1
|
Zouridis IS, Balsamo G, Preston-Ferrer P, Burgalossi A. Anatomical and electrophysiological analysis of the fasciola cinerea of the mouse hippocampus. Hippocampus 2024; 34:528-539. [PMID: 39105449 DOI: 10.1002/hipo.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
The hippocampus is considered essential for several forms of declarative memory, including spatial and social memory. Despite the extensive research of the classic subfields of the hippocampus, the fasciola cinerea (FC)-a medially located structure within the hippocampal formation-has remained largely unexplored. In the present study, we performed a morpho-functional characterization of principal neurons in the mouse FC. Using in vivo juxtacellular recording of single neurons, we found that FC neurons are distinct from neighboring CA1 pyramidal cells, both morphologically and electrophysiologically. Specifically, FC neurons displayed non-pyramidal morphology and granule cell-like apical dendrites. Compared to neighboring CA1 pyramidal neurons, FC neurons exhibited more regular in vivo firing patterns and a lower tendency to fire spikes at short interspike intervals. Furthermore, tracing experiments revealed that the FC receives inputs from the lateral but not the medial entorhinal cortex and CA3, and it provides a major intra-hippocampal projection to the septal CA2 and sparser inputs to the distal CA1. Overall, our results indicate that the FC is a morphologically and electrophysiologically distinct subfield of the hippocampal formation; given the established role of CA2 in social memory and seizure initiation, the unique efferent intra-hippocampal connectivity of the FC points to possible roles in social cognition and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Jones SM, Sleiman SJ, McCann KE, Jarmusch AK, Alexander GM, Dudek SM. Prenatal exposure to the mineralocorticoid receptor antagonist spironolactone disrupts hippocampal area CA2 connectivity and alters behavior in mice. Neuropsychopharmacology 2024:10.1038/s41386-024-01971-7. [PMID: 39237618 DOI: 10.1038/s41386-024-01971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
In the brain, the hippocampus is enriched with mineralocorticoid receptors (MR; Nr3c2), a ligand-dependent transcription factor stimulated by the stress hormone corticosterone in rodents. Recently, we discovered that MR is required for the acquisition and maintenance of many features of mouse area CA2 neurons. Notably, we observed that immunofluorescence for the vesicular glutamate transporter 2 (vGluT2), likely representing afferents from the supramammillary nucleus (SuM), was disrupted in the embryonic, but not postnatal, MR knockout mouse CA2. To test whether pharmacological perturbation of MR activity in utero similarly disrupts CA2 connectivity, we implanted slow-release pellets containing the MR antagonist spironolactone in mouse dams during mid-gestation. After confirming that at least one likely active metabolite crossed from the dams' serum into the embryonic brains, we found that spironolactone treatment caused a significant reduction of CA2 axon fluorescence intensity in the CA1 stratum oriens, where CA2 axons preferentially project, and that vGluT2 staining was significantly decreased in both CA2 and dentate gyrus in spironolactone-treated animals. We also found that spironolactone-treated animals exhibited increased reactivity to novel objects, an effect similar to what is seen with embryonic or postnatal CA2-targeted MR knockout. However, we found no difference in preference for social novelty between the treatment groups. We infer these results to suggest that persistent or more severe disruptions in MR function may be required to interfere with this type of social behavior. These findings do indicate, though, that developmental disruption in MR signaling can have persistent effects on hippocampal circuitry and behavior.
Collapse
Affiliation(s)
- Stephanie M Jones
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, NC, 27709, USA
| | - Sarah Jo Sleiman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, NC, 27709, USA
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Katharine E McCann
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, NC, 27709, USA
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alan K Jarmusch
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, NC, 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Maliković J, Amrein I, Vinciguerra L, Wolfer DP, Slomianka L. NECAB1-3, parvalbumin, calbindin, and calretinin in the hippocampus of the European mole. Front Neuroanat 2024; 18:1452722. [PMID: 39296922 PMCID: PMC11408328 DOI: 10.3389/fnana.2024.1452722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Many calcium-binding proteins are expressed in a region-and cell-type specific manner in the mammalian hippocampus. Neuronal calcium-binding proteins (NECABs) are also expressed in hippocampal neurons, but few species have been investigated, with partly controversial findings. We here describe NECAB1, NECAB2 and NECAB3 as well as parvalbumin, calbindin, and calretinin in the European mole, and compare staining patterns of these proteins with those in mouse and other species. While subtle differences are present, NECAB staining in the European mole was generally similar to those in mouse. Common to European moles, mice, and other species we investigated, large hilar polymorphic cells, likely to represent mossy cells, were positive for all three NECABs. NECAB1 and 2 are suitable as markers for these cells along the entire septotemporal axis of the hippocampus. In the European mole, parvalbumin, calbindin and calretinin showed traits that have been described in other species before, albeit in a unique combination. In summary, we provide the first description of distribution of these proteins in the hippocampus of the European mole. This subterranean, insectivorous, and solitary living species belongs to the Order of Eulipotyphla. Despite many similarities with other subterranean species from the rodent order in terms of lifestyle, its hippocampus is cytoarchitecturally much more elaborated than in, e.g., mole-rats. It remains an open question if the hippocampal structure of the European mole reflects evolutionary constraints or ecology. Our descriptive study highlights the diversity in hippocampal cytoarchitecture even in small mammalian species.
Collapse
Affiliation(s)
- Jovana Maliković
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - David P Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Jabra S, Rietsche M, Muellerleile J, O'Leary A, Slattery DA, Deller T, Fellenz M. Sex- and cycle-dependent changes in spine density and size in hippocampal CA2 neurons. Sci Rep 2024; 14:12252. [PMID: 38806649 PMCID: PMC11133407 DOI: 10.1038/s41598-024-62951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.
Collapse
Affiliation(s)
- Sharif Jabra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Jamiolkowski RM, Nguyen QA, Farrell JS, McGinn RJ, Hartmann DA, Nirschl JJ, Sanchez MI, Buch VP, Soltesz I. The fasciola cinereum of the hippocampal tail as an interventional target in epilepsy. Nat Med 2024; 30:1292-1299. [PMID: 38632391 PMCID: PMC11108783 DOI: 10.1038/s41591-024-02924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Targeted tissue ablation involving the anterior hippocampus is the standard of care for patients with drug-resistant mesial temporal lobe epilepsy. However, a substantial proportion continues to suffer from seizures even after surgery. We identified the fasciola cinereum (FC) neurons of the posterior hippocampal tail as an important seizure node in both mice and humans with epilepsy. Genetically defined FC neurons were highly active during spontaneous seizures in epileptic mice, and closed-loop optogenetic inhibition of these neurons potently reduced seizure duration. Furthermore, we specifically targeted and found the prominent involvement of FC during seizures in a cohort of six patients with epilepsy. In particular, targeted lesioning of the FC in a patient reduced the seizure burden present after ablation of anterior mesial temporal structures. Thus, the FC may be a promising interventional target in epilepsy.
Collapse
Affiliation(s)
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- F.M. Kirby Neurobiology Center and Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J McGinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - David A Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Jeff J Nirschl
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Mateo I Sanchez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Vivek P Buch
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Siegler PN, Shaughnessy EK, Horman B, Vierling TT, King DH, Patisaul HB, Huhman KL, Alexander GM, Dudek SM. Identification of hippocampal area CA2 in hamster and vole brain. J Comp Neurol 2024; 532:e25603. [PMID: 38497661 PMCID: PMC10950058 DOI: 10.1002/cne.25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. Hippocampal area CA2 is known to play a key role in these behaviors in mice and responds to social stimuli in rats, but CA2 has yet to be characterized in hamsters or voles, which are also used in studies of social behaviors. Here, we used immunofluorescence to determine whether CA2 could be molecularly identified in tissue from voles and hamsters. We found that staining for many CA2 markers was similar in these three species, with labeling seen in neurons at the distal end of the mossy fibers . In contrast, although perineuronal nets (PNNs) surround CA2 cells in mice, PNN staining differed across species. In voles, both CA2 and CA3 were labeled, whereas in hamsters, labeling was seen primarily in CA3. These results demonstrate that CA2 can be molecularly distinguished from neighboring CA1 and CA3 areas in voles and hamsters with several antibodies commonly used in mice. However, PNN staining is not useful for identifying CA2 in voles or hamsters, suggestive of differing roles for either PNNs or for the hippocampal subregions in social behavior. These findings reveal commonalities across species in the molecular profile of CA2 and should facilitate future studies of CA2 in these species.
