assay found revealed that the cell apoptosis rate was greater after siNETO2 transfection in MHCC-97 H cells, and tended to be greater in Huh7 cells (but the difference was not statistically significant). Transwell invasion assay revealed that the number of invasive Huh7 and MHCC-97 H cells decreased after siNETO2 transfection. Cell scratch assay revealed that the cell migration rate was reduced after siNETO2 transfection in Huh7 cells but was not significantly different in MHCC-97 H cells. Western blotting revealed that p-STAT3 and C-MYC expressions were decreased after siNETO2 transfection in Huh7 and MHCC-97 H cells. Overexpression experiments revealed that cell proliferation and invasion were promoted but that the cell apoptosis rate was reduced after oeNETO2 transfection in Huh7 and MHCC-97 H cells. CONCLUSION NETO2 knockdown suppresses HCC cell proliferation, invasion, and migration and inactivates the STAT3/C-MYC pathway, suggesting that NETO2 is a potential target for HCC treatment.
Collapse
Affiliation(s)
- Na Shun Meng He
- Minimally Invasive Intervention Department, Peking University Cancer Hospital Inner Mongolia Hospital, No. 42 Zhaowuda Road, Saihan District, Hohhot, 100020, China
| | - Xinghua Wu
- Electromyography Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Shu Chen
- Minimally Invasive Intervention Department, Peking University Cancer Hospital Inner Mongolia Hospital, No. 42 Zhaowuda Road, Saihan District, Hohhot, 100020, China
| | - Xinyi Yun
- Minimally Invasive Intervention Department, Peking University Cancer Hospital Inner Mongolia Hospital, No. 42 Zhaowuda Road, Saihan District, Hohhot, 100020, China
| | - Shun Yao
- Minimally Invasive Intervention Department, Peking University Cancer Hospital Inner Mongolia Hospital, No. 42 Zhaowuda Road, Saihan District, Hohhot, 100020, China
| | - Hai Yu
- Minimally Invasive Intervention Department, Peking University Cancer Hospital Inner Mongolia Hospital, No. 42 Zhaowuda Road, Saihan District, Hohhot, 100020, China.
| |
Collapse
|
28
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
29
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Zhang Y, Xu Y, Zhang Y, Wang S, Zhao M. The multiple functions and mechanisms of long non-coding RNAs in regulating breast cancer progression. Front Pharmacol 2025; 16:1559408. [PMID: 40223929 PMCID: PMC11985786 DOI: 10.3389/fphar.2025.1559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Breast cancer (BC) is a malignant tumor that has the highest morbidity and mortality rates in the female population, and its high tendency to metastasize is the main cause of poor clinical prognosis. Long non-coding RNAs (lncRNAs) have been extensively documented to exhibit aberrant expression in various cancers and influence tumor progression via multiple molecular pathways. These lncRNAs not only modulate numerous aspects of gene expression in cancer cells, such as transcription, translation, and post-translational modifications, but also play a crucial role in the reprogramming of energy metabolism by regulating metabolic regulators, which is particularly significant in advanced BC. This review examines the characteristics and mechanisms of lncRNAs in regulating BC cells, both intracellularly (e.g., cell cycle, autophagy) and extracellularly (e.g., tumor microenvironment). Furthermore, we explore the potential of specific lncRNAs and their regulatory factors as molecular markers and therapeutic targets. Lastly, we summarize the application of lncRNAs in the treatment of advanced BC, aiming to offer novel personalized therapeutic options for patients.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yanjiao Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanping Zhang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shoushi Wang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Mingqiang Zhao
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
31
|
Mahmud S, Ajadee A, Sarker A, Ahmmed R, Noor T, Pappu MAA, Islam MS, Mollah MNH. Exploring common genomic biomarkers to disclose common drugs for the treatment of colorectal cancer and hepatocellular carcinoma with type-2 diabetes through transcriptomics analysis. PLoS One 2025; 20:e0319028. [PMID: 40127075 PMCID: PMC11932495 DOI: 10.1371/journal.pone.0319028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/25/2025] [Indexed: 03/26/2025] Open
Abstract
