1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Millian DE, Arroyave E, Wanninger TG, Krishnan S, Bao D, Zhang JR, Rao A, Spratt H, Ferguson M, Chen V, Stevenson HL, Saldarriaga OA. Alterations in the hepatic microenvironment following direct-acting antiviral therapy for chronic hepatitis C. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25321289. [PMID: 40034770 PMCID: PMC11875275 DOI: 10.1101/2025.02.17.25321289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background and aims. The first direct-acting antivirals (DAAs) to treat the viral hepatitis C (HCV) became available in 2011. Despite numerous clinical studies of patient outcomes after treatment, few have evaluated changes in the liver microenvironment. Despite achieving sustained virologic response (SVR), patients may still experience adverse outcomes like cirrhosis and hepatocellular carcinoma. By comparing gene and protein expression in liver biopsies collected before and after treatment, we sought to determine whether specific signatures correlated with disease progression and adverse clinical outcomes. Methods. Biopsies were collected from 22 patients before and after DAA treatment. We measured ∼770 genes and used multispectral imaging with custom machine learning algorithms to analyze phenotypes of intrahepatic macrophages (CD68, CD14, CD16, MAC387, CD163) and T cells (CD3, CD4, CD8, CD45, FoxP3). Results. Before DAA treatment, patients showed two distinct gene expression patterns: one with high pro-inflammatory and antiviral gene expression and another with weaker expression. Patients with adverse outcomes exhibited significantly (p<0.05) more inflammatory activity and had more advanced fibrosis stages in their baseline biopsies than those with liver disease resolution. Patients who achieved SVR had significantly decreased liver enzymes, reduced inflammatory scores, and restored type 1 interferon pathways similar to controls. However, after DAA treatment, patients with persistently high gene expression (67%, pre-hot) still had significantly worse outcomes (p<0.049) despite achieving SVR. A persistent lymphocytic infiltrate was observed in a subset of these patients (76.5%). After therapy, anti-inflammatory macrophages (CD16+, CD16+CD163+, CD16+CD68+) increased, and T cell heterogeneity was more pronounced, showing a predominance of helper and memory T cells (CD3+CD45RO+, CD4+CD45RO+, CD3+CD4+CD45RO+). Conclusions. Patients who have more inflamed livers and more advanced fibrosis before DAA treatment should be closely followed for the development of adverse outcomes, even after achieving SVR. We can enhance patient risk stratification by integrating gene and protein expression profiles with clinical data. This could identify those who may benefit from more intensive monitoring or alternative therapeutic approaches, inspiring a new era of personalized patient care. Lay Summary Direct-acting antiviral (DAA) therapy has dramatically improved the treatment of chronic HCV, making it curable for most people. This study determined gene and protein expression differences in the liver before and after treatment of HCV. These results will lead to a deeper understanding of the changes in the hepatic immune microenvironment with and without the virus present in the liver in hopes of improving patient surveillance, prognosis, and outcome in the future.
Collapse
|
3
|
Liu Z, Hu B, Zeng T, You C, Li N, Liu Y, Zhang J, Liu C, Jin P, Feng X, Chen J, Huang J. A comparative cohort study of post-COVID-19 conditions based on physical examination records in China. EBioMedicine 2025; 112:105549. [PMID: 39753031 PMCID: PMC11753975 DOI: 10.1016/j.ebiom.2024.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2 virus infection, is characterized as a multisystem disease, potentially yielding multifaceted consequences on various organs at multiple levels. At the end of 2022, over 90% of the Chinese population was infected by SARS-CoV-2 within 35 days because of adjustments to epidemic prevention and control policies. This short-term change provides an unprecedented opportunity for comparative studies on COVID-19 infection among large populations. METHODS In this study, the physical examination data of 136,713 people in the past three consecutive years was employed to study the impact of COVID-19. Standard physical examination data, comprising evaluations of nearly a hundred indicators, were investigated for a comprehensive assessment of COVID-19's effect on human health. FINDINGS The results suggested that most indicators remained stable or changed within a permissible range after the COVID-19 outbreak in December 2022, but several specific indicators presented abnormal patterns of varying durations. There was an observed increase in the fraction of T-wave abnormalities during the outbreak, especially in people with chronic diseases such as hypertension, liver steatosis, and hyperglycemia. INTERPRETATION These findings highlighted the impact of COVID-19 on cardiovascular health and its potential interaction with chronic diseases. FUNDING This work was supported by the National Key Research and Development Program of China (2019YFE0108100), the National Natural Science Foundation of China General Program (82270159, 82070147).
Collapse
Affiliation(s)
- Zhong Liu
- Center for Health Management, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China.
| | - Boqiang Hu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Tao Zeng
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Cuiping You
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China
| | - Nan Li
- Center for Health Management, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Jie Zhang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Chenbing Liu
- Center for Health Management, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Piaopiao Jin
- Center for Health Management, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoxi Feng
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China
| | - Jun Chen
- Division of Computational Biology, Mayo Clinic, Rochester, United States.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
4
|
Ashmawy R, Hamouda EA, Zeina S, Sharaf S, Erfan S, Redwan EM. Impact of COVID-19 on preexisting comorbidities. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:215-258. [PMID: 40246345 DOI: 10.1016/bs.pmbts.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
COVID-19 is a highly contagious viral disease caused by SARS-CoV-2, leading to a tragic global pandemic, where it was ranked in 2020 as the third leading cause of death in the USA, causing approximately 375,000 deaths, following heart disease and cancer. The CDC reports that the risk of death increases with age and preexisting comorbidities such as such as hypertension, diabetes, respiratory system disease, and cardiovascular disease. this report will delineate and analyze the paramount comorbidities and their repercussions on individuals infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Rasha Ashmawy
- Ministry of Health and Population, Alexandria, Egypt
| | | | - Sally Zeina
- Ministry of Health and Population, Alexandria, Egypt
| | - Sandy Sharaf
- Ministry of Health and Population, Alexandria, Egypt
| | - Sara Erfan
- Ministry of Health and Population, Alexandria, Egypt
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Abd El-Maksoud EM, Ibrahim NES, Farag MMS, Swellam M. Interleukin-17A and Interleukin-17F Gene Polymorphisms in Egyptian Patients with Chronic Hepatitis C and Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2025; 26:153-159. [PMID: 39873997 DOI: 10.31557/apjcp.2025.26.1.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Interleukin IL-17A and IL-17F are critical cytokines involved in inflammatory processes. Genetic variations in IL-17A and IL-17F might be linked to chronic hepatitis C (CHC) and an increased risk of hepatocellular carcinoma (HCC), a cancer associated with long-term inflammation. This study aims to examine the relationship between specific polymorphisms in IL-17A (rs2275913) and IL-17F (rs763780) and their association with HCV-related HCC in an Egyptian population. METHODS Authors conducted a case-control study involving 52 patients with chronic hepatitis C, 49 patients with HCV-related HCC, and 51 healthy controls. The study assessed the connection between the IL-17A rs2275913 and IL-17F rs763780 polymorphisms and chronic hepatitis C patients. Genotyping was performed using real-time PCR with TaqMan MGB-probe allelic discrimination. RESULTS No significant differences in genotype and allele frequencies for IL-17A rs2275913 and IL-17F rs763780 were observed between CHC or HCC patients and control subjects. However, significant associations were found indicating an increased risk of HCC linked to CHC: the GG genotype of IL-17A rs2275913 in a recessive model (P = 0.0129); and CT and CT + CC genotypes as well as the C allele of IL-17F rs763780 (P = 0.0038, P = 0.0055 and P = 0.0277, respectively). CONCLUSION The study identifies a significant association between IL-17F rs763780 polymorphisms and a higher risk of HCC in Egyptian patients with chronic hepatitis C. No significant correlation was found between the IL-17A rs2275913 polymorphism and either chronic hepatitis C or HCC.
Collapse
MESH Headings
- Humans
- Interleukin-17/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/epidemiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Liver Neoplasms/etiology
- Liver Neoplasms/epidemiology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/virology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/pathology
- Male
- Case-Control Studies
- Female
- Egypt/epidemiology
- Middle Aged
- Polymorphism, Single Nucleotide/genetics
- Genetic Predisposition to Disease
- Genotype
- Prognosis
- Hepacivirus/isolation & purification
- Follow-Up Studies
- Adult
Collapse
Affiliation(s)
| | - Noha El-Sayed Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, El-Bohouth St. (former El-Tahrir St.), Dokki, Giza, P.O.12622, Egypt
| | | | - Menha Swellam
- Department of Biochemistry, Biotechnology Research Institute, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
6
|
Hassan HM, El Safadi M, Mustfa W, Tehreem S, Antoniolli G, Mehreen A, Ali A, Al-Emam A. Pharmacotherapeutic potential of pratensein to avert metribuzin instigated hepatotoxicity via regulating TGF-β1, PI3K/Akt, Nrf-2/Keap-1 and NF-κB pathway. Tissue Cell 2024; 91:102635. [PMID: 39603025 DOI: 10.1016/j.tice.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Metribuzin (MBN) is a selective herbicide that adversely damages the vital organs of the body including the liver. Pratensein (PTN) is a novel flavonoid that exhibits marvelous medicinal properties. This experimental trial commenced to elucidate the pharmacotherapeutic strength of PTN to counteract MBN provoked liver toxicity in rats. Thirty-six male albino rats (Rattus norvegicus) were categorized into four groups i.e., the control, MBN (133.33 mg/kg), MBN (133.33 mg/kg) + PTN (20 mg/kg) and PTN (20 mg/kg) alone treated group. Our findings revealed that MBN exposure promoted the expressions of Keap-1 as well as concentrations of ROS and MDA while reducing the gene expressions of Nrf-2 as well as activities of catalase (CAT), glutathione Peroxidase (GPx), glutathione reductase (GSR), heme oxygenase-1 (HO-1), superoxide dismutase (SOD) and glutathione (GSH) contents. The levels of albumin and total proteins were reduced whereas the levels of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were enhanced following the MBN administration. Moreover, the gene expression of transforming growth Factor-β1 (TGF-β1), matrix metallopeptidase-2 (MMP-2), matrix metallopeptidase-9 (MMP-9), collagen, type I, alpha 1 and type-3 alpha were escalated in response to MBN intoxication. Furthermore, MBN administration cause a sudden upregulation in the levels of NF-κB, IL-1β, TNF-α, IL-6 & COX-2. Besides, MBN exposure enhanced the gene expression of Bax and Caspase-3 while reducing the gene expression of PI3K, Akt and Bcl-2. Additionally, MBN exposure dysregulated the normal histology of liver. However, PTN treatment notably protected the hepatic tissues via regulating abovementioned dysregulations due to its marvelous ROS scavenging potential.