Collapse
Affiliation(s)
- Preston Nicole Siegler
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | | | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Tia T. Vierling
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Darron H. King
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Georgia M. Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
7
|
Siegler PN, Shaughnessy EK, Horman B, Vierling TT, King DH, Patisaul HB, Huhman KL, Alexander GM, Dudek SM. Identification of hippocampal area CA2 in hamster and vole brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579957. [PMID: 38405991 PMCID: PMC10888814 DOI: 10.1101/2024.02.12.579957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and rats (Rattus norvegicus, for example) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. The CA2 region of the hippocampus is known to play a key role in social memory and aggression in mice and responds to social stimuli in rats, likely owing to its high expression of oxytocin and vasopressin 1b receptors. However, CA2 has yet to be identified and characterized in hamsters or voles. In this study, we sought to determine whether CA2 could be identified molecularly in vole and hamster. To do this, we used immunofluorescence with primary antibodies raised against known molecular markers of CA2 in mice and rats to stain hippocampal sections from voles and hamsters in parallel with those from mice. Here, we report that, like in mouse and rat, staining for many CA2 proteins in vole and hamster hippocampus reveals a population of neurons that express regulator of G protein signaling 14 (RGS14), Purkinje cell protein 4 (PCP4) and striatal-enriched protein tyrosine phosphatase (STEP), which together delineate the borders with CA3 and CA1. These cells were located at the distal end of the mossy fiber projections, marked by the presence of Zinc Transporter 3 (ZnT-3) and calbindin in all three species. In addition to staining the mossy fibers, calbindin also labeled a layer of CA1 pyramidal cells in mouse and hamster but not in vole. However, Wolframin ER transmembrane glycoprotein (WFS1) immunofluorescence, which marks all CA1 neurons, was present in all three species and abutted the distal end of CA2, marked by RGS14 immunofluorescence. Staining for two stress hormone receptors-the glucocorticoid (GR) and mineralocorticoid (MR) receptors-was also similar in all three species, with GR staining found primarily in CA1 and MR staining enriched in CA2. Interestingly, although perineuronal nets (PNNs) are known to surround CA2 cells in mouse and rat, we found that staining for PNNs differed across species in that both CA2 and CA3 showed staining in voles and primarily CA3 in hamsters with only some neurons in proximal CA2 showing staining. These results demonstrate that, like in mouse, CA2 in voles and hamsters can be molecularly distinguished from neighboring CA1 and CA3 areas, but PNN staining is less useful for identifying CA2 in the latter two species. These findings reveal commonalities across species in molecular profile of CA2, which will facilitate future studies of CA2 in these species. Yet to be determined is how differences in PNNs might relate to differences in social behavior across species.
Collapse
Affiliation(s)
- Preston Nicole Siegler
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | | | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Tia T. Vierling
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Darron H. King
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Georgia M. Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
8
|
Zhao F, Behnisch T. The Enigmatic CA2: Exploring the Understudied Region of the Hippocampus and Its Involvement in Parkinson's Disease. Biomedicines 2023; 11:1996. [PMID: 37509636 PMCID: PMC10377725 DOI: 10.3390/biomedicines11071996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that affects both motor and non-motor functions. Although motor impairment is a prominent clinical sign of PD, additional neurological symptoms may also occur, particularly in the preclinical and prodromal stages. Among these symptoms, social cognitive impairment is common and detrimental. This article aims to review non-motor symptoms in PD patients, focusing on social cognitive deficits. It also examines the specific characteristics of the CA2 region and its involvement in social behavior, highlighting recent advances and perspectives. Additionally, this review provides critical insights into and analysis of research conducted in rodents and humans, which may help improve the understanding of the current status of putative therapeutic strategies for social cognitive dysfunction in PD and potential avenues related to the function of the hippocampal CA2 region.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Takeuchi Y, Yamashiro K, Noguchi A, Liu J, Mitsui S, Ikegaya Y, Matsumoto N. Machine learning-based segmentation of the rodent hippocampal CA2 area from Nissl-stained sections. Front Neuroanat 2023; 17:1172512. [PMID: 37449243 PMCID: PMC10336234 DOI: 10.3389/fnana.2023.1172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
The hippocampus is a center of learning, memory, and spatial navigation. This region is divided into the CA1, CA2, and CA3 areas, which are anatomically different from each other. Among these divisions, the CA2 area is unique in terms of functional relevance to sociality. The CA2 area is often manually detected based on the size, shape, and density of neurons in the hippocampal pyramidal cell layer, but this manual segmentation relying on cytoarchitecture is impractical to apply to a large number of samples and dependent on experimenters' proficiency. Moreover, the CA2 area has been defined based on expression pattern of molecular marker proteins, but it generally takes days to complete immunostaining for such proteins. Thus, we asked whether the CA2 area can be systematically segmented based on cytoarchitecture alone. Since the expression pattern of regulator of G-protein signaling 14 (RGS14) signifies the CA2 area, we visualized the CA2 area in the mouse hippocampus by RGS14-immunostaining and Nissl-counterstaining and manually delineated the CA2 area. We then established "CAseg," a machine learning-based automated algorithm to segment the CA2 area with the F1-score of approximately 0.8 solely from Nissl-counterstained images that visualized cytoarchitecture. CAseg was extended to the segmentation of the prairie vole CA2 area, which raises the possibility that the use of this algorithm can be expanded to other species. Thus, CAseg will be beneficial for investigating unique properties of the hippocampal CA2 area.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Shi HJ, Wang S, Wang XP, Zhang RX, Zhu LJ. Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neurosci Bull 2023; 39:1009-1026. [PMID: 36680709 PMCID: PMC10264315 DOI: 10.1007/s12264-023-01020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/13/2022] [Indexed: 01/22/2023] Open
Abstract
Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuang Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Ping Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rui-Xin Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| |
Collapse
|
11
|
Dudek SM, Phoenix AN, Scappini E, Shepeleva DV, Herbeck YE, Trut LN, Farris S, Kukekova AV. Defining hippocampal area CA2 in the fox (Vulpes vulpes) brain. Hippocampus 2023; 33:700-711. [PMID: 37159095 PMCID: PMC10274530 DOI: 10.1002/hipo.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.