Type 2 diabetes (T2D) is a crucial risk factor for both colorectal cancer (CRC) and hepatocellular carcinoma (HCC). However, so far, there was no study that has investigated common drugs against HCC and CRC during their co-occurrence with T2D patients. Consequently, patients often require multiple disease-specific multiple drugs, which can lead toxicities and adverse effects to the patients due to drug-drug interactions. This study aimed to identify common genomic biomarkers (cGBs) and associated pathogenetic mechanisms underlying CRC, HCC, and T2D to uncover potential common therapeutic compounds against these three diseases. Firstly, we identified 86 common differentially expressed genes (cDEGs) capable of separating each of CRC, HCC and T2D patients from control groups based on transcriptomic profiling. Of these cDEGs, 37 genes were upregulated and 49 were downregulated. Genetic association studies based on average of Log2 fold-change (aLog2FC) of cDEGs suggested a genetic association among CRC, HCC and T2D. Subsequently, six top-ranked cDEGs (MYC, MMP9, THBS1, IL6, CXCL1, and SPP1) were identified as common genomic biomarkers (cGBs) through protein-protein interaction (PPI) network analysis. Further analysis of these cGBs with GO-terms and KEGG pathways revealed shared pathogenetic mechanisms of three diseases, including specific biological processes, molecular functions, cellular components and signaling pathways. The gene co-regulatory network analysis identified two transcription factors (FOXC1 and GATA2) and three miRNAs (hsa-mir-195-5p, hsa-mir-124a-3p, and hsa-mir-34a-5p) as crucial transcriptional and post-transcriptional regulators of the cGBs. Finally, cGBs-guided seven candidate drugs (Digitoxin, Camptosar, AMG-900, Imatinib, Irinotecan, Midostaurin, and Linsitinib) as the common treatment against T2D, CRC and HCC were identified through molecular docking, cross-validation, and ADME/T (Absorption-Distribution-Metabolism-Excretion-Toxicity) analysis. Most of these findings received support by the literature review of diseases specific individual studies. Thus, this study offers valuable insights for researchers and clinicians to improve the diagnosis and treatment of CRC and/or HCC patients during the co-occurrence of T2D.
Collapse
Affiliation(s)
- Sabkat Mahmud
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
| | - Alvira Ajadee
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
| | - Arnob Sarker
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Bangladesh
| | - Reaz Ahmmed
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
- Department of Biochemistry & Molecular Biology, University of Rajshahi, Bangladesh
| | - Tasfia Noor
- Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology (RUET), Bangladesh
| | - Md. Al Amin Pappu
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
| | - Md. Saiful Islam
- Bioinformatics Lab (Dry), Department of Statistics, University of Rajshahi, Bangladesh
| | | |
Collapse
|
32
|
Wu X, Rong L, Tang R, Li Q, Wang F, Deng X, Miao L. Unveiling the role of CXCL10 in pancreatic cancer progression: A novel prognostic indicator. Open Med (Wars) 2025; 20:20241117. [PMID: 40129528 PMCID: PMC11931664 DOI: 10.1515/med-2024-1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 03/26/2025] Open
Abstract
Objective Pancreatic cancer is distinguished by its high likelihood of metastasis and drug resistance, while the fundamental mechanisms are inadequately elucidated. This study aimed to identify pivotal hub genes associated with pancreatic cancer and assess their potential utility in predicting its onset and progression. Methods Weighted gene co-expression network analysis (WGCNA) combined with differential expression analysis identified novel susceptibility modules and hub genes for pancreatic cancer. Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses were utilized to explore the potential roles of these hub genes. Receiver operator characteristic curves and nomogram models were developed to evaluate diagnostic efficacy. Mendelian randomization, flow cytometry, Transwell, and RNA sequencing were conducted to explore the association between C-X-C motif chemokine ligand 10 (CXCL10) and immune infiltration. Results WGCNA analysis was performed to build gene co-expression networks, and ten key genes were found. CXCL10 was the central gene, and its expression was significantly linked to the survival of patients with pancreatic cancer and their response to immune checkpoint inhibitors. CXCL10 demonstrated the ability to stimulate the differentiation of macrophages toward the M2 phenotype. CXCL10 could facilitate the metastasis of pancreatic cancer cells by modulating macrophage polarization. CXCL10 affects macrophage polarization by regulating the expression of vascular endothelial growth factor A. Conclusions CXCL10 demonstrates potential as a therapeutic target for managing pancreatic cancer.