Collapse
Affiliation(s)
- Hesham M Hassan
- Department of pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Warda Mustfa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shahaba Tehreem
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Arifa Mehreen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| |
Collapse
|
7
|
Bhowmik D, Bhuyan A, Gunalan S, Kothandan G, Kumar D. In silico and immunoinformatics based multiepitope subunit vaccine design for protection against visceral leishmaniasis. J Biomol Struct Dyn 2024; 42:9731-9752. [PMID: 37655736 DOI: 10.1080/07391102.2023.2252901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Visceral leishmaniasis (VL) is a vector-borne neglected tropical protozoan disease with high fatality and no certified vaccine. Conventional vaccine preparation is challenging and tedious. Here in this work, we created a global multiepitope subunit vaccination against VL utilizing innovative immunoinformatics technique based on the extensively conserved epitopic regions of the PrimPol protein of Leishmania donovani consisting of four subunits which were analyzed and studied, out of which DNA primase large subunit and DNA polymerase α subunit B were evaluated as antigens by Vaxijen 2.0. The multiepitope vaccine design includes a single adjuvant β-defensins, eight CTL epitopes, eight HTL epitopes, seven linear BCL epitopes and one discontinuous BCL epitope to induce innate, cellular and humoral immune responses against VL. The Expasy ProtParam tool characterized the physiochemical parameters of the vaccine. At the same time, SOLpro evaluated our vaccine constructs to be soluble upon expression. We also modeled the stable tertiary structure of our vaccine construct through Robetta modeling for molecular docking studies with toll-like receptor proteins through HADDOCK 2.4. Simulations based on molecular dynamics revealed an intact vaccine and TLR8 complex, supporting our vaccine design's immunogenicity. Also, the immune simulation of our vaccine by the C-ImmSim server demonstrated the potency of the multiepitope vaccine construct to induce proper immune response for host defense. Codon optimization and in silico cloning of our vaccine further assured high expression. The outcomes of our study on multiepitope vaccine design significantly produced a potential candidate against VL and can potentially eradicate the disease in the future after clinical investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Achyut Bhuyan
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Seshan Gunalan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
8
|
Salum GM, Abd El Meguid M, Fotouh BE, Dawood RM. Impacts of host factors on susceptibility to SARS-CoV-2 infection and COVID-19 progression. J Immunoassay Immunochem 2024; 45:493-517. [PMID: 39552098 DOI: 10.1080/15321819.2024.2429538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
SARS-CoV-2, identified in Wuhan, China, in December 2019, is the third coronavirus responsible for a global epidemic, following SARS-CoV (2002) and MERS-CoV (2012). Given the recent emergence of COVID-19, comprehensive immunological data are still limited. The susceptibility and severity of SARS-CoV-2 infection are influenced by various host factors, including hormonal changes, genetic variations, inflammatory biomarkers, and behavioral attitudes. Identifying genetic factors contributing to infection severity may accelerate therapeutic development, including drug repurposing, natural extracts, and post-vaccine interventions (Initiative and Covid, 2021). This review discusses the human protein machinery involved in (a) SARS-CoV-2 host receptors, (b) the human immune response, and (c) the impact of demographic and genetic differences on individual risk for COVID-19. This review aims to clarify host factors implicated in SARS-CoV-2 susceptibility and progression, highlighting potential therapeutic targets and supportive treatment strategies.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Giza, Egypt
| | | |
Collapse
|
9
|
Vinutha M, Sharma UR, Swamy G, Rohini S, Vada S, Janandri S, Haribabu T, Taj N, Gayathri SV, Jyotsna SK, Mudagal MP. COVID-19-related liver injury: Mechanisms, diagnosis, management; its impact on pre-existing conditions, cancer and liver transplant: A comprehensive review. Life Sci 2024; 356:123022. [PMID: 39214285 DOI: 10.1016/j.lfs.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIMS This review explores the mechanisms, diagnostic approaches, and management strategies for COVID-19-induced liver injury, with a focus on its impact on patients with pre-existing liver conditions, liver cancer, and those undergoing liver transplantation. MATERIALS AND METHODS A comprehensive literature review included studies on clinical manifestations of liver injury due to COVID-19. Key areas examined were direct viral effects, drug-induced liver injury, cytokine storms, and impacts on individuals with chronic liver diseases, liver transplants, and the role of vaccination. Data were collected from clinical trials, observational studies, case reports, and review literature. KEY FINDINGS COVID-19 can cause a spectrum of liver injuries, from mild enzyme elevations to severe hepatic dysfunction. Injury mechanisms include direct viral invasion, immune response alterations, drug toxicity, and hypoxia-reperfusion injury. Patients with chronic liver conditions (such as alcohol-related liver disease, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma) face increased risks of severe outcomes. The pandemic has worsened pre-existing liver conditions, disrupted cancer treatments, and complicated liver transplantation. Vaccination remains crucial for reducing severe disease, particularly in chronic liver patients and transplant recipients. Telemedicine has been beneficial in managing patients and reducing cross-infection risks. SIGNIFICANCE This review discusses the importance of improved diagnostic methods and management strategies for liver injury caused by COVID-19. It emphasizes the need for close monitoring and customized treatment for high-risk groups, advocating for future research to explore long-term effects, novel therapies, and evidence-based approaches to improve liver health during and after the pandemic.
Collapse
Affiliation(s)
- M Vinutha
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Uday Raj Sharma
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India.
| | - Gurubasvaraja Swamy
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S Rohini
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Surendra Vada
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Suresh Janandri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - T Haribabu
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Nageena Taj
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S V Gayathri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S K Jyotsna
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Manjunatha P Mudagal
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| |
Collapse
|
10
|
El-Meguid MA, Lotaif LM, Salum GM, Fotouh BE, Salama RM, Salem MISE, El Awady MK, Abdel Aziz AO, Dawood RM. Evaluation of the expression of fibrosis-related genes as non-invasive diagnostic biomarkers for cirrhotic HCV-infected patients. Cytokine 2024; 182:156714. [PMID: 39068734 DOI: 10.1016/j.cyto.2024.156714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Liver cirrhosis is a condition with high mortality that poses a significant health and economic burden worldwide. The clinical characteristics of liver cirrhosis are complex and varied. Therefore, the evaluation of immune infiltration-involved genes incirrhosis has become mandatory in liver disease research, not only to identify the potential biomarkers but also to provide important insights into the underlying mechanisms of the disease. In this study, we aimed to investigate the expression profile of cytokine genes in peripheral blood mononuclear cells (PBMCs) of HCV patients and identify the gene expression signature associated with advanced cirrhosis. A cross-sectional study of 90 HCV genotype 4 patients, including no fibrosis patients (F0, n = 24), fibrotic patients (F1-F3, n = 36), and cirrhotic patients (F4, n = 30) has been conducted. The expression of cytokine genes was analyzed by quantitative real-time PCR in the subjects' PBMCs, and the serum level of TGFβ2 was measured by ELISA. Our findings showed that the expression level of the TGIF1 transcript was lower in cirrhotic and fibrotic patients compared to no fibrosis patients (p = 0.046 and 0.022, respectively). Also, there was an upregulation of the TGFβ1 gene in cirrhotic patients relative to fibrotic patients (p = 0.015). Additionally, the cirrhotic patients had higher expression levels of the TGF-β2 transcript and elevated levels of the TGF-β2 protein than patients with no cirrhosis or fibrosis. According to the ROC analysis, TGFβ1, TGIF1 transcripts, and TGFβ2 protein have a good discriminatory performance in distinguishing between cirrhotic, fibrotic, and non-fibrotic patients. Our results suggested that the expression of TGIF1, TGF-β1, and TGF-β2 genes in PBMCs may provide a valuable tool for identifying patients with advanced cirrhosis and that TGF-β and TGIF1 may be potential biomarkers for cirrhosis. These findings may have implications for the diagnosis and treatment of cirrhosis in HCV patients.
Collapse
Affiliation(s)
- Mai Abd El-Meguid
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Lotaif Mostafa Lotaif
- Gastroenterology & Infectious Diseases Department, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | - Ghada M Salum
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Basma E Fotouh
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Rabab Maamoun Salama
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mostafa K El Awady
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ashraf Omar Abdel Aziz
- Endemic Medicine and Hepatogastroenterology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reham M Dawood
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
11
|
Werida RH, Abd El Baset OA, Askar S, El-Mohamdy M, Omran GA, Hagag RS. Efficacy of doxorubicin and lipiodol therapy by trans-arterial chemoembolization in hepatocellular carcinoma Egyptian patients and relation to genetic polymorphisms. Expert Rev Anticancer Ther 2024; 24:1009-1020. [PMID: 39138591 DOI: 10.1080/14737140.2024.2391364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Genetic polymorphisms play a crucial role in predicting treatment efficacy in patients with hepatocellular carcinoma (HCC). This study aims to evaluate the response to Transarterial Chemoembolization (TACE) in relation to the genetic polymorphisms of interleukin 28B (IL28B) and angiopoietin-2 (ANGPT2) in HCC patients. RESEARCH DESIGN AND METHODS Prospective cohort study conducted on 104 eligible HCC Egyptian patients who underwent TACE using doxorubicin and lipiodol. Genotyping of the IL28B and ANGPT2 genes was performed with laboratory data analysis. RESULTS At baseline IL28B rs12979860 genotypes C/T, C/C and T/T appeared in 43.9%, 34.6% and 21.5% while ANGPT2 rs55633437 genotypes C/C, C/A and A/A found in 71.03%, 28.04% and 0.93% of patients respectively. After one month of therapy, 51.4% of patients achieved a complete response. There was a significant difference in relation to IL28B rs12979860 genotypes (p = 0.017) whereas ANGPT2 rs55633437 genotypes (p = 0.432) showed no significant difference in patient response after one month of TACE. CONCLUSION This study demonstrates the effectiveness of TACE in Egyptian HCC patients, as evidenced by low recurrence rates. Furthermore, the IL28B rs12979860 (C/T) gene may be associated with the efficacy and prognosis of TACE treatment in HCC Egyptian patients. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov (CT.gov identifier: NCT05291338).