Collapse
Affiliation(s)
- Serena M Dudek
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Ashley N Phoenix
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Erica Scappini
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Darya V Shepeleva
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Yury E Herbeck
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lyudmila N Trut
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Shannon Farris
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, USA
| | - Anna V Kukekova
- Department of Animal Science, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Handwerk CJ, Bland KM, Denzler CJ, Kalinowski AR, Brett CA, Swinehart BD, Rodriguez HV, Cook HN, Vinson EC, Florenz ME, Vidal GS. Simultaneous 3D cellular positioning and apical dendritic morphology of transgenic fluorescent mouse CA3 hippocampal pyramidal neurons. J Neurosci Methods 2023; 388:109823. [PMID: 36809825 PMCID: PMC10006342 DOI: 10.1016/j.jneumeth.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Pyramidal neurons throughout hippocampal CA3 are diverse in their dendritic morphology, and CA3 is not homogenous in its structure or function. Nonetheless, few structural studies have captured the precise 3D somatic position and the 3D dendritic morphology of CA3 pyramidal neurons simultaneously. NEW METHOD Here, we present a simple approach to reconstruct the apical dendritic morphology of CA3 pyramidal neurons using the transgenic fluorescent Thy1-GFP-M line. The approach simultaneously tracks the dorsoventral, tangential, and radial positions of reconstructed neurons within the hippocampus. It is especially designed for use with transgenic fluorescent mouse lines, which are commonly used in genetic studies of neuronal morphology and development. RESULTS We demonstrate how topographic and morphological data are captured from transgenic fluorescent mouse CA3 pyramidal neurons. COMPARISON WITH EXISTING METHODS There is no need to select and label CA3 pyramidal neurons with the transgenic fluorescent Thy1-GFP-M line. By taking transverse (not coronal) serial sections, we preserve fine dorsoventral, tangential, and radial somatic positioning of 3D-reconstructed neurons. Because CA2 is well defined by PCP4 immunohistochemistry, we use that technique here to to increase precision in defining tangential position along CA3. CONCLUSIONS We developed a method for simultaneously collecting precise somatic positioning as well as 3D morphological data among transgenic fluorescent mouse hippocampal pyramidal neurons. This fluorescent method should be compatible with many other transgenic fluorescent reporter lines and immunohistochemical methods, facilitating the capture of topographic and morphological data from a wide variety of genetic experiments in mouse hippocampus.
Collapse
Affiliation(s)
- Christopher J Handwerk
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Katherine M Bland
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Collin J Denzler
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Anna R Kalinowski
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Cooper A Brett
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Brian D Swinehart
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hilda V Rodriguez
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hollyn N Cook
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Elizabeth C Vinson
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Madison E Florenz
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - George S Vidal
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America.
| |
Collapse
|
13
|
Dudek SM, Alexander GM, Farris S. Introduction to the special issue on: A new view of hippocampal area CA2. Hippocampus 2023; 33:127-132. [PMID: 36826426 DOI: 10.1002/hipo.23514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Affiliation(s)
- Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina, USA
| | - Shannon Farris
- Center for Neurobiology Research, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, Virginia, USA
| |
Collapse
|
14
|
Chevaleyre V, Piskorowski R. New hues for CA2. Hippocampus 2023; 33:161-165. [PMID: 36585825 DOI: 10.1002/hipo.23496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Vivien Chevaleyre
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Rebecca Piskorowski
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
15
|
Bienkowski MS. Further refining the boundaries of the hippocampus CA2 with gene expression and connectivity: Potential subregions and heterogeneous cell types. Hippocampus 2023; 33:150-160. [PMID: 36786207 PMCID: PMC9987718 DOI: 10.1002/hipo.23508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Over the last two decades, the definition of hippocampal area CA2 has evolved from Lorente de Nó's original Golgi-based morphological description with the discovery of specific CA2 gene expression markers. Exploiting the specificity of these molecules has allowed for the genetic dissection of CA2 structure and function in transgenic mice. With this change in criteria, the anatomical boundaries of the CA2 have expanded across the hippocampal axis but the CA2's full rostrocaudal extent is not consistently delineated across atlases. The Hippocampus Gene Expression Atlas (HGEA) provides a comprehensive map of 20 gene expression domains across the entire mouse hippocampus including the CA2. In this commentary, I will review the consensus gene expression patterns that demarcate the expanded CA2 boundaries in the HGEA. Using DropViz single-cell transcriptomics and Mouse Connectome Project connectomics data, I will then suggest potential differences in CA2 cell type heterogeneity and connectivity that may identify and characterize further CA2 subregions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- USC Center for Integrative Connectomics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Shinohara Y, Kohara K. Projections of hippocampal CA2 pyramidal neurons: Distinct innervation patterns of CA2 compared to CA3 in rodents. Hippocampus 2023; 33:691-699. [PMID: 36855258 DOI: 10.1002/hipo.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The hippocampus is a center for spatial and episodic memory formation in rodents. Understanding the composition of subregions and circuitry maps of the hippocampus is essential for elucidating the mechanism of memory formation and recall. For decades, the trisynaptic circuit (entorhinal cortex layer II-dentate gyrus - CA3-CA1) has been considered the neural network substrate responsible for learning and memory. Recently, CA2 has emerged as an important area in the hippocampal circuitry, with distinct functions from those of CA3. In this article, we review the historical definition of the hippocampal area CA2 and the differential projection patterns between CA2 and CA3 pyramidal neurons. We provide a concise and comprehensive map of CA2 outputs by comparing (1) ipsi versus contra projections, (2) septal versus temporal projections, and (3) lamellar structures of CA2 and CA3 pyramidal neurons.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keigo Kohara
- KMU Biobank Center, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
17
|
Okamoto K, Kamikubo Y, Yamauchi K, Okamoto S, Takahashi M, Ishida Y, Koike M, Ikegaya Y, Sakurai T, Hioki H. Specific AAV2/PHP.eB-mediated gene transduction of CA2 pyramidal cells via injection into the lateral ventricle. Sci Rep 2023; 13:323. [PMID: 36609635 PMCID: PMC9822962 DOI: 10.1038/s41598-022-27372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Given its limited accessibility, the CA2 area has been less investigated compared to other subregions of the hippocampus. While the development of transgenic mice expressing Cre recombinase in the CA2 has revealed unique features of this area, the use of mouse lines has several limitations, such as lack of specificity. Therefore, a specific gene delivery system is required. Here, we confirmed that the AAV-PHP.eB capsid preferably infected CA2 pyramidal cells following retro-orbital injection and demonstrated that the specificity was substantially higher after injection into the lateral ventricle. In addition, a tropism for the CA2 area was observed in organotypic slice cultures. Combined injection into the lateral ventricle and stereotaxic injection into the CA2 area specifically introduced the transgene into CA2 pyramidal cells, enabling us to perform targeted patch-clamp recordings and optogenetic manipulation. These results suggest that AAV-PHP.eB is a versatile tool for specific gene transduction in CA2 pyramidal cells.
Collapse
Affiliation(s)
- Kazuki Okamoto
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Yuji Kamikubo
- grid.258269.20000 0004 1762 2738Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Kenta Yamauchi
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Shinichiro Okamoto
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Megumu Takahashi
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258799.80000 0004 0372 2033Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501 Japan ,grid.54432.340000 0001 0860 6072Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Yoko Ishida
- grid.258269.20000 0004 1762 2738Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masato Koike
- grid.258269.20000 0004 1762 2738Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan ,grid.258269.20000 0004 1762 2738Juntendo Advanced Research Institute for Health Science, Juntendo University, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Yuji Ikegaya
- grid.26999.3d0000 0001 2151 536XLaboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo‐ku, Tokyo, 113‐0033 Japan ,grid.28312.3a0000 0001 0590 0962Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871 Japan ,grid.26999.3d0000 0001 2151 536XInstitute for AI and Beyond, The University of Tokyo, Bunkyo‐ku, Tokyo, 113‐0033 Japan
| | - Takashi Sakurai
- grid.258269.20000 0004 1762 2738Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan. .,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan. .,Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
18
|
Maliković J, Amrein I, Vinciguerra L, Lalošević D, Wolfer DP, Slomianka L. Cell numbers in the reflected blade of CA3 and their relation to other hippocampal principal cell populations across seven species. Front Neuroanat 2023; 16:1070035. [PMID: 36686574 PMCID: PMC9846821 DOI: 10.3389/fnana.2022.1070035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The hippocampus of many mammals contains a histoarchitectural region that is not present in laboratory mice and rats-the reflected blade of the CA3 pyramidal cell layer. Pyramidal cells of the reflected blade do not extend dendrites into the hippocampal molecular layer, and recent evidence indicates that they, like the proximal CA3 pyramids in laboratory rats and mice, partially integrate functionally with the dentate circuitry in pattern separation. Quantitative assessments of phylogenetic or disease-related changes in the hippocampal structure and function treat the reflected blade heterogeneously. Depending on the ease with which it can be differentiated, it is either assigned to the dentate hilus or to the remainder of CA3. Here, we investigate the impact that the differential assignment of reflected blade neurons may have on the outcomes of quantitative comparisons. We find it to be massive. If reflected blade neurons are treated as a separate entity or pooled with dentate hilar cells, the quantitative makeup of hippocampal cell populations can differentiate between species in a taxonomically sensible way. Assigning reflected blade neurons to CA3 greatly diminishes the differentiating power of all hippocampal principal cell populations, which may point towards a quantitative hippocampal archetype. A heterogeneous assignment results in a differentiation pattern with little taxonomic semblance. The outcomes point towards the reflected blade as either a major potential player in hippocampal functional and structural differentiation or a region that may have cloaked that hippocampi are more similarly organized across species than generally believed.