Collapse
Affiliation(s)
- Xiaochao Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longfei Rong
- Department of General Surgery, SIR RUN RUN Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruiyi Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanpeng Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueting Deng
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Miao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
34
|
Su Y, Bai Q, Zhang W, Xu B, Hu T. The Role of Long Non-Coding RNAs in Modulating the Immune Microenvironment of Triple-Negative Breast Cancer: Mechanistic Insights and Therapeutic Potential. Biomolecules 2025; 15:454. [PMID: 40149989 PMCID: PMC11939868 DOI: 10.3390/biom15030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive subtype of breast cancer that faces therapeutic challenges due to a shortage of effective targeted therapies. The complex biology of TNBC renders its clinical management fraught with difficulties, especially regarding the immune microenvironment of the tumor. In recent years, long non-coding RNAs (lncRNAs) have been recognized as important gene regulators with key roles in tumor development and microenvironmental regulation. Previous studies have shown that lncRNAs play important roles in the immune microenvironment of TNBC, including the regulation of tumor immune escape and the function of tumor-infiltrating immune cells. However, despite the increasing research on lncRNAs, there are still many unanswered questions, such as their specific mechanism of action and how to effectively utilize them as therapeutic targets. Therefore, the aim of this study was to review the mechanisms of lncRNAs in the TNBC immune microenvironment, explore their regulatory roles in tumor immune escape and immune cell infiltration, and explore their prospects as potential therapeutic targets. By integrating the latest research results, this study aims to provide new ideas and directions for future TNBC treatment.
Collapse
Affiliation(s)
- Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Qingquan Bai
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
- Shenzhen Research Institute, Xiamen University, Shenzhen 518057, China
| |
Collapse
|
35
|
Al-Sharabass EA, El-Houseini ME, Effat H, Ibrahim SA, Abdellateif MS. The clinical potential of PDL-1 pathway and some related micro-RNAs as promising diagnostic markers for breast cancer. Mol Med 2025; 31:106. [PMID: 40108523 PMCID: PMC11921724 DOI: 10.1186/s10020-025-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Immune checkpoint pathways play important roles in breast cancer (BC) pathogenesis and therapy. METHODS Expression levels of programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed death-ligand 1 (PD-L1), Forkhead box P3 (FOXP3), miR-155, and miR-195 were assessed in the peripheral blood of 90 BC patients compared to 30 healthy controls using quantitative real-time PCR (qRt-PCR). The plasma level of soluble MHC class I chain related-protein B (MIC-B) protein was assessed using the enzyme linked immunosorbent assay (ELISA) technique. The data were correlated to the clinico-pathological characteristics of the patients. RESULTS There was a significant increase in the expression levels of PDL-1 [17.59 (3.24-123), p < 0.001], CTLA-4 [23.34 (1.3-1267), p = 0.006], PD-1 [10.25 (1-280), p < 0.001], FOXP3 [11.5 (1-234.8), p = 0.001], miR-155 [87.3 (1.5-910), p < 0.001] in BC patients compared to normal controls. The miR-195 was significantly downregulated in BC patients [0.23 (0-0.98, p < 0.001]. The plasma level of MIC-B was significantly increased