Collapse
Affiliation(s)
- Rehab H Werida
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Omnia A Abd El Baset
- Department of Clinical pharmacy and pharmacy practice, Faculty of pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Safaa Askar
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa El-Mohamdy
- Clinical Pathology Department, Faculty of Medicine, Ain Shams university, Cairo, Egypt
| | - Gamal A Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Radwa Samir Hagag
- Department of Clinical pharmacy and pharmacy practice, Faculty of pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
12
|
Ahmed NJ, Amin ZA, Kheder RK, Pirot RQ, Mutalib GA, Jabbar SN. Immuno-inflammatory and organ dysfunction markers in severe COVID-19 patients. Cytokine 2024; 182:156715. [PMID: 39067395 DOI: 10.1016/j.cyto.2024.156715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Infection with the SARS-CoV-2 virus may induce some complications among people who experience mild to moderate respiratory illness and some of them recover without requiring special treatment. Albeit, some individuals become seriously reached risk points and require special medical attention especially older people and people who suffer from chronic diseases. Serum and whole blood samples were collected from confirmed infected persons with SARS CoV-2 by real-time PCR and the control group. All lab. Investigations were performed using Cobas 6000. Significant differences were noted between patients compared to the control group in the Mean ± SD of IL-6 (76.06 ± 7.60 vs 3.61 ± 0.296 pg/ml), Procalcitonin (0.947 ± 0.117 vs 0.061 ± 0.007 ng/ml), CRP (125.3 ± 7.560 vs 4.027 ± 0.251 mg/dl), ALT (154.8 ± 30.47 vs 49.75 ± 2.977 IU/L) and AST (70.83 ± 9.215 vs 27.23 ± 1.767) respectively. While other parameters were also showed significant differences were noted between patients compared to the control group for D-Dimmer, PT, PTT, LDH, Ferritin, WBC, Lymphocyte and Creatinine. The results reached that the effect of SARS CoV-2 and cytokine storm was clear on the body's organs through vital biomarker investigations that were performed in this study.
Collapse
Affiliation(s)
- Najat Jabbar Ahmed
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Zahra A Amin
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University Erbil 44001, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Rzgar Qadir Pirot
- Biology Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq
| | - Gulstan A Mutalib
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Sana Najat Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| |
Collapse
|
13
|
Antar SA, Ashour NA, Hamouda AO, Noreddin AM, Al-Karmalawy AA. Recent advances in COVID-19-induced liver injury: causes, diagnosis, and management. Inflammopharmacology 2024:10.1007/s10787-024-01535-7. [PMID: 39126569 DOI: 10.1007/s10787-024-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/29/2024] [Indexed: 08/12/2024]
Abstract
Since the start of the pandemic, considerable advancements have been made in our understanding of the effects of SARS-CoV-2 infection and the associated COVID-19 on the hepatic system. There is a broad range of clinical symptoms for COVID-19. It affects multiple systems and has a dominant lung illness depending on complications. The progression of COVID-19 in people with pre-existing chronic liver disease (CLD) has also been studied in large multinational groups. Notably, SARS-CoV-2 infection is associated with a higher risk of hepatic decompensation and death in patients with cirrhosis. In this review, the source, composition, mechanisms, transmission characteristics, clinical characteristics, therapy, and prevention of SARS-CoV-2 were clarified and discussed, as well as the evolution and variations of the virus. This review briefly discusses the causes and effects of SARS-CoV-2 infection in patients with CLD. As part of COVID-19, In addition, we assess the potential of liver biochemistry as a diagnostic tool examine the data on direct viral infection of liver cells, and investigate potential pathways driving SARS-CoV-2-related liver damage. Finally, we explore how the pandemic has had a significant impact on patient behaviors and hepatology services, which may increase the prevalence and severity of liver disease in the future. The topics encompassed in this review encompass the intricate relationships between SARS-CoV-2, liver health, and broader health management strategies, providing valuable insights for both current clinical practice and future research directions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman M Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt
- Department of Internal Medicine, School of Medicine, University of California -Irvine, Irvine, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, New Damietta, 34518, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt.
| |
Collapse
|
14
|
Abdelaziz AI, Abdelsameea E, Abdel-Samiee M, Ghanem SE, Wahdan SA, Elsherbiny DA, Zakaria Z, Azab SS. Effect of immunogenetics polymorphism and expression on direct-acting antiviral drug response in chronic hepatitis C. Clin Exp Med 2024; 24:184. [PMID: 39117877 PMCID: PMC11310263 DOI: 10.1007/s10238-024-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
The prevalence of HCV infection in Egypt has decreased following the introduction of direct-acting antiviral therapy. However, treatment response is influenced by various factors, particularly host immunogenetics such as IL-28B and FOXP3 polymorphisms. The current study examined the impact of SNPs in the FOXP3 gene promoter region on HCV-infected Egyptian patients, along with SNPs in the IL28B gene.This study involved 99 HCV patients who achieved SVR12 after a 12 week DAA treatment while 63 HCV patients experienced treatment failure. IL28B rs12979860 SNP was identified using real-time PCR, while IL28B rs8099917, FOXP3 rs3761548, and rs2232365 SNPs were analyzed using RFLP-PCR. Serum levels of IL28B and FOXP3 were quantified using ELISA technique in representative samples from both groups. The IL28B rs12979860 T > C (P = 0.013) and FOXP3 rs2232365 A > G polymorphisms (P = 0.008) were found to significantly increase the risk of non-response. Responders had higher IL28B serum levels (P = 0.046) and lower FOXP3 levels (P < 0.001) compared to non-responders. Regression analysis showed an association between IL28B rs12979860 and FOXP3 rs2232365 with treatment response, independent of age and gender. A predictive model was developed with 76.2% sensitivity and 91.9% specificity for estimating DAAs response in HCV patients.Our findings confirmed the IL28B rs12979860 T > C and FOXP3 rs2232365 A > G polymorphisms significantly affect DAA treatment response in HCV Egyptian patients. Lower levels of IL-28B along with higher levels of FOXP3 are linked to poor response. Our results may lead to new insights into DAA responsiveness contributing to personalized medicine and improving therapeutic decision-making for HCV patients.
Collapse
Affiliation(s)
- Aya Ismail Abdelaziz
- Department of Research and Development, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Samar E Ghanem
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Zeinab Zakaria
- Department of Research and Development, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
15
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
16
|
Sakr AA, Mohamed AA, Ahmed AE, Abdelhaleem AA, Samir HH, Elkady MA, Hasona NA. Biochemical implication of acetylcholine, histamine, IL-18, and interferon-alpha as diagnostic biomarkers in hepatitis C virus, coronavirus disease 2019, and dual hepatitis C virus-coronavirus disease 2019 patients. J Med Virol 2024; 96:e29857. [PMID: 39145590 DOI: 10.1002/jmv.29857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Globally, hepatitis C virus (HCV) and coronavirus disease 2019 (COVID-19) are the most common causes of death due to the lack of early predictive and diagnostic tools. Therefore, research for a new biomarker is crucial. Inflammatory biomarkers are critical central players in the pathogenesis of viral infections. IL-18, produced by macrophages in early viral infections, triggers inflammatory biomarkers and interferon production, crucial for viral host defense. Finding out IL-18 function can help understand COVID-19 pathophysiology and predict disease prognosis. Histamine and its receptors regulate allergic lung responses, with H1 receptor inhibition potentially reducing inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. angiotensin-converting enzyme 2 (ACE-2) receptors on cholangiocytes suggest liver involvement in SARS-CoV-2 infection. The current study presents the potential impact of circulating acetylcholine, histamine, IL-18, and interferon-Alpha as diagnostic tools in HCV, COVID-19, and dual HCV-COVID-19 pathogenesis. The current study was a prospective cross-section conducted on 188 participants classified into the following four groups: Group 1 COVID-19 (n = 47), Group 2 HCV (n = 47), and Group 3 HCV-COVID-19 patients (n = 47), besides the healthy control Group 4 (n = 47). The levels of acetylcholine, histamine, IL-18, and interferon-alpha were assayed using the ELISA method. Liver and kidney functions within all groups showed a marked alteration compared to the healthy control group. Our statistical analysis found that individuals with dual infection with HCV-COVID-19 had high ferritin levels compared to other biomarkers while those with COVID-19 infection had high levels of D-Dimer. The histamine, acetylcholine, and IL-18 biomarkers in both COVID-19 and dual HCV-COVID-19 groups have shown discriminatory power, making them potential diagnostic tests for infection. These three biomarkers showed satisfactory performance in identifying HCV infection. The IFN-Alpha test performed well in the HCV-COVID-19 group and was fair in the COVID-19 group, but it had little discriminative value in the HCV group. Moreover, our findings highlighted the pivotal role of acetylcholine, histamine, IL-18, and interferon-Alpha in HCV, COVID-19, and dual HCV-COVID-19 infection. Circulating levels of acetylcholine, histamine, IL-18, and interferon-Alpha can be potential early indicators for HCV, COVID-19, and dual HCV-COVID-19 infection. We acknowledge that further large multicenter experimental studies are needed to further investigate the role biomarkers play in influencing the likelihood of infection to confirm and extend our observations and to better understand and ultimately prevent or treat these diseases.