Collapse
Affiliation(s)
- Jovana Maliković
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | | | - David P. Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,*Correspondence: Lutz Slomianka
| |
Collapse
|
19
|
Piskorowski RA, Chevaleyre V. Hippocampal area CA2: interneuron disfunction during pathological states. Front Neural Circuits 2023; 17:1181032. [PMID: 37180763 PMCID: PMC10174260 DOI: 10.3389/fncir.2023.1181032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hippocampal area CA2 plays a critical role in social recognition memory and has unique cellular and molecular properties that distinguish it from areas CA1 and CA3. In addition to having a particularly high density of interneurons, the inhibitory transmission in this region displays two distinct forms of long-term synaptic plasticity. Early studies on human hippocampal tissue have reported unique alteration in area CA2 with several pathologies and psychiatric disorders. In this review, we present recent studies revealing changes in inhibitory transmission and plasticity of area CA2 in mouse models of multiple sclerosis, autism spectrum disorder, Alzheimer's disease, schizophrenia and the 22q11.2 deletion syndrome and propose how these changes could underly deficits in social cognition observed during these pathologies.
Collapse
Affiliation(s)
- Rebecca A. Piskorowski
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
- *Correspondence: Rebecca A. Piskorowski,
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, Chen X. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022; 110:4000-4014.e6. [PMID: 36272414 DOI: 10.1016/j.neuron.2022.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.
Collapse
Affiliation(s)
- Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Bo Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Shuancheng Ren
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Zhian Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Arthur Konnerth
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
21
|
Atypical perineuronal nets in the CA2 region interfere with social memory in a mouse model of social dysfunction. Mol Psychiatry 2022; 27:3520-3531. [PMID: 34183768 PMCID: PMC8712624 DOI: 10.1038/s41380-021-01174-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Social memory dysfunction is an especially devastating symptom of many neuropsychiatric disorders, which makes understanding the cellular and molecular processes that contribute to such abnormalities important. Evidence suggests that the hippocampus, particularly the CA2 region, plays an important role in social memory. We sought to identify potential mechanisms of social memory dysfunction in the hippocampus by investigating features of neurons, glia, and the extracellular matrix (ECM) of BTBR mice, an inbred mouse strain with deficient social memory. The CA2 is known to receive inputs from dentate gyrus adult-born granule cells (abGCs), neurons known to participate in social memory, so we examined this cell population and found fewer abGCs, as well as fewer axons from abGCs in the CA2 of BTBR mice compared to controls. We also found that BTBR mice had fewer pyramidal cell dendritic spines, in addition to fewer microglia and astrocytes, in the CA2 compared to controls. Along with diminished neuronal and glial elements, we found atypical perineuronal nets (PNNs), specialized ECM structures that regulate plasticity, in the CA2 of BTBR mice. By diminishing PNNs in the CA2 of BTBR mice to control levels, we observed a partial restoration of social memory. Our findings suggest that the CA2 region of BTBR mice exhibits multiple cellular and extracellular abnormalities and identify atypical PNNs as one mechanism producing social memory dysfunction, although the contribution of reduced abGC afferents, pyramidal cell dendritic spine, and glial cell numbers remains unexplored.
Collapse
|
22
|
Lu S, Ortiz C, Fürth D, Fischer S, Meletis K, Zador A, Gillis J. Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain. PLoS Biol 2021; 19:e3001341. [PMID: 34280183 PMCID: PMC8321401 DOI: 10.1371/journal.pbio.3001341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
High-throughput, spatially resolved gene expression techniques are poised to be transformative across biology by overcoming a central limitation in single-cell biology: the lack of information on relationships that organize the cells into the functional groupings characteristic of tissues in complex multicellular organisms. Spatial expression is particularly interesting in the mammalian brain, which has a highly defined structure, strong spatial constraint in its organization, and detailed multimodal phenotypes for cells and ensembles of cells that can be linked to mesoscale properties such as projection patterns, and from there, to circuits generating behavior. However, as with any type of expression data, cross-dataset benchmarking of spatial data is a crucial first step. Here, we assess the replicability, with reference to canonical brain subdivisions, between the Allen Institute's in situ hybridization data from the adult mouse brain (Allen Brain Atlas (ABA)) and a similar dataset collected using spatial transcriptomics (ST). With the advent of tractable spatial techniques, for the first time, we are able to benchmark the Allen Institute's whole-brain, whole-transcriptome spatial expression dataset with a second independent dataset that similarly spans the whole brain and transcriptome. We use regularized linear regression (LASSO), linear regression, and correlation-based feature selection in a supervised learning framework to classify expression samples relative to their assayed location. We show that Allen Reference Atlas labels are classifiable using transcription in both data sets, but that performance is higher in the ABA than in ST. Furthermore, models trained in one dataset and tested in the opposite dataset do not reproduce classification performance bidirectionally. While an identifying expression profile can be found for a given brain area, it does not generalize to the opposite dataset. In general, we found that canonical brain area labels are classifiable in gene expression space within dataset and that our observed performance is not merely reflecting physical distance in the brain. However, we also show that cross-platform classification is not robust. Emerging spatial datasets from the mouse brain will allow further characterization of cross-dataset replicability ultimately providing a valuable reference set for understanding the cell biology of the brain.
Collapse
Affiliation(s)
- Shaina Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cantin Ortiz
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Stephan Fischer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | | - Anthony Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
23
|
Baradaran R, Anbarkeh FR, Delavar A, Khorasgani EM, Rahimian N, Abbasi Y, Jaberi N. Hippocampal asymmetry and regional dispersal of nAChRs alpha4 and alpha7 subtypes in the adult rat. J Chem Neuroanat 2021; 116:101977. [PMID: 34052301 DOI: 10.1016/j.jchemneu.2021.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
To better comprehend the relationship between left/right (L/R) differences and hippocampus functions is necessary knowledge of lateral asymmetry and regional distribution. This research was design to examine hippocampal L/R asymmetry and regional distribution profile of the alpha7 and alpha4 subtypes of nicotinic acetylcholine receptors (nAChRs) in the adult rat. 10-12-week-old twenty-four male wistar rats were randomly selected. After removing the brains, immunohistochemistry, real-time PCR, and western blot methods were applied to distinguish the presence of the receptors in the hippocampus. Outcomes stated that the mentioned receptors expression profile was spatial-dependent. As, the hippocampal dispersal of alpha7 and alpha4 subtypes in the left hippocampus (LH) was remarkably maximum compare with the right hippocampus (RH) (p = 0.001, p = 0.005 respectively). Furthermore, the alpha7 optical density (OD) was not significantly different in the diverse regions in hippocampus of adult rat (p = 0.057), while the maximum OD of the alpha4 was detected in the hippocampal dentate gyrus and CA3 regions of LH (p = 0.007, p = 0.009 respectively) and the minimum OD was in the CA1 of the RH (p = 0.019). In real time PCR evaluation, there is a significantly higher expression of alpha7 and alpha4 in LH compared to RH (p = 0.043, p = 0.049 respectively), also, for western blot (p = 0.042, p = 0.030 respectively). According to present data, the alpha7 and alpha4 nAChR subtypes expression profile demonstrated lateral asymmetry, the uniform regional dispersal for alpha7 and different regional dispersal for alpha4 in the adult rat hippocampus.