in the BC patients [0.941 (0.204-6.38) ng/ml], compared to the control group [0.351 (0.211-0.884) ng/mL, p < 0.00]. PDL-1, CTLA-4, PD-1, and FOXP3 achieved a specificity of 100% for distinguishing BC patients, at a sensitivity of 93.3%, 82.2%, 62.2%, and 71.1% respectively. The combined expression of PDL-1 and CTLA-4 scored a 100% sensitivity and 100% specificity for diagnosing BC (p < 0.001). The sensitivity, specificity, and AUC of miR-155 were 88.9%, 96.7%, and 0.934; respectively (p < 0.001). While those of miR-195 were 73.3%, 60%, and 0.716; respectively (p = 0.001). MIC-B expression showed a 77.8% sensitivity, 80% specificity, and 0.811 AUC at a cutoff of 1.17 ng/ml (p < 0.001). Combined expression of miR-155 and miR-195 achieved a sensitivity of 91.1%, a specificity of 96.7%, and AUC of 0.926 (p < 0.001). Multivariate analysis showed that PDL-1 (OR:13.825, p = 0.004), CTLA-4 (OR: 20.958, p = 0.010), PD-1(OR:10.550, p = 0.044), MIC-B (OR: 17.89, p = 0.003), miR-155 (OR: 211.356, P < 0.001), and miR-195(OR:0.006, P < 0.001) were considered as independent risk factors for BC. CONCLUSIONS The PB levels of PDL-1, CTLA-4, PD-1, FOXP3, MIC-B, miR-155, and miR-195 could be used as promising diagnostic markers for BC patients.
Collapse
Affiliation(s)
| | - Motawa E El-Houseini
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
36
|
Zeng F, Chen L, Li J, Yu W, Sa N, Zhang K, Qu C, Wen D. A pan-cancer analysis reveals the oncogenic and immunological role of insulin-like growth factor 2 mRNA-binding protein family members. Discov Oncol 2025; 16:323. [PMID: 40088376 PMCID: PMC11910485 DOI: 10.1007/s12672-025-02077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE To investigate the expression and clinical significance of insulin-like growth factor 2 mRNA-binding protein family members (IGF2BPs) in pan-cancer and evaluate their potential as targets for tumor immunotherapy. METHODS Based on data from the cancer genome atlas (TCGA) database, pan-cancer analysis was conducted to examine the clinical significance of IGF2BPs expression in twenty-two tumors. RESULTS Differential expression analysis showed high expression of IGF2BPs in most tumor tissues. Survival and mutation analyses suggested that the overexpression of IGF2BPs was associated with poor prognosis and mutation status of certain tumors. Methylation analysis revealed the methylation levels of IGF2BP1/2/3 in certain tumors were intricately linked to their mRNA expression, patient prognosis, and immune cell infiltration. Enrichment analysis indicated that abnormal expression of IGF2BPs was associated with various common tumor-related pathways in different tumors, including AMPK, Hippo, PI3K-Akt, EMT, and p53. In addition, immune correlation analysis revealed that IGF2BPs were closely related to immunotherapy-related indicators (immune cell infiltration, major histocompatibility complex (MHC), immune checkpoints, tumor mutation burden (TMB), and microsatellite instability (MSI)) in some tumors. Drug sensitivity analysis indicated that IGF2BPs were sensitive to some common chemotherapeutic drugs (alvocidib, dasatinib, trametinib, and selumetinib). CONCLUSION IGF2BPs exhibit significantly high expression in most tumors and are associated with prognosis, pathological stage, mutational status, methylation levels, and the relevant indicators of immunotherapy sensitivity in multiple tumors. Moreover, IGF2BPs may play an oncogenic role by activating common signaling pathways. Therefore, IGF2BPs may be potential prognostic markers for tumor therapy and targets for immunotherapy and drug therapy.