Collapse
Affiliation(s)
- Amany Awad Sakr
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amal Ahmed Mohamed
- Biochemistry and Molecular Biology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Amr E Ahmed
- Department of Biotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Abdelhaleem
- Tropical Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo, Egypt
| | - Hussein H Samir
- Nephrology Unit, Internal Medicine Department, School of Medicine, Cairo University, Giza, Egypt
| | | | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
17
|
Pan Z, Seto WK, Liu CJ, Mao Y, Alqahtani SA, Eslam M. A literature review of genetics and epigenetics of HCV-related hepatocellular carcinoma: translational impact. Hepatobiliary Surg Nutr 2024; 13:650-661. [PMID: 39175720 PMCID: PMC11336528 DOI: 10.21037/hbsn-23-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 08/24/2024]
Abstract
Background and Objective Hepatocellular carcinoma (HCC) poses a significant global health burden and ranks as the fifth most prevalent cancer on a global scale. Hepatitis C virus (HCV) infection remains one of the major risk factors for HCC development. HCC is a heterogeneous disease, and the development of HCC caused by HCV is intricate and involves various factors, including genetic susceptibility, viral factors, immune response due to chronic inflammation, alcohol abuse, and metabolic dysfunction associated with fatty liver disease. In this review, we provide a comprehensive and updated review of research on the genetics and epigenetic mechanisms implicated in developing HCC associated with HCV infection. We also discuss the potential translational implications, including novel biomarkers and drugs for treatment. Methods A comprehensive literature search was conducted in June 2023 in PubMed and Embase databases. Key Content and Findings Recent findings indicate that a variety of genetic and epigenetic processes are involved in the pathogenesis and continue to exist even after the complete elimination of HCV. The deregulation of the epigenome has been identified as a significant factor in the deletrious effects of liver disease, especially during the initial stages when genetic alterations are uncommon. The enduring "epigenetic memory" of gene expression is believed to be regulated by epigenetic mechanisms, indicating that alterations caused by HCV infection continue to exist and are linked to the risk of development of liver cancer even after successful treatment. Systems biology analytical methods will be required to delineate the magnitude and significance of both genetic and epigenomic alterations in tumor evolution. Conclusions By facilitating a more profound understanding of these aspects, this will ultimately foster the advancement of novel therapies and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
- Hepatitis Research Center, National Taiwan University Hospital, Taipei
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Salum GM, Abd El Meguid M, Fotouh BE, Abdel Aziz AO, Dawood RM. Comprehensive assessment of circulatory miRNAs as potential diagnostic markers in HCV recurrence post liver transplantation. Diagn Microbiol Infect Dis 2024; 109:116331. [PMID: 38692204 DOI: 10.1016/j.diagmicrobio.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
HCV recurrence after liver transplantation is one of the causal agents for graft rejection. This study aims to profile non-invasive biomarkers in patients with HCC who had liver transplants. One hundred participants were categorized into three groups (20 control, 32 recurrent HCV (RHCV), and 48 non-RHCV). The expression of six miRNAs (hsa-miR-124-3p, hsa-miR-155-5p, hsa-miR-205-5p, hsa-miR-499a-5p, hsa-miR-574-3p, and hsa-miR-103a-3p) and two mRNAs IL-1β, STAT1 were quantified. RHCV group has higher levels of hsa-miR-574-3p and hsa-miR-155-5p and lesser levels of hsa-miR-499a-5p than control groups (p = 0.024, 0.0001, 0.002; respectively). RHCV and non-RHCV groups revealed a significant reduction in levels of IL-1β and STAT1 mRNA compared to the control (p = 0.011, 0.014; respectively). According to ROC analysis, miR-155-5p can differentiate among the patients' groups, while miR-574-3p, IL-1β, and STAT1 mRNA can discriminate between RHCV and control groups. In conclusion, RHCV patients have dysregulated expression of five transcripts compared to non-RHCV and control groups.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, EL Bohouth St. (former El Tahrir St.). Dokki, P.O. 12622, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, EL Bohouth St. (former El Tahrir St.). Dokki, P.O. 12622, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, EL Bohouth St. (former El Tahrir St.). Dokki, P.O. 12622, Giza, Egypt
| | | | - Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, EL Bohouth St. (former El Tahrir St.). Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
19
|
Ahmad S, Demneh FM, Rehman B, Almanaa TN, Akhtar N, Pazoki-Toroudi H, Shojaeian A, Ghatrehsamani M, Sanami S. In silico design of a novel multi-epitope vaccine against HCV infection through immunoinformatics approaches. Int J Biol Macromol 2024; 267:131517. [PMID: 38621559 DOI: 10.1016/j.ijbiomac.2024.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, P.O. Box 36, Lebanon; Department of Natural Sciences, Lebanese American University, Beirut, P.O. Box 36, Lebanon
| | - Fatemeh Mobini Demneh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology & Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
20
|
Hussein HAM, Thabet AA, Wardany AA, El-Adly AM, Ali M, Hassan MEA, Abdeldayem MAB, Mohamed ARMA, Sobhy A, El-Mokhtar MA, Afifi MM, Fathy SM, Sultan S. SARS-CoV-2 outbreak: role of viral proteins and genomic diversity in virus infection and COVID-19 progression. Virol J 2024; 21:75. [PMID: 38539202 PMCID: PMC10967059 DOI: 10.1186/s12985-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt.
| | - Ali A Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed A Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed M El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed Ali
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed E A Hassan
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A B Abdeldayem
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | | | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos Campus, Lebanon
| | - Magdy M Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Samah M Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary medicine, South Valley University, 83523, Qena, Egypt.
| |
Collapse
|
21
|
Tazarghi A, Bazoq S, Taziki Balajelini MH, Ebrahimi M, Hosseini SM, Razavi Nikoo H. Liver injury in COVID-19: an insight into pathobiology and roles of risk factors. Virol J 2024; 21:65. [PMID: 38491495 PMCID: PMC10943793 DOI: 10.1186/s12985-024-02332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
COVID-19 is a complex disease that can lead to fatal respiratory failure with extrapulmonary complications, either as a direct result of viral invasion in multiple organs or secondary to oxygen supply shortage. Liver is susceptible to many viral pathogens, and due to its versatile functions in the body, it is of great interest to determine how hepatocytes may interact with SARS-CoV-2 in COVID-19 patients. Liver injury is a major cause of death, and SARS-CoV-2 is suspected to contribute significantly to hepatopathy. Owing to the lack of knowledge in this field, further research is required to address these ambiguities. Therefore, we aimed to provide a comprehensive insight into host-virus interactions, underlying mechanisms, and associated risk factors by collecting results from epidemiological analyses and relevant laboratory experiments. Backed by an avalanche of recent studies, our findings support that liver injury is a sequela of severe COVID-19, and certain pre-existing liver conditions can also intensify the morbidity of SARS-CoV-2 infection in synergy. Notably, age, sex, lifestyle, dietary habits, coinfection, and particular drug regimens play a decisive role in the final outcome and prognosis as well. Taken together, our goal was to unravel these complexities concerning the development of novel diagnostic, prophylactic, and therapeutic approaches with a focus on prioritizing high-risk groups.
Collapse
Affiliation(s)
- Abbas Tazarghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sahar Bazoq
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Hosein Taziki Balajelini
- Department of Otorhinolaryngology, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Mehran Hosseini
- Department of Physiology, School of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
22
|
Ren Y, Chen Y, Tang EH, Hu Y, Niu B, Liang H, Xi C, Zhao F, Cao Z. Arbidol attenuates liver fibrosis and activation of hepatic stellate cells by blocking TGF-β1 signaling. Eur J Pharmacol 2024; 967:176367. [PMID: 38325795 DOI: 10.1016/j.ejphar.2024.176367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Chronic liver diseases (CLD) impact over 800 million people globally, causing about 2 million deaths annually. Arbidol (ARB), an indole-derivative used to treat influenza virus infection, was extensively used during COVID-19 pandemic in China. In recent years, studies have shown that ARB, compared to other antiviral drugs, exhibits greater liver-protective efficacy, indicating a potential hepatoprotective effect beyond its antiviral activity. However, the mechanism remains unclear. In this study, we investigated the impact of ARB on liver injury/fibrosis in bile duct ligated (BDL) mice and its effect on spontaneous and transforming growth factor β1 (TGF-β1)-induced activation of primary cultured hepatic stellate cells (HSCs). Oral administration of ARB significantly ameliorated BDL-induced liver injury/fibrosis as reflected by decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), reduced collagen deposition, and diminished mRNA expression of fibrosis markers. ARB notably inhibited spontaneous and TGF-β1-induced activation of primary cultured HSCs. Moreover, ARB also drastically attenuated mRNA expression levels of platelet-derived growth factor receptor (Pdgfr), transforming growth factor-beta receptor (Tgfbr) 1, Tgfbr2, matrix metalloproteinase (Mmp)-2, and Mmp-9 in activated HSCs. We further demonstrate that ARB mitigated Smad2/3 phosphorylation in both TGF-β1 treated HSCs and BDL mice. These data together demonstrate that the therapeutic efficacy of ARB on liver fibrosis is independent of its antiviral activity and likely is achieved by blocking TGF-β1 signaling-mediated HSC activation.