Collapse
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Fatemeh Rahimi Anbarkeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Delavar
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yusef Abbasi
- Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Najmeh Jaberi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, Fernandez-Lamo I, Sutton N, García-Rincón D, de la Prida LM, Ascoli GA. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biol 2021; 19:e3001213. [PMID: 33956790 PMCID: PMC8130934 DOI: 10.1371/journal.pbio.3001213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/18/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.
Collapse
Affiliation(s)
| | - Diek W. Wheeler
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | - Manuel Valero
- Instituto Cajal CSIC, Madrid, Spain
- NYU Neuroscience Institute, New York, United States of America
| | - Miriam S. Nokia
- Instituto Cajal CSIC, Madrid, Spain
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Nate Sutton
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | | | - Giorgio A. Ascoli
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
- * E-mail: (LMP); (GAA)
| |
Collapse
|
25
|
MRI of Capn15 Knockout Mice and Analysis of Capn 15 Distribution Reveal Possible Roles in Brain Development and Plasticity. Neuroscience 2021; 465:128-141. [PMID: 33951504 DOI: 10.1016/j.neuroscience.2021.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The Small Optic Lobe (SOL) family of calpains are intracellular cysteine proteases that are expressed in the nervous system and play an important role in neuronal development in both Drosophila, where loss of this calpain leads to the eponymous small optic lobes, and in mouse and human, where loss of this calpain leads to eye anomalies. Some human individuals with biallelic variants in CAPN15 also have developmental delay and autism. However, neither the specific effect of the loss of the Capn15 protein on brain development nor the brain regions where this calpain is expressed in the adult is known. Here we show using small animal MRI that mice with the complete loss of Capn15 have smaller brains overall with larger decreases in the thalamus and subregions of the hippocampus. These losses are not seen in Capn15 conditional knockout (KO) mice where Capn15 is knocked out only in excitatory neurons in the adult. Based on β-galactosidase expression in an insert strain where lacZ is expressed under the control of the Capn15 promoter, we show that Capn15 is expressed in adult mice, particularly in neurons involved in plasticity such as the hippocampus, lateral amygdala and Purkinje neurons, and partially in other non-characterized cell types. The regions of the brain in the adult where Capn15 is expressed do not correspond well to the regions of the brain most affected by the complete knockout suggesting distinct roles of Capn15 in brain development and adult brain function.
Collapse
|
26
|
Lehr AB, Kumar A, Tetzlaff C, Hafting T, Fyhn M, Stöber TM. CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neurosci Biobehav Rev 2021; 126:398-412. [PMID: 33775693 DOI: 10.1016/j.neubiorev.2021.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Hippocampal region CA2 has received increased attention due to its importance in social recognition memory. While its specific function remains to be identified, there are indications that CA2 plays a major role in a variety of situations, widely extending beyond social memory. In this targeted review, we highlight lines of research which have begun to converge on a more fundamental role for CA2 in hippocampus-dependent memory processing. We discuss recent proposals that speak to the computations CA2 may perform within the hippocampal circuit.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany; Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway.
| | - Arvind Kumar
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Biosciences, University of Oslo, Norway
| | - Tristan M Stöber
- Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Informatics, University of Oslo, Norway.
| |
Collapse
|
27
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
28
|
Yang J, Ma Q, Dincheva I, Giza J, Jing D, Marinic T, Milner TA, Rajadhyaksha A, Lee FS, Hempstead BL. SorCS2 is required for social memory and trafficking of the NMDA receptor. Mol Psychiatry 2021; 26:927-940. [PMID: 31988435 DOI: 10.1038/s41380-020-0650-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Social memory processing requires functional CA2 neurons, however the specific mechanisms that regulate their activity are poorly understood. Here, we document that SorCS2, a member of the family of the Vps10 family of sorting receptors, is highly expressed in pyramidal neurons of CA2, as well as ventral CA1, a circuit implicated in social memory. SorCS2 specifically localizes to the postsynaptic density and endosomes within dendritic spines of CA2 neurons. We have discovered that SorCS2 is a selective regulator of NMDA receptor surface trafficking in hippocampal neurons, without altering AMPA receptor trafficking. In addition, SorCS2 regulates dendritic spine density in CA2 neurons where SorCS2 expression is enriched, but not in dorsal CA1 neurons, which normally express very low levels of this protein. To specifically test the role of SorCS2 in behavior, we generated a novel SorCS2-deficient mouse, and identify a significant social memory deficit, with no change in sociability, olfaction, anxiety, or several hippocampal-dependent behaviors. Mutations in sorCS2 have been associated with bipolar disease, schizophrenia, and attention deficient-hyperactivity disorder, and abnormalities in social memory are core components of these neuropsychiatric conditions. Thus, our findings provide a new mechanism for social memory formation, through regulating synaptic receptor trafficking in pyramidal neurons by SorCS2.
Collapse
Affiliation(s)
- Jianmin Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China. .,Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Qian Ma
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Iva Dincheva
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joanna Giza
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Science, Borough of Manhattan Community College, The City University of New York, 199 Chambers Street N699J, New York, NY, 10007, USA
| | - Deqiang Jing
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tina Marinic
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Barbara L Hempstead
- Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Sanders M, Petrasch-Parwez E, Habbes HW, Düring MV, Förster E. Postnatal Developmental Expression Profile Classifies the Indusium Griseum as a Distinct Subfield of the Hippocampal Formation. Front Cell Dev Biol 2021; 8:615571. [PMID: 33511122 PMCID: PMC7835525 DOI: 10.3389/fcell.2020.615571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The indusium griseum (IG) is a cortical structure overlying the corpus callosum along its anterior–posterior extent. It has been classified either as a vestige of the hippocampus or as an extension of the dentate gyrus via the fasciola cinerea, but its attribution to a specific hippocampal subregion is still under debate. To specify the identity of IG neurons more precisely, we investigated the spatiotemporal expression of calbindin, secretagogin, Necab2, PCP4, and Prox1 in the postnatal mouse IG, fasciola cinerea, and hippocampus. We identified the calcium-binding protein Necab2 as a first reliable marker for the IG and fasciola cinerea throughout postnatal development into adulthood. In contrast, calbindin, secretagogin, and PCP4 were expressed each with a different individual time course during maturation, and at no time point, IG or fasciola cinerea principal neurons expressed Prox1, a transcription factor known to define dentate granule cell fate. Concordantly, in a transgenic mouse line expressing enhanced green fluorescent protein (eGFP) in dentate granule cells, neurons of IG and fasciola cinerea were eGFP-negative. Our findings preclude that IG neurons represent dentate granule cells, as earlier hypothesized, and strongly support the view that the IG is an own hippocampal subfield composed of a distinct neuronal population.