Collapse
Affiliation(s)
- Fuling Zeng
- Department of Laboratory Medicine, Shenzhen Guangming District People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenna Yu
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Niya Sa
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Daolin Wen
- Department of Laboratory Medicine, Shenzhen Guangming District People's Hospital, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
37
|
Das J, Busia-Bourdain O, Khan KM, Wolfe AL. IMPlications of IMP2 in RNA Biology and Disease. Int J Mol Sci 2025; 26:2415. [PMID: 40141058 PMCID: PMC11942581 DOI: 10.3390/ijms26062415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is an RNA-binding protein that positively regulates m6A-modified RNAs involved in critical cellular processes such as metabolism, oncogenesis, and immune function. Here, we elucidate facets of IMP2 biology, including several mechanisms of action on RNA, factors that regulate IMP2 expression, its relevant biological target RNAs, its role in normal development and disease, and its potential as a therapeutic target. IMP2 is a multi-level regulator of metabolism, influencing pathways linked to diabetes, obesity, and adipose function. Through genomic amplification and transcriptional overexpression in cancer cells, IMP2 can drive the initiation and progression of multiple cancer types, and high expression is associated with decreased overall survival of patients with cancer. IMP2 influences normal immune function, inflammation, macrophage polarization, and tumor immune evasion. IMP2 has emerged as a promising therapeutic target, particularly for cancers and metabolic diseases.
Collapse
Affiliation(s)
- Jessica Das
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Khizr M. Khan
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
38
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
39
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
40
|
El-Magied MHA, Fawzy A, Mostafa MM, Elnaggar GN, Moselhy SS, Elhady MM. Alterations in expression of miRNA 497 and long non-coding RNAS (XIST-TSIX) and its significant role in colorectal cancer prediction. Sci Rep 2025; 15:7387. [PMID: 40032945 PMCID: PMC11876683 DOI: 10.1038/s41598-025-90110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Colorectal cancer (CRC) is a common type of malignancy in Western nations with high incidence related to different factors as genetic, foods and pollution. Long non-coding RNAs (LncRNAs) play a significant role in cellular processes, oncogensis and can be used as biomarkers for cancer progression. The rationale of this study was to quantify the expression levels of miRNA 497 and LncRNAs (XIST-TSIX) as a sensitive and accurate markers for CRC diagnosis and correlated with serum FOXK1, CA19.9 and CEA compared with normal subjects. This study was carried outon100 participants, they were divided into two equal groups: Group (1): Patients were diagnosed with CRC and Group (2): Normal subjects as control. Tumor size, type, TNM staging, differentiation, levels of FOXK1and, CEA, CA19.9 were evaluated in serum. The RNA was extracted from the tissue of CRC patients for quantification expression of miRNA 497 and LncRNAs (XIST and TSIX) using qRT-PCR. Data obtained showed that, the expression levels of tissue miRNA 497, XIST, TSIX in combination with serum FOXK1, CA19.9 and CEA are good confirmatory non-invasive markers for CRC diagnosis. Sensitivity and specificity tests showed higher AUC values of miRNA 497 + XIST + TSIX + FOXK1 significantly than those of CA19.9 + CAE. It was concluded that, a rigorous assessment of these parameters could facilitate the discovery of non-invasive biomarkers for the early detection and prognosis of CRC, ultimately enhancing the protocols for early treatment decision-making.