Collapse
Affiliation(s)
- Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Chen
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Emily H Tang
- BASIS International School Nanjing, No.18 Lingshan North Road, Qixia District, Nanjing, Jiangsu, 210023, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Animal Experiment Center of China Pharmaceutical University, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huaduan Liang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
23
|
Chumbe A, Grobben M, Capella-Pujol J, Koekkoek SM, Zon I, Slamanig S, Merat SJ, Beaumont T, Sliepen K, Schinkel J, van Gils MJ. A panel of hepatitis C virus glycoproteins for the characterization of antibody responses using antibodies with diverse recognition and neutralization patterns. Virus Res 2024; 341:199308. [PMID: 38171391 PMCID: PMC10821612 DOI: 10.1016/j.virusres.2024.199308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/05/2024]
Abstract
A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.
Collapse
Affiliation(s)
- Ana Chumbe
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Marloes Grobben
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Joan Capella-Pujol
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sylvie M Koekkoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ian Zon
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Stefan Slamanig
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | | | - Tim Beaumont
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands; AIMM Therapeutics, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Janke Schinkel
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Marit J van Gils
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Tabll AA, Sohrab SS, Ali AA, Petrovic A, Steiner Srdarevic S, Siber S, Glasnovic M, Smolic R, Smolic M. Future Prospects, Approaches, and the Government's Role in the Development of a Hepatitis C Virus Vaccine. Pathogens 2023; 13:38. [PMID: 38251345 PMCID: PMC10820710 DOI: 10.3390/pathogens13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Developing a safe and effective vaccine against the hepatitis C virus (HCV) remains a top priority for global health. Despite recent advances in antiviral therapies, the high cost and limited accessibility of these treatments impede their widespread application, particularly in resource-limited settings. Therefore, the development of the HCV vaccine remains a necessity. This review article analyzes the current technologies, future prospects, strategies, HCV genomic targets, and the governmental role in HCV vaccine development. We discuss the current epidemiological landscape of HCV infection and the potential of HCV structural and non-structural protein antigens as vaccine targets. In addition, the involvement of government agencies and policymakers in supporting and facilitating the development of HCV vaccines is emphasized. We explore how vaccine development regulatory channels and frameworks affect research goals, funding, and public health policy. The significance of international and public-private partnerships in accelerating the development of an HCV vaccine is examined. Finally, the future directions for developing an HCV vaccine are discussed. In conclusion, the review highlights the urgent need for a preventive vaccine to fight the global HCV disease and the significance of collaborative efforts between scientists, politicians, and public health organizations to reach this important public health goal.
Collapse
Affiliation(s)
- Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
- Egypt Centre for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Sayed S. Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed A. Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Sabina Steiner Srdarevic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Marija Glasnovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| |
Collapse
|
25
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
26
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Wang T, Zhao Z, Li W, Wu J, Ye Q, Xie H. Machine Learning Predictive Modeling for the Identification of Moderate Coronavirus Disease 2019 During the Pandemic: A Retrospective Study. Cureus 2023; 15:e50619. [PMID: 38226092 PMCID: PMC10789081 DOI: 10.7759/cureus.50619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Timely differentiation of moderate COVID-19 cases from mild cases is beneficial for early treatment and saves medical resources during the pandemic. We attempted to construct a model to predict the occurrence of moderate COVID-19 through a retrospective study. METHODS In this retrospective study, clinical data from patients with COVID-19 admitted to Hainan Western Central Hospital in Danzhou, China, between August 1, 2022, and August 31, 2022, was collected, including sex, age, signs on admission, comorbidities, imaging data, post-admission treatment, length of stay, and the results of laboratory tests on admission. The patients were classified into a mild-to-moderate-type group according to WHO guidance. Factors that differed between groups were included in machine learning models such as Bernoulli Naïve Bayes (BNB), linear discriminant analysis, support vector machine (SVM), least absolute shrinkage and selection operator (LASSO), and logistic regression (LR) models. These models were compared to select the optimal model with the best predictive efficacy for moderate COVID-19. The predictive performance of the models was assessed using the area under the curve (AUC), sensitivity, specificity, and calibration plot. RESULTS A total of 231 patients with COVID-19 were included in this retrospective analysis. Among them, 152 (68.83%) were mild types, 72 (31.17%) were moderate types, and there were no patients with severe or critical types. A logistic regression model combined with age, respiratory rate (RR), lactate dehydrogenase (LDH), D-dimer, and albumin was selected to predict the occurrence of moderate COVID-19. The receiver operating characteristic curve (ROC) showed that AUC, sensitivity, and specificity in the model were 0.719, 0.681, and 0.635, respectively, in predicting moderate COVID-19. Calibration curve analysis revealed that the predicted probability of the model was in good agreement with the true probability. Stratified analysis showed better predictive efficacy after modeling for people aged ≤66 years (AUC = 0.7656) and a better calibration curve. CONCLUSION The LR model, combined with age, RR, D-dimer, LDH, and albumin, can predict the occurrence of moderate COVID-19 well, especially for patients aged ≤66 years.
Collapse
Affiliation(s)
- Tao Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai, CHN
| | - Zhanqing Zhao
- Department of Critical Care Medicine, Hainan Western Central Hospital, Danzhou, CHN
| | - Wenzhe Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, CHN
| | - Jing Wu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, CHN
| | - Qianru Ye
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, CHN
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai, CHN
| |
Collapse
|
28
|
Muhammad AM, Salum GM, Meguid MAE, Fotouh BE, Dawood RM. Bioinformatics analysis of multi-epitope peptide vaccines against Hepatitis C virus: a molecular docking study. J Genet Eng Biotechnol 2023; 21:117. [PMID: 37962693 PMCID: PMC10646107 DOI: 10.1186/s43141-023-00583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Hepatitis C Virus (HCV) infection is one of the causal agents of liver disease burden. Six multiple antigenic peptides were synthesized including (P315, P412, and P517) plus (P1771, P2121, and P2941) to induce humoral and cellular responses, respectively against HCV infection. AIM This paper aimed to employ computational tools to evaluate the efficacy of each peptide individually and to determine the most effective one for better vaccine development and/or immunotherapy. METHODS VaxiJen web and AllerTOP servers were used for antigenicity and allergenicity prediction, respectively. The ToxinPred web server was used to investigate the peptide toxicity. Each peptide was docked with its corresponding receptors. RESULTS No peptides were expected to be toxic. P315 and P2941 are predicted to have robust antigenic properties, lowest allergenicity, and minimal sOPEP energies. In turn, P315 (derived from gpE1) formed the highest hydrophobic bonds with the BCR and CD81 receptors that will elicit B cell function. P2941 (derived from NS5B) was shown to strongly bind to both CD4 and CD8 receptors that will elicit T cell function. CONCLUSION P315 successfully bound to B cell (BCR and CD81) receptors. Also, P2941 is strongly bound to T cell (CD4 and CD8) receptors.
Collapse
Affiliation(s)
- Ashraf M Muhammad
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Ghada M Salum
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt.
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
29
|
Abd Alla MDA, Dawood RM, Rashed HAELH, El-Dessouky YM, AbuFarrag GA, Ammar IAE, Mahmoud MMAH, Salum GM, Abu-Amer MZ, Sekeen MAEH, Heggazy MMI, Altanbouly AMA, Abd El-Meguid M, El Awady MK. HCV treatment outcome depends on SNPs of IFNL3-Gene polymorphisms (rs12979860) and cirrhotic changes in liver parenchyma. Heliyon 2023; 9:e21194. [PMID: 37928048 PMCID: PMC10623284 DOI: 10.1016/j.heliyon.2023.e21194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
The allelic discrimination of IFNL3-(rs12979860 C > T) polymorphism reveals ambiguous associations with the effectiveness of oral HCV treatment. Solitary intra peripheral-blood-mononuclear-cells (PBMCs) HCV-RNA antisense-strands are independently detected in naïve and experienced cases regardless of viremia or hepatic-parenchymal alterations. We examined the frequencies of IFNL3-genetic variants with chronic-HCV-induced liver changes during the sustained virologic response (SVR) by evaluating the PBMCs- HCV-PCR after oral antiviral therapy. Methods: Twelve weeks after finishing oral antiviral therapy, the effects of IFNL3-genetic variants were evaluated in three groups of patients: Group-I (n = 25) showed HCV-RNA negativity in both serum and PBMCs-, group II (n = 52) showed positivity of HCV-RNA in PBMCs, and group-III (n = 25) had positive HCV-RNA in serum. The genetic variants of the IFNL3-gene were estimated for all the enrolled cases and correlated with their hepatic image changes. Results: IFNL3-(rs12979860) genotyping in post-direct acting antivirals (DAAs) SVR and HCV-relapse revealed: a) high frequency of CC-genotype and C-allele in group I compared to group II (P < 0.005) and group III(P ≤ 0.05) when hepatic-parenchyma looks normal by ultrasound b) frequent CT-genotype and T-allele in group II compared with I(P < 0.01) and III(P < 0.05) when liver tissues are bright (early cirrhotic-changes) c) frequent TT-genotype and T-allele in group III relative to I (P < 0.05) and II (P ≤ 0.08) when liver-tissues appear coarse by ultrasound. Conclusion: Outcomes of HCV treatment depend on host IFNL3-gene polymorphism and hepatic-parenchymal changes. A high frequency of wild-CC-genotype and C-allele is observed in patients with normal hepatic parenchyma and that achieved SVR. Solitary relapse in PBMCs occurs on increasing CT-genotype frequency when liver tissues are bright. Serologic relapse is detected when TT-genotype and T-allele are dominant in association with the cirrhotic liver. Therefore, IFNL3-gene-SNP analysis as a genetic predictor in relation to ultra-sonographic hepatic-parenchymal changes could be valuable for selecting the patients with the highest priority for treatment.