Collapse
Affiliation(s)
- Marie Sanders
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | - Hans-Werner Habbes
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Monika V Düring
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Ikawa F, Tanaka S, Harada K, Hide I, Maruyama H, Sakai N. Detailed neuronal distribution of GPR3 and its co-expression with EF-hand calcium-binding proteins in the mouse central nervous system. Brain Res 2020; 1750:147166. [PMID: 33075309 DOI: 10.1016/j.brainres.2020.147166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The G-protein coupled receptor 3 (GPR3), a member of the class A rhodopsin-type GPR family, constitutively activates Gαs proteins without any ligands. Although there have been several reports concerning the functions of GPR3 in neurons, the physiological roles of GPR3 have not been fully elucidated. To address this issue, we analyzed GPR3 distribution in detail using fluorescence-based X-gal staining in heterozygous GPR3 knockout/LacZ knock-in mice, and further investigated the types of GPR3-expressing neurons using fluorescent double labeling with various EF-hand Ca2+-binding proteins. In addition to the previously reported GPR3-expressing areas, we identified GPR3 expression in the basal ganglia and in many nuclei of the cranial nerves, in regions related to olfactory, auditory, emotional, and motor functions. In addition, GPR3 was not only observed in excitatory neurons in layer V of the cerebral cortex, the CA2 region of the hippocampus, and the lateral nucleus of the thalamus, but also in γ-aminobutyric acid (GABA)-ergic interneurons in the cortex, hippocampus, thalamus, striatum, and cerebellum. GPR3 was frequently co-expressed with neuronal Ca2+-binding protein 2 (NECAB2) in neurons in various regions of the central nervous system, especially in the hippocampal CA2, medial habenular nucleus, lateral thalamic nucleus, dorsolateral striatum, brainstem, and spinal cord anterior horn. Furthermore, GPR3 also co-localized with NECAB2 at the tips of neurites in differentiated PC12 cells. These results suggest that GPR3 and NECAB2 are highly co-expressed in specific neurons, and that GPR3 may modulate Ca2+ signaling by interacting with NECAB2 in specific areas of the central nervous system.
Collapse
Affiliation(s)
- Fumiaki Ikawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Neurology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 2020; 31:56-78. [PMID: 32986281 DOI: 10.1002/hipo.23262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice. J Neurosci 2020; 40:5797-5806. [PMID: 32554511 DOI: 10.1523/jneurosci.0099-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Plasticity within hippocampal circuits is essential for memory functions. The hippocampal CA2/CA3 region is thought to be able to rapidly store incoming information by plastic modifications of synaptic weights within its recurrent network. High-frequency spike-bursts are believed to be essential for this process, by serving as triggers for synaptic plasticity. Given the diversity of CA2/CA3 pyramidal neurons, it is currently unknown whether and how burst activity, assessed in vivo during natural behavior, relates to principal cell heterogeneity. To explore this issue, we juxtacellularly recorded the activity of single CA2/CA3 neurons from freely-moving male mice, exploring a familiar environment. In line with previous work, we found that spatial and temporal activity patterns of pyramidal neurons correlated with their topographical position. Morphometric analysis revealed that neurons with a higher proportion of distal dendritic length displayed a higher tendency to fire spike-bursts. We propose that the dendritic architecture of pyramidal neurons might determine burst-firing by setting the relative amount of distal excitatory inputs from the entorhinal cortex.SIGNIFICANCE STATEMENT High-frequency spike-bursts are thought to serve fundamental computational roles within neural circuits. Within hippocampal circuits, spike-bursts are believed to serve as potent instructive signals, which increase the efficiency of information transfer and induce rapid modifications of synaptic efficacies. In the present study, by juxtacellularly recording and labeling single CA2/CA3 neurons in freely-moving mice, we explored whether and how burst propensity relates to pyramidal cell heterogeneity. We provide evidence that, within the CA2/CA3 region, neurons with higher proportion of distal dendritic length display a higher tendency to fire spike-bursts. Thus, the relative amount of entorhinal inputs, arriving onto the distal dendrites, might determine the burst propensity of individual CA2/CA3 neurons in vivo during natural behavior.
Collapse
|
33
|
Zhang L, Song NN, Zhang Q, Mei WY, He CH, Ma P, Huang Y, Chen JY, Mao B, Lang B, Ding YQ. Satb2 is required for the regionalization of retrosplenial cortex. Cell Death Differ 2020; 27:1604-1617. [PMID: 31666685 PMCID: PMC7206047 DOI: 10.1038/s41418-019-0443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The retrosplenial cortex (Rsp) is a transitional cortex located between the neocortex and archicortex, but the molecular mechanism specifying Rsp from the archicortex remains elusive. We here report that the transcription factor Satb2 is required for specifying Rsp identity during its morphogenesis. In Satb2 CKO mice, the boundary between the Rsp and archicortex [i.e., subiculum (SubC)] disappears as early as E17.5, and Rsp efferent projection is aberrant. Rsp-specific genes are lost, whereas SubC-specific genes are ectopically expressed in Rsp of Satb2 CKO mice. Furthermore, cell-autonomous role of Satb2 in maintaining Rsp neuron identity is revealed by inactivation of Satb2 in Rsp neurons. Finally, Satb2 represses the transcription of Nr4a2. The misexpression of Nr4a2 together with Ctip2 induces expression of SubC-specific genes in wild-type Rsp, and simultaneous knockdown of these two genes in Rsp Satb2-mutant cells prevents their fate transition to SubC identity. Thus, Satb2 serves as a determinant gene in the Rsp regionalization by repressing Nr4a2 and Ctip2 during cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
ELİBOL E, KAPLAN S, ALTUN G, AKSOY A, ALTUNKAYNAK BZ. The effects of different doses of diclofenac sodium on newborn rat hippocampus exposed during the third trimester. ACTA ACUST UNITED AC 2020. [DOI: 10.3906/vet-1906-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Baradaran R, Khoshdel‐Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Sadr‐Nabavi A, Peyvandi Karizbodagh M, Kheradmand H, Haghir H. Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. Int J Dev Neurosci 2020; 80:303-318. [DOI: 10.1002/jdn.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Raheleh Baradaran
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hoda Khoshdel‐Sarkarizi
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG) Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Hami
- Department of Anatomical Sciences School of Medicine Birjand University of Medical Sciences Birjand Iran
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Ariane Sadr‐Nabavi
- Department of Medical Genetics School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hamed Kheradmand
- Hazrat Rasoul Hospital Tehran University of Medical Sciences Tehran Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetic Research Center (MGRC) School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
36
|
Young WS, Song J. Characterization of Oxytocin Receptor Expression Within Various Neuronal Populations of the Mouse Dorsal Hippocampus. Front Mol Neurosci 2020; 13:40. [PMID: 32256314 PMCID: PMC7093644 DOI: 10.3389/fnmol.2020.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/30/2022] Open
Abstract
Oxytocin, acting through the oxytocin receptor (Oxtr) in the periphery, is best known for its roles in regulating parturition and lactation. However, it is also now known to possess a number of important social functions within the central nervous system, including social preference, memory and aggression, that vary to different degrees in different species. The Oxtr is found in both excitatory and inhibitory neurons within the brain and research is focusing on how, for example, activation of the receptor in interneurons can enhance the signal-to-noise of neuronal transmission. It is important to understand which neurons in the mouse dorsal hippocampus might be activated during memory formation. Therefore, we examined the colocalization of transcripts in over 5,000 neurons for Oxtr with those for nine different markers often found in interneurons using hairpin chain reaction in situ hybridization on hippocampal sections. Most pyramidal cell neurons of CA2 and many in the CA3 express Oxtr. Outside of those excitatory neurons, over 90% of Oxtr-expressing neurons co-express glutamic acid decarboxylase-1 (Gad-1) with progressively decreasing numbers of co-expressing cholecystokinin, somatostatin, parvalbumin, neuronal nitric oxide synthase, the serotonin 3a receptor, the vesicular glutamate transporter 3, calbindin 2 (calretinin), and vasoactive intestinal polypeptide neurons. Distributions were analyzed within hippocampal layers and regions as well. These findings indicate that Oxtr activation will modulate the activity of ~30% of the Gad-1 interneurons and the majority of the diverse population of those, mostly, interneuron types specifically examined in the mouse hippocampus.