Collapse
Affiliation(s)
| | - Amal Fawzy
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Mohsen Mostafa
- Cardiovascular Hospital, Ain Shams University Hospitals, Ain Shams University, Cairo, Egypt
| | - Ghada Nabil Elnaggar
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Said Salama Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
41
|
Park JD, Shin HE, An YS, Jang HJ, Park J, Kim SN, Park CG, Park W. Advancing Natural Killer Cell Therapy: Genetic Engineering Strategies for Enhanced Cancer Immunotherapy. Ann Lab Med 2025; 45:146-159. [PMID: 39774132 PMCID: PMC11788708 DOI: 10.3343/alm.2024.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/06/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Natural killer (NK) cells are pivotal innate immune system components that exhibit spontaneous cytolytic activity against abnormal cells, such as infected and tumor cells. NK cells have shown significant promise in adoptive cell therapy because of their favorable safety profiles and minimal toxicity in clinical settings. Despite their advantages, the therapeutic application of unmodified NK cells faces challenges, including limited in vivo persistence, particularly in the immunosuppressive tumor microenvironment. Recent advances in genetic engineering have enhanced the therapeutic potential of NK cells by addressing these limitations and improving their therapeutic efficacy. In this review, we have described various methodologies for the genetic modification of NK cells, including viral vectors, electroporation, and nanoparticle-based approaches. The ongoing research on nanomaterialbased approaches highlights their potential to overcome current limitations in NK cell therapy, paving the way for advanced cancer therapy and improved clinical outcomes. In this review, we also emphasize the potential of engineered NK cells in cancer immunotherapy and other clinical applications, highlighting the expanding scope of NK cell-based treatments and the critical role of innovative genetic engineering techniques.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Ha Eun Shin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Manoa, Honolulu, USA
| | - Yeon Su An
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Hye Jung Jang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Manoa, Honolulu, USA
| | - Se-Na Kim
- Department of Industrial Cosmetic Science, Chungbuk National University, Cheongju, Korea
- Research and Development Center, MediArk Inc., Cheongju, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
- Korea Institute of Science and Technology, Seoul, Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Korea Institute of Science and Technology, Seoul, Korea
- Department of MetaBioHealth, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
42
|
Jin H, Meng X, Feng J. Mechanisms of tumor-associated macrophages in breast cancer and treatment strategy. Front Immunol 2025; 16:1560393. [PMID: 40092996 PMCID: PMC11906463 DOI: 10.3389/fimmu.2025.1560393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Breast cancer (BC) is the most common cancer in women and a leading cause of cancer-related mortality. Despite advances in screening and treatment, outcomes for advanced or recurrent BC remain poor, highlighting the need for new strategies. Recent research emphasizes the tumor microenvironment (TME), particularly tumor-associated macrophages (TAMs), as key drivers of tumor growth, metastasis, and resistance to therapy. The presence of M2-like TAMs in the TME promotes immune evasion and tumor progression across BC subtypes. This review summarizes TAMs classification, their role in BC, and emerging therapies targeting TAMs, including depletion, inhibition of recruitment, and reprogramming from pro-tumoral M2 to anti-tumoral M1 phenotypes. Targeting TAMs offers a promising strategy to improve BC treatment outcomes.
Collapse
Affiliation(s)
| | - Xinyue Meng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianwei Feng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Cao Q, Li C, Li Y, Kong X, Wang S, Ma J. Tumor microenvironment and drug resistance in lung adenocarcinoma: molecular mechanisms, prognostic implications, and therapeutic strategies. Discov Oncol 2025; 16:238. [PMID: 40000527 PMCID: PMC11861463 DOI: 10.1007/s12672-025-01981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The fight against lung adenocarcinoma (LUAD) is challenged by tumor microenvironment (TME)-mediated drug resistance, which limits effective treatment. This study examines the LUAD TME and identifies four distinct subtypes through multi-omics profiling: immune-rich, immune-exhausted, stromal-dominant, and TME-desert. Each subtype has unique molecular features, tumor diversity, and links to clinical outcomes. Immune-rich subtypes respond better to immune checkpoint inhibitors, while stromal-dominant and TME-desert subtypes show resistance to treatment and poor prognosis. Molecular analysis uncovers subtype-specific mutations, chromosomal instability, and altered signaling pathways, pointing to potential therapeutic targets. In silico drug screening identifies promising treatments for resistant subtypes. These findings, validated in independent cohorts, highlight the critical role of the TME in drug resistance and treatment response, providing insights for personalized treatment strategies in LUAD.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Chenxuan Li
- Blood Purification Center, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
| | - Ying Li
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
| | - Xiangjing Kong
- Qingdao Medical College, Qingdao University, Qingdao, 266073, Shandong, China
| | - Shoushi Wang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266042, Shandong, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
44
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025; 7:934-962. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
45
|
Wang C, Liu Y, Zhang R, Gong H, Jiang X, Xia S. Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer. Int Immunopharmacol 2025; 147:113930. [PMID: 39740508 DOI: 10.1016/j.intimp.2024.113930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies. GPCRs modulate immune cell recruitment, polarization, and function, thereby fostering an immunosuppressive milieu conducive to tumor progression and metastasis. The review examines how alterations in GPCR expression on immune cells influence the pathogenesis and advancement of TNBC. Further, it discusses emerging therapeutic strategies targeting GPCR signaling pathways to remodel the immunosuppressive TIME in TNBC. These insights into GPCR-mediated immune regulation not only deepen our comprehension of TNBC's pathophysiology but also offer promising avenues for developing novel immunotherapies aimed at enhancing clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Chengyi Wang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Yanyan Liu
- Clinical Medical School, Jining Medical University, Jining, China
| | - Ru Zhang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Hao Gong
- Clinical Medical School, Jining Medical University, Jining, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China.