Collapse
Affiliation(s)
| | - Reham M. Dawood
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt
| | - Hassan Abd EL-Hafeth Rashed
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Egypt
| | - Yasser Mohammed El-Dessouky
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Egypt
| | - Galal AbdElhameed AbuFarrag
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Egypt
| | - Islam Abdelmawla Emran Ammar
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Egypt
| | | | - Ghada M. Salum
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt
| | - Mohamed Zakaria Abu-Amer
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Egypt
| | | | | | | | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt
| | - Mostafa K. El Awady
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Bibi N, Wajeeha AW, Mukhtar M, Tahir M, Zaidi NUSS. In Vivo Validation of Novel Synthetic tbp1 Peptide-Based Vaccine Candidates against Haemophilus influenzae Strains in BALB/c Mice. Vaccines (Basel) 2023; 11:1651. [PMID: 38005983 PMCID: PMC10675187 DOI: 10.3390/vaccines11111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Haemophilus influenzae is a Gram-negative bacterium characterized as a small, nonmotile, facultative anaerobic coccobacillus. It is a common cause of a variety of invasive and non-invasive infections. Among six serotypes (a-f), H. influenzae type b (Hib) is the most familiar and predominant mostly in children and immunocompromised individuals. Following Hib vaccination, infections due to other serotypes have increased in number, and currently, there is no suitable effective vaccine to induce cross-strain protective antibody responses. The current study was aimed to validate the capability of two 20-mer highly conserved synthetic tbp1 (transferrin-binding protein 1) peptide-based vaccine candidates (tbp1-E1 and tbp1-E2) predicted using in silico approaches to induce immune responses against H. influenzae strains. Cytokine induction ability, immune simulations, and molecular dynamics (MD) simulations were performed to confirm the candidacy of epitopic docked complexes. Synthetic peptide vaccine formulations in combination with two different adjuvants, BGs (Bacterial Ghosts) and CFA/IFA (complete/incomplete Freund's adjuvant), were used in BALB/c mouse groups in three booster shots at two-week intervals. An indirect ELISA was performed to determine endpoint antibody titers using the Student's t-distribution method. The results revealed that the synergistic use of both peptides in combination with BG adjuvants produced better results. Significant differences in absorbance values were observed in comparison to the rest of the peptide-adjuvant combinations. The findings of this study indicate that these tbp1 peptide-based vaccine candidates may present a preliminary set of peptides for the development of an effective cross-strain vaccine against H. influenzae in the future due to their highly conserved nature.
Collapse
Affiliation(s)
- Naseeha Bibi
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Amtul Wadood Wajeeha
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Mamuna Mukhtar
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Najam us Sahar Sadaf Zaidi
- Vaccinology and Therapeutics Research Group, Department of Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; (N.B.); (A.W.W.); (M.M.)
| |
Collapse
|
31
|
Papadakos SP, Arvanitakis K, Stergiou IE, Vallilas C, Sougioultzis S, Germanidis G, Theocharis S. Interplay of Extracellular Vesicles and TLR4 Signaling in Hepatocellular Carcinoma Pathophysiology and Therapeutics. Pharmaceutics 2023; 15:2460. [PMID: 37896221 PMCID: PMC10610499 DOI: 10.3390/pharmaceutics15102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a significant contributor to global cancer-related mortality. Chronic inflammation, often arising from diverse sources such as viral hepatitis, alcohol misuse, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH), profoundly influences HCC development. Within this context, the interplay of extracellular vesicles (EVs) gains prominence. EVs, encompassing exosomes and microvesicles, mediate cell-to-cell communication and cargo transfer, impacting various biological processes, including inflammation and cancer progression. Toll-like receptor 4 (TLR4), a key sentinel of the innate immune system, recognizes both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), thereby triggering diverse signaling cascades and pro-inflammatory cytokine release. The intricate involvement of the TLR4 signaling pathway in chronic liver disease and HCC pathogenesis is discussed in this study. Moreover, we delve into the therapeutic potential of modulating the TLR4 pathway using EVs as novel therapeutic agents for HCC. This review underscores the multifaceted role of EVs in the context of HCC and proposes innovative avenues for targeted interventions against this formidable disease.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Stavros Sougioultzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
32
|
Iqbal P, Karki P, Abdelmottaleb W, Al-Khazraji Y, Mirza Fawad A, Madani K, Ahmed F, Nawaz S, Jamshaid MB, Fernando QM. Asymptomatic COVID-19 presenting with features of mixed pattern acute liver injury in a young healthy female, a case report. J Infect Public Health 2023; 16:1481-1484. [PMID: 37349241 PMCID: PMC10239287 DOI: 10.1016/j.jiph.2023.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
COVID-19 associated severe acute liver injury in a young healthy patient has not been reported much in the literature. And currently, there are no standard management guidelines. We want to report a case of acute liver injury of mixed pattern in a young healthy female with asymptomatic COVID-19 infection. She presented with abdominal pain, nausea, vomiting and yellowish discoloration of her skin. Further laboratory investigations revealed mixed pattern liver injury with highly raised liver enzymes. She was managed with N-acetyl cysteine protocol and monitoring of her liver enzymes. Other causes of acute liver injury were ruled out. She remained stable during her hospital stay and follow up. Our aim is to highlight the significance of acute liver injury in COVID 19 patients that may lead to fatal outcomes if not managed and monitored accordingly.
Collapse
Affiliation(s)
- Phool Iqbal
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Prava Karki
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Wael Abdelmottaleb
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Yamama Al-Khazraji
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Ahmed Mirza Fawad
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Kulsum Madani
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Farhan Ahmed
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| | - Shoaib Nawaz
- Department of Anesthesia, New York Medical College/Metropolitan Hospital Center, United States.
| | | | - Quesada Mata Fernando
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, United States.
| |
Collapse
|
33
|
Shi Y, Wang M, Wu L, Li X, Liao Z. COVID-19 associated liver injury: An updated review on the mechanisms and management of risk groups. LIVER RESEARCH 2023; 7:207-215. [PMID: 39958382 PMCID: PMC11792068 DOI: 10.1016/j.livres.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/11/2023] [Accepted: 07/09/2023] [Indexed: 09/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been associated with various liver injury cases worldwide. To date, the prevalence, mechanism, clinical manifestations, diagnosis, and outcomes of COVID-19-induced liver injury in various at-risk groups are not well defined. Liver injury may arise in the prevention and treatment of COVID-19 from direct causes such as viral infection and indirect causes such as systemic inflammation, hypoxic changes, and drugs that exacerbate any pre-existing liver disease. Studies have found that patients with underlying liver disease are at higher risk of COVID-19-induced liver injury. Certain condition of cardiopulmonary and metabolic diseases and vulnerable stages in lifespan may also involve in the development of COVID-19-induced liver injury. This review summarized studies of COVID-19-induced liver injury in different at-risk groups regarding their clinical characteristics, parameters, and correlations of the severity with these indicators and signs as well as potential treatment suggestions, to increase attention to physiological and pathological conditions and continue liver function monitoring as they can help in strengthening early supportive treatment and reducing the incidence of adverse outcomes.
Collapse
Affiliation(s)
- Yue Shi
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Liqun Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Galal ASGM, Dawood RM, Awady MKE, El-Dessouky YMM, Mahmoud MMAH, Alla MDAA. Recognition of 7 genes signature (Cirrhosis Risk Score) in the diagnosed non-responders to DAAs therapy by intra-PBMCs nested HCV RNA PCR. J Genet Eng Biotechnol 2023; 21:89. [PMID: 37646837 PMCID: PMC10468448 DOI: 10.1186/s43141-023-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIMS Predictors of chronic HCV response to oral antiviral therapy (OAT) are related to host genetic variations. Single nucleotide polymorphisms (SNP) and alleles variations of host genes in association with hepatic fibro-cirrhotic changes have a distinct role in OAT outcomes. The current research evaluated the association of Cirrhosis-Risk-Scores (CRS) values, based on the correlation of seven genes signature-SNPs, with sonographic liver parenchymal changes in determining OAT outcomes. METHODS All study subjects (n = 54) were recruited three months after completing OAT and classified into three groups. Group I (n = 21) had negative HCV PCR, group II (n = 17) showed positive solitary intra-PBMCs HCV infection, and group III(n = 16) was serum HCV RNA PCR-positive. All study-population were subjected to examination by hepatic-ultrasound (US), FIB-4-scoring, and screening for 7 gene-signature that addressed CRS values as low, intermediate, and high depending on gene SNPs identification. RESULTS Group I showed a significant association with low CRS values compared to other groups (P < 0.001). Solitary intra- PBMCs HCV infection in group II was significantly combined with intermediate CRS values in comparison to groups I and III (P < 0.001). The high CRS values were significantly found in group III when compared to groups I and II (P < 0.01). On US imaging, low CRS values were common in normally appeared hepatic parenchyma (P < 0.001) and high CRS values were frequent in coarse-liver (P < 0.001), while bright-liver-tissues appearance was mainly detected in the intermediate CRS category (P = 0.09). On FIB-4 scoring, high CRS value were associated with hepatic fibro-cirrhosis compared to intermediate (P < 0.001) and low (P = 0.08) CRS-categories. CONCLUSION The current study concluded the association of (a) high CRS values with coarse liver in viral-RNA serologic relapse, (b) low CRS values with normal liver tissues in sustained virologic response (SVR), (c) intermediate CRS values with bright liver in solitary PBMCs relapse.