Collapse
Affiliation(s)
- W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
37
|
Iyer A, Tole S. Neuronal diversity and reciprocal connectivity between the vertebrate hippocampus and septum. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e370. [PMID: 31850675 DOI: 10.1002/wdev.370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
A hallmark of the nervous system is the precision with which myriad cell types are integrated into functional networks that control complex behaviors. The limbic system governs evolutionarily conserved processes essential for survival. The septum and the hippocampus are central to the limbic system, and control not only emotion-related behaviors but also learning and memory. Here, we provide a developmental and evolutionary perspective of the hippocampus and septum and highlight the neuronal diversity and circuitry that connects these two central components of the limbic system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development Nervous System Development > Vertebrates: General Principles Comparative Development and Evolution > Regulation of Organ Diversity.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
38
|
Hebda-Bauer EK, Dokas LA, Watson SJ, Akil H. Adaptation to single housing is dynamic: Changes in hormone levels, gene expression, signaling in the brain, and anxiety-like behavior in adult male C57Bl/6J mice. Horm Behav 2019; 114:104541. [PMID: 31220462 PMCID: PMC7466935 DOI: 10.1016/j.yhbeh.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
For basic research, rodents are often housed in individual cages prior to behavioral testing. However, aspects of the experimental design, such as duration of isolation and timing of animal manipulation, may unintentionally introduce variance into collected data. Thus, we examined temporal correlates of acclimation of C57Bl/6J mice to single housing in a novel environment following two commonly used experimental time periods (7 or 14 days, SH7 or SH14). We measured circulating stress hormones (adrenocorticotropic hormone and corticosterone), basally or after injection stress, hippocampal gene expression of transcripts implicated in stress and affect regulation: the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), including the MR/GR ratio, and fibroblast growth factor 2 (FGF2). We also measured signaling in the mammalian target of rapamycin (mTOR) pathway. The basal elevation of stress hormones in the SH14 group is accompanied by a blunting in the circadian rhythms of GR and FGF2 hippocampal gene expression, and the MR/GR ratio, that is observed in SH7 mice. Following mild stress, the endocrine response and hippocampal mTOR pathway signaling are decreased in the SH14 mice. These neural and endocrine changes at 14 days of single housing likely underlie increased anxiety-like behavior measured in an elevated plus maze test. We conclude that multiple measures of stress responsiveness change dynamically between one and two weeks of single housing. The ramifications of these alterations should be considered when designing animal experiments since such hidden sources of variance might cause lack of replicability and misinterpretation of data.
Collapse
Affiliation(s)
- Elaine K Hebda-Bauer
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America.
| | - Linda A Dokas
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Stanley J Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
39
|
Gerber KJ, Dammer EB, Duong DM, Deng Q, Dudek SM, Seyfried NT, Hepler JR. Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. J Proteome Res 2019; 18:2571-2584. [PMID: 31059263 DOI: 10.1021/acs.jproteome.9b00103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hippocampus is well established as an essential brain center for learning and memory. Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. Unlike CA1, CA2 displays a lack of typical synaptic plasticity, enhanced calcium buffering and extrusion, and resilience to cell death following injury. Although recent studies have identified multiple molecular markers of area CA2, the proteins that mediate the unique physiology, signaling, and resilience of this region are unknown. Using a transgenic GFP-reporter mouse line that expresses eGFP in CA2, we were able to perform targeted dissections of area CA2 and CA1 for proteomic analysis. We identified over 100 proteins with robustly enriched expression in area CA2 compared to CA1. Many of these proteins, including RGS14 and NECAB2, have already been shown to be enriched in CA2 and important for its function, while many more merit further study in the context of enhanced expression in this enigmatic brain region. Furthermore, we performed a comprehensive analysis of the entire data set (>2300 proteins) using a weighted protein co-expression network analysis. This identified eight distinct co-expressed patterns of protein co-enrichment associated with increased expression in area CA2 tissue (compared to CA1). The novel data set we present here reveals a specific CA2 hippocampal proteome, laying the groundwork for future studies and a deeper understanding of area CA2 and the proteins mediating its unique physiology and signaling.
Collapse
Affiliation(s)
- Kyle J Gerber
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Qiudong Deng
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle Park , North Carolina 27709 , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta , Georgia 30322 , United States.,Center for Neurodegenerative Disease , Emory University , Atlanta , Georgia 30322 , United States.,Department of Neurology , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Rollins Research Center , Emory University School of Medicine , Atlanta , Georgia 30322 , United States
| |
Collapse
|
40
|
Bygrave AM, Jahans-Price T, Wolff AR, Sprengel R, Kullmann DM, Bannerman DM, Kätzel D. Hippocampal-prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal link between schizophrenia and its risk gene GRIA1. Transl Psychiatry 2019; 9:142. [PMID: 31000699 PMCID: PMC6472369 DOI: 10.1038/s41398-019-0471-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Increased fronto-temporal theta coherence and failure of its stimulus-specific modulation have been reported in schizophrenia, but the psychological correlates and underlying neural mechanisms remain elusive. Mice lacking the putative schizophrenia risk gene GRIA1 (Gria1-/-), which encodes GLUA1, show strongly impaired spatial working memory and elevated selective attention owing to a deficit in stimulus-specific short-term habituation. A failure of short-term habituation has been suggested to cause an aberrant assignment of salience and thereby psychosis in schizophrenia. We recorded hippocampal-prefrontal coherence while assessing spatial working memory and short-term habituation in these animals, wildtype (WT) controls, and Gria1-/- mice in which GLUA1 expression was restored in hippocampal subfields CA2 and CA3. We found that beta (20-30 Hz) and low-gamma (30-48 Hz) frequency coherence could predict working memory performance, whereas-surprisingly-theta (6-12 Hz) coherence was unrelated to performance and largely unaffected by genotype in this task. In contrast, in novel environments, theta coherence specifically tracked exploration-related attention in WT mice, but was strongly elevated and unmodulated in Gria1-knockouts, thereby correlating with impaired short-term habituation. Strikingly, reintroduction of GLUA1 selectively into CA2/CA3 restored abnormal short-term habituation, theta coherence, and hippocampal and prefrontal theta oscillations. Although local oscillations and coherence in other frequency bands (beta, gamma), and theta-gamma cross-frequency coupling also showed dependence on GLUA1, none of them correlated with short-term habituation. Therefore, sustained elevation of hippocampal-prefrontal theta coherence may underlie a failure in regulating novelty-related selective attention leading to aberrant salience, and thereby represents a mechanistic link between GRIA1 and schizophrenia.