| |
Collapse
|
46
|
Kuriakose BB, Zwamel AH, Mutar AA, Uthirapathy S, Bishoyi AK, Naidu KS, Hjazi A, Nakash P, Arya R, Almalki SG. The critical role of NLRP3 in drug resistance of cancers: Focus on the molecular mechanisms and possible therapeutics. Semin Oncol 2025; 52:27-40. [PMID: 40037148 DOI: 10.1016/j.seminoncol.2025.152337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Nod-like receptor protein 3 (NLRP3) is a member of the leucine-rich repeat-containing protein (NLR) canonical inflammasome family. It regulates the pathophysiology of cancer by facilitating immune responses and apoptotic proteins. Furthermore, it has been observed that chemotherapy activates NLRP3 in human malignancies. The secretion of IL-1β and IL-22 to promote cancer spread may be triggered by NLRP3 activation. Furthermore, earlier studies have exhibited that NLRP3 may cause medication resistance when used in cancer treatments given that cell viability may be regulated by NLRP3 depletion. Additionally, clinical studies have demonstrated correlation between NLRP3 expression, lymphogenesis, and cancer metastasis. Various NLRP3 agonists may cause the EMT process, stimulate IL-1β and Wnt/β-catenin signaling, and alter miRNA function in drug-resistant cells. This review seeks to clarify the possibility involvement of NLRP3-related pathways in the control of cancer cells' resistance to widely used treatment approaches, such as chemotherapy. In the end, an improved perception of the corresponding mechanisms behind NLRP3's tumor-supporting activities will help NLRP3-based treatments advance in the future.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Ayad Abdulrazzaq Mutar
- Medical Laboratory Techniques department, College of Health and medical technology, Al-maarif University, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
47
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
48
|
Strati A, Adamopoulos C, Kotsantis I, Psyrri A, Lianidou E, Papavassiliou AG. Targeting the PD-1/PD-L1 Signaling Pathway for Cancer Therapy: Focus on Biomarkers. Int J Mol Sci 2025; 26:1235. [PMID: 39941003 PMCID: PMC11818137 DOI: 10.3390/ijms26031235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The PD1/PD-L1 axis plays an important immunosuppressive role during the T-cell-mediated immune response, which is essential for the physiological homeostasis of the immune system. The biology of the immunological microenvironment is extremely complex and crucial for the development of treatment strategies for immunotherapy. Characterization of the immunological, genomic or transcriptomic landscape of cancer patients could allow discrimination between responders and non-responders to anti-PD-1/PD-L1 therapy. Immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in a variety of malignancies in landmark trials and has fundamentally changed cancer therapy. Current research focuses on strategies to maximize patient selection for therapy, clarify mechanisms of resistance, improve existing biomarkers, including PD-L1 expression and tumor mutational burden (TMB), and discover new biomarkers. In this review, we focus on the function of the PD-1/PD-L1 signaling pathway and discuss the immunological, genomic, epigenetic and transcriptomic landscape in cancer patients receiving anti-PD-1/PD-L1 therapy. Finally, we provide an overview of the clinical trials testing the efficacy of antibodies against PD-1/PD-L1.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
49
|
Hao F, Yan Z, Shen L, Hui W, Ling Q, Xiaoyu Y, Hua J. Reverse-engineering the FLT3-PI3K/AKT axis to enhance TILs function and improve prognosis in ovarian and cervical cancers. J Ovarian Res 2025; 18:14. [PMID: 39863894 PMCID: PMC11762100 DOI: 10.1186/s13048-025-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive. METHODS We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators. Seurat and Harmony were employed for batch correction and dimensionality reduction. FLT3 expression was mapped with spatial data from 10 × Genomics. RESULTS FLT3, identified as a regulator through the PI3K/AKT pathway, showed positive correlations with T cells, NK cells, and B cells. FLT3-high regions exhibited increased immune infiltration, particularly in CC, enhancing survival outcomes. CONCLUSION This study provides the first spatially resolved evidence of FLT3's immune-modulatory role in OC and CC, positioning it as a promising immunotherapeutic target. FLT3-targeted strategies may offer new options for patients resistant to conventional therapies.