Collapse
Affiliation(s)
| | - Reham M Dawood
- Department of Microbial Biotechnology, National Research Center, Cairo, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, National Research Center, Cairo, Egypt
| | | | | | - Mohamed Darwish Ahmed Abd Alla
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
35
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
36
|
Zerrad C, Lkhider M, Belkouchi A, Tanouti IA, Badre W, Tahiri M, Ayassi S, Marchio A, Pineau P, Benjelloun S, Ezzikouri S. Association between TLR2, TLR4, and TLR5 genetic variants and the risk of hepatocellular carcinoma in Moroccan population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:986-1003. [PMID: 37330637 DOI: 10.1080/15257770.2023.2225560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common human malignancy and the fourth most frequent cause of cancer-related deaths worldwide. Toll-like receptors (TLRs), are known to play a key role in hepatocarcinogenesis through induction of inflammation. We aimed to investigate the association between TLR2 rs3804099, TLR4 rs4986790, rs4986791, and rs11536889 and TLR5 rs5744174 and HCC risk in a total of 306 Moroccan subjects, including 152 HCC patient and 154 controls using a TaqMan allelic discrimination assay. Our result showed that the frequency of TLR4 rs11536889 C allele was higher in control group than in HCC patients (OR = 0.52, 95% CI = 0.30-0.88, p = 0.01). Moreover, under the dominant model, we observed that CG/CC genotypes were protective factors against HCC risk (OR = 0.51, 95% CI = 0.28-0.91, p = 0.02). However, no significant differences were found in the allele and genotype frequencies of TLR4 rs4986790 and rs4986791, between HCC patients and controls. Similarly, genotypic frequencies of TLR2 and TLR5 polymorphisms did not differ significantly between HCC patients and controls. However, TLR4 haplotype analysis revealed that ACC haplotype may be protective of HCC risk in patients with HCC (OR = 0.53, 95% CI = 0.31-0.92, p = 0.02). In conclusion, our result suggest that TLR4 rs11536889 polymorphism and ACC haplotype may decrease risk of hepatocellular carcinoma in Moroccan population.
Collapse
Affiliation(s)
- Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, University Hassan II Casablanca Faculty des Sciences Techniques, Mohammedia, Morocco
| | - Mustapha Lkhider
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, University Hassan II Casablanca Faculty des Sciences Techniques, Mohammedia, Morocco
| | | | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Wafaa Badre
- CHU Ibn Rochd, Médecine B, Casablanca, Morocco
| | - Mohamed Tahiri
- CHU Ibn Rochd, Médecine B, Casablanca, Morocco
- Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarra Ayassi
- Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Agnès Marchio
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
37
|
Ezzemani W, Windisch MP, Altawalah H, Guessous F, Saile R, Benjelloun S, Kettani A, Ezzikouri S. Design of a multi-epitope Zika virus vaccine candidate - an in-silico study. J Biomol Struct Dyn 2023; 41:3762-3771. [PMID: 35318896 DOI: 10.1080/07391102.2022.2055648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/15/2022] [Indexed: 01/12/2023]
Abstract
Zika virus (ZIKV), an RNA virus, rapidly spreads Aedes mosquito-borne sickness. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. In this study, to address these unmet medical needs, we aimed to design B- and T-cell candidate multi-epitope-based subunit against ZIKV using an in silico approach. In this study we applied immunoinformatics, molecular docking, and dynamic simulation assessments targeting the most immunogenic proteins; the capsid (C), envelope (E) proteins and the non-stuctural protein (NS1), described in our previous study, and which predicted immunodominant B and T cell epitopes. The final non-allergenic and highly antigenic multi-epitope was constituted of immunogenic screened-epitopes (3 CTL and 3 HTL) and the β-defensin as an adjuvant that have been linked using EAAAK, AAY, and GPGPG linkers, respectively. The final construct containing 143 amino acids was characterized for its allergenicity, antigenicity, and physiochemical properties; and found to be safe and immunogenic with a good prediction of solubility. The existence of IFN-γ epitopes asserts the capacity to trigger strong immune responses. Subsequently, the molecular docking among vaccine and immune receptors (TLR2/TLR4) was revealed with a good binding affinity with and stable molecular interactions. Molecular dynamics simulation confirmed the stability of the complexes. Finally, the construct was subjected to in silico cloning demonstrating the efficiently of its expression in E.coli. However, this study needs the experimental validation to demonstrate vaccine safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Marc P Windisch
- Applied Molecular Virology Laboratory, Discovery Biology Department, Institut Pasteur Korea, Gyeonggi-do, South Korea
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
- Virology Unit, Yacoub Behbehani center, Sabah Hospital, Ministry of Health, Kuwait
| | - Fadila Guessous
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
38
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
39
|
Chulrik W, Jansakun C, Chaichompoo W, Supaweera N, Tedasen A, Punsawad C, Kimseng R, Rayanil KO, Suksamrarn A, Chunglok W. Protective effects of Stephania pierrei tuber-derived oxocrebanine against LPS-induced acute lung injury in mice. Inflammopharmacology 2023:10.1007/s10787-023-01231-y. [PMID: 37129718 DOI: 10.1007/s10787-023-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nassareen Supaweera
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rungruedi Kimseng
- Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kanok-On Rayanil
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom, 73000, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Food Technology and Innovation Center of Excellence, Research and Innovation Institute of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
40
|
Gelemanović A, Ćatipović Ardalić T, Pribisalić A, Hayward C, Kolčić I, Polašek O. Genome-Wide Meta-Analysis Identifies Multiple Novel Rare Variants to Predict Common Human Infectious Diseases Risk. Int J Mol Sci 2023; 24:7006. [PMID: 37108169 PMCID: PMC10138356 DOI: 10.3390/ijms24087006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Ajka Pribisalić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Helou M, Nasr J, El Osta N, Jabbour E, Husni R. Liver manifestations in COVID-19 patients: A review article. World J Clin Cases 2023; 11:2189-2200. [PMID: 37122526 PMCID: PMC10131011 DOI: 10.12998/wjcc.v11.i10.2189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) initially presented as a disease that affected the lungs. Then, studies revealed that it intricately affected disparate organs in the human body, with the liver being one of the most affected organs. This review aimed to assess the association between COVID-19 and liver function, shedding light on its clinical implication. However, its exact pathophysiology remains unclear, involving many factors, such as active viral replication in the liver cells, direct cytotoxic effects of the virus on the liver or adverse reactions to viral antigens. Liver symptoms are mild-to-moderate transaminase elevation. In some patients, with underlying liver disease, more serious outcomes are observed. Thus, liver function should be meticulously considered in patients with COVID-19.
Collapse
Affiliation(s)
- Mariana Helou
- Division of Emergency Medicine, Department of Internal Medicine, Lebanese American University Medical Center, Lebanese American University School of Medicine, Beirut 1102-2801, Lebanon
| | - Janane Nasr
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Nour El Osta
- Division of Emergency, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Elsy Jabbour
- Division of Emergency, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| |
Collapse
|
42
|
Investigating the Impact of COVID-19 Vaccines on Liver Function: Insights From a Single-Institute Study. Cureus 2023; 15:e36588. [PMID: 36968679 PMCID: PMC10035458 DOI: 10.7759/cureus.36588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
Introduction SARS-CoV-2 can cause respiratory and extrapulmonary complications, including liver injury. Therefore, understanding the virus's impact on the liver and the coronavirus disease 2019 (COVID-19) vaccine's protective effect is crucial, given the correlation between hepatic involvement and disease severity. Our study aims to evaluate this relationship and the impact of vaccination on liver injury in COVID-19-infected patients. Methods A retrospective cohort study analyzed liver function outcomes in COVID-19-infected patients who received two doses of the Pfizer-BioNTech or Moderna mRNA vaccine from October 2019 to October 2021. The study population was matched based on baseline characteristics, and Fisher's T-test was used for analysis. Secondary outcomes included COVID-19-related death, hospital stay, and SARS-CoV-2 infection after the second dose. SPSS (IBM Corp., Armonk, NY) and RStudio (RStudio, PBC, Boston, USA) software were utilized to ensure robust statistical analysis. Results A group of 78 patients with a propensity score were matched and analyzed, resulting in two groups of 39 patients each: vaccinated and unvaccinated. The vaccinated group had a lower incidence of liver injury, reduced length of stay, and mortality. The study suggests that COVID-19 vaccination can positively impact infected patients. These findings should be considered when making decisions about vaccine distribution and usage, and more research is needed to fully understand the vaccine's impact on ending the pandemic. Conclusion This study emphasizes the COVID-19 vaccine's significance in reducing liver injury and related outcomes, such as length of stay and mortality in infected patients. The results provide further evidence of vaccination benefits, with implications for healthcare professionals and policymakers. Further research is needed to deepen our understanding of COVID-19's complex effects on the liver and the vaccine's impact. Investing in research can inform clinical management, improve patient outcomes, and ultimately help end the pandemic.
Collapse
|
43
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
44
|
Gildea DT, Woo SM, O’Connor CE, Rangnekar AS. COVID-19-Associated Liver Injury. Hepat Med 2023; 15:1-9. [PMID: 36852138 PMCID: PMC9960793 DOI: 10.2147/hmer.s384108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023] Open
Abstract
This review analyzes data regarding liver injury associated with COVID-19 infection. We discuss reported effects on the liver from both COVID-19 and COVID-19 treatment as well as pathophysiology, review the potential role of drug-induced liver injury as an etiology of COVID-19-associated liver injury, and touch on other reports of significant outcomes including COVID-19 cholangiopathy and autoimmune hepatitis. Finally, we review the implications of COVID-19 infection in liver transplant recipients.