Collapse
Affiliation(s)
- Alexei M. Bygrave
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK ,0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK ,0000 0001 2171 9311grid.21107.35Present Address: Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
| | - Thomas Jahans-Price
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Amy R. Wolff
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK ,0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rolf Sprengel
- 0000 0001 2202 0959grid.414703.5Max-Planck-Institute for Medical Research, Heidelberg, Germany ,0000 0001 2190 4373grid.7700.0Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dimitri M. Kullmann
- 0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Bannerman
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Dennis Kätzel
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,UCL Queen Square Institute of Neurology, University College London, London, UK. .,Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
41
|
Okamoto K, Ikegaya Y. Recurrent connections between CA2 pyramidal cells. Hippocampus 2018; 29:305-312. [DOI: 10.1002/hipo.23064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/27/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Kazuki Okamoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
- Center for Information and Neural NetworksNational Institute of Information and Communications Technology Suita Japan
| |
Collapse
|
42
|
Cilz NI, Cymerblit-Sabba A, Young WS. Oxytocin and vasopressin in the rodent hippocampus. GENES BRAIN AND BEHAVIOR 2018; 18:e12535. [PMID: 30378258 DOI: 10.1111/gbb.12535] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
The role of the hippocampus in social memory and behavior is under intense investigation. Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. Oxt- and Avp-expressing fibers are abundant in the hippocampus and receptors for both peptides are seen throughout the different subfields, suggesting that Oxt and Avp modulate hippocampal-dependent processes. In this review, we first focus on the anatomical sources of Oxt and Avp input to the hippocampus and consider the distribution of their corresponding receptors in different hippocampal subfields and neuronal populations. We next discuss the behavioral outcomes related to social memory seen with perturbation of hippocampal Oxt and Avp signaling. Finally, we review Oxt and Avp modulatory mechanisms in the hippocampus that may underlie the behavioral roles for both peptides.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| | - Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|
43
|
Helton TD, Zhao M, Farris S, Dudek SM. Diversity of dendritic morphology and entorhinal cortex synaptic effectiveness in mouse CA2 pyramidal neurons. Hippocampus 2018; 29:78-92. [PMID: 30067288 DOI: 10.1002/hipo.23012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/06/2022]
Abstract
Excitatory synaptic inputs from specific brain regions are often targeted to distinct dendritic arbors on hippocampal pyramidal neurons. Recent work has suggested that CA2 pyramidal neurons respond robustly and preferentially to excitatory input into the stratum lacunosum moleculare (SLM), with a relatively modest response to Schaffer collateral excitatory input into stratum radiatum (SR) in acute mouse hippocampal slices, but the extent to which this difference may be explained by morphology is unknown. In an effort to replicate these findings and to better understand the role of dendritic morphology in shaping responses from proximal and distal synaptic sites, we measured excitatory postsynaptic currents and action potentials in CA2 pyramidal cells in response to SR and SLM stimulation and subsequently analyzed confocal images of the filled cells. We found that, in contrast to previous reports, SR stimulation evoked substantial responses in all recorded CA2 pyramidal cells. Strikingly, however, we found that not all neurons responded to SLM stimulation, and in those neurons that did, responses evoked by SLM and SR were comparable in size and effectiveness in inducing action potentials. In a comprehensive morphometric analysis of CA2 pyramidal cell apical dendrites, we found that the neurons that were unresponsive to SLM stimulation were the same ones that lacked substantial apical dendritic arborization in the SLM. Neurons responsive to both SR and SLM stimulation had roughly equal amounts of dendritic branching in each layer. Remarkably, our study in mouse CA2 generally replicates the work characterizing the diversity of CA2 pyramidal cells in the guinea pig hippocampus. We conclude, then, that like in guinea pig, mouse CA2 pyramidal cells have a diverse apical dendrite morphology that is likely to be reflective of both the amount and source of excitatory input into CA2 from the entorhinal cortex and CA3.
Collapse
Affiliation(s)
- Thomas D Helton
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Meilan Zhao
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Shannon Farris
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Integration of gene expression and brain-wide connectivity reveals the multiscale organization of mouse hippocampal networks. Nat Neurosci 2018; 21:1628-1643. [PMID: 30297807 PMCID: PMC6398347 DOI: 10.1038/s41593-018-0241-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases like Alzheimer’s disease. Physiological studies in humans and rodents suggest both structural and functional heterogeneity along the longitudinal axis of the hippocampus. Yet the recent discovery of discrete gene expression domains within the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns within mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, novel subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project (www.MouseConnectome.org) tract tracing data. Our results define the hippocampus’ multiscale network organization and demonstrate each subnetwork’s unique brain-wide connectivity patterns.
Collapse
|
45
|
Pang CCC, Kiecker C, O'Brien JT, Noble W, Chang RCC. Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist 2018; 25:167-180. [PMID: 29865938 DOI: 10.1177/1073858418778747] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.
Collapse
Affiliation(s)
- Cindy Chi-Ching Pang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clemens Kiecker
- 3 Department of Developmental Neurobiology, King's College London, London, UK
| | - John T O'Brien
- 4 Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Wendy Noble
- 2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Raymond Chuen-Chung Chang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,5 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
46
|
Evans PR, Parra-Bueno P, Smirnov MS, Lustberg DJ, Dudek SM, Hepler JR, Yasuda R. RGS14 Restricts Plasticity in Hippocampal CA2 by Limiting Postsynaptic Calcium Signaling. eNeuro 2018; 5:ENEURO.0353-17.2018. [PMID: 29911178 PMCID: PMC6001268 DOI: 10.1523/eneuro.0353-17.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
Pyramidal neurons in hippocampal area CA2 are distinct from neighboring CA1 in that they resist synaptic long-term potentiation (LTP) at CA3 Schaffer collateral synapses. Regulator of G protein signaling 14 (RGS14) is a complex scaffolding protein enriched in CA2 dendritic spines that naturally blocks CA2 synaptic plasticity and hippocampus-dependent learning, but the cellular mechanisms by which RGS14 gates LTP are largely unexplored. A previous study has attributed the lack of plasticity to higher rates of calcium (Ca2+) buffering and extrusion in CA2 spines. Additionally, a recent proteomics study revealed that RGS14 interacts with two key Ca2+-activated proteins in CA2 neurons: calcium/calmodulin and CaMKII. Here, we investigated whether RGS14 regulates Ca2+ signaling in its host CA2 neurons. We found that the nascent LTP of CA2 synapses caused by genetic knockout (KO) of RGS14 in mice requires Ca2+-dependent postsynaptic signaling through NMDA receptors, CaMK, and PKA, revealing similar mechanisms to those in CA1. We report that RGS14 negatively regulates the long-term structural plasticity of dendritic spines of CA2 neurons. We further show that wild-type (WT) CA2 neurons display significantly attenuated spine Ca2+ transients during structural plasticity induction compared with the Ca2+ transients from CA2 spines of RGS14 KO mice and CA1 controls. Finally, we demonstrate that acute overexpression of RGS14 is sufficient to block spine plasticity, and elevating extracellular Ca2+ levels restores plasticity to RGS14-expressing neurons. Together, these results demonstrate for the first time that RGS14 regulates plasticity in hippocampal area CA2 by restricting Ca2+ elevations in CA2 spines and downstream signaling pathways.
Collapse
Affiliation(s)
- Paul R. Evans
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | - Daniel J. Lustberg
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - John R. Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458
| |
Collapse
|
47
|
Okuyama T. Social memory engram in the hippocampus. Neurosci Res 2018; 129:17-23. [DOI: 10.1016/j.neures.2017.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/21/2017] [Accepted: 05/25/2017] [Indexed: 01/10/2023]
|
48
|
Benoy A, Dasgupta A, Sajikumar S. Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit. Exp Brain Res 2018; 236:919-931. [DOI: 10.1007/s00221-018-5187-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
|
49
|
Hippocampal area CA2: properties and contribution to hippocampal function. Cell Tissue Res 2018; 373:525-540. [PMID: 29335778 DOI: 10.1007/s00441-017-2769-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
This review focuses on area CA2 of the hippocampus, as recent results have revealed the unique properties and surprising role of this region in encoding social, temporal and contextual aspects of memory. Originally identified and described by Lorente de No, in 1934, this region of the hippocampus has unique intra-and extra-hippocampal connectivity, sending and receiving input to septal and hypothalamic regions. Recent in vivo studies have indicated that CA2 pyramidal neurons encode spatial information during immobility and play an important role in the generation of sharp-wave ripples. Furthermore, CA2 neurons act to control overall excitability in the hippocampal network and have been found to be consistently altered in psychiatric diseases, indicating that normal function of this region is necessary for normal cognition. With its unique role, area CA2 has a unique molecular profile, interneuron density and composition. Furthermore, this region has an unusual manifestation of synaptic plasticity that does not occur post-synaptically at pyramidal neuron dendrities but through the local network of inhibitory neurons. While much progress has recently been made in understanding the large contribution of area CA2 to social memory formation, much still needs to be learned.
Collapse
|
50
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|