Collapse
Affiliation(s)
- Feng Hao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Zhang Yan
- Department of Cervical, Xiamen Women and Children's Healthcare Hospital, Women's and Children's Hospital of Xiamen University, #10 Zhenhai Road, Xiamen, 361000, People's Republic of China
| | - Luo Shen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Wang Hui
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Qiu Ling
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Yang Xiaoyu
- HK International Regenerative Centre, MIRAMAR TWR 132 NATHAN RD Tsim Sha Tsui, Hong Kong Special Administrative Region, China.
| | - Jiang Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
50
|
Abdelbary R, Ragheb M, El Sobky SA, El-Badri N, Aboud N, Tawheed A, Gomaa A, Zidan M, Aziz RK, Abouzid AE, Salah RA, El-Kassas M, Waked I, Moustafa A, Fawzy IO, El-Ekiaby N, Abdelaziz AI. MiR-216a-3p inhibits the cytotoxicity of primary natural killer cells. Front Oncol 2025; 14:1523068. [PMID: 39906666 PMCID: PMC11790671 DOI: 10.3389/fonc.2024.1523068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
INTRODUCTION The role of miRNAs in regulating variable molecular functions has been sought by scientists for its promising utility in regulating the immune response and, hence, in treating various diseases. In hepatocellular carcinoma (HCC) specifically, a reduction in the number and efficiency of circulating and intrahepatic natural killer (NK) cells has been reported. Our project aims to investigate the role of miR-216a-3p in the regulation of NK cell cytotoxicity, especially since it plays a tumor suppressor role in the context of HCC. METHODS To achieve our aim, we isolated NK cells from the whole blood of 86 patients with HCC and 23 healthy controls. We assessed the expression profile of miR-216a-3p in NK cells of patients and controls. Furthermore, we induced the expression of miR-216a-3p in NK cells isolated from healthy controls, followed by measuring the release of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), perforins (PRF) and granzyme B (GrB) using ELISA as well as NK cells cytolytic activity against Huh7 cells using lactate dehydrogenase (LDH) cytotoxicity assay. After that, we performed an in silico analysis to understand the mechanistic regulation imposed by miR-216a-3p on NK cells to study its impact on one of its potential downstream targets. RESULTS Our results have indicated that miR-216a-3p has higher expression in NK cells of patients with HCC, and simulating this elevated expression pattern via forcing miR-216a-3p expression in normal NK cells has negatively impacted the release of TNF- α, IFN- γ, GrB, and PRF. Consequently, a decrease in cell cytolysis was observed. Our in silico analysis revealed that the predicted downstream targets of miR-216a-3p are enriched in the FOXO-signaling pathway. Among those targets is FOXO-1, which has been reported to play a role in NK cell maturation. Thus, we evaluated FOXO-1 expression upon mimicking miR-216a-3p in control NK cells that showed significant downregulation of FOXO-1 on both RNA and protein levels. CONCLUSION In conclusion, we report miR-216-3p as a negative regulator of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Rowan Abdelbary
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Nourhan Aboud
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed Tawheed
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Asmaa Gomaa
- National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Mona Zidan
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Abd Elrahman Abouzid
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Imam Waked
- National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in New Cairo, Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | | | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | |
Collapse
|