Collapse
Affiliation(s)
- Daniel T Gildea
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA,Correspondence: Daniel T Gildea, Tel +1 302-985-7777, Email
| | - Stephanie M Woo
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, USA
| | | | - Amol S Rangnekar
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
45
|
Mohammadzadeh Hosseini Moghri SAH, Mahmoodi Chalbatani G, Ranjbar M, Raposo C, Abbasian A. CD171 Multi-epitope peptide design based on immuno-informatics approach as a cancer vaccine candidate for glioblastoma. J Biomol Struct Dyn 2023; 41:1028-1040. [PMID: 36617427 DOI: 10.1080/07391102.2021.2020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glioblastoma (GB) is a common primary malignancy of the central nervous system, and one of the highly lethal brain tumors. GB cells can promote therapeutic resistance and tumor angiogenesis. The CD171 is an adhesion molecule in neuronal cells that is expressed in glioma cells as a regulator of brain development during the embryonic period. CD171 is one of the immunoglobulin-like CAMs (cell adhesion molecules) families that can be associated with prognosis in a variety of human tumors. The multi-epitope peptide vaccines are based on synthetic peptides with a combination of both B-cell epitopes and T-cell epitopes, which can induce specific humoral or cellular immune responses. Moreover, Cholera toxin subunit B (CTB), a novel TLR agonist was utilized in the final construct to polarize CD4+ T cells toward T-helper 1 to induce strong cytotoxic T lymphocytes (CTL) responses. In the present study, several immune-informatics tools were used for analyzing the CD171 sequence and studying the important characteristics of a designed vaccine. The results included molecular docking, molecular dynamics simulation, immune response simulation, prediction and validation of the secondary and tertiary structure, physicochemical properties, solubility, conservancy, toxicity as well as antigenicity and allergenicity of the promising candidate for a vaccine against CD171. The immuno-informatic analyze suggested 12 predicted multi-epitope peptides, whose construction consists of 582 residues long. Therewith, cloning adaptation of the designed vaccine was performed, and eventually sequence was inserted into pET30a (+) vector for the application of the anti-glioblastoma vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Department of Microbial Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Catarina Raposo
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Arefeh Abbasian
- Faculty of Basic Sciences, Department of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
46
|
Milionis C, Ilias I, Koukkou E. Liver function in transgender persons: Challenges in the COVID-19 era. World J Clin Cases 2023; 11:299-307. [PMID: 36686345 PMCID: PMC9850971 DOI: 10.12998/wjcc.v11.i2.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Transgender persons constitute a non-negligible percentage of the general population. Physical gender-transitioning in trans persons is mainly achieved with hormonal cross-sex therapy and sex reassignment surgeries that aim to align bodily appearance with gender identity. Hormonal treatment acts via suppressing the secretion of the endogenous sex hormones and replacing them with the hormones of the desired sex. The administration of testosterone is the typical masculinizing treatment in trans men, whilst trans women are routinely treated with estradiol agents in combination with anti-androgens or gonadotrophin-releasing hormone agonists if testes are present. Exogenous androgenic steroids, estradiol agents, and anti-androgens have been implicated in a series of hepatotoxic effects. Thus, liver integrity is a major concern with the long-term administration of cross-sex therapy. Hepatic tissue is susceptible to coronavirus disease 19 (COVID-19) through various pathophysiological mechanisms. Special consideration should be paid to minimize the risk of hepatic damage from the potential cumulative effect of COVID-19 and gender-affirming treatment in transgender patients. Appropriate care is significant, with continuous laboratory monitoring, clinical observation and, if needed, specific treatment, especially in severe cases of infection and in persons with additional liver pathologies. The pandemic can be an opportunity to provide equal access to care for all and increase the resilience of the transgender population.
Collapse
Affiliation(s)
- Charalampos Milionis
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Eftychia Koukkou
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| |
Collapse
|
47
|
Papagiouvanni I, Kotoulas SC, Pataka A, Spyratos DG, Porpodis K, Boutou AK, Papagiouvannis G, Grigoriou I, Vettas C, Goulis I. COVID-19 and liver injury: An ongoing challenge. World J Gastroenterol 2023; 29:257-271. [PMID: 36687117 PMCID: PMC9846934 DOI: 10.3748/wjg.v29.i2.257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in December 2019, in Wuhan, China. The virus was rapidly spread worldwide, causing coronavirus disease 2019 (COVID-19) pandemic. Although COVID-19 is presented, usually, with typical respiratory symptoms (i.e., dyspnea, cough) and fever, extrapulmonary manifestations are also encountered. Liver injury is a common feature in patients with COVID-19 and ranges from mild and temporary elevation of liver enzymes to severe liver injury and, even, acute liver failure. The pathogenesis of liver damage is not clearly defined; multiple mechanisms contribute to liver disorder, including direct cytopathic viral effect, cytokine storm and immune-mediated hepatitis, hypoxic injury, and drug-induced liver toxicity. Patients with underlying chronic liver disease (i.e., cirrhosis, non-alcoholic fatty liver disease, alcohol-related liver disease, hepatocellular carcinoma, etc.) may have greater risk to develop both severe COVID-19 and further liver deterioration, and, as a consequence, certain issues should be considered during disease management. The aim of this review is to present the prevalence, clinical manifestation and pathophysiological mechanisms of liver injury in patients with SARS-CoV-2 infection. Moreover, we overview the association between chronic liver disease and SARS-CoV-2 infection and we briefly discuss the management of liver injury during COVID-19.
Collapse
Affiliation(s)
- Ioanna Papagiouvanni
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Thessaloniki, Greece
| | | | - Athanasia Pataka
- Department of Respiratory Medicine, G Papanikolaou Hospital, Resp Failure Unit, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Dionisios G Spyratos
- Pulmonary Department, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Konstantinos Porpodis
- Pulmonary Department, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Afroditi K Boutou
- Pulmonary Department, G Papanikolaou Hospital, Resp Failure Unit, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| | - Ioanna Grigoriou
- Respiratory Failure Clinic, Papanikolaou General Hospital, Thessloniki 57001, Greece
| | - Christos Vettas
- Fourth Department of Internal Medicine, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Ioannis Goulis
- Fourth Department of Internal Medicine, Hippokration General Hospital, Thessaloniki 54642, Greece
| |
Collapse
|
48
|
Khreefa Z, Barbier MT, Koksal AR, Love G, Del Valle L. Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Pancreas. Cells 2023; 12:cells12020262. [PMID: 36672197 PMCID: PMC9856332 DOI: 10.3390/cells12020262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, rapidly spread worldwide, causing an ongoing global pandemic. While the respiratory system is the most common site of infection, a significant number of reported cases indicate gastrointestinal (GI) involvement. GI symptoms include anorexia, abdominal pain, nausea, vomiting, and diarrhea. Although the mechanisms of GI pathogenesis are still being examined, viral components isolated from stool samples of infected patients suggest a potential fecal-oral transmission route. In addition, viral RNA has been detected in blood samples of infected patients, making hematologic dissemination of the virus a proposed route for GI involvement. Angiotensin-converting enzyme 2 (ACE2) receptors serve as the cellular entry mechanism for the virus, and these receptors are particularly abundant throughout the GI tract, making the intestine, liver, and pancreas potential extrapulmonary sites for infection and reservoirs sites for developing mutations and new variants that contribute to the uncontrolled spread of the disease and resistance to treatments. This transmission mechanism and the dysregulation of the immune system play a significant role in the profound inflammatory and coagulative cascades that contribute to the increased severity and risk of death in several COVID-19 patients. This article reviews various potential mechanisms of gastrointestinal, liver, and pancreatic injury.
Collapse
Affiliation(s)
- Zaid Khreefa
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Mallory T. Barbier
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gordon Love
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
| | - Luis Del Valle
- Department of Pathology, School of Medicine, Louisiana State University Health School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
49
|
Grando M, Balbi M, Zeppieri M. COVID-19-induced liver injury in adult patients: A brief overview. World J Virol 2022; 11:443-452. [PMID: 36483102 PMCID: PMC9724208 DOI: 10.5501/wjv.v11.i6.443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease has spread worldwide since 2019, causing important pandemic issues and various social health problems to date. Little is known about the origin of this virus and the effects it has on extra-pulmonary organs. The different mechanisms of the virus and the influence it has on humans are still being studied, with hopes of finding a cure for the disease and the pathologies associated with the infection. Liver damage caused by coronavirus disease 2019 (COVID-19) is sometimes underestimated and has been of important clinical interest in the past few years. Hepatic dysfunctions can manifest in different forms which can sometimes be mild and without specific signs and symptoms or be severe with important clinical implications. There are several studies that have tried to explain the mechanism of entry (hepatotropism) of the virus into hepatocytes and the effects the virus has on this important organ. What clearly emerges from the current literature is that hepatic injury represents an important clinical aspect in the management of patients infected with COVID-19, especially in frail patients and those with comorbidities. The aim of our brief overview is to summarize the current literature regarding the forms of hepatic damage, complications, mechanisms of pathology, clinical features of liver injury, influence of comorbidities and clinical management in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Massimiliano Balbi
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
50
|
Sokouti B. A systems biology approach for investigating significantly expressed genes among COVID-19, hepatocellular carcinoma, and chronic hepatitis B. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:146. [PMID: 37521843 PMCID: PMC9584277 DOI: 10.1186/s43042-022-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background Worldwide, COVID-19's death rate is about 2%, considering the incidence and mortality. However, the information on its complications in other organs, specifically the liver and its disorders, is limited in mild or severe cases. In this study, we aimed to computationally investigate the typical relationships between liver-related diseases [i.e., hepatocellular carcinoma (HCC), and chronic hepatitis B (CHB)] and COVID-19, considering the involved significant genes and their molecular mechanisms. Methods We investigated two GEO microarray datasets (GSE164805 and GSE58208) to identify differentially expressed genes (DEGs) among the generated four datasets for mild/severe COVID-19, HCC, and CHB. Then, the overlapping genes among them were identified for GO and KEGG enrichment analyses, protein-protein interaction network construction, hub genes determination, and their associations with immune cell infiltration. Results A total of 22 significant genes (i.e., ACTB, ATM, CDC42, DHX15, EPRS, GAPDH, HIF1A, HNRNPA1, HRAS, HSP90AB1, HSPA8, IL1B, JUN, POLR2B, PTPRC, RPS27A, SFRS1, SMARCA4, SRC, TNF, UBE2I, and VEGFA) were found to play essential roles among mild/severe COVID-19 associated with HCC and CHB. Moreover, the analysis of immune cell infiltration revealed that these genes are mostly positively correlated with tumor immune and inflammatory responses. Conclusions In summary, the current study demonstrated that 22 identified DEGs might play an essential role in understanding the associations between the mild/severe COVID-19 patients with HCC and CHB. So, the HCC and CHB patients involved in different types of COVID-19 can benefit from immune-based targets for therapeutic interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s43042-022-00360-3.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|